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BRIEF COMMUNICATION

Two Novel Susceptibility Loci for Prostate Cancer in

Men of African Ancestry

David V. Conti, Kan Wang, Xin Sheng, Jeannette T. Bensen, Dennis J.
Hazelett, Michael B. Cook, Sue A. Ingles, Rick A. Kittles, Sara S. Strom,
Benjamin A. Rybicki, Barbara Nemesure, William B. Isaacs, Janet L. Stanford,
Wei Zheng, Maureen Sanderson, Esther M. John, Jong Y. Park, Jianfeng Xu,
Victoria L. Stevens, Sonja I. Berndt, Christopher A. Haiman; for the
PRACTICAL/ELLIPSE Consortium
Affiliations of authors: Department of Preventive Medicine, Keck School of Medicine (DVC, KW, XS, SAI, CAH), and Norris Comprehensive Cancer Center (SAI, CAH),
University of Southern California, Los Angeles, CA; Department of Epidemiology (JTB) and Lineberger Comprehensive Cancer Center (JTB), University of North Carolina at
Chapel Hill, Chapel Hill, NC; Bioinformatics and Computational Biology Research Center, Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (DJH); Division
of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD (MBC, SIB); University of Arizona College of Medicine and
University of Arizona Cancer Center, Tucson, AZ (RAK); Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX (SSS); Department of
Public Health Sciences, Henry Ford Hospital, Detroit, MI (BAR); Department of Preventive Medicine, Stony Brook University, Stony Brook, NY (BN); James Buchanan Brady
Urological Institute, Johns Hopkins Hospital and Medical Institution, Baltimore, MD (WBI); Division of Public Health Sciences, Fred Hutchinson Cancer Research Center,
Seattle, WA (JLS); Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA (JLS); Division of Epidemiology, Department of Medicine,
Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN (WZ); Department of Family and Community Medicine, Meharry Medical College,
Nashville, TN (MS); California Prevention Institute of California, Fremont, CA (EMJ); Department of Health Research and Policy (Epidemiology), Stanford Cancer Institute, Stanford
University School of Medicine, Stanford, CA (EMJ); Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, FL (JYP); Program for Personalized
Cancer Care and Department of Surgery, NorthShore University HealthSystem, Evanston, IL (JX); Epidemiology Research Program, American Cancer Society, Atlanta, GA (VLS)

See the Notes section for the full list of authors and affiliations.
Correspondence to: Christopher A. Haiman, ScD, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Norris
Comprehensive Cancer Center, 1450 Biggy Street, Room 1504A, Los Angeles, CA 90033 (e-mail: haiman@usc.edu).

Abstract

Prostate cancer incidence is 1.6-fold higher in African Americans than in other populations. The risk factors that drive this
disparity are unknown and potentially consist of social, environmental, and genetic influences. To investigate the genetic basis
of prostate cancer in men of African ancestry, we performed a genome-wide association meta-analysis using two-sided statisti-
cal tests in 10 202 case subjects and 10 810 control subjects. We identified novel signals on chromosomes 13q34 and 22q12, with
the risk-associated alleles found only in men of African ancestry (13q34: rs75823044, risk allele frequency ¼ 2.2%, odds ratio [OR]
¼ 1.55, 95% confidence interval [CI] ¼ 1.37 to 1.76, P ¼ 6.10�10�12; 22q12.1: rs78554043, risk allele frequency¼ 1.5%, OR¼1.62,
95% CI¼1.39 to 1.89, P ¼ 7.50�10�10). At 13q34, the signal is located 5’ of the gene IRS2 and 3’ of a long noncoding RNA, while at
22q12 the candidate functional allele is a missense variant in the CHEK2 gene. These findings provide further support for the
role of ancestry-specific germline variation in contributing to population differences in prostate cancer risk.

The incidence of prostate cancer (PCa) in African American men
is 1.6-fold higher than in other racial/ethnic populations (1), re-
maining one of the most important health disparities globally.
Reasons for this disparity likely involve a multitude of factors,

including social and environmental factors and inherited sus-
ceptibility. Genome-wide association studies (GWAS) have iden-
tified more than 100 common risk alleles for PCa (2–7), including
the susceptibility region on chromosome 8q24, which harbors
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multiple variants that have been suggested to contribute to ra-
cial/ethnic differences in PCa risk (8,9).

To search for additional PCa risk variants in men of African
ancestry that may contribute to their greater disease incidence,
we combined genetic association results from the African
Ancestry Prostate Cancer GWAS Consortium (AAPC; 4853 case
subjects and 4678 control subjects) (9), the Ghana Prostate Study
(474 case subjects and 458 control subjects) (10), the Kaiser/
ProHealth Prostate Cancer Study (601 case subjects and 1650
control subjects) (11), and the ELLIPSE/PRACTICAL OncoArray
Consortium (4274 case subjects and 4024 control subjects)
(Supplementary Table 1, available online). Subjects provided
written informed consent to participate in the study. The proto-
col and consent documents were approved by the institutional
review boards at each of the participating institutions. A total of
17.8 million genotyped and imputed single nucleotide polymor-
phisms (SNPs) and insertion/deletion variants with frequencies
of 1% or more were tested for an association with PCa risk. For
each SNP, per-allele odds ratios (ORs) and 95% confidence inter-
vals (CIs) were estimated using unconditional logistic regres-
sion, and we tested for allele dosage effects through a 1-degree
of freedom Wald trend test. All statistical tests were two-sided.
Results from each study were combined through a meta-
analysis of 10 202 case subjects and 10 810 control subjects
(Supplementary Methods, available online). The cut-point for
genome-wide statistical significance was a P value of less than
5.00�10-8.

Only minor evidence of inflation in the test statistic was ob-
served following adjustment for global genetic ancestry (k ¼
1.04). In the meta-analysis, 775 alleles achieved genome-wide
statistical significance (P < 5.00� 10-8). These alleles were located
at the 8q24 risk region (543 alleles) and other known susceptibil-
ity regions on chromosomes 2p15(EHBP1), 2q37(MLPH),
6q22(RFX6), 8p21(NKX3-1), 10q11(MSMB), 11q13(MYEOV),
12q13(KRT8), 17q21(ZNF652), and Xp11(NUDT11/LINC01496)
(Supplementary Figure 1A, available online). Outside of these re-
gions, genome-wide statistically significant associations were
also observed on chromosomes 13q34 and 22q12.1 (Table 1;
Supplementary Figure 1B, available online), with the risk-associated
alleles found almost exclusively in men of African ancestry. At
13q34, marker rs75823044 (2.2% frequency) was associated with an
odds ratio of 1.55 (95% CI ¼ 1.37 to 1.76, P ¼ 6.10�10-12). This marker
is located within a cluster of five moderately correlated alleles (r2 >

0.30) approximately 45kb 3’ of the gene insulin receptor substrate 2
(IRS-2), a signaling protein that mediates the effect of insulin
and insulin-like growth factor 1 (12), and 20 kb 5’ of a long
noncoding RNA (LINC00676). Of these five variants, rs151190668
(OR ¼ 1.67, 95% CI ¼ 1.43 to 1.96, P ¼ 1.70�10-10) appears to be
the best functional candidate because it is located in a region
containing epigenetic chromatin modifications and androgen
receptor and FOXA1 binding consistent with regulatory se-
quences (Figure 1; Supplementary Methods, available online).

At 22q12.1, the association signal was also defined by multi-
ple low-frequency African ancestry–specific variants spanning
approximately 944 kb, with rs78554043 being the most statisti-
cally significant variant (1.5% frequency, OR ¼ 1.62, 95% CI ¼
1.39 to 1.89, P ¼ 7.50�10-10) (Table 1). The variant rs78554043 is
correlated (r2 ¼ 1) with a missense polymorphism (rs17886163,
Ile448Ser, P ¼ 1.38�10-9) in the CHEK2 gene (Supplementary
Table 4, available online), which is a likely candidate for the un-
derlying biologically functional allele. Although the Ile448Ser
missense is characterized as “benign” by Polyphen2 and ClinVar
and “tolerated” by Sifting Intolerant from Tolerant (SIFT)
(Supplementary Methods, available online), it involves aT
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nonconservative nonpolar to polar change in the amino acid.
While the possibility of rare regulatory variation cannot be ex-
cluded, this nonconservative change provides support for previ-
ous studies suggesting that rare/less common missense
variants in CHEK2 may be important in PCa development (13).

The risk alleles rs75823044 and rs78554043 are found almost
exclusively in African ancestry populations. In the 1000
Genomes Project populations (n ¼ 2504 subjects), the risk allele
for rs75823044 was found in 48 of 661 African ancestry samples

(AFR), one of 85 Peruvians, and one of 96 Punjabi. For rs78554043,
the risk allele was found in 30 of 661 AFR samples, one of 104
Puerto Ricans, and one of 94 Colombians (data not shown).

At 13q34 and 22q12.1, no nominally statistically significant
(P < .05) evidence of effect heterogeneity was noted by age
(above vs below the median age in case subjects plus control
subjects of 64, P � .27) or disease aggressiveness (high-risk vs
low-risk PCa, P � .20) (Supplementary Methods, available online).
GWAS of high-risk disease (vs controls) and high- (n ¼ 2984) vs

Figure 1. Regional plot of a novel genome-wide statistically significant prostate cancer risk region at chromosome 13q34. Single nucleotide polymorphisms (SNPs) are

plotted by their position 110 kb on either side of the index SNP (purple diamond) on the chromosome against their association (�log10 P) with prostate cancer risk in

men of African ancestry. SNPs surrounding the index SNP are colored to indicate the local linkage disequilibrium (LD) structure using pairwise r2 data from the African

ancestry samples panel of the 1000 Genomes Project (November 2014 phase III). Below are peaks from transcription factor (TF) and histone modification ChIP-seq ex-

periments in the same genomic window (see the Supplementary Methods, available online). All ChIP-seq in LNCaP unless otherwise indicated. AR ¼ androgen receptor;

CTCF ¼ CCCTC-binding factor; LNCaP ¼ Lymph Node Carcinoma of the Prostate cell line. B
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low-risk (n ¼ 3012) disease (Supplementary Methods, available
online) did not reveal any novel PCa loci of genome-wide statisti-
cal significance that could differentiate risk by disease aggressive-
ness (Supplementary Figure 1, C and D, available online). In
addition, aside from 8q24 (14), admixture mapping using 220 474
genotyped SNPs in case-case and case-control comparisons of lo-
cal ancestry (Supplementary Methods, available online) failed to
identify any novel risk regions harboring risk alleles that are
highly differentiated in frequency between men of African and
European ancestry (data not shown) (Supplementary Figure 2A,
available online).

The most statistically significant PCa risk association genome
wide was observed with a novel triallelic (A/T/G) variant at 8q24,
with the T allele found in approximately 12% of case subjects and
approximately 6% of control subjects (rs72725854 at position
128,074,815 located in “region 2”) (8). The risk allele (T) is only
found in populations of African ancestry with a per-allele odds ra-
tio of 2.33 (95% CI ¼ 2.16 to 2.50, P ¼ 1.08�10-109) (Supplementary
Figure 2B, available online) and is in linkage disequilibrium with
African ancestry–specific risk alleles rs114798100 (4%, OR ¼ 2.43,
95% CI ¼ 2.21 to 2.66, P ¼ 4.07�10-81) and rs111906932 (2%, OR ¼
1.92, 95% CI ¼ 1.70 to 2.16, P ¼ 1.44�10-26) (8,9). These SNPs are not
correlated (r2 ¼ 0 for rs114798100 and rs111906932) but define all
observed haplotypes with the risk allele T of rs72725854, and thus
describe the same association signal. In stepwise models, four ad-
ditional variants were found to capture risk (P < 10-5) across the
8q24 locus (127.8–128.8 Mb) in men of African ancestry
(Supplementary Table 2, available online).

Of the 100 reported PCa risk loci, 94 variants are polymorphic
with an MAF of 0.05 or greater, 81 are directionally consistent
with previous results in other populations (OR > 1), and 47 are
nominally statistically significant associations (P < .05) in men
of African ancestry (data not shown). Based on a polygenic risk
score (Supplementary Methods, available online) comprising
these risk variants as well as novel variants at 13q34 and
22q12.1 and variants shown to capture risk at 8q24 in men of
African ancestry (n ¼ 5), the 10% of men with the highest poly-
genic risk scores have a 3-fold (95% CI ¼ 2.52 to 3.63) of PCa com-
pared with men with “average risk” (polygenic risk scores in the
25th to 75th percentiles) (Supplementary Table 3, available online),
which is comparable with that observed for the top 10% of the
risk score distribution in men of European ancestry (OR ¼ 2.93,
95% CI ¼ 2.75 to 3.12) (2). Estimates for the top 1% of the poly-
genic risk scores in each population are 4.23 and 5.65,
respectively.

A main limitation of this study is suboptimal statistical power
(<80%) to detect modest effects (OR < 1.22) at genome-wide lev-
els of statistical significance for common alleles with minor allele
frequencies of less than 10%, particularly in analyses stratified by
disease aggressiveness. Another limitation is the lack of under-
standing regarding the biological mechanisms through which ge-
netic variation in these susceptibility regions influences risk.

Our findings substantiate the importance of conducting
large-scale genetic studies in diverse populations for the discov-
ery of novel risk loci that are ancestry specific (15). Further dis-
covery efforts and fine-mapping of known loci will be needed to
better understand the contribution of germline variation to PCa
in men of African ancestry.
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