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Optimal transport over a linear dynamical system

Yongxin Chen, Tryphon Georgiou and Michele Pavon

Abstract

We consider the problem of steering an initial probability density for the state vector of a linear system to a
final one, in finite time, using minimum energy control. In the case where the dynamics correspond to an integrator
(ẋ(t) = u(t)) this amounts to a Monge-Kantorovich Optimal Mass Transport (OMT) problem. In general, we show
that the problem can again be reduced to solving an OMT problem and that it has a unique solution. In parallel,
we study the optimal steering of the state-density of a linear stochastic system with white noise disturbance; this
is known to correspond to a Schrödinger bridge. As the white noise intensity tends to zero, the flow of densities
converges to that of the deterministic dynamics and can serve as a way to compute the solution of its deterministic
counterpart. The solution can be expressed in closed-form for Gaussian initial and final state densities in both cases.

Keywords: Optimal mass transport, Schrödinger bridges, stochastic linear systems.

I. INTRODUCTION

We are interested in stochastic control problems to steer the probability density of the state-vector of
a linear system between an initial and a final distribution for two cases, i) with and ii) without stochastic
disturbance. That is, we consider the linear dynamics

dx(t) = A(t)x(t)dt+B(t)u(t)dt+
√
εB(t)dw(t) (1)

where w is a Wiener process, u is a control input, x is the state process, and (A,B) is a controllable pair
of matrices, for the two cases where i) ε > 0 and ii) ε = 0. In either case, the state is a random vector
with an initial distribution µ0. Our task is to determine a minimum energy input that drives the system
to a final state distribution µ1 over the time interval1 [0, 1], that is, the minimum of

E{
∫ 1

0

‖u(t)‖2dt} (2)

subject to µ1 being the probability distribution of the state vector at t = 1.

When the state distribution represents density of particles whose position obeys ẋ(t) = u(t) (i.e.,
A(t) ≡ 0, B(t) ≡ I , and ε = 0) the problem reduces to the classical Optimal Mass Transport (OMT)
problem2 with quadratic cost [3], [7]. Thus, the above problem, for ε = 0, represents a generalization
of OMT to deal with particles obeying known “prior” non-trivial dynamics while being steered between
two end-point distributions – we refer to this as the problem of OMT with prior dynamics (OMT-wpd).
The problem of OMT-wpd was first introduced in our previous work [10] for the case where B(t) ≡ I .
The difference of course to the classical OMT is that, here, the linear dynamics are arbitrary and may
facilitate or hinder transport. Applications are envisioned in the steering of particle beams through time-
varying potential, the steering of swarms (UAV’s, large collection of microsatelites, etc.), as well as in
the modeling of the flow and collective motion of particles, clouds, platoons, flocking of insects, birds,
fish, etc. between end-point distributions [11], and the interpolation/morphing of distributions [12].

1There is no loss in generality having time window [0, 1] instead of, the more general [t0, t1]. This is done for notational convenience.
2Historically, the modern formulation of OMT is due to Leonid Kantorovich [1] and has been the focus of dramatic developments because

of its relevance in many diverse fields including economics, physics, engineering, and probability [2], [3], [4], [5], [6], [7], [8], [3], [4], [9].
Kantorovich’s contributions and the impact of the OMT to resource allocation was recognized with the Nobel Prize in Economics in 1975.
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In the case where ε > 0 and a stochastic disturbance is present, the flow of “particles” is dictated by
dynamics as well as by Brownian diffusion. The corresponding stochastic control problem to steer the
state density function between the end-point distributions has been recently shown to be equivalent to
the so-called Schrödinger bridge problem3 [20], [23], [24]. The Schödinger bridge problem can be seen
as a stochastic version of OMT due to the presence of the diffusive term in the dynamics. As a result,
its solution is more well behaved due to the smoothing property of the Laplacian. On the other hand,
it follows from [25], [26], [27], [28] that for the special case A(t) ≡ 0 and B(t) ≡ I , the solution to
the Schrödinger bridge problem tends to that of the OMT when “slowing down” the diffusion by taking
ε→ 0. These two facts suggest the Schrödinger bridge problem as a means to construct solutions to OMT
for both, the standard one as well as the problem of OMT with prior dynamics.

The present work begins with an expository prologue on OMT (Section II). We then develop the
theory of OMT-wpd (Section III) and establish that OMT-wpd always has a unique solution. Next we
discuss in parallel the theory of the Schödinger bridge problem for linear dynamics and arbitrary end-point
marginals (Section IV). We focus on the connection between the two problems and in Theorem 3 we
establish that the solution to the OMT-wpd is indeed the limit, in a suitable sense, of the corresponding
solution to the Schrödinger bridge problem. In Section V we specialize to the case of linear dynamics with
Gaussian marginals, where closed-form solutions are available for both problems. The form of solution
underscores the connection between the two and that the OMT-wpd is the limit of the Schrödinger bridge
problem when the diffusion term vanishes. In Section VI we work out two academic examples to highlight
the relation between the two problems (OMT and Schrödinger bridge).

II. OPTIMAL MASS TRANSPORT

Consider two nonnegative measures µ0, µ1 on Rn having equal total mass. These may represent
probability distributions, distribution of resources, etc. In the original formulation of OMT, due to Gaspar
Monge, a transport (measurable) map

T : Rn → Rn : x 7→ T (x)

is sought that specifies where mass µ0(dx) at x must be transported so as to match the final distribution
in the sense that T]µ0 = µ1, i.e. µ1 is the “push-forward” of µ0 under T meaning

µ1(B) = µ0(T−1(B))

for every Borel set in Rn. Moreover, the map must incur minimum cost of transportation∫
c(x, T (x))µ0(dx).

Here, c(x, y) represents the transportation cost per unit mass from point x to point y and in this section
it will be taken as c(x, y) = 1

2
‖x− y‖2.

The dependence of the transportation cost on T is highly nonlinear and a minimum may not exist.
This fact complicated early analyses to the problem due to Abel and others [3]. A new chapter opened
in 1942 when Leonid Kantorovich presented a relaxed formulation. In this, instead of seeking a transport
map, we seek a joint distribution Π(µ0, µ1) on the product space Rn×Rn so that the marginals along the

3The Schrödinger bridge problem, in its original formulation [13], [14], [15], seeks a probability law on path space with given two
end-point marginals which is close to a Markovian prior distribution in the sense of large deviations (minimum relative entropy). Early
important contributions were due to Fortet, Beurling, Jamison and Föllmer [16], [17], [18], [19] while renewed interest was sparked after a
close relationship to stochastic control was recognized [20], [21], [22].
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two coordinate directions coincide with µ0 and µ1 respectively. The joint distribution Π(µ0, µ1) is refered
to as “coupling” of µ0 and µ1. Thus, in the Kantorovich formulation we seek

inf
π∈Π(µ0,µ1)

∫
Rn×Rn

1

2
‖x− y‖2dπ(x, y) (3)

When the optimal Monge-map T exists, the support of the coupling is precisely the graph of T , see [3].

Formulation (3) represents a “static” end-point formulation, i.e., focusing on “what goes where”.
Ingenious insights due to Benamou and Brenier [7] and [29] led to a fluid dynamic formulation of OMT.
An elementary derivation of the above was presented in [10] which we now follow. OMT is first cast as
a stochastic control problem with atypical boundary constraints:

inf
v∈V

E
{∫ 1

0

1

2
‖v(t, xv(t))‖2dt

}
(4a)

ẋv(t) = v(t, xv(t)), (4b)
xv(0) ∼ µ0, xv(1) ∼ µ1. (4c)

Here V represents the family of continuous feedback control laws. From this point on we assume that µ0

and µ1 are absolutely continuous, i.e., µ0(dx) = ρ0(x)dx, µ1(dy) = ρ1(y)dy with ρ0, ρ1 corresponding
density functions, and accordingly a distribution for xv(t) ∼ ρ(t, x)dx. Then, ρ satisfies weakly4 the
continuity equation

∂ρ

∂t
+∇ · (vρ) = 0 (5)

expressing the conservation of probability mass and

E
{∫ 1

0

1

2
‖v(t, xv(t))‖2dt

}
=

∫
Rn

∫ 1

0

1

2
‖v(t, x)‖2ρ(t, x)dtdx.

As a consequence, (4) is reformulated as a “fluid-dynamics” problem [7]:

inf
(ρ,v)

∫
Rn

∫ 1

0

1

2
‖v(t, x)‖2ρ(t, x)dtdx, (6a)

∂ρ

∂t
+∇ · (vρ) = 0, (6b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y). (6c)

A. Solutions to OMT

Assuming that µ0, µ1 are absolutely continuous (dµ0(dx) = ρ0(x)dx and dµ1(dx) = ρ1(x)dx) it is a
standard result that OMT has a unique solution [30], [3], [4] and that an optimal transport T map exists
and is the gradient of a convex function φ, i.e.,

y = T (x) = ∇φ(x). (7)

By virtue of the fact that the push-forward of µ0 under ∇φ is µ1, this function satisfies a particular case
of the Monge-Ampère equation [3, p.126], [7, p.377], namely, det(Hφ(x))ρ1(∇φ(x)) = ρ0(x), where Hφ
is the Hessian matrix of φ, which is a fully nonlinear second-order elliptic equation. The computation of
φ has received attention only recently [7], [12] where numerical schemes have been developed. We will
appeal to the availability of φ in the sequel without being concerned about its explicit computation.

4In the sense that,
∫
Rn×[0,1]

(∂f/∂t+ v · ∇f)ρdxdt = 0 for smooth functions f with compact support.
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Having T , the displacement of the mass along the path from t = 0 to t = 1 is

µt = (Tt)]µ0, Tt(x) = (1− t)x+ tT (x) (8a)

while µt is absolutely continuous with derivative

ρ(t, x) = dµt(x)/dx. (8b)

Then, v(t, x) = T ◦ T−1
t (x) − T−1

t (x) and ρ(t, x) together solve (6). Here ◦ denotes the composition of
maps.

B. Variational analysis

In this subsection we briefly recapitulate the sufficient optimality conditions for a pair (ρ(·, ·), v(·, ·))
to be a solution of (6) from [7] (see also [10, Section II] for an alternative elementary derivation).

Proposition 1: Consider ρ∗(t, x) with t ∈ [0, 1] and x ∈ Rn, that satisfies

∂ρ∗

∂t
+∇ · (∇ψρ∗) = 0, ρ∗(0, x) = ρ0(x), (9a)

where ψ is a solution of the Hamilton-Jacobi equation

∂ψ

∂t
+

1

2
‖∇ψ‖2 = 0. (9b)

If in addition
ρ∗(1, x) = ρ1(x), (9c)

then the pair (ρ∗, v∗) with v∗(t, x) = ∇ψ(t, x) is a solution of (6).

The stochastic nature of the Benamou-Brenier formulation (6) stems from the fact that initial and
final densities are specified. Accordingly, the above requires solving a two-point boundary value problem
and the resulting control dictates the local velocity field. In general, one cannot expect to have a classical
solution of (9b) and has to be content with a viscosity solution. Let ψ be a viscosity solution of (9b) that
admits the Hopf-Lax representation [3, p. 174][26, p. 4]

ψ(t, x) = inf
y

{
ψ(0, y) +

‖x− y‖2

2t

}
, t ∈ (0, 1]

with
ψ(0, x) = φ(x)− 1

2
‖x‖2

and φ as in (7), then this ψ together with the displacement interpolation ρ in (8) is a solution to (9).

III. OPTIMAL MASS TRANSPORT WITH PRIOR DYNAMICS

Optimal transport has also been studied for general cost c(x, y) that derives from an action functional

c(x, y) = inf
x∈Xxy

∫ 1

0

L(t, x(t), ẋ(t))dt, (10)

where the Lagrangian L(t, x, p) is strictly convex and superlinear in the velocity variable p, see [4, Chapter
7], [31, Chapter 1], [32]. Existence and uniqueness of an optimal transport map T has been established5

5OMT has also been studied and similar results established for Rn replaced by a Riemannian manifold.
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for general cost functionals as in (10). It is easy to see that the choice c(x, y) = 1
2
‖x− y‖2 is the special

case where
L(t, x, p) =

1

2
‖p‖2.

Another interesting special case is when

L(t, x, p) =
1

2
‖p− v(t, x)‖2. (11)

This has been motivated by a transport problem “with prior” associated to the velocity field v(t, x) [10,
Section VII]. There the prior was thought to reflect a solution to a “nearby” problem that needs to be
adjusted so as to be consistent with updated estimates for marginals.

An alternative motivation for (11) is to address transport in an ambient flow field v(t, x). In this case,
assuming the control has the ability to steer particles in all directions, transport will be effected according
to dynamics

ẋ(t) = v(t, x) + u(t)

where u(t) represents control effort and∫ 1

0

1

2
‖u(t)‖2dt =

∫ 1

0

1

2
‖ẋ(t)− v(t, x)‖2dt

represents corresponding quadratic cost (energy). Thus, it is of interest to consider more general dynamics
where the control does not affect directly all state directions. One such example is the problem to steer
inertial particles in phase space through force input (see [23] and [33] where similar problems have been
considered for dynamical systems with stochastic excitation).

Therefore, herein, we consider a natural generalization of OMT where the transport paths are required
to satisfy dynamical constraints. We focus our attention on linear dynamics and, consequently, cost of the
form

c(x, y) = inf
U

∫ 1

0

L̃(t, x(t), u(t))dt, where (12a)

ẋ(t) = A(t)x(t) +B(t)u(t), (12b)
x(0) = x, x(1) = y, (12c)

and U is a suitable class of controls6. This formulation extends the transportation problem in a similar
manner as optimal control generalizes the classical calculus of variations [34] (albeit herein only for linear
dynamics). It is easy to see that (11) corresponds to A(t) = 0 and B(t) the identity matrix in (12). When
B(t) is invertible, (12) reduces to (10) by a change of variables, taking

L(t, x, p) = L̃(t, x, B(t)−1(p− A(t)x)).

However, when B(t) is not invertible, an analogous change of variables leads to a Lagrangian L(t, x, p)
that fails to satisfy the classical conditions (strict convexity and superlinearity in p). Therefore, in this
case, the existence and uniqueness of an optimal transport map T has to be established independently.
We do this for the case where L̃(t, x, u) = ‖u‖2/2 corresponding to power.

We now formulate the corresponding stochastic control problem. The system dynamics

ẋ(t) = A(t)x(t) +B(t)u(t), (13)

6Note that we use a common convention to denote by x a point in the state space and by x(t) a state trajectory.
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are assumed to be controllable and the initial state x(0) to be a random vector with probability density
ρ0. We seek a minimum energy continuous feedback control law u(t, x) that steers the system to a final
state x(1) having distribution ρ1(x)dx. That is, we address the following:

inf
u∈U

E
{∫ 1

0

1

2
‖u(t, xu)‖2dt

}
, (14a)

ẋu(t) = A(t)xu(t) +B(t)u(t), (14b)
xu(0) ∼ µ0, xu(1) ∼ µ1, (14c)

where U is the family of continuous feedback control laws. Once again, this can be recast in a “fluid-
dynamics” version in terms of the sought one-time probability density functions of the state vector:

inf
(ρ,u)

∫
Rn

∫ 1

0

1

2
‖u(t, x)‖2ρ(t, x)dtdx, (15a)

∂ρ

∂t
+∇ · ((A(t)x+B(t)u)ρ) = 0, (15b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y). (15c)

Naturally, for the trivial prior dynamics A(t) ≡ 0 and B(t) ≡ I , the problem reduces to the classical
OMT and the solution {ρ(t, ·) | 0 ≤ t ≤ 1} is the displacement interpolation of the two marginals [29].
In the rest of the section, we show directly that Problem (15) has a unique solution.

A. Solutions to OMT-wpd

Let Φ(t1, t0) be the state transition matrix of (13) from t0 to t1, with Φ10 := Φ(1, 0), and

M10 := M(1, 0) =

∫ 1

0

Φ(1, t)B(t)B(t)′Φ(1, t)′dt

be the controllability Gramian of the system. Recall [35], [36] that for linear dynamics (13) and given
boundary conditions x(0) = x, x(1) = y, the least energy and the corresponding control input can be
given in closed-form, namely

inf

∫ 1

0

1

2
‖u(t)‖2dt =

1

2
(y − Φ10x)′M−1

10 (y − Φ10x) (16)

which is attained for
u(t) = B(t)′Φ(1, t)′M−1

10 (y − Φ10x),

and the corresponding optimal trajectory

x(t) = Φ(t, 1)M(1, t)M−1
10 Φ10x+M(t, 0)Φ(1, t)′M−1

10 y. (17)

Problem (14) can now be written as

inf
π

∫
Rn×Rn

1

2
(y − Φ10x)′M−1

10 (y − Φ10x)dπ(x, y) (18a)∫
dx

∫
y∈Rn

dπ(x, y) = ρ0(x)dx,

∫
dy

∫
x∈Rn

dπ(x, y) = ρ1(y)dy, (18b)

where π is a measure on Rn × Rn.
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Problem (18) can be converted to the Kantorovich formulation (3) of the OMT by a transformation
of coordinates. Indeed, consider the linear map

C :

[
x
y

]
−→

[
x̂
ŷ

]
=

[
M
−1/2
10 Φ10x

M
−1/2
10 y

]
(19)

and set
π̂ = C]π.

Clearly, (18a-18b) become

inf
π̂

∫
Rn×Rn

1

2
‖ŷ − x̂‖2dπ̂(x̂, ŷ) (20a)∫

dx̂

∫
ŷ∈Rn

dπ̂(x̂, ŷ) = ρ̂0(x̂)dx̂,

∫
dŷ

∫
x̂∈Rn

dπ̂(x̂, ŷ) = ρ̂1(ŷ)dŷ, (20b)

where

ρ̂0(x̂) = |M10|1/2|Φ10|−1ρ0(Φ−1
10 M

1/2
10 x̂)

ρ̂1(ŷ) = |M10|1/2ρ1(M
1/2
10 ŷ).

Problem (20) is now a standard OMT with quadratic cost function and we know that the optimal transport
map T̂ for this problem exists. It is the gradient of a convex function φ, i.e.,

T̂ = ∇φ, (21)

and the optimal π̂ is concentrated on the graph of T̂ [30]. The solution to the original problem (20) can
now be determined using T̂ , and it is

y = T (x) = M
1/2
10 T̂ (M

−1/2
10 Φ10x). (22)

The one-time marginals can be readily computed as the push-forward

µt = (Tt)]µ0, (23a)

where

Tt(x) = Φ(t, 1)M(1, t)M−1
10 Φ10x+M(t, 0)Φ(1, t)′M−1

10 T (x), (23b)

and
ρ(t, x) = dµt(x)/dx. (23c)

In this case, we refer to the parametric family of one-time marginals as displacement interpolation with
prior dynamics.
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B. Variational analysis

In this section we present a variational analysis for the OMT-wpd (15) analogous to that for the OMT
problem [7], [10, Section II]. The analysis provides conditions for a pair (ρ(·, ·), v(·, ·)) to be a solution
to OMT-wpd and will be used in Section V to prove optimality of the solution of the OMT-wpd with
Gaussian marginals.

Let Pρ0ρ1 be the family of flows of probability densities satisfying the boundary conditions and U
be the family of continuous feedback control laws u(·, ·). Consider the unconstrained minimization over
Pρ0ρ1 × U of the Lagrangian

L(ρ, u, λ) =

∫
Rn

∫ 1

0

[
1

2
‖u(t, x)‖2ρ(t, x) + λ(t, x)

(
∂ρ

∂t
+∇ · ((A(t)x+B(t)u)ρ)

)]
dtdx, (24)

where λ is a C1 Lagrange multiplier. After integration by parts, assuming that limits for x→∞ are zero,
and observing that the boundary values are constant over Pρ0ρ1 , we get the problem

inf
(ρ,u)∈Pρ0ρ1×U

∫
Rn

∫ 1

0

[
1

2
‖u(t, x)‖2 +

(
−∂λ
∂t
−∇λ · (A(t)x+B(t)u)

)]
ρ(t, x)dtdx. (25)

Pointwise minimization with respect to u for each fixed flow of probability densities ρ gives

u∗(t, x) = B(t)′∇λ(t, x). (26)

Substituting into (25), we get

J(ρ, λ) = −
∫
Rn

∫ 1

0

[
∂λ

∂t
+ A(t)x · ∇λ+

1

2
∇λ ·B(t)B(t)′∇λ

]
ρ(t, x)dtdx. (27)

As in Section II-B, we get the following sufficient conditions for optimality:

Proposition 2: Consider ρ∗ that satisfies

∂ρ∗

∂t
+∇ · [(A(t)x+B(t)B(t)′∇ψ)ρ∗] = 0, ρ∗(0, x) = ρ0(x), (28a)

where ψ is a solution of the Hamilton-Jacobi equation

∂ψ

∂t
+ x′A(t)′∇ψ +

1

2
∇ψ′B(t)B(t)′∇ψ = 0. (28b)

If in addition
ρ∗(1, x) = ρ1(x), (28c)

then the pair (ρ∗(t, x), u∗(t, x) = B(t)′∇ψ(t, x)) is a solution to problem (15).

It turns out that (28) always admits a solution. In fact, one solution can be constructed as follows.

Proposition 3: Given dynamics (13) and marginal distributions µ0(dx) = ρ0(x)dx, µ1(dx) = ρ1(x)dx,
let ψ(t, x) be defined by the formula

ψ(t, x) = inf
y

{
ψ(0, y) +

1

2
(x− Φ(t, 0)y)′M(t, 0)−1(x− Φ(t, 0)y)

}
(29)

with
ψ(0, x) = φ(M

−1/2
10 Φ10x)− 1

2
x′Φ′10M

−1
10 Φ10x

and φ as in (21). Moreover, let ρ(t, ·) = (Tt)]ρ0 be the displacement interpolation as in (23). Then this
pair (ψ, ρ) is a solution to (28).
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Proof: First we show that (29) satisfies (28b). Let H(t, x,∇ψ) be the Hamiltonian of the Hamilton-
Jacobi equation (28b), that is,

H(t, x,∇ψ) = x′A(t)′∇ψ +
1

2
∇ψ′B(t)B(t)′∇ψ,

and define

L(t, x, v) = sup
p
{p · v −H(t, x, p)}

=

{
1
2
(v − A(t)x)′(B(t)B(t)′)†(v − A(t)x) if v − A(t)x ∈ R(B)

∞ otherwise,

where † denotes pseudo-inverse and R(·) denotes “the range of”. Then the Bellman principle of optimality
[34] yields a particular solution of (28b)

ψ(t, x) = inf
y

{
ψ0(y) +

∫ t

0

L(τ, ξ(τ), ξ̇(τ)), ξ(t) = x, ξ(0) = y

}
= inf

y

{
ψ0(y) +

1

2
(x− Φ(t, 0)y)′M(t, 0)−1(x− Φ(t, 0)y)

}
.

This shows that (29) is indeed a solution of (28b).

Next we show (ψ, ρ) is a (weak) solution of (28a). Define

v(t, x) = A(t)x+B(t)B(t)′∇ψ(t, x),

then (28a) becomes a linear transport equation
∂ρ

∂t
+∇ · (vρ) = 0, (30)

with velocity field v(t, x). We claim
v(t, ·) ◦ Tt = dTt/dt,

that is, v(t, x) is the velocity field associated with the trajectories (Tt). If this claim is true, then the linear
transport equation (30) follows from a standard argument [3, p. 167]. Moreover, the terminal condition
(28c) follows since ρ(1, ·) = T]ρ0. We next prove the claim. Formula (29) can be rewritten as

g(x) = sup
y

{
x′M(t, 0)−1Φ(t, 0)y − f(y)

}
,

with

g(x) =
1

2
x′M(t, 0)−1x− ψ(t, x)

f(y) =
1

2
y′Φ(t, 0)′M(t, 0)−1Φ(t, 0)y + ψ(0, y).

The function

f(y) =
1

2
y′Φ(t, 0)′M(t, 0)−1Φ(t, 0)y + ψ(0, y)

=
1

2
y′
[
Φ(t, 0)′M(t, 0)−1Φ(t, 0)− Φ′10M

−1
10 Φ10

]
y + φ(M

−1/2
10 Φ10y)

is convex since φ is convex and the matrix

Φ(t, 0)′M(t, 0)−1Φ(t, 0)− Φ′10M
−1
10 Φ10 =

(∫ t

0

Φ(0, τ)B(τ)B(τ)′Φ(0, τ)′dτ

)−1

−
(∫ 1

0

Φ(0, τ)B(τ)B(τ)′Φ(0, τ)′dτ

)−1
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is positive semi-definite. Hence, from a similar argument to the case of Legendre transform, we obtain

∇g ◦ (M(t, 0)Φ(0, t)′∇f) = M(t, 0)−1Φ(t, 0).

It follows

(M(t, 0)−1 −∇ψ(t, ·)) ◦
{
M(t, 0)Φ(0, t)′

[
Φ(t, 0)′M(t, 0)−1Φ(t, 0)x+∇ψ(0, x)

]}
= M(t, 0)−1Φ(t, 0)x.

After some cancellations it yields

∇ψ(t, ·) ◦ Φ(t, 0)x+∇ψ(t, ·) ◦M(t, 0)Φ(0, t)′∇ψ(0, x)− Φ(0, t)′∇ψ(0, x) = 0.

On the other hand, since

T (x) = M
−1/2
10 ∇φ(M

−1/2
10 Φ10x) = M10Φ′01∇ψ(0, x) + Φ10x,

we have

Tt(x) = Φ(t, 1)M(1, t)M−1
10 Φ10x+M(t, 0)Φ(1, t)′M−1

10 T (x)

= Φ(t, 0)x+M(t, 0)Φ(0, t)′∇ψ(0, x),

from which it follows
dTt(x)

dt
= A(t)Φ(t, 0)x+ A(t)M(t, 0)Φ(0, t)′∇ψ(0, x) +B(t)B(t)′Φ(0, t)′∇ψ(0, x).

Therefore,

v(t, ·) ◦ Tt(x)− dTt(x)

dt
= [A(t) +B(t)B(t)′∇ψ(t, ·)] ◦ [Φ(t, 0)x+M(t, 0)Φ(0, t)′∇ψ(0, x)]

− [A(t)Φ(t, 0)x+ A(t)M(t, 0)Φ(0, t)′∇ψ(0, x) +B(t)B(t)′Φ(0, t)′∇ψ(0, x)]

= B(t)B(t)′ {∇ψ(t, ·) ◦ Φ(t, 0)x+∇ψ(t, ·) ◦M(t, 0)Φ(0, t)′∇ψ(0, x)

−Φ(0, t)′∇ψ(0, y)}
= 0,

which completes the proof.

IV. SCHRÖDINGER BRIDGES AND THEIR ZERO-NOISE LIMIT

In 1931/32, Schrödinger [13], [14] treated the following problem: A large number N of i.i.d. Brownian
particles in Rn is observed to have at time t = 0 an empirical distribution approximately equal to ρ0(x)dx,
and at some later time t = 1 an empirical distribution approximately equal to ρ1(x)dx. Suppose that ρ1(x)
considerably differs from what it should be according to the law of large numbers, namely∫

qB(0, x, 1, y)ρ0(x)dx,

where
qB(s, x, t, y) = (2π)−n/2(t− s)−n/2 exp

(
−‖x− y‖

2

2(t− s)

)
denotes the Brownian transition probability density. It is apparent that the particles have been transported
in an unlikely way. But of the many unlikely ways in which this could have happened, which one is
the most likely? The process that is consistent with the observed marginals and fulfils Schrödinger’s
requirement is referred to as the Schrödinger bridge.

This problem has a long history [15]. In particular, Föllmer [19] showed that the solution to Schrödinger’s
problem corresponds to a probability law PB on path space that minimizes the relative entropy with respect
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to the Wiener measure among all laws with given initial and terminal distributions, ρ0(x)dx and ρ1(x)dx,
respectively, and proved that the minimizer always exists. Beurling [17] and Jamison [18] generalized
the idea of the Schrödinger bridge by changing the Wiener measure to a more general reference measure
induced by a Markov process. Jamison’s result is stated below.

Theorem 1: Given two probability measures µ0(dx) = ρ0(x)dx and µ1(dx) = ρ1(x)dx on Rn and the
continuous, everywhere positive Markov kernel q(s, x, t, y), there exists a unique pair of σ-finite measure
(ϕ̂0(x)dx, ϕ1(x)dx) on Rn such that the measure P01 on Rn × Rn defined by

P01(E) =

∫
E

q(0, x, 1, y)ϕ̂0(x)ϕ1(y)dxdy (31)

has marginals µ0 and µ1. Furthermore, the Schrödinger bridge from µ0 to µ1 is determined via the
distribution flow

Pt(dx) = ϕ(t, x)ϕ̂(t, x)dx (32a)

with

ϕ(t, x) =

∫
q(t, x, 1, y)ϕ1(y)dy (32b)

ϕ̂(t, x) =

∫
q(0, y, t, x)ϕ̂0(y)dy. (32c)

The flow (32) is referred to as the entropic interpolation with prior q between µ0 and µ1, or simply
entropic interpolation, when it is clear what the Markov kernel q is. An efficient numerical algorithm to
obtain the pair (ϕ̂0, ϕ1) and thereby solve the Schrödinger bridge problem is given in [37].

For the case of non-degenerate Markov processes, a connection between the Schrödinger problem and
stochastic optimal control was drawn by Dai Pra [20]. In particular, for the case of a Brownian kernel,
he showed that the one-time marginals ρ(t, x) for Schrödinger’s problem can be obtained as solutions to

inf
(ρ,v)

∫
Rn

∫ 1

0

1

2
‖v(t, x)‖2ρ(t, x)dtdx, (33a)

∂ρ

∂t
+∇ · (vρ)− 1

2
∆ρ = 0, (33b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y). (33c)

Here, (33a) is the infimum of the expected cost while (33b) is the corresponding Fokker-Planck equation.
The entropic interpolation is Pt(dx) = ρ(t, x)dx.

An alternative equivalent reformulation given in [10] is

inf
(ρ,v)

∫
Rn

∫ 1

0

[
1

2
‖v(x, t)‖2 +

1

8
‖∇ log ρ(x, t)‖2

]
ρ(t, x)dtdx, (34a)

∂ρ

∂t
+∇ · (vρ) = 0, (34b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y), (34c)

where the Laplacian in the dynamical constraint is traded for a “Fisher information” regularization term
in the cost functional. Although the form in (34) is quite appealing, for the purposes of this paper we
will use only (33).

Formulation (33) is quite similar to OMT (6) except for the presence of the Laplacian in (33b). It
has been shown [27], [28], [25], [26] that the OMT problem is, in a suitable sense, indeed the limit of
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the Schrödinger problem when the diffusion coefficient of the reference Brownian motion goes to zero.
In particular, the minimizers of the Schrödinger problems converge to the unique solution of OMT as
explained below.

Theorem 2: Given two probability measures µ0(dx) = ρ0(x)dx, µ1(dx) = ρ1(x)dx on Rn with finite
second moment, let PB,ε01 be the solution of the Schrödinger problem with Markov kernel

qB,ε(s, x, t, y) = (2π)−n/2((t− s)ε)−n/2 exp

(
−‖x− y‖

2

2(t− s)ε

)
(35)

and marginals µ0, µ1, and let PB,εt be the corresponding entropic interpolation. Similarly, let π be the solu-
tion to the OMT problem (3) with the same marginal distributions, and µt the corresponding displacement
interpolation. Then, PB,ε01 converges weakly7 to π and PB,εt converges weakly to µt, as ε goes to 0.

To build some intuition on the relation between OMT and Schrödinger bridges, consider

dx(t) =
√
εdw(t)

with w(t) being the standard Wiener process; the Markov kernel of x(t) is qB,ε in (35). The corresponding
Schrödinger bridge problem with the law of x(t) as prior, is equivalent to

inf
(ρ,v)

∫
Rn

∫ 1

0

1

2ε
‖v(t, x)‖2ρ(t, x)dtdx, (36a)

∂ρ

∂t
+∇ · (vρ)− ε

2
∆ρ = 0, (36b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y). (36c)

Note that the solution exists for all ε and coincides with the solution of the problem to minimize the cost
functional ∫

Rn

∫ 1

0

1

2
‖v(t, x)‖2ρ(t, x)dtdx

instead, i.e., “rescaling” (36a) by removing the factor 1/ε. Now observe that the only difference between
(36) after removing the scaling 1/ε in the cost functional and the OMT formulation (6) is the regularization
term ε

2
∆ρ in (36b). Thus, formally, the constraint (36b) becomes (6b) as ε goes to 0. Below we discuss

a general result that includes the case when the zero-noise limit of Schrödinger bridges corresponds to
OMT with (linear) dynamics. This problem has been studied in [25] in a more abstract setting based
on Large Deviation Theory [38]. Here we consider the special case that is connected to our OMT-wpd
formulation. To this end, we begin with the Markov kernel corresponding to the process

dx(t) = A(t)x(t)dt+
√
εB(t)dw(t).

The entropic interpolation Pt(dx) = ρ(t, x)dx can be obtained by solving (the “rescaled” problem)

inf
(ρ,u)

∫
Rn

∫ 1

0

1

2
‖u(t, x)‖2ρ(t, x)dtdx, (37a)

∂ρ

∂t
+∇ · ((A(t)x+B(t)u)ρ)− ε

2

n∑
i,j=1

∂2(a(t)ijρ)

∂xi∂xj
= 0, (37b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y), (37c)

7A sequence {Pn} of probability measures on a metric space S converges weakly to a measure P if
∫
S fdPn →

∫
S fdP for every

bounded, continuous function f on the space.
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where a(t) = B(t)B(t)′, see [39], [24]. This result represents a slight generalization of Dai Pra’s result [20]
in that the stochastic differential equation corresponding to (37b) may be degenerate (i.e., rank(a(t)) 6= n).
Comparing (37) with (15) we see that the only difference is the extra term

ε

2

n∑
i,j=1

∂2(a(t)ijρ)

∂xi∂xj

in (37b) as compared to (15b). Formally, (37b) converges to (15b) as ε goes to 0. This suggests that the
minimizer of the OMT-wpd might be obtained as the limit of the joint initial-final time distribution of
solutions to the Schrödinger bridge problems as the diffusivity goes to zero. This result is stated next and
can be proved based on the result in [25] together with the Freidlin-Wentzell Theory [38, Section 5.6] (a
large deviation principle on sample path space). In the Appendix, we also provide a direct proof which
doesn’t require a large deviation principle.

Theorem 3: Given two probability measures µ0(dx) = ρ0(x)dx, µ1(dx) = ρ1(x)dx on Rn with finite
second moment, let Pε01 be the solution of the Schrödinger problem with reference Markov process

dx(t) = A(t)x(t)dt+
√
εB(t)dw(t) (38)

and marginals µ0, µ1, and let Pεt be the corresponding entropic interpolation. Similarly, let π be the solution
to (18) with the same marginal distributions, and µt the corresponding displacement interpolation. Then,
Pε01 converges weakly to π and Pεt converges weakly to µt as ε goes to 0.

An important consequence of this theorem is that we can now use the numerical algorithm in [37]
which provides a solution to the Schrödinger problem, for a vanishing ε, as a means to solve the general
problem of OMT with prior dynamics (and, in particular, the standard OMT [37]). This is highlighted
in the examples of Section VI. It should be noted that the algorithm, which relies on computing the
pair (ϕ̂0, ϕ1) in Theorem 1, is totally different from other numerical algorithms that solve standard OMT
problems [7], [12].

V. GAUSSIAN MARGINALS

We now consider the correspondence between Schrödinger bridges and OMT-wpd for the special case
where the marginals are normal distributions. That the OMT-wpd solution corresponds to the zero-noise
limit of the Schrödinger bridges is of course a consequence of Theorem 3, but in this case, we can obtain
explicit expressions in closed-form and this is the point of this section.

Consider the reference evolution

dx(t) = A(t)x(t)dt+
√
εB(t)dw(t) (39)

and the two marginals

ρ0(x) =
1√

(2π)n|Σ0|
exp

[
−1

2
(x−m0)′Σ−1

0 (x−m0)

]
, (40a)

ρ1(x) =
1√

(2π)n|Σ1|
exp

[
−1

2
(x−m1)′Σ−1

1 (x−m1)

]
, (40b)

where, as usual, the system with matrices (A(t), B(t)) is controllable. In our previous work [23], [33],
we derived a “closed-form” expression for the Schrödinger bridge when m0 = m1 = 0, namely,

dx(t) = (A(t)−B(t)B(t)′Πε(t))x(t)dt+
√
εB(t)dw(t) (41)
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with Πε(t) satisfying the matrix Riccati equation

Π̇ε(t) + A(t)′Πε(t) + Πε(t)A(t)− Πε(t)B(t)B(t)′Πε(t) = 0 (42)

and the boundary condition

Πε(0) = Σ
−1/2
0 [

ε

2
I + Σ

1/2
0 Φ′10M

−1
10 Φ10Σ

1/2
0 − (

ε2

4
I + Σ

1/2
0 Φ′10M

−1
10 Σ1M

−1
10 Φ10Σ

1/2
0 )1/2]Σ

−1/2
0 . (43)

When m0 6= 0 or m1 6= 0 the bridge becomes:

dx(t) = (A(t)−B(t)B(t)′Πε(t))x(t)dt+B(t)B(t)′m(t)dt+
√
εB(t)dw(t) (44)

where
m(t) = Φ̂(1, t)′M̂(1, 0)−1(m1 − Φ̂(1, 0)m0) (45)

with Φ̂(t, s), M̂(t, s) satisfying

∂Φ̂(t, s)

∂t
= (A(t)−B(t)B(t)′Πε(t))Φ̂(t, s), Φ̂(t, t) = I

and

M̂(t, s) =

∫ t

s

Φ̂(t, τ)B(t)B(t)′Φ̂(t, τ)′dτ.

Next we consider the zero-noise limit by letting ε go to 0. In the case where A(t) ≡ 0, B(t) ≡ I ,
the Schrödinger bridges converge to the solution of the OMT. In general, when A(t) 6≡ 0, B(t) 6≡ I , by
taking ε = 0 in (43) we obtain

Π0(0) = Σ
−1/2
0 [Σ

1/2
0 Φ′10M

−1
10 Φ10Σ

1/2
0 − (Σ

1/2
0 Φ′10M

−1
10 Σ1M

−1
10 Φ10Σ

1/2
0 )1/2]Σ

−1/2
0 , (46)

and the corresponding limiting process

dx(t) = (A(t)−B(t)B(t)′Π0(t))x(t)dt+B(t)B(t)′m(t)dt, x(0) ∼ (m0,Σ0) (47)

with Π0(t),m(t) satisfying (42), (45) and (46). In fact Π0(t) has the explicit expression

Π0(t) = −M(t, 0)−1 −M(t, 0)−1Φ(t, 0)
[
Φ′10M

−1
10 Φ10 − Σ

−1/2
0 (Σ

1/2
0 Φ′10M

−1
10 Σ1M

−1
10 Φ10Σ

1/2
0 )1/2Σ

−1/2
0

−Φ(t, 0)′M(t, 0)−1Φ(t, 0)
]−1

Φ(t, 0)′M(t, 0)−1. (48)

As indicated earlier, Theorem 3 already implies that (47) yields an optimal solution to (15). Here we
give an alternative proof by directly verifying that the corresponding displacement interpolation and the
control satisfy the conditions of Proposition 2.

Proposition 4: Let ρ(t, ·) be the probability density of the process x(t) in (47), and

u(t, x) = −B(t)′Π0(t)x+B(t)′m(t),

then the pair (ρ, u) is a solution of the problem (15) with prior dynamics (13) and marginals (40).

Proof: To prove that the pair (ρ, u) is a solution, we show first that ρ satisfies the boundary condition
ρ(1, x) = ρ1(x), and second, that u(t, x) = B(t)′∇ψ(t, x) for some ψ that satisfies the Hamilton-Jacobi
equation (28b).

Equation (47) is linear with gaussian initial condition, hence x(t) is a gaussian process. We claim
that density of x(t) is

ρ(t, x) =
1√

(2π)n|Σ(t)|
exp

[
−1

2
(x− n(t))′Σ(t)−1(x− n(t))

]
,
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where

n(t) = Φ̂(t, 0)m0 +

∫ t

0

Φ̂(t, τ)B(τ)B(τ)′m(τ)dτ

and

Σ(t) = M(t, 0)Φ(0, t)′Σ
−1/2
0

[
−Σ

1/2
0 Φ′10M

−1
10 Φ10Σ

1/2
0 + (Σ

1/2
0 Φ′10M

−1
10 Σ1M

−1
10 Φ10Σ

1/2
0 )1/2

+Σ
1/2
0 Φ(t, 0)′M(t, 0)−1Φ(t, 0)Σ

1/2
0

]2

Σ
−1/2
0 Φ(0, t)M(t, 0) (49)

for t ∈ (0, 1]. It is obvious that E{x(t)} = n(t) and it is also immediate that

lim
t→0

Σ(t) = Σ0.

Straightforward but lengthy computations show that Σ(t) satisfies the Lyapunov differential equation

Σ̇(t) = (A(t)−B(t)B(t)′Π0(t))Σ(t) + Σ(t)(A(t)−B(t)B(t)′Π0(t))′.

Hence, Σ(t) is the covariance of x(t). Now, observing that

n(1) = Φ̂(1, 0)m0 +

∫ 1

0

Φ̂(1, τ)B(τ)B(τ)′m(τ)dτ

= Φ̂(1, 0)m0 +

∫ 1

0

Φ̂(1, τ)B(τ)B(τ)′Φ̂(1, τ)′dτM̂(1, 0)−1(m1 − Φ̂(1, 0)m0) = m1

and

Σ(1) = M(1, 0)Φ(0, 1)′Σ
−1/2
0

[
(Σ

1/2
0 Φ′10M

−1
10 Σ1M

−1
10 Φ10Σ

1/2
0 )1/2

]2

Σ
−1/2
0 Φ(0, 1)M(1, 0) = Σ1,

allows us to conclude that ρ satisfies ρ(1, x) = ρ1(x).

For the second claim, let

ψ(t, x) = −1

2
x′Π0(t)x+m(t)′x+ c(t)

with

c(t) = −1

2

∫ t

0

m(τ)′B(τ)B(τ)′m(τ)dτ.

Clearly, u(t, x) = B(t)′∇ψ while

∂ψ

∂t
+ A(t)x · ∇ψ +

1

2
∇ψ ·B(t)B(t)′∇ψ

= −1

2
x′Π̇0(t)x+ ṁ(t)′x+ ċ(t) + x′A(t)′(−Π0(t)x+m(t))

+
1

2
(−x′Π0(t) +m(t)′)B(t)B(t)′(−Π0(t)x+m(t))

=
1

2
x′(A(t)′Π0 + Π0A(t)− Π0(t)B(t)B(t)′Π0(t))x−m(t)′(A(t)−B(t)B(t)′Π0(t))x+ ċ(t)

+x′A(t)′(−Π0(t)x+m(t)) +
1

2
(−x′Π0(t) +m(t)′)B(t)B(t)′(−Π0(t)x+m(t))

= ċ(t) +
1

2
m(t)′B(t)B(t)′m(t) = 0.



16

VI. NUMERICAL EXAMPLES

We present two examples. The first one is on steering a collection of inertial particles in a 2-
dimensional phase space between Gaussian marginal distributions at the two end-points of a time interval.
We use the closed-form control presented in Section V. The second example is on steering distributions
in a one-dimensional state-space with specified prior dynamics and more general marginal distributions.
In both examples, we observe that the entropic interpolations converge to the displacement interpolation
as the diffusion coefficient goes to zero.

A. Gaussian marginals

Consider a large collection of inertial particles moving in a 1-dimension configuration space (i.e., for
each particle, the position x(t) ∈ R). The position x and velocity v of particles are assumed to be jointly
normally distributed in the 2-dimensional phase space ((x, v) ∈ R2) with mean and variance

m0 =

[
−5
−5

]
, and Σ0 =

[
1 0
0 1

]
at t = 0. We seek to steer the particles to a new joint normal distribution with mean and variance

m1 =

[
5
5

]
, and Σ1 =

[
1 0
0 1

]
at t = 1. The problem to steer the particles provides also a natural way to interpolate these two end-point
marginals by providing a flow of one-time marginals at intermediary points t ∈ [0, 1].

When the particles experience stochastic forcing, their trajectories correspond to a Schrödinger bridge
with reference evolution

d

(
x(t)
v(t)

)
=

[
0 1
0 0

](
x(t)
v(t)

)
dt+

[
0
1

]√
εdw(t).

In particular, we are interested in the behavior of trajectories when the random forcing is negligible
compared to the “deterministic” drift.

Figure 1 depicts the flow of the one-time marginals of the Schrödinger bridge with ε = 9. The
transparent tube represents the 3σ region

(ξ(t)′ −m′t)Σ−1
t (ξ(t)−mt) ≤ 9, ξ(t) =

[
x(t)
v(t)

]
and the curves with different color stand for typical sample paths of the Schrödinger bridge. Similarly,
Figures 2 and 3 depict the corresponding flows for ε = 4 and ε = 0.01, respectively. The interpolating flow
in the absence of stochastic disturbance, i.e., for the optimal transport with prior, is depicted in Figure
4; the sample paths are now smooth as compared to the corresponding sample paths with stochastic
disturbance. As ε ↘ 0, the paths converge to those corresponding to optimal transport and ε = 0. For
comparison, we also provide in Figure 5 the interpolation corresponding to optimal transport without prior,
i.e., for the trivial dynamics A(t) ≡ 0 and B(t) ≡ I , which is precisely a constant speed translation.
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Fig. 1: Interpolation based on Schrödinger bridge with ε = 9

Fig. 2: Interpolation based on Schrödinger bridge with ε = 4

Fig. 3: Interpolation based on Schrödinger bridge with ε = 0.01
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Fig. 4: Interpolation based on OMT-wpd

Fig. 5: Interpolation based on OMT

B. General marginals

Consider now a large collection of particles obeying

dx(t) = −2x(t)dt+ u(t)dt

in 1-dimensional state space with marginal distributions

ρ0(x) =

{
0.2− 0.2 cos(3πx) + 0.2 if 0 ≤ x < 2/3

5− 5 cos(6πx− 4π) + 0.2 if 2/3 ≤ x ≤ 1,

and
ρ1(x) = ρ0(1− x).

These are shown in Figure 6 and, obviously, are not Gaussian. Once again, our goal is to steer the state
of the system (equivalently, the particles) from the initial distribution ρ0 to the final ρ1 using minimum
energy control. That is, we need to solve the problem of OMT-wpd. In this 1-dimensional case, just like
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Fig. 6: Marginal distributions

Fig. 7: Interpolation based on OMT-wpd

in the classical OMT problem, the optimal transport map y = T (x) between the two end-points can be
determined from8 ∫ x

−∞
ρ0(y)dy =

∫ T (x)

−∞
ρ1(y)dy.

The interpolation flow ρt, 0 ≤ t ≤ 1 can then be obtained using (23). Figure 7 depicts the solution of
OMT-wpd. For comparison, we also show the solution of the classical OMT in figure 8 where the particles
move on straight lines.

Finally, we assume a stochastic disturbance,

dx(t) = −2x(t)dt+ u(t)dt+
√
εdw(t),

with ε > 0. Figure 9–13 depict minimum energy flows for diffusion coefficients
√
ε = 0.5, 0.3, 0.15, 0.05, 0.01,

respectively. As ε → 0, it is seen that the solution to the Schrödinger problem converges to the solution
of the problem of OMT-wpd as expected.

8 In this 1-dimensional case, (22) is a simple rescaling and, therefore, T (·) inherits the monotonicity of T̂ (·).



20

Fig. 8: Interpolation based on OMT

Fig. 9: Interpolation based on Schrödinger bridge with
√
ε = 0.5

Fig. 10: Interpolation based on Schrödinger bridge with
√
ε = 0.3
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Fig. 11: Interpolation based on Schrödinger bridge with
√
ε = 0.15

Fig. 12: Interpolation based on Schrödinger bridge with
√
ε = 0.05

Fig. 13: Interpolation based on Schrödinger bridge with
√
ε = 0.01
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VII. RECAP

The problem to steer the random state of a dynamical system between given probability distributions
can be equally well be seen as the control problem to simultaneously herd a collection of particles obeying
the given dynamics, or as the problem to identify a potential that effects such a transition. The former
is seen to have applications in the control of uncertain systems, system of particles, etc. The latter is
seen as a modeling problem and system identification problem, where e.g., the collective response of
particles is observed and the prior dynamics need to be adjusted by postulating a suitable potential so
as to be consistent with observed marginals. When the dynamics are trivial and the state matrix is zero
while the input matrix is the identity, the problem reduces to the classical OMT problem. Herein we
presented a generalization to nontrivial linear dynamics. A version of both viewpoints where an added
stochastic disturbance is present relates to the problem of constructing the so-called Schrödinger bridge
between two end-point marginals. In fact, Schrödinger’s bridge problem was conceived as a modeling
problem to identify a probability law on path space that is closest to a prior (usually a Wiener measure)
and is consistent with the marginals. Its stochastic control reformulation in the 90’s has led to a rapidly
developing subject. The present work relates OMT as a limit to Schrödinger bridges, when the stochastic
disturbance goes to zero, and discusses the generalization of both to the setting where the prior linear
dynamics are quite general. It opens the way to employ the efficient iterative techniques recently developed
for Schrödinger bridges to the computationally challenging OMT (with or without prior dynamics). This
is the topic of [37].

APPENDIX: PROOF OF THEOREM 3

Let qε be the Markov kernel of (38), then

qε(s, x, t, y) = (2πε)−n/2|M(t, s)|−1/2 exp

(
− 1

2ε
(y − Φ(t, s)x)′M(t, s)−1(y − Φ(t, s)x)

)
.

Comparing this and the Brownian kernel qB,ε we obtain

qε(s, x, t, y) = (t− s)n/2|M(t, s)|−1/2qB,ε(s,M(t, s)−1/2Φ(t, s)x, t,M(t, s)−1/2y).

Now define two new marginal distributions ρ̂0 and ρ̂1 through the coordinates transformation C in (19),

ρ̂0(x) = |M10|1/2|Φ10|−1ρ0(Φ−1
10 M

1/2
10 x)

ρ̂1(x) = |M10|1/2ρ1(M
1/2
10 x).

Let (ϕ̂0, ϕ1) be a pair that solves the Schrödinger bridge problem with kernel qε and marginals ρ0, ρ1,
and define (ϕ̂B0 , ϕ

B
1 ) as

ϕ̂0(x) = |Φ10|ϕ̂B0 (M
−1/2
10 Φ10x) (50a)

ϕ1(x) = |M10|−1/2ϕB1 (M
−1/2
10 x), (50b)

then the pair (ϕ̂B0 , ϕ
B
1 ) solves the Schrödinger bridge problem with kernel qB,ε and marginals ρ̂0, ρ̂1. To

verify this, we need only to show that the joint distribution

PB,ε01 (E) =

∫
E

qB,ε(0, x, 1, y)ϕ̂B0 (x)ϕB1 (y)dxdy
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matches the marginals ρ̂0, ρ̂1. This follows from∫
Rn
qB,ε(0, x, 1, y)ϕ̂B0 (x)ϕB1 (y)dy =

∫
Rn
qB,ε(0, x, 1,M

−1/2
10 y)ϕ̂B0 (x)ϕB1 (M

−1/2
10 y)d(M

−1/2
10 y)

= |M10|1/2|Φ10|−1

∫
Rn
qε(0,Φ−1

10 M
1/2
10 x, 1, y)ϕ̂0(Φ−1

10 M
1/2
10 x)ϕ1(y)dy

= |M10|1/2|Φ10|−1ρ0(Φ−1
10 M

1/2
10 x) = ρ̂0(x),

and∫
Rn
qB,ε(0, x, 1, y)ϕ̂B0 (x)ϕB1 (y)dx =

∫
Rn
qB,ε(0,M

−1/2
10 Φ10x, 1, y)ϕ̂B0 (M

−1/2
10 Φ10x)ϕB1 (y)d(M

−1/2
10 Φ10x)

= |M10|1/2
∫
Rn
qε(0, x, 1,M

1/2
10 y)ϕ̂0(x)ϕ1(M

1/2
10 y)dx

= |M10|1/2ρ1(M
1/2
10 y) = ρ̂1(y).

Compare PB,ε01 with Pε01 it is not difficult to find out that PB,ε01 is a push-forward of Pε01, that is,

PB,ε01 = C]Pε01.

On the other hand, let πB be the solution to classical OMT (3) with marginals ρ̂0, ρ̂1, then

πB = C]π.

Now since PB,ε01 weakly converge to πB from Theorem 2, we conclude that Pε01 weakly converge to π as
ε goes to 0.

We next show Pεt weakly converges to µt as ε goes to 0. The displacement interpolation µ can be
decomposed as

µ(·) =

∫
Rn×Rn

δγxy(·) dπ(x, y),

where γxy is the minimum energy path (17) connecting x, y, and δγxy is the Dirac measure at γxy on the
path space. Similarly, the entropic interpolation Pε can be decomposed as

Pε(·) =

∫
Rn×Rn

Qεxy(·) dPε01(x, y),

where Qεxy is the pinned bridge [40] associated with (38) conditioned on x(0) = x and x(1) = y. It has
the stochastic differential equation representation

dx(t) = (A(t)−B(t)B(t)′Φ(1, t)′M(1, t)−1Φ(1, t))x(t)dt+B(t)B(t)′Φ(1, t)′M(1, t)−1ydt+
√
εB(t)dw(t).

As ε goes to zero, it converges to

dx(t) = (A(t)−B(t)B(t)′Φ(1, t)′M(1, t)−1Φ(1, t))x(t)dt+B(t)B(t)′Φ(1, t)′M(1, t)−1ydt, x(0) = x,

which is γxy. In other word, Qεxy weakly converges to δγxy . This together with the fact that Pε01 weakly
converges to π show that Pεt weakly converges to µt as ε goes to 0.
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