
UC Irvine
ICS Technical Reports

Title
Production systems as control structures for programming languages

Permalink
https://escholarship.org/uc/item/4nf243wt

Author
Brooks, Ruven

Publication Date
1977

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4nf243wt
https://escholarship.org
http://www.cdlib.org/

Ok.'̂ "<^{ ^CiJ>$i,^<K 7Zocd^^^-c--c-e?4

PRODUCTION SYSTEMS AS CONTROL

STRUCTURES FOR PROGRAMMING LANGUAGES

Ruven Brooks

OF CA,.
irvins^^^^ '̂a

JAH

Lm
'19/8

Notice: This Material
may be protected
by Copyright Law
pie17U.S.C.)

Technical Report #99

Department of Information and Computer Science

University of California, Irvine
Irvine, California, 92717

April 1977

Abstract

Production systems have recently found
considerable favor as the control structure for

systems in artificial intelligence. This work has
lead other researchers to suggest the creation of
languages which have production systems as a primary
or alternative control structure. This paper explores
some of the possibilities available in these
languages; an experimental language with a production
system control structure is presented, along with an
example program written in it. Appropriate
application domains for languages of this type are
discussed, and the potential for using them with
future hardware architectures is explored.

I, Introduction

A production system is a control structure for

performing computations. It consists of two basic

components, a collection of data structures referred to as

the Working Memory (WM) (also called string, database,

buffer, or context) and a set of condition-action rules. To

perform computations, the condition or left-hand part of

each rule is checked against the contents of the string.

When the match succeeds, the action, or right-hand, side,

consisting of one or more operations, is executed. The

operations of one rule change the contents of the string,

causing successive, different rules to be fired. This cycle

continues until the desired result is achieved in the data

structures of the string.

The use of production systems (re-write rules) as a

notation for expressing computations is one of the most

enduring ideas in computer science. The work of Post (1943)

using re-write rules to formally define classes of

computations predates by nearly a decade the invention of

the first programming languages. Recently, a number of

systems in the domain of artificial intelligence have made

use of this idea. Among other uses, they have been adopted

as the control structure for an adaptive game-playing system

(Waterman, 1970), in an aide to mass spectroscopy work in

chemistry (Feigenbaum, 1971), and in a medical consultation

r ,

/ I

program (Shortliffe, 1976). They have also served as the

basis for a number of psychological models; these include

models of puzzle-solving behavior (Newell & Simon, 1972),

visual imagery tasks (Moran, 1973; Farley, 1974), and

programmer behavior (Brooks, 1975).

As the range of the work mentioned above indicates,

production systems as control structures are currently of

considerable interest for work in artificial intelligence.

In all of these systems, however, the production system

control structure was created on an ad hoc basis for the

particular task. Recently, however, several workers have

constructed languages which use production systems as

replacements for or adjuncts to conventional control

structures (Galkowski, 1976; Rychener, 1976; Bobrow and

Winograd,1976). The purpose of this work is to enquire into

some of the characteristics of these production system

languages, particularly in regard to defining kinds of

computations for which they are well-suited.

II. An Experimental Production System Language; EPS

As part of this effort, a language with a production

system control flow was been constructed and used to solve a

selected set of problems. For speed and ease of

implementation, the Experimental Production System language

(EPS) was constructed on a LISP base. (Further description

of the language and a user's manual are available in

Brooks(1977)). In general form and flavor, it is similar to

Newell's PSG system (1975), a production s-ystem facility for

constructing psychological models. The language presented

here differs from PSG primarily in respects intended to make

it suitable for a wider range of programming tasks. In

particular, a richer basic data structure is provided, and

some of the control structure options in PSG that are

primarily of psychological importance have been eliminated.

Description of the Production Language.

In this language, a program consists of productions

which are considered to be ordered. The search for

left-hand sides that match the WM is done in this order; and

the first production found whose left-hand side matches is

.executed. Search for the next production to fire off begins

at the beginning of the ordering.

The nature of this production system language can be

summarized by describing 1) the structures of the data

elements in the WM, 2) the structure of the condition

I am indebted to David Kiersey for work done in programming

the system.

elements, 3) how conditions are matched to data, and 4) the

range of permissible actions to be taken when the conditions

are met.

1. Structure of the data elements. The contents of

the WM are arbitrary list structures, rather than atomic

symbols as in the Post productions. Permissible, individual

elements of the WM thus might be:

(A B)
(A (B C) D)

The entire contents of WM might appear as:

(A),(B),(C)
(A (B C)) , (D (E) F) , (G)

2. Structure of the Condition Elements. The left-hand

side of production rules do not have to be exact

specifications of symbols in the WM to match them, a number

of special pattern symbols may be used which permit a given

left-hand side to match whole sets of symbols. For example,

the pattern symbol, (*ATOM*), matches any single atom.

Thus, the construction, (A (*ATOM*)), can be used to match

any symbol which has a single letter in the second position,

so that this pattern will match the symbols, (A C) or (A E),

and it will not match (A (C E)). Similarly, the pattern

symbol, (*REST*), matches the tail of any list; as an

example, the construction, (A (*REST*)), will match (A B C)

or (A (B C)) .

Agreement among parts of successive symbols can also be

specified, through a local variable feature. A left-hand

side of a rule using this feature would appear as (A (*ATOM*

VARl)),(B (*EVAL* VARl)). VARl is the local variable, and

the effect of this construction is to match only those WMs

containing symbols in which A and B are followed by the same

letter.

These constructs may be used together in various ways

in the same left-hand side, and a variety of other special

symbols are also available. These include *ANY* which

matches either an atom or a list, *LIST* which matches only

a list, and *CLASS* which causes the match to be made by

testing for equality against a list of specified

alternatives. The absence of a symbol in the WM or the

presence of one of a list of alternatives in the WM can also

be specified.

3. How the Conditions are Matched to Data. The

operation of matching symbols in the left-hand side of a

rule against the target WM has been altered so that each

symbol is matched individually, rather than as a contiguous

group. If a match can be found somewhere in the WM for each

symbol in the left-hand side, then the rule is fired off.

Essentially, this is equivalent to using the conjuction of a

set of context-free rules as the left-hand side.

Matching proceeds by taking each element of the

left-hand side in left to right order and trying to find a

match for it, also in left to right order, in the WM.

Matching is done without replacement; once a symbol in the

WM has been used to match one symbol in the left-hand side

of a rule, it cannot be used to match a second symbol.

The overall workings of the system can be appeciated

from the following example;

WM: (A B) (D E) (A C)

L^ft side: {A {*ATOM* VARl))(A (*ATOM* VAR2))

After matching, VARl will be bound to B and VAR2 will be

bound to C.

4. The rule actions. The range of actions available

on the right-hand side of the rule include replacement of a

symbol in the WM by a new symbol composed of parts of

existing ones. For example, a rule might be:

. .1 , . _ • ... -

(GOAL (*ATOM* VARl)) -> Replace (GOAL (*ATOM* VARl))

by (OLD-GOAL $VAR1)

The "$" symbol is used to mean the "value of" the variable

name following. The whole operation is interpreted as

"replace what matched on the left side with a new symbol

composed of OLD-GOAL and the value of VARl." Note that

composition of the new symbol may use local variables from

the match of the left side but that arbitrary calculation is

not possible.

In addition, several other new actions have been added.

The REMOVE action removes a symbol from the WM and is

equivalent to replacement by the null element. The PUSHON

and SHOVE actions add new symbols to the left-hand end of

the WM. The difference between the two is that the SHOVE

operation removes the right-most symbol in the WM to keep

the total length of the WM constant, while the PUSHON

operation permits the length to increase by one. The

REHEARSE operator moves a symbol already in the WM to the

left-most position in the WM. Finally, a feature for

user-defined operations permits the inclusion of printing

and other input-output functions.

Examples of the Production Language in Use

A pre-order tree traversal provides an interesting

example of what programs in this language look like. For

the tree shown below, a total of 14 productions are used.

10

— insert Figure 1 about here —

The first 9 productions are used to encode the tree

itself. Production 2 and 5 in Figure 2 are examples of this

group and the others in the group have a similar structure.

The last five productions, numbers 10-14 in Figure 2, act to

control the order in which the nodes are traversed. Note

that since these productions are at the end of the list,

they will be executed only if none of the productions that

describe the tree can be executed.

- insert Figure 2 about here -

If the WM initially just contained the single symbol,

(A), the sequence of production firings would be;

1,13,2,13,3,13,10,12,10,11,

If the 5 control productions are presumed to correspond

to the instructions in a conventional program, the

production system implementation is about as long as a

"pure" LISP (3 lines) function to perform the same task and

considerably shorter than a lower-level language

implementation (15 lines - Knuth, 1968). In terms of the

execution steps required, a total of 49 productions are

executed. Of these, 9 are productions encoding linkages in

11

the tree; the remainder of the executions come from the 5

productions responsible for control functions. While exact
comparision is difficult, this is probably the same as the

combined total in LISP of recursive calls to the main

traversing function and calls to functions to traverse the

lists that are used to represent the tree.

III. Selection of Application Domains

Since production systems have been shown to be formally

adequate to represent any computation that can be performed

on exisitng computers, a question of interest is whether
there are classes of problems or application domains for

which production systems are a particularly suitable (or

unsuitable) representation. The example presented in the

previous section were intended only to convey the general
flavor of programs written in a production system language.

TO make more general statements about appropriate domains

for production system programs, an analysis of the
particular properties of production systems as languages for

stating computations will be presented. (For an alternative

treatment of some of these same issues, see Davis and King

(1975)).

Control of Sequencing

12

One of the more immediately visible characteristics of

production system languages is that processes are stated as

collections of independent actions. Sequences of actions

occur because each step in the sequence leaves behind in the

WM the precise set of symbols necessary to invoke the next

step. One determinant of the suitability of a production

system representation is the extent to which constructions

of special, unique symbols is necessary to insure proper

control flow; the more such symbols are needed, the less

suitable the production system representation. As an
{

illustration, compare the operations to be performed in

computing payroll deductions with those required in a

hypothetical system to automobile repair diagnosis. In the

payroll case, the working balance alone is insufficient to

determine which deductions have been made so far; the

amount, $748, gives no indication whether the health plan

deduction has been made or not. To step through all the

deductions, each' deduction must leave behind some kind of

marker indicating that it has been completed. Thus,

arbitrary symbols would be needed for each deduction, such

as:

(DEDUCTION-PERFORMED HEALTH-PLAN)

Compare this with a payroll program in COBOL in which the

statement sequence keeps track of what has been done; no

such markers are necessary. This implies that production

system representations are not particularly suitable for

13

this kind of probelm.

In the repair diagnosis problem, on the other hand,

such markers are unnecessary. The intermediate states in

the solution can automatically serve as markers to guide the

computation. For example, suppose that an intermediate

states was represented as follows:

WM: (GOAL TEST FUEL-SYSTEM)(LOCATION CARBURETOR)(FUEL-LINE,

This information alone could be sufficient to indicate what

operationsor tests are to be performed next, and no special

symbols or markers are needed.

While these examples adequately convey informally the

differences between the two types of problems, a formal

distinction is somewhat more difficult to state. One

approach is to consider the flow diagram associated with the

computation. Assume that the operations associated with

each vertex are available either as simple operations in a

conventional'programming language or can be peformed as the

right-hand size of a single production. (Footnote 2) The

case in which the number of vertices is one less than the

(2) This is intended to include systems, such as EPS, in

which the right-hand size can contain a sequence of actions.

14

number of edges corresponds to a program in which the

statements are always executed in the same sequence and to a

production system in which the rules always fire in the same

sequence, regardless of the input data. Any differences in

the invoking conditions of the rules must, therefore, be for

the sole purpose of insuring the set sequence of rule

firing. In contrast, consider the computation whose diagram

is maximally connected| depending on the input data, the

operations can be executed in any order! The differences in

the invoking conditions of the rules capture the conditions

under which different operations will be performed. In the

first case, use of a production system representation is

clearly superfluous. In the second it may result in an

expression of the computation that is shorter and simpler to

read than one written in a language with a more conventional

control structure. Hence, the relative amount of

interconnection in the flow diagram may serve as a useful

guide to the appropriateness of production system

representations.

Uniform Program Structure

A second characteristic of production systems which can

be expected to strongly impact how they are used is that

production system programs are composed of a single

statement type, the production. Additionally, there are no

15

subroutines, subprograms, functions, or other program

modules. This completely uniform program structure is a

source of both advantages and drawbacks.

The drawbacks involved are mainly those that occur

because, in a production system program, locality in the

program text does not usually coincide with execution

locality. The reasons for this is that the same production

may take part in a variety of different computational

sequences. One problem that this creates is in debugging;

it's often very difficult to localize a bug by narrowing

down the particular section of program listing in which the

bug occurs. Similarly, it's difficult to have different

parts of the program written and tested by different
/

individuals, a characteristic which runs counter to modern

trends in modular programming (Yourdan, 1975).

The advantage of the uniform program structure comes in

situations in which ease of program modification is a

critical issue in selecting a programming environment. One

situation in which this property is frequently of

considerable importance is in work in artificial

intelligence, since the precise structure of a system is

rarly known before construction begins. The particular

benefits of production system organization come in adding

new pieces of behavior to a program. If the productions are

constructed in such a way that each individual productibn

16

captures some complete unit of behavior, then adding a new

piece of behavior, such as a new inference, can be done by

simply adding a new production. Several workers in the

field (Newell and Simon, 1972? Shortliffe, 1976) have

commented on how advantageous this property is for

incrementally shaping behavior of a system.

A second situation in which this uniform program

structure is desirable is in those situations in which a

program is intended to be self-modifying. This ability may

be required both in programs which are explicitly intended

to "learn," as in pattern recognition, and in programs which

must adapt to changing circumstances, such as

self-optimizing programs. To have a program modify itself,

two, related pieces of information are necessary. First,

the particular, logical part of the algorithm that must be

altered to produce the overall change in program behavior

must be identified. Second, the place where that part of

the algorithm is implemented must be located in the program

code. How easily the first piece of information can be

found will be almost entirely a function of the particular

algorithm and task domain. Ease of finding the second piece

of information, on the other hand, will depend to a

significant extent on the programming language and control

structure used to implement the algorithm.

17

One common approach to building self-modifying programs

is to formulate them as interpreters driven by the contents

of data structures. Two examples of this approach are a

table-driven BASIC interpreter and an array-based FORTRAN

pattern recognition program. These systems have the

advantage that modifying the behavior of a program is simply

a matter of changing the proper entry in the data structure.

The correspondence between the entry in the data structure

and the program behavior is usually easy to find. On the

other hand, the range of possible alteration in program

behavior is usually quite constrained.

A way of overcoming this difficulty is to use a single,

uniform construction for the entire program and then to

provide primitives in the language for manipulating this

construction as data. If the primitives are suitably

chosen, this guarantees that the program can re-write itself

in any way that a human programmer can, while still keeping

the actual, modification a simple and straight-forward

process. An example of such a system is the LISP

s-expression and evaluation mechanism.

A similar capability can be added to production system

languages by providing right-side primitives for adding and

deleting productions. The addition primitive would take new

productions composed in the WM and add them to the list of

productions to be searched. Similarly, the delete primitive

18

would find and remove a production from the list. In

comparision with LISP, making program modifications in this

manner will probably be much easier, since there is no need

to search through deeply nested pieces of programs to find

the site at which the modification is to be made. Waterman

(1975) has used just such a mechanism to build a system

which acquires serial patterns. Production system languages

are, thus, particularly suited to situations in which

self-modifying programs are desirable and m which the

programmer desires the minimum constraints on which aspects

of program behavior can be altered.

Response to External Events

A final, important property of productions systems

which is relevant to their usefulness for certain domains of

tasks is their ability to respond to external events. At

the hardware level, external events are signaled by means of

interrupts which start execution of routines to save the

status of the interrupted computation and to respond to the

external event. In higher level languages, two approaches

have been taken. One, typified by some FORTRAN and BASIC

laboratory systems, is to discard the notion of interruption

and replace it by constructions which cause the program to

explicitly wait for the event to occur. The other

alternative Is to provide constructs which cause specified

19

procedures in the program to be executed when the event

occurs.

In production system languages, external events can be

responded to by having them place symbols into the WM.

Productions sensitive to these symbols then perform the

needed computation. This mechanism requires no special

actions to save the state of the ongoing computation. In

comparision to the use of explicit waits, it preserves the

asynchrony of the ongoing computation and the interrupted

event. By appropriately ordering productions, a priority of

the external event can be specified relative to other

computations; constructions such as the ON <event> statement

in PL/1 do not usually offer this capability. The only

major drawback to using production systems in this way is

one mentioned in the section on the drawbacks of having only

a single statement type, the inability to control the way in

which programmers pass information between sections of

program. In this context, it means that the language

provides no safeguards against the writing of responses to

external events which damage or destroy an on-going

computation. If this problem can be dealt with in other

ways and if the simplicity and power of the way in which

production systems can handle external events is attractive,

then production system languages should prove useful for

situations in which response to external events is required.

20

IV. Production Systems and Data-flow Architecture

So far, this discussion has dealt with the

characteristics of production system languages only from the

viewpoint of their power as a programming tool; tool;

nothing has been said about program efficiency. Leaving

aside for a moment the comparative efficiency of

implementations in production systesm as versus conventional

languages, the speed with which a production system program

can be executed will depend on two componentss the time

spent searching through left-hand sides to find the next

production to fire and the time spent carrying out the

actions on the right-hand sides. The time spent in

searching through the left-hand sides will, like other

search processes, depend on the implementation. If hashing

or indexing can be used, the time will be a constant

regardless of the number of rules. In the worst case, it

will, of course, be a linear function of the number.

Whether or not the constant time schemes can be used will

depend on the design of the particular production system

language, and those language designs which are desirable in

other respects are not guarenteed to lend themselves to

these schemes. Since the search is an inherent part of the

control structure, production systems may possess the

unpleasant property that execution time is a function of

static program size. '

21

Just because a search is an inherent part of a

production system control structure does not, Jiowever,

eternally damn production system programs to be slower than

thope in conventional languages. Part of the problem with

search has to do with the single-processor nature of

conventional hardware architecture; appropriate

architectures using many processors may reduce the search

for the next rule to use to a constant-time process.

A framewbrk for selecting such architectures may lie in

the concept of data-flow languages (Dennis, 1974; Kosinski,

1975). In such languages, "sequencing of operations is

determined by the availability of data for them, rather than

by a separate and explicit locus of control" (Kosinski,

p.89). Since sequencing among productions in a production

language is accomplished by placing data into the WM, they

clearly fall into this class.

Several different architectures have been proposed for

executing different data flow languages (Arvind & Gostelow,

1977; Rumbaugh, 1975; Dennis, 1974). To illustrate how

these architectures might execute production system

programs, the architecture proposed by Arvind and Gostelow

will be used as an example. In their design, a. large number

of processors are connected to what is effectively a large

ring bus. Tokens, which are pointers into a large memory,

move along the bus to be input to the processors, and the

22

output of the processors is also in the form of tokens.

Processors are dynamically allocated to computations by

means of distinguished tokens on the same bus structure.

Using their interpreter, a production system language

such as EPS might be executed in the following manner; The

WM is implemented as a sequence of tokens circulating on the

bus. For each production, a set of processors is allocated

to check the invoking conditions of each rule against the

WM. If any rule matches, tokens are placed onto the bus

which allocate processors to carry out the actions of the

rule.

Two points need further explication in this

description. First, it makes no mention of the ordering of

the rules. This could be handled by replacing ordered rules

with unordered ones with additional elements to their

invoking conditions. (This equivalence can be demonstrated

formally.) Second, there may be more rules than there are

processors available. If this is the case, then, after a

group of processors have completed checking the conditions

for one production, they can be reallocated to check those

for another production.

If the number of rules is not very much greater than

the number of processors, then search for the next rule to

be applied should take roughly a constant amount of time.

23

Hence, when executed on a dataflow machine of this type, the

penalty for search that production systems pay on

conventional architectures is eliminated. Additionally,

this type of architecture raises another intriguing

possibility. If the productions are unordered, any rule can

executed as soon as its conditions are matched and

processors are allocated to it. While this parallel

execution would create the need for mechanisms to guard

against deadlock conditions, it may open the way for more

rapid execution of production system programs than of those

written in conventional languages.

Conclusion

As is perhaps the case with other new disciplines,

computer science suffers from a slight tendency to view each

new advance as useful to a much wider range of problems then

it does, in fact, attack. An already classic example is the

use of the term, "automatic programming," to describe the

first compilers. Condition-action control structures are a

concept that is currently receiving considerable attention

from workers in the artificial intelligence area.

Consequently, there is a slight tendency, perhaps mainly on

the part of students and the less sophisticated, to view

them as applicable to a wider or different range of

situations than will be the case five years hence. This

24

tendency may be enhanced in the case of production system

languages by the seductive possibility of hardware

architectures that can execute production system programs as

particularly high speeds.

While this tendency is, in the main, harmless, it does,

have One undersirable consequence. When a concept is

waxing, it is view with enthusiasm; when it is waning, most

of ^the attention it receives is negatively critical. This

paper has attempted to explore a new concept, that of

languages with production system control structures. To

avoid the cycle of critical boom and bust, this exposition

has focused on identifying computations for which a

production system control structure is particularly

advantageous; these include computations in which there is a

high level of interconnection between nodes in the flow

diagram, situations requiring flexible response to external

events, and situations in which a uniform program structure

is desirable. Further work with these languages should lead

to experimental validation and refinement of these

guidelineis as their suitability, or unsuitabil ity, for

different classes of problems is demonstrated.

25

Bibliography

Arvind & Gostelow, K.P. A computer capable of exchanging

processors for time. to appear in Proceedings of IFIP

Congress 77.

Bobrow, D. & Winograd, T. An overview of KRL. Technical

Report AIM-293. Computer Science Department. Stanford

University, 1976.

Brooks, R. A model of human cognitive processes in writing

code for computer programs, Unpublished doctoral

dissertation. Department of Psychology, Carnegie-Mellon

University, 1975.

Brooks, R. A LISP production system facility. Technical

report. Department of Information and Computer Science,

University of California - Irvine, 1977.

Davis, Ro & King, J. An overview of production systems.

Computer Science Dept., Stanford University, 1975.

Dennis, J.B., First version of a data flow procedure

language. MAC Technical Memorandum 61, Project MAC,

Massachusetts Institute of Technology, May, 1975.

Farley, A.M. VIPS; A visual imagery and perception system;

the result of a protocol analysis. Dept. of Computer

Science, Carnegie-Mellon University, 1974.

25

Feigenbaum, E. A., Buchanan, E.G., & Lederberg, J., On

generality and problem solving - a case study involving

the DENDRAL program. in Meltzer, B. & Michie, D.

(Eds.), Machine Intelligence 6. pp. 165-190, Edinburgh

University Press, 1971.

Galkowski, J.T. Prlisp. SIGART Newsletter, No. 57,

April,1976.

Kosinski, P.R., A data flow language for operating systems

programming. Proceedings of the ACM SIGPLAN-SIGOPS

Interface Meeting, SIGPLAN Notices, Vol. 8, No. 9,

Sept. 1973.

Knuthj D. Fundamental Algorithms. Addison-Wesley

Publishing Co. 1968.

Moran, T.P., The symbolic imagery hypothesis; a production

system model. Computer Science Dept., Carnegie-Mellon

University, 1973.

Newell, A. & Simon, H.A. Human Problem Solving,

Prentice-Hall, 1972.

Newell, A. & McDermott, J. PSG Manual. Department of

Computer Science, Carnegie-Mellon University, 1975.

Post, E. Formal reductions of the general combinatorial

problem. American Journal of Mathematics, 65:197-268,

27

cited in Minsky, Marvin Computation; Finite and Infinite

Prentice-Hall, 1967.

Rumbaugh, J, A parallel asynchronous architecture for data

flow programs. MAC Technical Report 150, Project MAC,

Department of Electrical Engineering, Massachusetts

Insitute of Technology, 1975.

Rychener, M. D. Production systems as a programming

language for artifical intelligence applications.

Technical reprot. Computer Science Dept., Carnegie-Mellon

University, Pittsburgh, Pa. 15213.

Shortliffe, E. H. Computer-based Medical Consultations;

MYCIN. American Elesvier Publishing Company, New York,

1976.

Waterman, D. A. Generalization learning techniques for

automating the learning of heuristics. Artificial

Intelligehce, 1:121-170, 1970.

Waterman, D.A, Adaptive production systems. Proceedings

4th International Joint Conference on Artificial

Intelligence, 1975.

Yourdan, E. Techniques of Program Structure and Design.

Prentice-Hall, Englewood Cliffs, New Jersey, 1975.

28

Productions from the Tree Traversal System

2. Conditions: (GOAL LEFT-LINK B)
(B)

Actions: Pushon (D)
Replace (GOAL LEFT-LINK B) by
(OLD-GOAL LEFT-LINK B)=

"If the goal is for the left link of B, then push on D and
mark the goal for the left link as old."

5. Conditions; (GOAL RIGHT-LINK B)
(B)

Actions; Pushon (E)
Replace (GOAL RIGHT-LINK B) by

(OLD-GOAL RIGHT-LINK B)

"If the goal is for the right link of B, then push on E and
mark the goal for the right link as old."

10. Conditions: (GOAL (*REST* VARl))
Actions: Pushon (FAIL)

Replace (GOAL (*REST* VARl)) by (OLD-GOAL
$VAR1).

"If there is a goal for either a right or left link which
cannot be satisfied, push on a failure marker."

11. Conditions: (FAIL)
(OLD-GOAL RIGHT-LINK (*ATOM* VARl))
((*EVAL* VARl))
(OLD-GOAL LEFT-LINK (*EVAL* VARl))

Actions; Remove (FAIL).
Remove (OLD-GOAL RIGHT-LINK (*ATOM* VARl))
Remove ((*EVAL* VARl))
Remove (OLD-GOAL LEFT-LINK (*EVAL* VARl)).

"If both the right and left descendants of a given node have
been visited or if it has no descendants, remove the node
from further consideration."

12. Conditions: (FAIL)
(OLD-GOAL LEFT-LINK (*ATOM* VARl))
((*EVAL* VARl))

Actions; Remove (FAIL)
Rehearse ((*EVAL* VARl)),
Pushon (GOAL RIGHT-LINK $VARl).

"If a node has no left descendant, push on a goal for its
right descendent."

29

13. Conditions: *ABSENT* (FAIL)
((*ATOM* VARl))
♦ABSENT* (OLD-GOAL LEFT-LINK (*EVAL*

VARl))
14. Actions: Pushon (GOAL LEFT-LINK $VAR1)

Print $VAR1 "visited".

"If the left descendent of a node has not yet been visited,
push on a goal to visit it.

14. Conditions: *ABSENT* (GOAL (*REST*))
♦ABSENT* (FAIL)
(OLD-GOAL LEFT-LINK (*ATOM* VARl))
((*EVAL* VARl))

Actions; Pushon (GOAL RIGHT-LINK $VAR1)

"If there are no goals active or failed and if a node is
present whose left deseendent has been visited, push on a
goal to visit its desCendent."

Figure 2.
Selected Productions from the Tree Traversal Program

(Proceeding a symbol by *ABSENT* indicates that the symbol
must be absent from the WM if the match is to succeed.

Preceeding a variable name by $, as in $VAR1, indicates that
the value of that variable, rather than the name itself, is
to be used.)

Figure 1.

r:-'

