UC Irvine
ICS Technical Reports

Title
Production systems as control structures for programming languages

Permalink
https://escholarship.org/uc/item/4nf243wt

Author
Brooks, Ruven

Publication Date
1977

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/4nf243wt
https://escholarship.org
http://www.cdlib.org/

é&;} ?wa Lttt

i oy
‘,/))é;'jw e "" AT (E
ot 4

A < 7—
A (s =]
u@{/ e st ‘d;‘ /g}t/,;{;ig G e

:f?f‘

megﬂMmm

_PRODUCTION SYSTEMS AS CONTROL ' LmRARY
STRUCTURES FOR PROGRAMMING LANGUAGES

Ruven Brooks
-

Notice: This Material
may be protected
by Copyright Law

(Title 17 U.S.C.)

Technical Report #99

Department of Information and Computer Science

University of California, Irvine
Irvine, California, 92717

April 1977

Vs

7
A

7
FSE ef’;‘,-v
P
#

.&’q}\

Abstract

Production systems have recently - found
considerable. favor as the control structure for
systems in-artificial intelligence. This work has
lead other researchers to suggest the creation of
* languages ‘which have production systems as a primary
or alternative control structure. This paper explores
some of ‘the possibilities available in these
languages; an experimental language with a production
system control structure is presented, along with an
example - program written in it. Appropriate
application domains for languages of this type are
discussed, and the potential for wusing them with
future hardware architectures is explored.

I. Introduction

A production system is a control structure for
performing computations. It consists of two basic
components, a collection of data structures referred to as
the Working Memory (WM) (also called string, database,
buffer, or context) and a set of condition-action rules. To
perform computations, the condition or left-hand part of
each rule is checked against the contents of the string.
When the match succeeds, the action, or right-hand, side,
consisting of one or more operations, 1is executed. The
operations of one rule change the contents of the string,
causing successive, different rules to be fired. This cycle
continues until the desired result is achieved in the data

structures of the string.

~ The use of production systems (re-write rules) as a
notation for expressing computations is- one of the most
enduring ideas in computer science. The work of Post (1943)
using re-write rules to formally oefine classes of
computations predates by nearly a decade the invention of
the first programming languages. Recently, a number of
systems in the domain of artificial intelligence have made
use of this‘ideau Among other uses,‘they have been adopted
as- the control structure for an adaptivé'game—piaying system
(Waterman, 1970), in an_aide to mass spectroscopy work in

chemistry (Feigenbaum, 1971), and in a medical consultation

program (Shortliffe, 1976). They have élso Served as the
basis for a number of(psychological models; these include
models of>'puzzlefsolving behavior {(Newell & Simon, 1972),
visual imagefy tasks (Moran, 1973; .Farley, 1974), and

programmer behavior (Brooks, 1975).

‘As_the range‘df the work mentioned above indicates,
production systems as control structures are currently of
considerable interest for work in artificial intelligence.
In all of these Asystems,' howeVer, the production system
éontrol stfucture was created on an ad hoc -basis for the
particular task. - Recently, however, several workers have
cohstructed lahguages which use productibn systems as

- replacements for ‘or adjuncts to conventional control
structures (Galkowski, 1976; Rychener, 1976; Bobrow and
Winograd,l976{. The purpose of this wo;k is to enquire into
some of the characteristics of these production system
languageé, particularly in regard to defining kinds of

computations for which they are well-suited.

II. An Experimental Production System Language: EPS

As part of this effort, a language with a production
sy$tem control flow was been constructed and used to solve a
selected set of 'probiems. For speed and ease of

implementation, the Experimental Production System language

(EPS) was constructed on a LISP base. (Further 4description

'of ‘the langﬁage and a user ‘s manual are available in
'Brooks(1977?). "In geﬁeral form and flavér, it is similar to
Newell’s PSG SYStém (1975), a production system facility for
.constructing psychdlogical models. The ianguage: presented
here differs:frbm PSG primarily in respects intended to make
it.suitable for a wider range of programming tasks. In
particular, .a richer pasié data structure is provided, and
some of the éontrol. struéture options in PSG that are

'primariiy’of psychological importance have been eliminated.

‘Description of the Production‘Language.'

in this'language, a program consists of productions
théh. _aré considéred to be ordered. The Tsearch bfor
left-hand sides that match the WM is done in this order; and
the first pfdductioﬁ fbund]whose left—haﬁd-éide‘matches is
,exécuteaa_ Search for the next production to fire off begins

at the begihniﬁg;of the ordering.

The nature of this production system language can be
summar ized by describing 1) the structures of the data

elements'in'the ‘WM, 2) the structure of the condition

I am indebtedito David Kiersey for work done 'in programming

the system.

e

elements; ‘3) how conditions_arevmatched to data, and 4) the
range of permissible actions to be taken when the conditions

are met.

1. Structure gg_the data elements.» The conténts of

the WM are arbitrary 1list structures, rather than atomic
symbols as in the Post productions. Permissible, individual
elements of the WM thus might be:

. (A B)
" (A (BC) D)

The entire contents of WM might appear*aé:
(A) . (B), (C)

(A (B C)),(D (E) F),(G)

AN
N

2. Structure of the Condition Elements. The left-hand

side 'ofu 'pbbductioh rules do nofv have to be exact
' spécificationéﬂof éymbols in the WM to match them, a number
.of special pattern symbols may be used which permit a given
left—hand siée to match whole sets of symbols; For example,
tﬁe: pattern sYﬁbol,_ (*ATOM*) , matches anyg single atom.
Tﬁqs,»the construction,‘(A.(*ATOM*)), can be used to match
any'5ymbol-which has a single letter in the second position,
.sd that this;ﬁatﬁern,will match the éYmbols,‘(AfC) or (A E),
 and it will not match (A (C E)). Similarly, the pattern

symbol, (*REST*), matches the tail of anyv:list; as an

example, the. construction, (A (*REST*)), will match (A B C)

6r’(A (B C)).

Agreemsnt.among parts of successive symbols can also be
spscified, through a 1local variable feature;b A left~-hand
side of a.rule'using this feature would appéar’ss'(A,(*ATOM*
VAR1)), (B (*EVAL* VAR1)). VARI is the local variable, and -
the effectsof~£his construction is to match only those WMs
sontaining’SYmbbls in‘which A and B are followed by the same

letter.

These conStructs may be used together in various ways

in the same left-hand side, and a variety of other speciél

.symbols'aré' also available. These include *ANY* which

métshes' either an atom or a list, *LIST* whidh matches only
a iist, and *CLASS* which causes the match to be made by
testing for equality against a lisﬁ of specified
alternaﬁises; The absence of a symbol in the WM or the
pfssence of one of a list of alternatives in the WM can also
be specified.

\

3. How the Conditions are Matched to Data. The

operation ©of matching symbols in the left-hand side of a

rule against the target WM has been altered -so that each

symbol 1is matched individually, rather than as a contiguous

group.' If a match can be found somewhere in.the_WM for each

symbol -in the left-hand side, then the rule' is fired off.

Essentiallyj this is equivalent to using the conjuction of a

set of context-free rules as the left-hand side.

Matching' proceeds by . taking each element of the
'left-hand side ‘in‘left“to right'order.andptrying to find a
match fof»lt, also in left to right order, in the WM.
Matching;,ls‘ donepwithout replacement; once a symbol in the
Wthas_been_ﬁsed to matcﬁ one symbol in the leftehand side

of a rule, it cahnot be used to match a second symbol.
The overall workings of the system can be- appeciated

from the following example:

WM: o (A B) (D E) (& C)

_ Left side: (A (*ATOM* VARL)) (A (*ATOM* VAR2))

After matchlng, VARL will be bound to B and ' VAR2 will be

bound to C.

4. The rule act1ons. The range of actions available

~on . the rlght -hand side of the rule 1nc1ude replacement of a
symbol in the WM by a new symbol composed of parts of
ex1st1ng ones. For example, a rule might be:
. ‘l. .

(GOAL (*ATOM* VARl))'-> Replace (GOAL (*ATOM* VAR1))

by (OLD-GOAL $VARI)

he "g" symbol :is used to mean the,“value of" the vapiable

name following. The whole operation 'is interpreted as
freplace’what matched on the left side with a new symbol
composed of OLD-GOAL and tﬁe value of VAR1." Note that
composition of the new symbol may use local variables from
the match of‘the left sidé but that arbitrary calculation is

not ppssiblé.

In addition, several other new actions have been added.
The REMOVE action removes a symbol from the WM and is
equivalent to replaéement by the null element. ' The PUSHON
-and SHOVE actions add new sjmbols to the.left-hand end of
the WM. The difference‘between the two is that. the SHOVE
vopération removes the right-most symbol in the WM to keep
the.total 1ehgth 'of the WM constant, while the PUSHON
operation permits the 1length \to increase by one. The
REHEARSE:opefator moves a symbol already in the WM to the
left-most position' in the WM. Finally, a feature for
user-defined'operations permits the inclusion ‘Qf printing

and other input-output functions.

Examples of the Production Language in Use

A pre-order tree traversal provides an interesting
example of what programs in this language look like. For

the tree shown below, a total of 14 productions are used.

10

-- insert Figure 1 about here —--

The first 9 productions are used to enéode the tree
itself. Prpduction 2 and 5 in Figure 2 aré examples of this
group and the others in the group have a similar structure.
Thé last five productions, numbers 16-14 in Figure 2, act to
. control the order in which the nodes are traversed. Note
that since these productions' are at the end of the list,
they will be executed only if none qf the productions that

describe the tree can be executed.

- insert Figure 2 about here -

If the WM initially just contained the .single symbol,
(A), the sequence of production firings would be:

1,13,2,13,3,13,16,12,10,11,

If the 5 control productions are presumed to correspond
to‘ the instructigns in a conventional program, the
production system implementation is about 'as long as a
l"pdre“ LISP (3'1ines) function to perform tﬁe same task and
| cohsiderably shorter than a lower—levél language
impleméntation (15 1lines -.Knuth, 1968) . - Iﬁ terms of the’
execution steps required, a total of 49 productions are

executed. Of these, 9 are productions encoding linkages in

11

the tree; the remainder of the executions come from the 5

.productions responsible for control functions. While exact

comparision is difficult, this is probably the same as the
combined total in LISP of recursive calls to the main
traversing function and calls to functions to traverse the

lists that are used to represent the tree.

III. Selection of Application Domains

Since‘production systems have been shown to be formally
adeqguate to represent any computation that can be per formed
on exisitng computers, a question _of interest 1is whether
there are classes of problems or application domains for
which production systems are "a particularly suitable (or
unsuitable) representation. The example presented in the
previous section were intended only to convey the general
flavor of programs written in a production system language.
To make more'general statements about appropriate domains
fof production system programs, an analysis of the
particular éroperties of production systems as languages for
stating computations will be presented. (For an alternative

treatment of some of these same issues, see Davis and King

(1975)) .

Control of Sequencing

12

One of the more immediately visible characferistics of
production system Ianguages is that proceéses are stated as
collections of‘independént actions. Sequences of actions
occur because each step in the séquence leaves behind in the
WM‘the precise set of symbols necessary to invoke the next
step. One determinant of the suitability of a production
System representation is the extent to which constructions
of special, ‘unique symbols is necessary to insure proper
control flow;'fhe more such symbols are needed, the less
suitable the production system representation. As an
illustration, cbmpare the operations to bé performed in
computing pafroll deductions with those required in a
hypothetical‘system to automobile repair diagnosis. In the
payroll case, . the working balance alone‘is insufficiept to
determine which deductidns have been -made. so far; the
amount, $748, gives no indication whether the health plan
deduction has been made or not. To step through all the
deductions, eaéh\ deduction must leave behind some kind of
marker indicating that it has been completed. Thus,
arbitrary symbols would be needed for each deduction, such
as:

(DEDUCTION-PERFORMED HEALTH-PLAN)
Compare this with a payroll program in COBOL -in which the
statement sequence keeps track of what has been done; no
such markers are necessary. This implies that production

system representations are not particularly suitable for

13

this kind of probelm.

In the répair diaghosis problem, on the other hand;
Such markers are unnecessary. The intermediate states in
the'solption can automatically serve as markers to guide the
computation. For .example, suppose that an intermediate
states wéS'répresented as follows: ’

WH: (GOAL TEST FUEL-SYSTEM) (LOCATION CARBURETOR) (FUEL-LINE.....

This information alone could be sufficient to indicate what
operationsor' tests are to be performed next, and no special

symbols or markers are needed.

While_theSe examples adequately convey informally the
differences between the two types of problems, a formal
distinction is somewhat more difficult to state. One

approach is to consider the flow diagram associated with the

:computationi' Assume that the operations associated with

each vertex are available either as simple operations in a

conventiohal‘programming language or can be peformed as the

‘right-hand size of a single production. (Footnote 2) The

case in which the number of vertices is one less than the

(2) This is intended to include systems, such as EPS, in

which the right-hand size can contain a sequence of actions.

14

nuhber of edges corrésponds to a program in which the
statements are always executed in the same sequence and to a
production system in which the rules always fire in the same
sequence,‘regardless of the input data. Any differences in
the invéking conditions of the rules must, therefore, be for
the sole purpose of insuring the set sequence of rule
firing. In contrast, consider thé computation whose diagram
is maximally connected; depending on the input data, the
operations can be executed in any order! The differences in
the invoking conditions of the rules capture the conditions
under which different operations will be performed. 1In the
first case, use of a production system representation is
clearly superﬁluouss In the second it may result in an
expression of the computation that is shorter and simpler to
read than one written in a language with a more conventional
control structure. Hence, the relative amount of
interconnection in the flow diagram may serve as a useful
guide to the | appropriaéeness of production system

representations.

Uniform Program Structure

A second characteristic of production systems which can
be expected to strongly impact how they are used is that
production system programs are composed of a single

statement type, the production. Additionally,‘there are no

15

subroutines, subprograms, functions, or other program

modules. This completely uniform program structure is a

source of both advantages and drawbacks.

The drawbacks involved are mainly those that occur
because, in a production system program, locality in the
program text does not usually coincide with execution

locality. The reasons for this is that the same production

may take part in a wvariety of different computational

seqguences. One problem that this creates is in debugging;

it’s 6ften very difficult to localize a bug by narrowihg

down the particular section of program listing in which the

bug occurs. Similarly, it’s difficult to have different

parts of thé ‘program written and tested by different
i

individuals, a characteristic which runs counter to modern

trends in mbdular programming (Yourdan, 1975).

The advantage of the uniform program structure comes in
situations in which ease ~of program modification 1is a
critical_issue in selecting a programming environment. One
situation in which this property is frequently of
considerable importance is in work in artificial
-inﬁelligence,_ since the precise structure of a system is
rarly known before construction begins. The particular
benefits of pfoduction system organization come in adding
new pieces of behavior to a program. If the productions are

constructed in such a way that each individual production

16

captures some complete unit of behavior, then adding a new
piece of béhavior, such as a new inference, can oe done by
simply adding a new production. Several workers in the
field (Newell and Simon, 1972; Shortliffe, 1976) have
.commented on how advantageous bthis pfoperty is for

incrementally shaping behavior of a system.

A second situation in which this uniform program
structure 1is desirable is in those situations in which a
program is intended to be self-modifying. This ability may
be required both in programs which ore explicitly intended
to "learn," as in pattern recognition, and in programs which
must adapt | to changing circumstances, such as
self-optimizing programs. To have a program modify itself,
two, related pieces of information are necessary. First,
the particular, logical part of the algorithm that must be
altered to -produce the overall change in program behavior
must be identified. Second, the place where that part of
the algorithm is implemented must be located in the program
code. How easily thé first piece of information can be
found will be élmost entirely a function of ﬁhe particular
algorithm and task domain. Ease of finding the second piece
of information, on the other hand, will depend to a

significant extent on the programming language and control

structure used to implement the algorithm.

17

One common approach to building self-modifying programs
is’ tobermulate them as interpreters driven by the contents
ef.deta strﬁctefes.‘ Two examples of this approach are a
table;driveh VBASIC !inferpreter ana én array-based FORTRAN
patternj‘reCoénition p;ogfam. These systems have the
advahtege that modifying the behavior of a program is simply
a metter_of ehanging-the proper entry in the data structure.
The correspondence between the entry in the data structure
and the progﬁaﬁ behavior is usually easy to - find. On the
other hand, the range of possible alteration in program

behavior is usually quite constrained.

A way of'evercoming this difficulty is to use a single,
uniform cbnstruttion for the entire program and then to
provide primitives in the language for manipulating this
construction as data. If the primitivee are suitably
chosen, thisigqarantees that the program can re-write itself
in - any way that a human programmer can, while still keeping
‘the actual modification a simple and straight-forward
prqceés,» An example of such a system is the LISP

s-expression and evaluation mechanism.

A similar capability can be added to production system
1£ngueges by providing right-side primitives for adding and
deleting prodUctiens. The addition priﬁitive would take new
productions composed in the WM and add them to the list of

~ productions to'be searched. Similarly, the delete primitive

18

would find and remove a production from the list. 1In

comparision'with LISP, making program modifications in this

' ;tmanner Wi lwprobably be much easier, since there is no need

'”"to search»through deeply nested pieces of programs to find
the 51te at whlch the modlflcatlon is to be made. Waterman
(1975) has used Just such a mechanism to build a system
which aeqnlres serial patterns. Production system languages
are,v thus; particularly suited to situations in which
seif-modifying' programs are desirable and in which thé

programmer desires the minimum constraints on which aspects

of program behavior can be altered.

_ Response to External Events

A final, importantv preperty of productions. systems
which is releﬁant to their usefulness for certain domains of
tasks is their ability_to,resppnd to external events. At
- the hardware level, external events are signaled by means of
'interrupts'which start execution of routines to save the
status of the interrupted computation and to respond to the
external event. In nigher level languages, two approaches
have been 'takena One, typified by some-FORTRAN and BASIC
laboratory systems, is to discard the notion;of interruption
and replace it by .constructions which cause the program to
ekplicitly ‘wait for ‘the event to occur. The other

alternative -is to provide constructs which cause specified

19

procedures in»the'program‘to be executed when ' the event

‘oCccurs.

. In production system languages, external events can be
restnded‘_to by having them place symbols into the WM.
Productions sensitive to these symbols then perform the
‘needed computation. This mechanism requires no special
actions to.Save the state of the ongoing computation. In
compérisioﬁ: to thé use of explicit waits, it preserves the
asynchrony of the ongoing.computation and the interrupted
'eVent.‘ By appropriately ordering productions, a priority of
tﬁe external 'évent can be specified relative to other
computations;,constructidhs such as the ON <event)> statement
in‘PL/l do not usually' offer this capability. The only
majof ”dréwback' to using production systems in this way is
one mentioned in the section on the drawbacks of having only
a Sihgle statement type, the inability to control the way in
which programmers pass information between sections of
pfogram, In this context, it means that the language
provideé no safeguards against the writing of responses to
external eQents | which damage or destroy an on-going
computation. - If.this problem can be dealt with in othe;
ways and if‘.the simplicity and power of the way in which
production systéms can handle external events is attractive,
then producﬁion- sYsteh languages should prove useful for

situations in which response to external events is required.

20

IV. Production Systems and Data-flow Architecture

So far, this discussion has ‘déalt with tﬁe
characteristics of production system languages only from the
viewpoint df- their _power as a prégramming tool; tool;
nothing has been said about program efficiency. Leaving
aside for a moment the comparative éfficiency of
implementations in production systesm as versus conventional
languages, the speed with which a production system program
can be executed will depend on two components: the time
spent searching through left-hand sides to find the next
production to fire and the time spentlcarrying out the
acﬁions on the >right—hand sides. The time spent in
searching through the 1left-hand sides will, 1like other
search processes, depend on the implementation. If hashing
or indexing ‘can be used, the time will be a constant
regardless of the number of rules. 1In the worst case, it
will, of course, be a 1linear function of the number .
Whether or notbthe constant time schemes can be used will
depend on £he design of the particular production system
language, and those language designs which are desirable in
other respecﬁs_ are not guarenteed to lend themselves to
these schemes. Since the search is an inherent part of the
cohtrol structure, production systems may possess the

unpleasant property that execution time 1is a ' function of

static program size.

21

Just because _a search is an inherent part of a
production"syetem ”control 'structure dees not, however,
eternelly demn production system programs te>be slower than
tposeﬁ‘in> eenvehtionalvlangueées. Part oflthe-problem with
searchxﬁhee' to do _with the .single—processor nature of
eonveptionel_ o hardware‘ o architecture; . | appropriate
architecture$ using_meﬁy processors may reduce the search

'fOr’the’next'rule to use to a constant-time process.

A frameﬁbrt‘fqr seiecting such architectures‘may lie in
‘the ‘coﬁeept_ef detafflow ;ahguages.(Dennis, 1974; Kosinski,
1975). -In‘such' languages, "sequencing of eperations is
determinedlby.the availapilityvof data for them, rether.than
;by'a separete»and explicit 1locus of control" (Kosinski,
;p.89).. “Since ,sequeneing among,productions'in e production
language is accoﬁplished_by placing data into the WM, they

‘clearly fall into this class.

Several different architectures have beeh'proposed for
exeduting different data flow languages (Arvind & Gostelow,
1977; Rumbaﬁgh, 1975; Dennis, 1974). To illustrate how
these architectures might execute production .system
programs, the'architecture proposed by Arvind and Goetelow
will be used‘ae an exemple. In their aesigq, aflarge number
eof'preeeSSOre are connected to what isveffectitely_ a large
ring bus.f Tekehs; which are pointers into a iarge memory,

move along‘thetbus to be input'to the processors, and the

22

output of the processors is also in the form of tokens.
Processors are dynamically allocated to computations by

means of distinguished tokens on the same bus structure.

Using their interp;eter, a production system 1language
such as EPS'might be executed in the following manner: The
WM is implemented as a sequence of tokens circulating on the
bus. = For éach préduction, a set of processors is allocated
to check the invoking conditions of each rule against the
WM. If any fule matches, tokens are placed onto the bus
.which allocate processors to carry out the actions of the

rule.

Two points ~ need further explication in this
description. First, it makes no mention of the ordering of
the rules. This could be handled by replacing'ordered rules
with unordered ones with additional elements to their
invoking conditions.l (This equivalence can be demonstrated
formally.) Second, there may be more rules than there are
processors évailable. If this is the case, then, after a
grbup of processors have completed checking the conditions.
for one production, they can be reallocated to check those

for another production.

If the number of rules is not very much greater than

the number of processois, then search for the next rule to

be applied should take roughly a constant amount of time.

23

Hence, when executed on a dataflow machine of this type, the

penalty for search that production systems pay on

'conventional architectures 1is eliminated. Additionally,

this type of architecture raises another intriguing
possibility. If the productions are unordered, any rule can
executed as soon as its conditions are matched and

processors are allocated to it. While this parallel

~ execution would create the need for mechanisms to guard

against deadlock conditions, it may open the way for more
rapid execution of production system programs than of those

written in conventional languages.

Conclusion

.As is»pefhaps the case with other new disciplines,
coﬁputer science suffers from a slight tendency to view each
new advance as useful to a much wider range of problems then
it does, in fact_:,'éttackn An already classic example is the
use of the term, "automatic programming,” to describe the
first compilers. Condition-action control structures are a
concept that is current;y receiving considerable attention
froﬁ workers in the artificial intelligence area.
Consequently, there is a slight tendency, perhaps mainly on
the part of students and the less sophisticated, to view
them as applicable to -a wider or different range of

situations than will be the case five years hence. This

24

tendency may be enhanced in the case of production system
languages by the seductive possibility of hardware
architectures that can execute production system programs as

particularly high speeds.

wWhile this tendency is, in the méin, harmless, it does
have. one undersirable consequence. When a concept is
waxing, it is view with enthusiasm; when it is waning, most
of”ithe attention it receives is negatively critical. This
pabér has attémpted to'_explore a new concept, that of
languages ~with production systém control structures. To
a;oid the cycle of critical boom and bust, this exposition

has focused - on identifying computations for which a

produétion’ system control structure is particularly

advantageoué; these include computations in which there is a

high level of interconnection between 'nodes in the flow

. diagram, situations requiring flexible response to external

évents, and situations in which a uniform program structure
is desirable. Further work with these languages should lead

to experimental = validation and refinement of these

‘guidelines .as their suitability, or wunsuitability, for

~different classes of problems is demonstrated.

25

'Bibliography

Arvind & Gostelow, K.P. A computer capable of exchanging

_processors for time. to appear in Proceedings of IFIP

- Congress 77.

Bobrow, D. & Winograd, T. An overview of KRL. Technical
Report AIM-293. Computer Science Department. Stanford

‘University, 1976.

Brooks, R. A model of human cognitive processes'in writing
code for computer programs, Unpublished doctoral
AdiSSe;tation, Department of Psychology, Carnegie-Mellon

University, 1975.

Brooks, R. A LISP proddction system facility. Technical
report, Department of Information and Computer Science,

"University of California - Irvine, 1977.

Davis, R. & King, J. An overview of production systems.

'Computer Science Dept., Stanford University, 1975.

Dennis, J.B., First version of a data flow procedure
language. MAC Technical Memorandum 61, Project MAC,

Maésachusetts Institute of Technology, May, 1975.

Farley, A.M. VIPS: A visual imagery and perception system;
the result of a protocol analysis. Dept. of Computer

Science, Carnegie-Mellon University, 1974.

’

Fé;genbaum; E. A.,*Buchanah,‘ B.G., & Lederberg; ’J.; On
generality and problem solVinQ - a case étudy involving

the DENDRAL"program. in Meltzer, B. & Michie, D.

;‘(Eds;)}"Machine_Intelligence 6. pp. 165-198, Edinburgh

:UniVetsitnyress, 1971.
‘Galkowski, -J.T. Prlisp. SIGART Newsletter, No. 57,
April,1976.

_KosinSki,’P;k.,»A data flow language for operating systems
programming. ' - Proceedings of the ACM SIGPLAN-SIGOPS

Interface Meeting, SIGPLAN Notices, Vol. 8, No. 9,

Sept. 1973.

Khuth; - D. .Fundamental_ Algorithms. Addison-Wesley

' Publishing Co. 1968.

' MOran,,T,P.,-The 5ymbolichimagery hypothesis: a production
system model. Computer Science Dept., Carnegie-Mellon

UhiVersity,g1973,

i

NeWéll,.'A. ~ & _Simon, H.A. ' Human Problem " Solving,

 Prentiqe-Ha1l; 1972.

'jNewell, A. - & McDermott, J. PSG Manual. Department of

. .Computer Science, Carnegie-Mellon University, 1975.

Post, E. Formal reductions of the general combinatorial

' prdblém. American Journal of Mathematics, 65:197-268,

27

citedAin:Minsky, Marvin Computation: Finite and Infinite
~ Prentice-Hall, 1967.

i}

Rumbaugh, J. A parallel asynchronous architecture for data
flow programs. MAC Technical Report 150, Project MAC,
- Department 'of Electrical Engineering, Massachusetts

Insitute of Technology, 1975.

Rychener, M. D. Production systems as a programming
lénguage . for artifical intelligence applications.
~Technical reprot, Computer Science Dept., Carnegie-Mellon

University, Pittsburgh, Pa. 15213.

Shortliffe, E. H. Computer—based Medical Consultations:

.‘MYCIN.- American Elesvier Publishing Company, New York,

1976.

Waterman, D. A. Generalization learning techniques for

automating the learning of heuristics. Artificial

Intelligence, 1:121-178, 1970.

Waterman, D.A. Adaptive production systems. ‘Proceedings
4th Interdational Joint Conference on Artificial

‘Intelligence, 1975.

Yourdan, E. Techniques of Program Structure and Design.

Prentice-Hall, Englewood Cliffs, New Jersey, 1975.

28

Productions from the Tree Traversal System

2. - Conditions: (GOAL LEFT-LINK B)
- (B)
Actions: Pushon (D)
‘ ' ‘ Replace (GOAL LEFT-LINK B) by
{OLD~-GOAL LEFT-LINK B).

"If the goal is for the left link of B, then push on D and
“mark the goal for the left link as old."

5. Conditions: (GOAL RIGHT- LINK B)
o (B)
Actions: Pushon (E)
‘ Replace (GOAL RIGHT-LINK B) by
(OLD-GOAL RIGHT-LINK B)

"If the goal is for the right 1link of B, then push on E and
mark the goal for the right link as old."

190. Conditions: "(GOAL (*REST* VAR1l))
Actions: Pushon (FAIL)
Replace (GOAL (*REST* VAR1)) by (OLD-GOAL
$SVAR1).

"If there is a goal for either a rlght or left 1link which
cannot be satlsfled push on a failure marker."

1l1. Conditions: (FAIL)

(OLD-GOAL RIGHT-LINK (*ATOM* VARI1))
((*EVAL* VAR1)))
(OLD-GOAL LEFT-LINK (*EVAL* VARl))

Actions: Remove (FAIL).

‘ Remove (OLD-GOAL RIGHT-LINK (*ATOM* VARl))
Remove ((*EVAL* VARl))
Remove (OLD-GOAL LEFT-LINK (*EVAL* VARl)).

"If both the right and left descendents of a given node have
been visited or if it has no descendents, remove the node
from further consideration.”

12. Conditions: (FAIL)
(OLD-GOAL LEFT-LINK (*ATOM* VARl))
((*EVAL* VAR1))

Actions: Remove (FAIL)
Rehearse ((*EVAL* VARl)).
Pushon (GOAL RIGHT-LINK S$VARI1).

"If a node has no left descendent push on a goal for its
right descendent."

29

13.. Conditions: *ABSENT* (FAIL)

((*ATOM* VAR1l)) =
T *ABSENT* (OLD -GOAL LEFT ~-LINK (*EVAL*
VARL)) ,
14. Actions: - Pushon (GOAL LEFT- -LINK $VAR1)
'_*"v.‘ﬁ - Print $VAR1 "visited".

. "If the left descendent of a node has not yet been visited,

push on a goal to visit 1t.

14. condxtlons:' *ABSENT* (GOAL (*REST*))

ABSENT (FAIL)

(OLD -GOAL LEFT-LINK (*ATOM* VARl))
L ((*EVAL* VAR1)) .
Actionss . Pushon (GOAL RIGHT~-LINK S$VAR1)

"If:'thefe are no goals active or failed and if a node is
present whose left descendent has been visited, push on a

‘goal to v151t 1ts descendent.?

‘ ’ Figure 2.
Selected Productions from the Tree Traversal Program

F(Preceedlng ‘a“symbol by ' *ABSENT*. indicates that the symboll
~ must be absent from the WM if the match is to succeed.
.Preceeding a variable name by $, as in $VAR1l, indicates that

the value of that varlable, rather than the name itself, is
to be used) S

0 Figure 1.

o

