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Abstract People often interact with environments that can
provide only a finite number of items as resources. Even-
tually a book contains no more chapters, there are no more
albums available from a band, and every Pokémon has been
caught. When interacting with these sorts of environments,
people either actively choose to quit collecting new items,
or they are forced to quit when the items are exhausted.
Modeling the distribution of how many items people collect
before they quit involves untangling these two possibilities,
We propose that censored geometric models are a useful
basic technique for modeling the quitting distribution, and,
show how, by implementing these models in a hierarchical
and latent-mixture framework through Bayesian methods,
they can be extended to capture the additional features of
specific situations. We demonstrate this approach by devel-
oping and testing a series of models in two case studies
involving real-world data. One case study deals with people
choosing jokes from a recommender system, and the other
deals with people completing items in a personality survey.

Keywords Modeling quitting · Censored geometric
distribution · Search termination · Hierarchical models ·
Latent-mixture models · Bayesian methods
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Introduction

The world is full of environments in which people can col-
lect some or all of a finite set of items, and it is a basic
psychological question to ask when and why they quit col-
lecting. Many people have read every chapter in the Lord of
the Rings, but some stopped part way through. Many people
own some Fleetwood Mac albums, and a few people own
all of them. Most people gave up on playing Pokémon GO
when creatures were still available, but a few heroic individ-
uals persevered to catch them all. In all of these cases, there
is a distribution of the number of items collected across all
people, and that distribution has a hard limit at the total
number of available items.

A key feature of these distributions is that they combine
two fundamentally different reasons for people finalizing
their collection. The first involves people choosing to quit
collecting items. The other involves them being forced to
quit because all available items are exhausted. The first is
a property of the individual, involving their preferences,
choices, and decision making, while the second is a prop-
erty of the environment. One way to understand the situation
is that the limited environmental resources limit the mea-
surement of people’s quitting behavior. People may have
been willing to read more chapters, buy more albums, or
collect more Pokémon, but, if they have already collected
them all, that willingness cannot be quantified because of
the limitations of the environment.

In this paper, we propose that censored geometric models
form a useful starting point for modeling people’s quit-
ting behavior, and demonstrate how they can be extended
to capture the more detailed features of specific situations.
Statistical methods for censored data are well-established,
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and widely used in some area of empirical sciences, espe-
cially for problems that involve survival or adoption (e.g.,
Amemiya 1984; Cox & Oakes 1984; Klein &Moeschberger
2005). Previous applications of censored geometric distri-
butions range from biological applications like bird nesting
success (Green, 1977) and species abundance (Norris &
Pollock, 1998), to economics applications like technology
adoption (McWilliams et al., 1998). The basic idea is that
there is some probability of a terminating event—whether a
success in the context of adoption, or a failure in the con-
text of quitting—at every step, and a bound on how many
steps are possible. The process giving the probability of ter-
mination corresponds to the geometric distribution, while
the bound of how many steps can be observed corresponds
to the censoring. These properties are a natural characteri-
zation of our problem of understanding the distribution of
quitting as a mixture of people’s choices and environmental
limits.

We present two case studies. In the first, we model how
many jokes people read from an on-line recommender sys-
tem that has a total of 70 jokes. In the second, we model
how many questions people answer in an on-line person-
ality survey that has a total of 322 relevant questions. In
both case studies, we start with the basic censored geometric
model, and then develop and evaluate extensions of the basic
model—using hierarchical and latent-mixture approaches,
and Bayesian methods—trying to achieve descriptive ade-
quacy and insight into the underlying cognitive processes
involved in quitting.

First case study: Quitting reading jokes

The first case study is based on data from the Jester on-line
system (Goldberg et al., 2001). This system requires users
to read and rate a small set of jokes, and then allows them
to continue reading and rating the other jokes in the system.
Since its inception in 1999, the Jester system has evolved,
with the stage-wise addition of jokes, and the continual
collection of data from new users.

We focus on a small subset of the available data, from a
time when there were 70 jokes in the system, and people had
to read and rate the same 15 jokes. The behavior of 2,607
users is available for this snapshot of the system. The distri-
bution of the number of jokes read for these people is shown
in Fig. 1, and displays a clear pattern. After the required 15
jokes have been read, there is a group of people who grad-
ually give up, and a group of people who read all 70 jokes.
The research problem is to understand this distribution of
quitting.

A simple censored geometric model

A simple plausible model says that people have a probability
θ of making the current joke their last one, and assumes that
this probability is the same for all people. It also assumes
that this quitting probability does not change regardless of
how many jokes have already been read. According to this
model, the number of jokes αi that the ith person would read
from a system with endless jokes is

αi ∼ 15 + Geometric
(
θ
)
.

For the current data, however, the maximum number of
jokes that can be read is 70. Thus, the Jester on-line sys-
tem, viewed as a measuring instrument of people’s desire to
read jokes, censors the measurement of αi to a maximum of
70. This means that the observed data yi shown in Fig. 1,
counting the number of jokes seen by the ith person, is:

yi =
{

αi if αi ≤ 70
70 if αi > 70.

To allow Bayesian inference, the model is completed by
a prior θ ∼ Uniform

(
0, 1

)
on the probability of termina-

tion after each joke. We implemented this model in JAGS
(Plummer, 2003), which uses Markov-chain Monte-Carlo
(MCMC) methods to return samples from the joint posterior
parameter distribution conditional on the model and data.

The results of applying this model are shown in Fig. 2.
The black line shows the posterior predictive distribution of
the model, which provides an indication of its descriptive
adequacy (Shiffrin et al., 2008). It is clear that it describes
the distribution of the observed data well, and captures both
the gradual decrease from 15 to 69 jokes, and the large
number of people who read all 70 jokes. The posterior
expectation of the quitting probability θ is about 3 %. This
means there is about a 3 % chance, as a person reads a joke,
that it will be their last.

Figure 2 provides evidence that the simple model of how
many jokes people read is a very useful one. It accounts for the
gradual drop-off in people reading 15 to 69 jokes, as well
as the large group of people who read all of the jokes. The
psychological explanation for the spike at 70 is simply that
many people wanted to keep reading jokes, but the system
ran out. In this way, the data are explained as a combination of
people’s quitting behavior, and the limitations of the system.

An extended model with individual differences

While the simple censored geometric model is able to describe
the Jester data well, it makes a number of strong psycho-
logical assumptions that are worth testing. In particular, it
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Fig. 1 The distribution of the number of jokes read by 2,607 people with access to a total of 70 jokes in the Jester on-line recommendation system

assumes there are no individual differences between people.
It seems plausible that there are differences in the quitting
probabilities for different people. It could also be that some
people use a fundamentally different strategy, reading all of
the jokes, regardless of how many the system can provide.
In the same way people usually read all the chapters in a
book, exhausting its content, it could be that some people
aim to read all of Jester’s jokes.

It is possible to allow for these sorts of individual differ-
ences using hierarchical and latent-mixture extensions of the
basic model (Bartlema et al., 2014). The hierarchical part
of the extension allows for the possibility that each person
has their own termination probability, denoted θi for the ith

person, drawn from a group distribution. We assume the
group distribution is a truncated Gaussian between 0 and 1,
so that

θi ∼ Gaussian(0,1)
(
μ,

1

σ 2

)
,

and give the mean and standard deviation relatively uninfor-
mative priors μ ∼ Uniform

(
0, 1

)
and σ ∼ Uniform

(
0, 1

)
.

The latent-mixture part of the extension allows for the
existence of two qualitatively different groups of people.
People in the first group use the hierarchical version of the
simple model, terminating with probability θi or being cen-
sored to read all of the jokes. People in the second group
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Fig. 2 The distribution of the number of jokes read by people, and the posterior predictive agreement of the censored geometric model
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always read all of the jokes. Psychologically, the two trends
seen in the data are now accounted for in terms of two
groups of people, one group giving the gradual decline from
15 to 69, and the other giving the spike at 70.

A binary indicator parameter zi is used for the ith person
to indicate to which of the two groups they belong. These
parameters are assumed to follow a base-rate φ representing
the proportion of people in the “read all the jokes” group, so
that

zi ∼ Bernoulli
(
φ
)
,

where the base-rate is given the prior φ ∼ Uniform
(
0, 1

)
.

The observed data yi are now distributed according to
which group the ith person belongs. If they belong to the
first group, the data are distributed according to the simple
model, but with termination probability θi . If they belong to
the second group, they always read all 70 jokes.

yi ∼
⎧
⎨

⎩

15 + Geometric (θi) if zi = 0 and αi ≤ 70
70 if zi = 0 and αi > 70
70 if zi = 1.

Once again, we implemented this model in JAGS, and
applied it to the Jester data. The important part of the pos-
terior distribution, to test for the possibility of individual
differences, is the joint posterior of the σ and φ parame-
ters. When σ = 0, there is no variability in the termination
probabilities over people, and so that type of individual dif-
ference does not exist. When φ = 0, the base-rate of people
in the “read all the jokes” group is zero, and so that type
of individual difference does not exist. When both σ = 0
and φ = 0, both types of possible individual difference are
removed, and the extended model reduces to the original
simple one.

Figure 3 shows the joint posterior distribution over σ

and φ, as a two-dimensional plot. The joint posterior is a
three-dimensional surface, and Fig. 3 can be thought of as
viewing this surface from directly above as a grid. The area
of each black circle is proportional to the density of the
prior for each combination of σ and φ, and shows the uni-
form priors that were assumed. The area of each gray circle
is proportional to the density of the posterior in that region
of the parameter space. It is clear that essentially all of the
posterior density is near the point σ = 0 and φ = 0.

According to the Savage-Dickey method, the ratio of
the posterior to the prior at a point in the parameter
space approximates a Bayes factor. This Bayes factor com-
pares a specific nested model—the one obtained by setting
the parameters of the more general model to the specific
values—to the more general model itself (Wagenmakers
et al., 2010). Here, the interest is in the Bayes factor

comparing the original simple model to the hierarchical
latent-mixture extension. We approximated this by taking a
small region ε around the point (σ = 0, φ = 0), and count-
ing the number of samples within this region in the posterior
and prior. The logarithm of the Bayes factor was estimated
as about 10 in favor of the simple model, which we interpret
as very strong evidence.

In other words, the current data do not provide evidence
for different people having different termination probabil-
ities, nor for there being a different group of people who
want to read all of the jokes. The data are well described by
a simple censored geometric model of termination.

Second case study: Quitting answering questions

The Synthetic Aperture Personality Assessment (SAPA)
test collects people’s responses to a series of personality-
assessment questions through an on-line system (Condon &
Revelle, 2015; Revelle et al., 2012). The system includes a
total of 696 questions, collated from 92 public-domain per-
sonality scales. People can complete up to 14 pages of these
questions. Navigation through the system involves clicking
a “next” button at the end of each page to move to the next,
or a “quit” button at the end of the page to quit answering
questions.

The first 4 pages of the SAPA system each have 18 per-
sonality questions, and the remaining 10 pages each have
25 personality questions. Thus, people can complete up
to 322 personality questions over the 14 available pages.
The instructions given by the system encourage people to
complete the first 4 pages, corresponding to a total of 72
personality questions.

The data we analyze come from Condon and Revelle
(2015), and detail the responses to personality questions
made by 23,680 people who answered at least one ques-
tion using the SAPA system. As in the Jester case study,
we are not interested in the content of people’s answers,
but in how many pages and questions they complete. The
distribution of the number of questions answered across all
people is shown in Fig. 4, with the tick marks on the x-axis
corresponding to the total number of questions available
by accessing each successive survey page. The distribution
of the number of questions people answer has an interest-
ing structure, with peaks corresponding to question counts
near page boundaries, and an especially large peak around
72 questions, which corresponds to completing the first 4
pages.

A simple censored geometric model

Applying a simple censored geometric model to this prob-
lem is naturally done at the level of survey pages, since it is
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Fig. 3 The prior and posterior distributions over individual differences in termination rate, σ , and the base-rate of group differences, φ. The prior
is shown by black circles, while the posterior is shown by gray circles

at the end of each page that people can quit. If the proba-
bility of quitting at the end of a page is θ , then the number
of pages the ith person attempts in a system with limitless
pages is given by

αi ∼ 1 + Geometric(θ).

Because the system provides a maximum of 14 pages, how-
ever, the number attempted by the ith person, pi is censored
as

pi =
{

αi if αi ≤ 14
14 if αi > 14.
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Fig. 4 The distribution of the number of personality items completed by 23,680 people with access to a total of 322 items
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Due to the structure of the survey, the total number of ques-
tions qi that the ith person could answer, over the pi pages
they attempt, is given by

qi = min (pi, 4) × 18 + max (pi − 4, 0) × 25.

It is clear from the distribution of the data in Fig. 4, peo-
ple do not always answer all of the questions on a page.
At the question counts that correspond to page boundaries,
there are usually some people who answered slightly fewer
questions than the total for all of the pages to that point.
For example, in the group who accessed 4 survey pages,
many people complete slightly fewer than 72 questions.
This observation suggests that people sometimes skip ques-
tions, whether by choice or oversight. A simple way to
model this skipping is to assume there is a probability ψ

of answering any available question. This means that the
observed number of questions yi answered by the ith person
is

yi ∼ Binomial
(
ψ, qi

)
.

The model is completed with uniform priors on the page-
quitting and question-skipping probabilities

θ ∼ Uniform(0, 1),

ψ ∼ Uniform(0, 1).

We implemented this model in JAGS and applied it to
the SAPA data. The results are shown in Fig. 5, with the
posterior predictive distribution of the model overlayed on
the distribution of the data. It is clear that the simple model
fails the basic test of descriptive adequacy. The posterior
predictive distribution is unable to match the data on which
it is based.

An extended model with an instruction-following group

At least one reason for the failure of the simple censored
geometric model is obvious. This reason is that it does not
incorporate the relevant information regarding the system’s
instruction to complete 4 pages. It is clear from the distribu-
tion of the number of questions answered that many people
quit after 4 pages.

To incorporate this information, we extend the model
to consider two groups of people, using a latent-mixture
approach. The first group of people continue to be mod-
eled by the original simple censored geometric account, and
can attempt any number of survey pages from 1 to 14. The
second group of people follow the default instructions and
attempt exactly 4 pages. In this extended model, a binary
indicator parameter zi indicates to which of these groups the
ith person belongs. The number of pages attempted by the
ith person now becomes

pi =
⎧
⎨

⎩

αi if zi = 0 and αi ≤ 14
14 if zi = 0 and αi > 14
4 if zi = 1.

The indicator zi is assumed to follow a base-rate ω, which
represents the proportion of people who follow the “just
answer four pages and quit” instructions

zi ∼ Bernoulli(ω),

and the base-rate is given a uniform prior

ω ∼ Uniform(0, 1).

The remainder of the model, generating the observed num-
ber of questions completed qi , is the same as the original
model.

18 36 54 72 97 122 147 172 197 222 247 272 297 322

Number of questions answered

1000

2000

3000

4000

5000

6000

7000

N
um

be
r 

of
 p

eo
pl

e

Data
Model

Fig. 5 The distribution of the number of items read by people, and the posterior predictive agreement of the censored geometric model
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The results for the extended latent-mixture model are
shown in Fig. 6. The posterior predictive distribution now
matches the distribution of the data much more closely.
In particular, the large number of people answering 72-or-
slightly-fewer questions is now much better described.

The extended model still, however, has a number of
systematic failures in its descriptive adequacy. It does not
include as many people in some of the “peaks” as are
observed in the data, especially those associated with quit-
ting after 1 or 4 pages. Even more tellingly, it mis-describes
the distribution of questions answered for the cases where
people viewed many pages, and this mis-description appears
to become progressively worse for larger numbers of pages.
It is especially clear for the distribution of the observed data
around 300 questions, which is not well captured by the
posterior predictive distribution.

An extended model with changing question-completion
rates

The reason for the failure of the latent-mixture model is sub-
tle. The key insight is given by the progressively-worsening
alignment of predicted and observed distributions of ques-
tion completions for the peaks as the number of pages
viewed progresses. The observed data progressively fall
further short of the model’s posterior predictive distribu-
tion. This means that people complete fewer questions than
the latent-mixture model expects, as the number of pages
increases. One possible cause of this mismatch is that the
question-completion rate is not constant, but decreases as
the number of pages viewed increased. This seems psycho-
logically plausible, corresponding to the idea that people

skip or miss more questions as they view more pages of the
survey.

To test this idea, we extended the latent-mixture model
hierarchically, to allow for the question-completion rate to
change as a function of the number of pages viewed. We
experimented with a number of different functional forms
for the relationship between the question-completing rate
ψk on the kth page, including a bounded-linear function. To
describe the data well, it seems to be important to allow for a
non-linear relationship allowing for the decrease in question
completion rates to fall more quickly over pages. To allow
for this, we used a standard logistic function

ψk = 1

1 + exp (−β1k − β0)
,

with standard priors

β1 ∼ Cauchy (0, 1) ,

β0 ∼ Cauchy (0, 1) .

The remainder of the model, generating the observed num-
ber of questions completed qi , is the same as in the extended
latent-mixture model.

We implemented this hierarchically-extended model
allowing for changing question-completion rates in JAGS.
The results are shown in Fig. 7. The posterior predictive
distribution now matches the distribution of the data very
closely. In particular, the distribution of people completing
around 300 questions, consistent with viewing all 14 sur-
vey pages, but failing to complete many questions over the
pages, now agrees well with the data.

The inferred form of the relationship between question-
completion rate and number of pages read is shown in the
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Fig. 6 The distribution of the number of items read by people, and the posterior predictive agreement of an extended censored geometric model
including in a latent-mixture a group of people who attempt exactly 4 survey pages
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Fig. 7 The distribution of the number of items read by people, and the posterior predictive agreement of the censored geometric model with
changing question-completion rates

left-hand panel of Fig. 8. This shows the posterior distribu-
tion of the logistic function based on the joint posterior of
the β1 and β0 parameters. The probability of completing a
question is inferred to decrease from about 0.99 to about
0.93 over the course of the 14 pages, with an accelerating
decrease for the last few pages.

The finding of a decreasing question-completion rate is
psychologically plausible, and leads to improved posterior
predictive agreement. It can also be tested formally as a
model-selection problem, using Bayes factors. The relevant
comparison is between a model that assumes a constant
question-completion rate with the model that assumes a
logistic decrease. To estimate this Bayes factor, we again
relied on the Savage-Dickey method, which is applicable

because when β1 = 0, the logistic model reduces to the
constant model.

The right-hand panel of Fig. 8 summarizes this analy-
sis, showing the prior and posterior distributions for β1. It
is clear the posterior has negligible density relative to the
prior at the critical point β1 = 0, and we estimate the log-
arithm of the Bayes factor in favor of the logistic model to
be about 600, which is overwhelming evidence. To test the
robustness of this conclusion to the prior, we repeated the
analysis for β1 ∼ Cauchy

(
0, 2.5

)
prior, as recommended

by Gelman et al. (2008), and got a similarly overwhelming
result.

Our conclusion from this sequence of model building and
testing is that the basic censored geometric model needs to
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Fig. 8 The posterior distribution of the logistic function based on the joint posterior of the β1 and β0 parameters (left-hand panel) and the prior
and the posterior distributions for β1 used to estimate the Bayes factor using the Savage-Dickey method (right-hand panel)
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be extended in two ways to describe the distribution of ques-
tions answered in the SAPA data. The first extension is to
include a group of people who follow the default instruc-
tions and view 4 pages. This is naturally achieved using
latent-mixture modeling. The second extension is to allow
for a non-linear decrease in the rate at which questions
are answered as more pages are viewed. This is natu-
rally achieved using hierarchical modeling. The resultant
hierarchical latent-mixture model provides an accurate and
interpretable description of the data.

Discussion

Collectively, the two case studies we have presented high-
light the usefulness of censored geometric models for under-
standing people’s quitting behavior. The modeling chal-
lenge in the joke-reading and question-answering applica-
tions is that the basic psychological questions about people’s
preferences and individual differences are not immediately
answerable from their observed behavior. The limitations of
the Jester and SAPA systems as measurement instruments
mean that it is not obvious when people quit of their own
accord, and when the system forces them to. This inter-
action between psychology and measurement requires the
development of models that incorporate the censoring prop-
erties of the environment. Our case studies show how a
basic censored geometric model can be applied, and then
extended and tested in accordance with the details of a
specific problem.

One of the interesting features in the two case stud-
ies is that multiple meaningful parameters are estimated
from a single observed variable yi , which is the observed
number of jokes read or questions answered. In all of the
models we considered, the quitting rate parameter θ of
the geometric distribution is inferred. Models that included
latent-mixture extensions also inferred a base-rate param-
eter for group membership—the φ parameter in the joke-
reading case study and the ω parameter in the question-
answering case study—as well as membership parameters
zi for each person. Models that included hierarchical exten-
sions involved still other parameters. The joke-reading case
study allowed for individual differences using the σ parame-
ter. The question-answering case study included the number
of answered pages pi and presented questions qi as param-
eters, and the ψk parameter representing the probability of
a question on the kth page being answered. All of these
parameters are psychologically interpretable, and poten-
tially important in answering scientific and applied ques-
tions. Our modeling approach allows them all to be inferred
simultaneously from a simple distribution of counts over
the number of jokes read or questions answered. This capa-
bility to make rich inferences from limited data comes the

incorporation of detailed psychological assumptions about
the data-generation process, and from the ability of
Bayesian methods to make inferences for highly-structured
models and sparse data.

The scientific approach to developing models we adopted
in the case studies is a very pragmatic one. We did not
use strong guiding theory to make prior predictions about
the distribution of the data, and then test those predictions
(Feynman, 1994). Instead, we used knowledge of the data to
guide the incremental extension of the basic censored geo-
metric model, seeking descriptive adequacy. We used more
stringent model evaluation at key junctures, to test the most
important conclusions. In the joke-reading case study, we
used Bayes factors to quantify the evidence the data pro-
vided against individual differences in quitting probabilities,
and against the possibility that there was a sub-group of
people determined to read all of the jokes. In the question-
answering case study, we used Bayes factors to provide
evidence for the need for a non-linear decrease in the
question-completion rate as more pages were accessed. We
think this scientific process of model extension to improve
descriptive adequacy and model evaluation to find evidence
for successful extensions is a general and useful one.

It should be clear that our claims are not about the gen-
erality or predictive ability of the models of joke-reading
and question-answering presented. Our claims are about the
usefulness of the censored geometric as a base model, and
the possibility of tailoring this model to specific problems.
In the joke-reading case study, a simple censored geometric
model proved descriptively adequate, and extensions allow-
ing for various individual differences did not improve the
descriptive adequacy. In the question-answering case study,
a simple censored geometric model was descriptively inad-
equate. Extending the model to include a group of people
who followed specific instructions to access 4 pages, and
allowing for the question-completion rate to change as more
pages were accessed, cumulatively resulted in a descrip-
tively adequate model. In both case studies, the process
of model development led to useful psychological insights
into people’s quitting behavior, in terms of individual differ-
ences, the existence of subgroups, or other properties of the
data-generation process.

Our approach to modeling and inference is entirely
Bayesian. We think this is the right choice conceptually,
since Bayesian theory handles censoring in a principled
way, and Bayesian parameter estimation and model selec-
tion are similarly principled. This means the Bayesian the-
oretical framework has capabilities the frequentist one does
not. The ability to find evidence in favor of a “null” model,
for example, is necessary to quantify the evidence against
individual differences in the joke-reading case study, and
requires a Bayesian approach. Just as importantly, we think
Bayesian methods are the right choice pragmatically. The
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ability to extend models in flexible and creative ways, using
latent-mixture and hierarchical approaches, is an essen-
tial ingredient to the exploratory improvement of models
demonstrated in our case studies. The JAGS implementa-
tion of the various models is straightforward, and makes
inference based on computational Bayesian methods easy.
Proposing an extended model requires little additional work
in model implementation, which facilitates the creative and
exploratory process of model development.

This paper dealt with the problem of modeling when peo-
ple quit, and one particular class of models, in the form of
censored geometric models, to understand quitting behav-
ior. There are, of course, many other statistical and modeling
contexts in which censoring is important. Being able to
model censored data is a core capability in a statistician’s
toolkit, but it is hard to find applications in psychology. We
do not think this is because psychology is bereft of mod-
eling challenges involving censored data. The motivation
for our case studies—environments with only a finite num-
ber of items, limiting the possibility of observing people’s
underlying preferences—is a good example. In these situa-
tions, basic psychological questions can only be answered
by including the censoring properties of the environment in
modeling and inference. Psychology as a field seems not
to have considered these sorts of problems very often. It is
possible the field regards them as uninteresting problems. It
is more likely the field has ignored these problems because
of ignorance of the statistical methods required to deal with
censoring.

In this context, the primary goal of this paper is to demon-
strate the feasibility of applying censored models to psycho-
logical problems. Censored statistical models are important
in statistics, and in fields like biology, medicine, epidemi-
ology, engineering, economics, and demography. We think
they are equally important in the psychological sciences.
Whenever the measurement of people’s behavior is limited
in some way, the modeling problem involves censoring. We
hope that the pragmatic approach to model development
and evaluation—and the conceptual clarity and practicality
of Bayesian methods—that we have demonstrated will lead
to greater exploration of psychological models involving
quitting in censored environments.
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