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In high-speed electric trains, a pantograph is mounted on the roof of the train to collect power through contact with an overhead
catenary wire. The effect of fast harmonic and parametric excitation on a stochastically driven pantograph-catenary system is
studied in this paper. A single-degree-of-freedom model of the pantograph-catenary system is adopted, wherein the stiffness of
the nonlinear spring has a time-varying component characterized by both low and high frequencies. Using perturbation and
harmonic averaging, a Fokker-Planck-Kolmogorov equation governing the stationary response of the pantograph-catenary system
is set up. Based on the transition probability density of the stationary response, it is found that even small high-frequency parametric
excitation has an appreciable effect on the system response. Among other things, it shifts the resonant frequency and often changes
the response characteristics markedly.

1. Introduction

A number of important structures can be modeled as a
stochastically driven nonlinear system subjected to both slow
and fast harmonic and parametric excitations. An example
is the pantograph-catenary system in railway engineering.
High-speed electric trains often employ a pantograph to
collect their currents from an overhead catenary system.
During operation, the pantograph is excited by forces due
to train-body vibration, ambient air flow, contact wire
irregularities, and other disturbances. These disturbances
can be realistically taken as a stochastic excitation to the
pantograph. Owing to the stiffness variation between the
support poles and the short-distance droppers, the catenary
may be regarded as a nonlinear spring with a time-varying
stiffness component. As a result, the combined pantograph-
catenary system is an example of a stochastically driven non-
linear system with both low- and high-frequency parametric
excitations.

There is fairly extensive literature on the dynamics
of pantograph-catenary systems [1–6]. However, previous
studies have focused on deterministic excitations. It has

been accepted that parametrically induced vibration of
a pantograph-catenary system occurs mainly in the low-
frequency region. Thus earlier studies usually ignored the
high-frequency parametric effect generated by the catenary
[7, 8]. Recent theoretical studies on dynamical systems,
however, suggest that high-frequency parametric excitation
could shift the resonant frequency or equilibrium states [9–
12], thus altering the stability [13–15] and other response
characteristics [16].

In this work, the effect of fast harmonic and parametric
excitation on a stochastically driven pantograph-catenary
system is investigated. A nonlinear single-degree-of-freedom
model of the pantograph-catenary system possessing low-
and high-frequency time-varying stiffness is adopted. Using
perturbation, an approximate equation governing only the
low-frequencymotion is derived.Then, an averagingmethod
based on harmonic functions [17–21] is applied to the
low-frequency equation. Subsequently, a Fokker-Planck-
Kolmogorov equation governing the stationary response of
the pantograph-catenary system is set up. Based on the
transition probability density of the stationary response, the
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Figure 1: Dynamic model of pantograph-catenary system.

effect of fast parametric excitation on the resonant frequency
and the primary resonant response are studied. Finally, direct
numerical simulations of the nonlinear model are performed
to validate the analysis presented.

2. Model of Pantograph-Catenary System

A commonly used model in railway engineering of the
pantograph-catenary system [3, 7, 8] is the single-degree-
of-freedom model shown in Figure 1. Since the stiffness
variation is repeated in each span of the catenary, the catenary
stiffness possesses periodic components. If we consider the
stiffness variation between the vertical droppers, the catenary
is usually taken as a spring with time-varying stiffness
components given by [1, 7, 8]

𝐾(Ω
𝑠
, Ω
𝑓
, 𝑡) = 𝐾

0
(𝑉) (1 + 𝛼 cos (Ω

𝑠
𝑡) + 𝛽 cos (Ω

𝑓
𝑡)) ,

(1)

where𝑉 represents the speed of train and𝐾
0
(𝑉) is the speed-

dependent average stiffness of the catenary. In the above
equation, 𝛼, 𝛽 are unspecified coefficients and 𝛼 cos(Ω

𝑠
𝑡),

𝛽 cos(Ω
𝑓
𝑡) account for the stiffness fluctuations between the

support poles and the vertical droppers, respectively. Let 𝐿
𝑠

and 𝐿
𝑑
denote, respectively, the span distance and dropper

distance. Then the frequencies of stiffness fluctuation can be
expressed as

Ω
𝑠
=
2𝜋𝑉

𝐿
𝑠

; Ω
𝑓
=
2𝜋𝑉

𝐿
𝑑

. (2)

In general, 𝐿
𝑠
≫ 𝐿
𝑑
and therefore Ω

𝑓
≫ Ω

𝑠
. In many

cases, the average stiffness 𝐾
0
(𝑉) can be approximated by a

quadratic function of the train speed [8] such that

𝐾
0
(𝑉) = 𝐾

𝑠
− 𝐾
𝑑
𝑉
2

, (3)

where 𝐾
𝑠
is the static average stiffness of the catenary and

𝐾
𝑑
is a coefficient accounting for dynamic interactions of the

coupled pantograph-catenary system. The value of 𝐾
𝑠
can be

calculated by the finite element method.
Due to random disturbances (such as train body move-

ment, contact wire irregularity, and ambient air flow), a weak

random excitation 𝑐
𝑤
𝜉(𝑡) is introduced into the equation

of the pantograph-catenary system. Incorporating stiffness
nonlinearity, the equation of motion of the pantograph-
catenary system can be written as

𝑚 ̈𝑦 + 𝑐 ̇𝑦 + 𝑘


𝑦 + �̃�𝑦
3

+ (𝐾
𝑠
− 𝐾
𝑑
𝑉
2

)

× (1 + 𝛼 cos (Ω
𝑠
𝑡) + 𝛽 cos (Ω

𝑓
𝑡)) 𝑦 = 𝑐

𝑤
𝜉 (𝑡) ,

(4)

where𝑦 is the vertical displacement of the pantograph system
and the fourth item in the left of (4) represents the interaction
of pantograph and catenary system.

Let𝜔2
𝑛
= 𝑘/𝑚 and 𝜏 = 𝜔

𝑛
𝑡where 𝑘 = 𝑘



+𝐾
𝑠
−𝐾
𝑑
𝑉
2 and 𝜏

is a nondimensional time. Equation (4) can be converted into
the nondimensional form

𝑦


+ 2𝜁𝑦


+ 𝑦 + 𝑏𝑦
3

= [−𝐸
11
+ 𝐸
12
𝑟
2

𝑠
] cos (𝑟

𝑠
𝜏) 𝑦

+ [−𝐸
21
+ 𝐸
22
𝑟
2

𝑓
] cos (𝑟

𝑓
𝜏) 𝑦 + ℎ

0
𝜉 (𝜏) ,

(5)

where 𝑦 = 𝑑𝑦/𝑑𝜏, 𝑦


= 𝑑
2

𝑦/𝑑𝜏
2, and

2𝜁 =
𝑐

𝑚𝜔
𝑛

, 𝑏 =
�̃�

𝑚𝜔2
𝑛

, 𝐸
11
=
𝛼𝐾
𝑠

𝑚𝜔2
𝑛

,

𝐸
12
=
𝛼𝐾
𝑑

𝑚
(
𝐿
𝑠

2𝜋
)

2

, 𝐸
21
=
𝛽𝐾
𝑠

𝑚𝜔2
𝑛

,

𝐸
22
=
𝛽𝐾
𝑑

𝑚
(
𝐿
𝑑

2𝜋
)

2

, ℎ
0
=

𝑐
𝑤

𝑚𝜔2
𝑛

,

𝑟
𝑠
=
Ω
𝑠

𝜔
𝑛

=
2𝜋𝑉

𝜔
𝑛
𝐿
𝑠

, 𝑟
𝑓
=

Ω
𝑓

𝜔
𝑛

=
2𝜋𝑉

𝜔
𝑛
𝐿
𝑑

.

(6)

Here 𝑟
𝑠

= 𝑂(1) is the nondimensional low-frequency
excitation, and 𝑟

𝑓
≫ 1 is the nondimensional high-frequency

excitation. If a train is travelling at a constant speed 𝑉, then
2𝜁, 𝐸

11
, 𝐸
12
𝑟
2

𝑠
, 𝐸
21
, 𝐸
22
𝑟
2

𝑓
, and ℎ

0
are all small constants.

Suppose these constants are of the same order in a small
parameter 𝜀. System (5) is a randomly excited Duffing
oscillator with both slow and fast time-varying stiffness. The
goal of the present work is to investigate the influence of the
fast parametric excitation on the characteristics of system (5).

3. Approximate Equation Governing
the Slow Motion

Introduce two different time-scales:

𝑇
0
= 𝑟
𝑓
𝜏 = 𝜀
−1

𝜏; 𝑇
1
= 𝜏, (7)

where the slow time 𝑇
1
and the fast time 𝑇

0
are considered as

new independent variables in (5). Separate 𝑦(𝜏) into a slow
part 𝑤(𝑇

1
) and a fast part 𝜀𝜙(𝑇

0
, 𝑇
1
) [10] so that

𝑦 (𝜏) = 𝑤 (𝑇
1
) + 𝜀𝜑 (𝑇

0
, 𝑇
1
) . (8)
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It has been recognized that the behavior of system (5) is
mainly described by the slow part 𝑤 since 𝜀𝜙 is small
compared to 𝑤. Let ⟨⋅⟩

𝑇0
= (∫
2𝜋

0

⋅ 𝑑𝑇
0
)/2𝜋 be the time-ave-

raging operator over one period of the fast time scale
𝑇
0
with the slow time 𝑇

1
fixed. Assume that 𝜀𝜙 and its

derivatives vanish upon 𝑇
0
-averaging so that ⟨𝑦(𝜏)⟩

𝑇0

=

𝑤(𝑇
1
). Substitute (8) into (5) to obtain

𝐷
2

1
𝑤 + (𝜀𝐷

2

1
+ 2𝐷
0
𝐷
1
+ 𝜀
−1

𝐷
2

0
) 𝜑 + 2𝜁 (𝐷

1
𝑤 + 𝐷

0
𝜑 + 𝜀𝐷

1
𝜑)

+ (𝑤 + 𝜀𝜑) + 𝑏(𝑤 + 𝜀𝜑)
3

= [−𝐸
11
+ 𝐸
12
𝑟
2

𝑠
] (𝑤 + 𝜀𝜑) cos (𝑟

𝑠
𝑇
1
)

× [−𝐸
21
+ 𝜀
−1

𝐸
22
𝑟
𝑓
] (𝑤 + 𝜀𝜑) cos (𝑇

0
) + ℎ
0
𝜉 (𝑇
1
) ,

(9)

where 𝐷𝑗
𝑖
= 𝜕
𝑗

/𝜕𝑇
𝑗

𝑖
(𝑖 = 0, 1; 𝑗 = 1, 2). Average equation

(9) with respect to 𝑇
0
and subtract the averaged equation

from (9); an approximate expression for 𝜙 is obtained by
considering only the dominant terms of order 𝜀−1 as

𝐷
2

0
𝜑 = 𝐸

22
𝑟
𝑓
𝑤 cos (𝑇

0
) . (10)

The stationary solution to first order for 𝜙 is

𝜑 = −𝐸
22
𝑟
𝑓
𝑤 cos (𝑇

0
) . (11)

Substitute (11) into (9) and apply 𝑇
0
-averaging. Retain domi-

nant terms of order 𝜀0 to obtain

𝐷
2

1
𝑤 + 2𝜁𝐷

1
𝑤 + [

[

1 +

(𝐸
22
𝑟
𝑓
)
2

2

]

]

𝑤 + 𝑏𝑤
3

= [−𝐸
11
+ 𝐸
12
𝑟
2

𝑠
]𝑤 cos (𝑟

𝑠
𝑇
1
) + ℎ
0
𝜉 (𝑇
1
) .

(12)

Equation (12) governs only the slow motion 𝑤 of system
(5). Note that the fast excitation affects the slow behavior of
system (12) by adding (𝐸

22
𝑟
𝑓
)
2

/2 to the linear stiffness. By
numerical simulations, the probability densities 𝑝(𝑎) of the
amplitude of the original system (5) and of the slow system
(12) are plotted in Figure 2. It is observed that the larger the
fast excitation parameter 𝐸

22
⋅ 𝑟
𝑓
, the bigger the difference

between the two amplitudes.

4. Effect of Fast Parametric Excitation

In the last section, an approximate equation governing only
the slow motion of system (5) is obtained by perturbation. In
the following, we will discuss the effect of the fast harmonic
excitation on this slow system in greater detail.

4.1. Effect on Resonant Frequency. Let 𝜔2 = [1 + (𝐸
22
𝑟
𝑓
)
2

/2].
In order to study the effect of the fast parametric excitation on
the resonant frequency of system (12), we will first consider
the free response of system (12) governed by

𝐷
2

1
𝑤 + 𝜔

2

𝑤 + 𝑏𝑤
3

= 0. (13)

0 1
0.0

0.5

1.0

1.5

2.0

2.5

3.0

p(
a)

a

1
2

Figure 2: Probability densities of amplitude of the original system
(5) and of the slow system (12). Line 1: no fast excitation; line 2: 𝐸

22
⋅

𝑟
𝑓
= 0.8. Solid lines for the original system (5) and dotted lines for

the slow system (12).

The periodic solution of system (13) has the form [17]

𝑤 (𝑇
1
) = 𝑎 cos 𝜃 (𝑇

1
) , 𝐷

1
𝑤 (𝑇
1
) = −𝑎] (𝑎, 𝜃) sin 𝜃 (𝑇

1
) ,

𝜃 (𝑇
1
) = 𝜙 (𝑇

1
) + 𝛾,

(14)

where 𝑎 is the amplitude, 𝛾 is the phase angle, and

] (𝑎, 𝜃) =
𝑑𝜙

𝑑𝑇
1

= √(𝜔2 +
3𝑏𝑎
2

4
) (1 + 𝜂 cos (2𝜃)) ,

𝜂 =

(𝑏𝑎
2

/4)

(𝜔2 + 3𝑏𝑎2/4)
.

(15)

The instantaneous frequency ](𝑎, 𝜃) can be approximated by
the finite sum:

] (𝑎, 𝜃) = 𝑏
0
(𝑎) + 𝑏

2
(𝑎) cos 2𝜃 + 𝑏

4
(𝑎) cos 4𝜃 + 𝑏

6
(𝑎) cos 6𝜃,

(16)

where

𝑏
0
(𝑎) = √(𝜔2 +

3𝑏𝑎
2

4
)(1 −

𝜂
2

16
)

𝑏
2
(𝑎) = √(𝜔2 +

3𝑏𝑎
2

4
)(

𝜂

2
+
3𝜂
3

64
)

𝑏
4
(𝑎) = √(𝜔2 +

3𝑏𝑎
2

4
)(−

𝜂
2

16
)

𝑏
6
(𝑎) = √(𝜔2 +

3𝑏𝑎
2

4
)(

𝜂
3

64
) .

(17)
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Figure 3: Average resonant frequency for different values of the fast
excitation parameter𝐸

22
⋅ 𝑟
𝑓
. Line 1: no fast excitation; line 2:𝐸

22
⋅𝑟
𝑓

= 0.3; line 3: 𝐸
22
⋅ 𝑟
𝑓
= 0.9.

By integrating (16) with respect to 𝜃 from 0 to 2𝜋, an average
frequency

𝜔 (𝑎) =
1

2𝜋
∫

2𝜋

0

] (𝑎, 𝜃) 𝑑𝜃 = 𝑏
0
(𝑎) (18)

of the oscillator is obtained. The approximate relation

𝜃 (𝑇
1
) ≈ 𝜔 (𝑎) 𝑇

1
+ 𝛾 (19)

will be used in the averaging process that follows. Note that
the resonant frequency ](𝑎, 𝜃) depends on both the amplitude
𝑎 and phase 𝛾. In Figure 3, the average resonant frequency
𝜔(𝑎) is plotted against the amplitude 𝑎 for different values of
𝐸
22
⋅ 𝑟
𝑓
. As the fast excitation parameter 𝐸

22
⋅ 𝑟
𝑓
increases, the

average resonant frequency of the system also increases.

4.2. Effect onResonant Response. Wenowproceed to examine
the effect of fast parametric excitation on the resonant
response of system (12). It is reasonable to assume that neither
light damping nor a weak random excitation will destabilize
system (12). In this case the response of system (12) can be
regarded as a random spread of the periodic solutions of
system (13). As a consequence,

𝑤 (𝑇
1
) = 𝐴 cosΘ(𝑇

1
) ,

𝐷
1
𝑤 (𝑇
1
) = −𝐴𝑉 (𝐴,Θ) sinΘ(𝑇

1
) ,

Θ (𝑇
1
) = Φ (𝑇

1
) + Γ (𝑇

1
) ,

(20)

where 𝐴, Θ, Φ, Γ, and 𝑉 are all random processes. The
instantaneous and average frequencies of system (12) are of
the same forms given by (15) and (18).

Substitute (20) into (12) and treat (20) as generalized van
der Pol transformation from 𝑤, 𝐷

1
𝑤 to 𝐴, Γ; the following

equations for 𝐴 and Γ can be obtained:

𝑑𝐴

𝑑𝑇
1

= 𝐹
1
(𝐴,Θ, 𝑟

𝑠
𝑇
1
) + 𝐺
1
(𝐴, Θ) 𝜉 (𝑇

1
) ,

𝑑Γ

𝑑𝑇
1

= 𝐹
2
(𝐴,Θ, 𝑟

𝑠
𝑇
1
) + 𝐺
2
(𝐴, Θ) 𝜉 (𝑇

1
) ,

(21)

where

𝐹
1
(𝐴,Θ, 𝑟

𝑠
𝑇
1
)

= −
1

𝜔2 + 𝑏𝐴2
(2𝜁𝐴𝑉 (𝐴,Θ) sinΘ

+ [−𝐸
11
+ 𝐸
12
𝑟
2

𝑠
]𝐴 cosΘ cos (𝑟

𝑠
𝑇
1
))

× 𝑉 (𝐴,Θ) sinΘ,

𝐹
2
(𝐴,Θ, 𝑟

𝑠
𝑇
1
)

= −
1

𝜔2𝐴 + 𝑏𝐴3
(2𝜁𝐴𝑉 (𝐴,Θ) sinΘ

+ [−𝐸
11
+ 𝐸
12
𝑟
2

𝑠
] 𝐴 cosΘ cos (𝑟

𝑠
𝑇
1
))

× 𝑉 (𝐴,Θ) cosΘ

𝐺
1
(𝐴, Θ) = −

ℎ
0

𝜔2 + 𝑏𝐴2
𝑉 (𝐴,Θ) sinΘ

𝐺
2
(𝐴,Θ) = −

ℎ
0

𝜔2𝐴 + 𝑏𝐴3
𝑉 (𝐴,Θ) cosΘ,

(22)

and ℎ
0
has been specified in (6).

4.2.1. The Case with ℎ
0
= 0. Firstly, we consider the pure

parametric harmonic excitation case. Neglect the diffusion
terms and (21) can be rewritten as

𝑑𝐴

𝑑𝑇
1

= −
1

𝜔2 + 𝑏𝐴2

× (2𝜁𝐴𝑉 (𝐴,Θ) sinΘ

+ [−𝐸
11
+ 𝐸
12
𝑟
2

𝑠
] 𝐴 cosΘ cos (𝑟

𝑠
𝑇
1
))

× 𝑉 (𝐴,Θ) sinΘ,

𝑑Γ

𝑑𝑇
1

= −
1

𝜔2𝐴 + 𝑏𝐴3

× (2𝜁𝐴𝑉 (𝐴,Θ) sinΘ

+ [−𝐸
11
+ 𝐸
12
𝑟
2

𝑠
] 𝐴 cosΘ cos (𝑟

𝑠
𝑇
1
))

× 𝑉 (𝐴,Θ) cosΘ.

(23)

The nonlinear system (23) is subjected to harmonic para-
metric excitations and there is the possibility of parametric
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resonance. Since large response of the pantograph-catenary
system may cause malfunctions in power collection, we will
emphasize the primary parametric resonance case. Assume
that in primary parametric resonance there exists

𝑟
𝑠

𝜔 (𝐴)
= 2 + 𝜀𝜂, (24)

where 𝜔(𝐴) is the average frequency of system (12) and 𝜀𝜂 ≪
1 is the small detuning parameter. Multiply (24) by 𝑇

1
and

utilize the approximate relation (19) to obtain

𝑟
𝑠
𝑇
1
= 2Θ + 𝜀𝜂𝜔𝑇

1
− 2Γ. (25)

Introduce a new variable Δ = 𝜀𝜂𝜔𝑇
1
− 2Γ so that (25) can

be rewritten as

𝑟
𝑠
𝑇
1
= 2Θ + Δ. (26)

Substitute (26) into (23) and average (23) with respect to
the rapidly varying process Θ from 0 to 2𝜋 to generate the
following averaged differential equations:

𝑑𝐴

𝑑𝑇
1

= (−𝐴 [512𝜁𝜔
2

+ 320𝜁𝑏𝐴
2

− 64 (2𝑏
0
− 𝑏
4
) (−𝐸
11
+ 𝐸
12
𝑟
2

𝑠
) sinΔ])

× (512 (𝜔
2

+ 𝑏𝐴
2

))
−1

𝑑Δ

𝑑𝑇
1

= 𝑟
𝑠
− 2𝑏
0
+

(2𝑏
0
+ 2𝑏
2
+ 𝑏
4
) (−𝐸
11
+ 𝐸
12
𝑟
2

𝑠
) cosΔ

4 (𝜔2 + 𝑏𝐴2)
.

(27)

Equation (27) involves only slowly varying processes 𝐴 and
Δ. By letting 𝑑𝐴/𝑑𝑇

1
= 𝑑Δ/𝑑𝑇

1
= 0, (27) gives the frequency

response relation:

[
512𝜁𝜔

2

𝐴 + 320𝜁𝑏𝐴
3

64𝐴 (2𝑏
0
− 𝑏
4
) (−𝐸
11
+ 𝐸
12
𝑟2
𝑠
)
]

2

+ [

4 (𝑟
𝑠
− 2𝑏
0
) (𝜔
2

+ 𝑏𝐴
2

)

(2𝑏
0
+ 2𝑏
2
+ 𝑏
4
) (−𝐸
11
+ 𝐸
12
𝑟2
𝑠
)
]

2

= 1.

(28)

Numerical results are obtained for 𝜁 = 0.1, 𝑏 = 0.5, 𝐸
11
= 1.2,

𝐸
12

= 0.1, and 𝐸
21

= 0.5 and shown in Figures 4 and
5. Figure 4 displays the frequency response under primary
parametric resonance for different values of the fast excitation
parameter 𝐸

22
⋅ 𝑟
𝑓
. It is observed that fast parametric

excitation shifts the resonant peaks to the right, which means
that a higher frequency of the slow excitation is required
to produce the resonant response. The dependence of the
amplitude Δ𝑎 at 𝑟

𝑠
= 2.0 and the width of the resonant region

ΔΩ as a function of the fast excitation parameter 𝐸
22
⋅ 𝑟
𝑓

is shown in Figure 5. The amplitude and the width of the
resonant region are reduced appreciably by fast parametric
excitation.
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Figure 4: Frequency response for primary parametric resonance.
Dashed lines are unstable. Line 1: no fast excitation; line 2: 𝐸

22
⋅ 𝑟
𝑓
=

0.3; line 3: 𝐸
22
⋅ 𝑟
𝑓
= 0.6.
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Figure 5:The amplitudeΔ𝑎 at 𝑟
𝑠
= 2.0 and the width of the resonant

region ΔΩ as functions of the fast excitation parameter 𝐸
22
⋅ 𝑟
𝑓
.

4.2.2. The Case with ℎ
0

̸= 0. In practical railway engineering,
random disturbances are always present and the term 𝜉(𝑇

1
)

cannot be neglected. Suppose that the stochastic excitation
𝜉(𝑇
1
) is a weak Gaussian white noise with intensity 2𝐷. Then,

(21) can be modeled as Stratonovich stochastic differential
equations and transformed into the following Itô equations
by adding Wong-Zakai correction terms [18]:

𝑑𝐴 = 𝑚
1
(𝐴,Θ, 𝑟

𝑠
𝑇
1
) 𝑑𝑇
1
+ 𝜎
1
(𝐴, Θ) 𝑑𝐵 (𝑇

1
) ,

𝑑Γ = 𝑚
2
(𝐴,Θ, 𝑟

𝑠
𝑇
1
) 𝑑𝑇
1
+ 𝜎
2
(𝐴, Θ) 𝑑𝐵 (𝑇

1
) ,

(29)

where 𝑑𝐵(𝑇
1
) is the unit Wiener process and

𝑚
1
(𝐴,Θ, 𝑟

𝑠
𝑇
1
) = 𝐹
1
(𝐴,Θ, 𝑟

𝑠
𝑇
1
) + 𝐷(𝐺

1

𝜕𝐺
1

𝜕𝐴
+ 𝐺
2

𝜕𝐺
1

𝜕Θ
) ,

𝑚
2
(𝐴,Θ, 𝑟

𝑠
𝑇
1
) = 𝐹
2
(𝐴,Θ, 𝑟

𝑠
𝑇
1
) + 𝐷(𝐺

1

𝜕𝐺
2

𝜕𝐴
+ 𝐺
2

𝜕𝐺
2

𝜕Θ
) ,
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𝑏
1
(𝐴, Θ) = 𝜎

2

1
(𝐴,Θ) = 2𝐷𝐺

2

1
,

𝑏
2
(𝐴, Θ) = 𝜎

2

2
(𝐴,Θ) = 2𝐷𝐺

2

2
,

(30)

and 𝐹
𝑖
and 𝐺

𝑖
(𝑖 = 1, 2) are given in (22). In primary

parametric resonance, utilize (26) and average the rapidly
varying process Θ from 0 to 2𝜋 to generate the averaged Itô
stochastic differential equations:

𝑑𝐴 = 𝑚
1
(𝐴, Δ) 𝑑𝑇

1
+ 𝜎
1
(𝐴) 𝑑𝐵 (𝑇

1
) ,

𝑑Δ = 𝑚
2
(𝐴, Δ) 𝑑𝑇

1
+ 𝜎
2
(𝐴) 𝑑𝐵 (𝑇

1
) ,

(31)

where the averaged drift and diffusion coefficients are

𝑚
1
(𝐴, Δ) = (−𝐴 [512𝜁𝜔

2

+ 320𝜁𝑏𝐴
2

−64 (2𝑏
0
− 𝑏
4
) (−𝐸
11
+ 𝐸
12
𝑟
2

𝑠
) sinΔ])

× (512 (𝜔
2

+ 𝑏𝐴
2

))
−1

+

ℎ
2

0
𝐷(4𝑏

2

𝐴
2

+ 12𝑏𝜔
2

𝐴
2

+ 32𝜔
4

)

64𝐴(𝜔2 + 𝑏𝐴2)
3

,

𝑚
2
(𝐴, Δ) = 𝑟

𝑠
− 2𝑏
0

+

(2𝑏
0
+ 2𝑏
2
+ 𝑏
4
) (−𝐸
11
+ 𝐸
12
𝑟
2

𝑠
) cosΔ

4 (𝜔2 + 𝑏𝐴2)
,

𝑏
1
(𝐴) = 𝜎

2

1
(𝐴) =

ℎ
2

0
𝐷(16𝜔

2

+ 10𝑏𝐴
2

)

16(𝜔2 + 𝑏𝐴2)
2

,

𝑏
2
(𝐴) = 𝜎

2

2
(𝐴) =

ℎ
2

0
𝐷(16𝜔

2

+ 14𝑏𝐴
2

)

16𝐴2(𝜔2 + 𝑏𝐴2)
2

.

(32)

The Fokker-Planck-Kolmogorov (FPK) equation associ-
ated with the Itô equations (31) is

𝜕𝑝

𝜕𝑇
1

= −
𝜕

𝜕𝑎
(𝑚
1
𝑝) −

𝜕

𝜕Δ
(𝑚
2
𝑝)

+
1

2

𝜕
2

𝜕𝑎2
(𝑏
1
𝑝) +

1

2

𝜕
2

𝜕Δ2
(𝑏
2
𝑝) ,

(33)

where 𝑝 = 𝑝(𝑎, Δ, 𝑇
1
) is the probability density of amplitude

𝑎 and phase Δ. The initial condition for (33) is

𝑝 = 𝛿 (𝑎 − 𝑎
0
) 𝛿 (Δ − Δ

0
) , 𝑇

1
= 0, (34)

and the boundary conditions for (33) are

𝑝 = finite, 𝑎 = 0,

𝑝,
𝜕𝑝

𝜕𝑎
→ 0, 𝑎 → ∞,

𝑝 (𝑎, Δ + 2𝑛𝜋, 𝑇
1
| 𝑎
0
, Δ
0
, 𝑇
10
) = 𝑝 (𝑎, Δ, 𝑇

1
| 𝑎
0
, Δ
0
, 𝑇
10
) .

(35)
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Figure 6: Stationary probability density 𝑝(𝑎) for different values of
the fast excitation parameter 𝐸

22
⋅ 𝑟
𝑓
. Line 1: no fast excitation; line

2: 𝐸
22
⋅ 𝑟
𝑓
= 0.4; line 3: 𝐸

22
⋅ 𝑟
𝑓
= 0.8. Dotted lines are from direct

numerical simulations of the nonlinear model (5).
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Figure 7: Mean and variance of the amplitude of the slow system
(12).

The nonlinear three-dimensional parabolic problem as given
in (33)–(35) does not admit an easy solution, analytically
or numerically. Fortunately, in practical applications we are
more interested in the stationary solution of the FPK equation
(33). In this case, (33) can be simplified by letting 𝜕𝑝/𝜕𝜏 =

0. Then, the joint stationary probability density 𝑝(𝑎, Δ) is
obtained readily by using the finite difference method. The
stationary probability density of the amplitude 𝑝(𝑎) can be
obtained from 𝑝(𝑎, Δ) by

𝑝 (𝑎) = ∫

2𝜋

0

𝑝 (𝑎, Δ) 𝑑Δ. (36)

Numerical results for 𝑝(𝑎) and 𝑝(𝑎, Δ) of system (12) in
parametric resonance are obtained for 𝜁 = 0.1, 𝑏 = 0.5,
𝐸
11

= 1.2, 𝐸
12

= 0.1, 𝐸
21

= 0.5, 𝑟
𝑠
= 2.0, 𝐷 = 1.0,

ℎ
0
= 0.1, and shown in Figures 6–8. Figure 6 shows the

stationary probability density 𝑝(𝑎) for different values of the
fast excitation parameter 𝐸

22
⋅ 𝑟
𝑓
. Fast parametric excitation
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Figure 8: Joint stationary probability density 𝑝(𝑎, Δ). (a): No fast excitation; (b) 𝐸
22
⋅ 𝑟
𝑓
= 0.8.

shifts the probability density curve to the left, changing both
the peak height and shape. Even when the fast excitation
is small, the response of the slow system (12) may change
dramatically. This observation is reinforced in Figure 7, in
which themean and variance of the amplitude𝑎of system (12)
change significantly upon adding fast parametric excitation.
This reflects the increased stiffness of the slow system (12)
under fast excitation. Finally, direct numerical simulations of
the nonlinear model (5) are performed to generate 𝑝(𝑎). As
shown in Figure 6, data from direct numerical simulations
closely match those generated by (36), thus validating the
analysis presented.The joint probability density𝑝(𝑎, Δ) of the
slow system (12) is plotted in Figure 8.

5. Conclusions

In the present paper, the effect of fast parametric excitation
on a stochastically excited pantograph-catenary system has
been investigated. A nonlinear model of the pantograph-
catenary system has been adopted, wherein the stiffness of
the nonlinear spring has a time-varying component char-
acterized by both low and high frequencies. The overall
parametrically inducedmotion of the system is separated into
two parts: a dominant low-frequency vibration which is the
main motion and a small high-frequency vibration which
affects the low-frequency motion by altering the stiffness.
Using perturbation, an approximate equation governing only
the low-frequency motion has been derived. An averaging
method for harmonic functions has been applied to obtain
the primary resonant response of the low-frequency motion.

Analytical results show that the effect of fast parametric
excitation is not negligible. The addition of even a small
amount of high-frequency parametric excitation may dra-
matically increase the resonant frequency and change the
primary resonant response of a system. From a theoretical
viewpoint, an investigation of a Duffing oscillator subjected
to both stochastic and parametric forces has been conducted
to study the surprising effect of high-frequency input. Practi-
cally speaking, many structures outside railway engineering
can be modeled as a stochastically driven nonlinear system
excited by both slow and fast parametric excitations. Hence,
the results of this investigation could be useful in other
applications.
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