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Abstract

We describe a series of numerical experiments using random vortex elementl
techniques coupled to aAﬁame propagation algorithm based on Huyghens prin-
ciple to model turbulent combustion. We solve the equations of zero Mach
number combustion for the problem of a flame propagating in a swirling flow
inside a closed vessel. We analyze the compeﬁng effects of viscosity, exother-
micity, boundary conditions and pressure on the rate of combustion in the

vessel.
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A particulérly challenging problem in the study of turbulent combﬁstion
within an internal combustion engine is the interaction between hydrodynamic
turbulence and the propagation of a flame. The more reactants reached by the
flame, the more energy released and the less unburnt fuel expelled at the end
of a stroke. At high Reynolds numbers, turbulent eddies and recirculation
zones form which aﬂ'ec_t the position of ‘the flame and the distribution of

-unburnt fuel vavailabvlg’f,o'r cc.>mbu4stion.v Coriversely, exothermic effects along
the flame front influence f;he fluid motion.- | |

As one mi‘éht expect, the full set of'equat;ions’ that describe the' above
' phenomenon is highly complex; the eqUaiions are usually simplified in such a
>way as to highlight a particular aspeét of the combustion process, see [3],

[12], [18]. For example, most partial differential equation models of turbuient
flow are based on a formulation of the Navier-Stokes equations with respect to
a mean state, together with a set of equations to include such components as
turbulence velocity and length scales. These model are of varying degrees of
sophistication and complexity, rahgi.ng from zero-equation models ("mean-
field closures’) to higher order stress equation models. (For an excellent over-
view, see [3],[18]). From the combustion side, starting with Landau's work
[11]. qﬁes_tions of flame étability have received ‘considera_ble attention over the
past few decades, vﬁth much of the analysis concentrating on perturbation
analysis of various models of combustion, containing such eflects as mixing
and flame Speed dependence on curvature. An excellent, though now slightly

outdated, review of such techniques may be found in [14].

Our work has been concerned with developing numerical methods to
analyze the effects of such factors as viscosity, exothermicity, boundary con-

ditions and pressure on the interaction between flame propagation and tur-
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bulent eddies. At the foundation of our investigations is the fandom vorte'x
method [6], a grid-free numerical technique that is specifically designed for
high Reynolds number flow and portrays in a natural and effective manner the
formation of turbulent eddies and coherent structures. Other applications of
this method have included flow.past an airfoil [4] and blood flow past heart
valves [15]. The random vortex method and the flame propagation algorithm
described ,hefe- were first used in a combustion setting to model turbulent
combustion over a backwards fac’in'g' step m [8]. In this review, we assemble
the results of a series of numerical _experiments'we have devsignedvto analyze
somne conipbnents in tur’bulent. combustion; results described have been |

presented in [13], [19], [20], [21] and [22].

Statement of Problem /Equations of Motion

We consider two-dimensional, viscous flow inside a closed square. On solid
walls, we require that the normal and tangential fluid velocities be zero.
Combustion is characterized by a single step irreversible chemical reaction;
the fluid is a pre-mixed fuel in which each fluid particle exists in one of two
states, burnt and unburnt. When a particle burns, it undergoes an instantane-
ous increase in volume and becomes burnt. .ThUSi the flame is viewed as an
infinitely thin front acting as a source of specific volume and separating the
burnt regions from unburnt regions. We assume that the fluid is initially swir-
ling in a counterclockwise direction and at £ =0 we ignite the fluid at a point
halfway up the left side. Our goal is to analyze the interaction of the swirling

fluid with the propagating flame front.



Our model is described by the equations of zero Mach number combus-
tion, which hold under the assumption that the Mach number M is small, the
initial pressure is spatially uniform within terms of order M? ahd the initiél
conditions for velocity, pressure and mass fraction are consistent within order
M. Under t.he.se conditions; asymptoﬁc limits of the full Navier-Stokes plus
combustibn equatiéns can be taken to yield a sét of equations that allow for
large heat release, §1ibstantial -te,mperdture ahd dgnsity variations and
: interacﬁion» with the hydrbdynanﬁc‘ flow fleld, but removes the detailed effects
éf Vacoustic waves. _and i.nst.ead contains a time-dependent spatiélly uniforfn
. mean pressure term. This model can be viewed as gxisting "in between" con-
stant density models, in which the fluid ‘mechanics essentially decouples from
the hydrodyndrnics. and the fully COmpressible combustion equations. The full
derivation of this model may be found in [13]; a related model for thermally
driven bouyant flows applicable to problems in fire research may be found in

[17]. We summarize the equations for zero Mach number combustion below.

Let 7 be the fluid velocity vector and let 7 =1 + Vy¢ be the unique
decomposition of ¥ into a divergence-free component @ and a curl-free com-
ponent Vy. We take the curl of the zero Mach number momentum equation to

produce the -

VORTICITY TRANSPORT EQUATION

D¢ _ 1
o= =V (1)

where ¢ = Vx10 is the vorticity and -D%-ls the total derivative 8, + (¥'V). Here,

we have ignored the term (V xv;ji) which corresponds to vorticity production

across the flame front (We hope to assess the importance of this term at a
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later date). The boundary conditions are that ¥ = 0 on the boundary of the
domain.

We view the flame front as a curve separating the burnt and unburnt
regions. Let #(¢) be a point on the front. The front burns normal to itself with

speed k and is advected by the flow yielding the

EIKONAL EQUATION FOR THE FLAME FRONT

= kT +n@) (=)
where 7, is the fluid velocity on the unburnt side, 7 is the unit normal to the

front at #(t) and the burning speed k is determined from the mass flux m

across the flame front by

m(pu (). P(t)) @

k= pu(t)

Here, p, is the density of the unburnt fluid and P is the mean pressure. The
rise in presure, which results from fluid expansion along the front, depends on

the length of the front and the volume of the vessel and is given by the

NON-LINEAR O.D.E. FOR THE MEAN PRESSURE P(t)

dP _ Zo ™M
dt = Vol L (4)

where g, is the non-dimensional heat release, Vol is the volume of the vessel
and L is the length of the flame front. We assume a y-gas law and take the

mass flux to be of the form

-

1
m(py.P) = @ pu ? PT (5)



where @ is the local laminar flame velocity, see [3]; p, may then be obtained

from the pressure through' the relation

Pu = (P(ENV7 pu(0)) (6)

where p,(0) is the density of the unburnt fluid initially. Finally, the Neumann

compatibility condition yields the

 ELLIPTIC EQUATION FOR THE EXOTHERMIC VELOCITY FIELD Vg

= L8P o |
Vo= opl—gt ermbr) | (7

where 67 is the surface Dirac measure éon’centrated on the flame front. Equa-

tions (1-7) form our equations of motion.

Numerical Algorithm

Faced with the above set of equations, a standérd method would be to
employ finite difference techniques to produce a discrete approximation to all
of the derivatives and then solve the resulting set of algebraic equations. When -
applied to the turbulence part of combﬁstion models, some of the problems
inherént in such techniques are 1) the nécessity of a fine grid in-the boun-
dary }ayér region near walls where sharp gradients exist 2) the introduction
of numerical diffusion; the error associated with the approximation equations
looks like a diffusion term and hence places a computational upper bound on
the size of the Reynolds number that can be,eﬁect.ively modelled and 3) the
intrinsic smoothing of finite difference schemes which damps out physical
instabilities. The random vortex method. introduced in [6] is a grid-free

approximation to the equations of viscous flow at high Reynolds number that



avoids the introduction of mean states and turbulence closure relations and
" concentrates on folldwing the motion of vorticity by means of a collection of
vorticity approximation elements. This techniqué avoids the averaging and
smoothing associated with finite difference formulations and allows us to follow

the development of large-scale coherent structures in the flow.

When one considers finite difference approximations to the equation for
flame probagation (Equétion 2), a typical method is to place marker particles
along thé‘ bouhdarj of the burnt region and formulate a set of ordinary
differential equations cbrfespohding to the motion of Vt‘hese.marker particles.
At each time step, interpolation through these markers providés an approxi-
mation to the positioh of the flame front. There are some problems involved
with such an algorithm. It is difficult to accurately determine the normal
direct.ion- (needed in Equation 2) from. such én algorithm and hence the
numerical approximation to the propagating front usually becomes unstable
and develops oscillations. Furthermore, it has been shown (see [19]) that the
propagating front éan develop cusps, analogous to shocks, where the front
ceases to be differentiable and the normal is no longer defined. The technique
of adding and subtracting marker particles as the front moves requires 'mitial
assumptions about differentiability and bounds on curvature. Another problem
associated with mArker techniques is a topological one; when two burnt
regions burn into each other, such a method must "decide” how and which
markers are connected and eliminate those no longer on the boundary of the
flame. The numerical technique we use is based on a 'volume" fraction élgo-
rithm; the technique does not require a determination of the normal direction

and is not subject to the topological issue mentioned above.



Our technique will be to keep track of the vorticity as a way of computing
@ and to keep track of the flame front as a way of computing Vg; combining
these two at any time wi'llv yield the full velocity ¥ =@ + Vg. We divide .the
square D into two regions; an interior region where we solve the full vorticity
transport equ.ation together with the boundary condition ¥-# = 0 on 8D (nor-
- mal component ﬁnbhes) and a ‘boundary layer region where we solve the
Prandtl boun-dar)" layer equations together with the boundary condition =0
" on 3D (no-slip). In both regions, we use the techmque of operator sphttmg to
| first update the vortlcxty with respect to the advection term and then with |
respect to the dlffusm_n term. Su’mlarly. we update the flame position by first
allowing it to burn normal to itself and then by advecting the flame by the
hydrodynamic flow ﬁ_eld,, calculating the exothermic velocity field V¢ from the
elliptic equation (Equation 7).. Finally, we solve the non-linear ordinary
differential equation to compute the resulting rise in pressure. The separate

components are as follows.

Computation of w

We update ¢ (Equation 1) where ¢ = VX by following the motion of vorti-
city through the use of vortex "blobs" as introduced by Chorin in [8].
Knowledge of the position of these blobs at any tlme prowdes w. We brleﬂy
describe the method; for details, see [6], [8], [21].

We have the vertieity advection equation 8¢ = —(1-V)¢. Since V-1 = 0,
there exists a streem fdnction"sb such that @ = ('¢/y_'—10‘) and ¢ = =V2y. We may
write velocity as a function of vorticity through the fundamental solution to

the Laplacian, namely
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Wz.t) = [ Gz - 7) ¢z )&z
where | |
G(z —f'_) = 2—1"—10g| -z
and Z = (z.y). Hence
W= [K(Z -Z)¢z.t) dT . (9)
where | |

K@ -z) = )

2n|z -z |
Let Z(t) be the pbsition of a particle moving in a fluid at time £. Since vorticity
is advected by its own velocity fleld, we have that £(Z(t)) =‘ £(Z(0)), that is,
each particle "carries” its own vorticity with it. Qur-technique will be to exploit
this fact; we place N of particles in the flow at £=0 and follow their motion. At
any later time we have a distribution of these "delta functions” of vorticity
which can be "smoothed out” to allow one to compute the resulting velocity
fleld @ through Equation (9) (Alternatively, one can view this smoothing pro-
cess as something that happens to the kernel K). There are two obvious

numerical parameters involved in the above; the number N of vortex "blobs"

" use to describe the initial vorticity distributioh and the smoothing factor ¢

used to compute the velocity field. We use the smoothing structure introduced
in [6]; consider N vortex "blobs"” placed on an initial grid in the domain, each

with "smoothed"” stream function

_ —Ek;‘-r—logifvl >0
- Y(Zz) = k;
—Er—(lfl/a+loglfl—1) r <o
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where k; is the strength ( vorticity ) of the ith vortex blob. To go from one
time step to the next, we ﬁse the positions of the vortex blobs to determine
the vvelocity. fleld from Equation (9) and numerically update these positions
using Heun's method. Convergence of the vortex method was first established
in [9] for work relating to theoretical aspects of this method, see [1], [2]. [9]
and [10]. To satisfy the normal boundary condition &-7 = 0, we add a poten-
tial flow to the above motion (wh_ich. of coursé. adds no vorticity). .

':‘To update the vort.ircity w1t.h respect to.the diﬂugibn term %Vef. after the
advection s_téb we allow the voftex elémén_ts to uhdergo a random step'.v- drawn
from a Gaussian distribution with mean zero, variance -zg—t Since the random

walk constitutes a solution to the diffusion equation, the combined. motion of
the vortex elements approximates the solution to the full vorticity transpbrt.

equation (1). For details, see [8], [21].

In the boundary layer, we employ similar techniques, only here our vortex
elements are discrete, finite length "sheets" of vorticity. Once again, we use
operator splitting to separate the Prandtl boundary layer equations into 1) an

advection equation
8 =—(®V)¢
§ = —0yw,
Vo =0 ondld
W(zy = =) = W(z)

where 1 = (w;,wy ) and . is the velocity as seen at infinity from the solid wall

( the equations are written with respect to a solid wall lying on the z axis)
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and 2) a diffusion equation

.
8¢ = +-05¢

(note that in this approximation diffusion only takes place in a direction nor-

mal to the solid wall). The £ component of the velocity (@,) is written as a |
function of vorticity and the.y component (uy ) is written as a function of w;
~ through the incompressibility relation. As before, the positions of the vortex
elements are used to approximate the vorticity distribut.ién, allowing one to -
compute the advection field (ws,uy). The vortex sheets Are advanced under
this advection field énd allowed to undergo a random walk in the ¥ direction in
response to the diffusion term. In addition, newly created vortex sheets are
added at solid walls whenever necessary.to satisfy the no-slip condition. Infor-
mation is passed between the interior and the boundary layer in the following
manner; the velocity from the vortex blob calculation taﬁgential to the wall is
taken as the velocity ¥. seen at inflnity from the boundary layer. Sheets
diffuse away from the wall into the interior and become vortex blobs. Conser-
vation of circulation is' maintained; during this exchange, when a sheet moves
too far from the wall, it becomes a blob with proper strength and vice versa.
The velocity field @ can be obtained at any time from the positions of the vor-

tex elements; for details, see [7], [21].

Computation of Flame Motion and Vg

We keep track of the po’sif.ion of the flame by introducing a square grid ij
on the dom'ain and assigning each cell a ‘number fy between 0 and 1 (a
“volume fraction”, see [16]) corresponding to the amount of burnt fluid in that
cell at any given time. The algorithm advances the front in a given direction by

drawing in each cell for which 0<f;;<1 an interface which represents the
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boundary between the burnt and unburnt fluid and moving that interface to
provide a new set of volume fractions. The orientétion of the 'mterféc’e depends
on the value of f,-;,- in both the cell and its neighbors; at any time step, the
bposition of the.ﬁame front can be xr'econstx"uctevd from the field of volume frac-
tions. The position of the flame is advanced in- response to burning an-d advec-
tion. Burning is accomplished by allowing each cell to ignite all of its neighbors
at the prescribed rate k determined from Equatioﬁ (3): this is an approxima-
- tion based on Huyghens principle whiéh states that the envelbpé of all disks
centered at the front corréspbnds to the front displaced in a direction normal
to itself, see [5]. In fact, it can be shown that this algorifhm capitalizes on the
geometric nature of ﬂame.'propagation described in [18]. Af,ter the burning is
accomplished, the e'xot.hermit_: velocity field Vg is det_érmined (Equétion 7) and
the full velocity fleld ¥ = + Vg is used to advect the flame (as well as the

vortex elements). Finally, the pressure is updated according to Equation (5).

Results

We have performed a series of numerical experiﬁents to analyze the vari-
ous factors described m Equations (1-7). In au"of the cases described' below,
we shall consider a square vessel ﬁth sides of length 1m. When the initial con-
dition is a counterclockwise swirl, this will be produced by a vortex placed in
the center of the square of sufficient strerigth so that the velocity tangential
to any wall at its midpoint is 1m/s. The initial conditions P(0) = 1 and
pu(0) = 1 were taken, and for viscous calculations we assumed a Reynolds
number of 1000. The calculation in [8] for turbulent flow behind a step
assumed a propane-air mixture with a laminar burning velocity of 12cm/s and

an inlet velocity of 8m/s; this inlet velocity was taken as a characteristic
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épeed scale to provide a non-dimensional laminar flame speed of § = .02 for a
flow of unit inlet speed. Since the velocity induced by our initial vortex
increases as we approach the center. it is not clear what to choose as a
characteristic velocity. In [21], we tooic a non-dimensional laminar flame
speed of & = .14, corresponding to a characteristic velocity 7 times that of the
tangential boundary velocity; in the vbelow results, this characteristic velocity
will be used in conjunction with Q. Details about the numerical parameters

~ used in'the below calculations may be found in [20], [21] and [22].

Hydrodynamics;' Inviscid/Viscous

In Figure 1, we show the results of a hydrodynamics calculation (no flame)
comparing inviscid flow to viscous ﬁoﬁ. Results are displayed on a 30x30 grid
placed in the flow, where the magnitude of the vector at each point denotes
the relative speed of the flow. Figure 1A, which is the initial flow, remaiﬁs
unchanged for all time in the inviscid case; the sole vortex remains at the
center and the normal boundary condition is satisfied through the potential
flow. In the viscous calculation (Figs.1A-1F), small counterrotating eddies grow
in each corner in response to the no-slip boundary conditions. These eddies

grow, break away and diffuse downstream, and are replaced by a new set.
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Flame Propagation: Pressure and the Exothermic Velocity Field

In the next experiment, a motionless, inviscid fluid is ignited at the
center of a closed square. We take a local laminar flame speed @=.2. If the
density of the burnt gas is the same as that of the unburnt gas, then the non-
dimensional heat rgl_ease is zero (g, =0), the pressure remains coﬁstant

v (%?-= 0 in Equation 4) and the exothermic velocity field Vg is identically zero.

In this case, the fluid remains still and the flame: front is an ekpahding circle

15

with origin at the center of the square. On the other hand, with g, # 0, fluid -

mo.tion is induced. by the propagating flame. In Figufe 2, .wé show resﬁlts in
fvhich go = 1.3333; this correspohds to an ivnit'.ial ratio of burnt/unburnt of five
to one (Here, we assumed an inviscid fluid, hence the no-slip condition is
violated). The black region corresponds to the _burnt region and once again
the vélocity is displayed oh a 30x30 grid. One can clearly see the mechanism
by which the boundary shapes the front; although the front starts off circular,

it soon becomes square-like in response to the boundary conditions on V¢ and

thus "burns” into the corners. When the volume was completely burnt, the

pressure in the vessel is 2.93 and k = .24 ( as compared with &k = .2 at ¢t =0).
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Hydrodynamics + Combustion : Ezothermicity and Viscosity
Next, we analyze the relative effects of viscosity and exothermicity on the

flame motion. Four different experiments were performed with @ = .14:

A Inviscid flow with g, = 0 (Inviscid/Constant Density),

B. Inviscid flow with g, = 1.3333 (Inviscid /Volume Expansion),

C. Viscous flow withg, =0 (Viscoﬁs /Constant Density)

'D. Viscous flow with g, = 1.3333 (Viscous/Volume Expansion). -

" In the two viscous runs.‘f.he flow was started two seconds before ignition so
that recirculation zones would have time to develop. The results are show in
Figure 3A-3D. In the inviscid, constant density case, the t_léme is smoothly
advected by the_large vortex in the center. In the inviscid, exothermic case,
the velocity field produced by volume expansion and the rise in pressure and
flame speed cause the flame to spiral in towards the center at a faster rate. In
the viscous, constant density case, th_é flame front is twisted by the eddies
that develop in the corners; the flame ié carried over the eddies and dragged
backwards into the corners. The effect of these eddies is to extend the length

of the flame front, bringing it into contact with unburnt fuel and increasing

the rate at which the vessel becomes fully burnt. Finally, when both viscous

and exothermic effects are combined, the flame is both wrinkled due to the
turbulence of the flow (hence increasing the surfaée area of the flame) and
carried by the exothermic fleld; in addition both the flame speed and pressure
increase. The effect of these fact.ors is to greatly decrease the amount of time
required for complete conversion of reactants to products. In Figure 4 we plot
the amount of volume burned vs. time elapsed since ignition, illustrating the

above comments.
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Flame Wrinkling due to Viscosity as a Function of Laminar Flame Speed

Finally, to further analyze this_ mechanism of flame wrinkling aue to

hydrodynamic turbulence, with Reynolds number 1000 we repeated the v

viscous, constant density experiment with local laminar flame speed
@ =.02,.06,.1,.14, and v.2. In Figure 5, we plot the difference in volume burnt
bet.ween the viscous and the inviscid case against the time elapsed since igni-
t.ion‘ for each of the above flame spéeds. Itis obﬁous-‘that the lower the flame

speed the longer the time'-ré_:quire'd for the vessel to becomes completely

burnt. However, as the flame speed- decreases, vi'scosity' pl"aysvan increasingly

‘more important role in t.he combust.ion process, as can be seen by noting that
the maximurm difference between the viscous and inviscid case incéreaﬁes ‘with
decreasing ﬂamé speed. At low flame speeds, the burning componenf. is
overshadowed by the advection component and it is the eddies which are
responsible for the lengthing the front and bringing the flame into contact
with unburnt fuel. Conversely, when the flame speed is large relative to the
advection component, the faster burning fate overshadows this effect and the

maximum difference is much less.

» As one might expect, the above expefiments merely scratch the surface
of a highly cdmplicated phenomenon. We are currently investigating such fac-
tors as flame speed dependence on curvature, the role of vorticity production
along the flame front and the effect of temperature, with the hope of continu-

ing the type of investigation discussed here.

20



Difference in Volume Burnt: Viscous - Im?iscid
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