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Abstract

This paper describes the mechanism used by the ALACK language acquisition program for identi-
fication of auxiliary verbs. Pinker’s approach to this problem (Pinker, 1984) is a general learning
algorithm that can learn any Boolean function but takes time exponential in the number of fea-
ture dimensions. In this paper, we describe an approach that improves upon Pinker’s method by
introducting the Closed-Category Relevance Property, and showing how it provides the basis of an
algorithm that learns the class of Boolean functions that is believed sufficient for natural language,

and does not require more than linear time as feature dimensions are added.

1 Introduction

Within the study of language acquisition, the problem of category identification is still a challenge to
formal theories of language acquisition. Even the identification of the members of a closed category
such as the Auxiliary Verbs (hereinafter referred to as AUX) stands unresolved. The principal
approaches to this problem include (Anderson, 1983), (Berwick, 1985), and (Pinker, 1984); Our
approach is closest to that of Pinker. We share with Pinker the following five assumptions: (1)
Language is learned not from a string of words alone but from the corresponding meaning (and
possibly other attributes) as well. (2) Some components of the meaning can be represented with
features. (3) The features are drawn from sets we will call feature dimensions. Examples of several
feature dimensions are shown below in Table 1. (4) Candidate AUXes are not annotated with
syntactic features in the input, e.g. (Berwick, 1985), nor is the input prechunked into phrase-like
groupings, e.g., (Anderson, 1983). (5) Steele’s cross-linguistic generalization (Steele et al., 1981),
holds for AUXes: AUXes encode tense or modality or both.

Pinker’s approach is based on a general learning algorithm that (i) can learn any Boolean function
but (ii) takes time exponential in the number of feature dimensions. In contrast, our approach, which
depends on the Closed-Category Relevance Property, defined Section 2, (i) cannot learn an arbitrary
Boolean function but is conjectured to be sufficient for natural language, and (ii) does not require
more than linear time as feature dimensions are added.
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2 The Closed-Category Relevance Property

In this section, we introduce the Closed-Category Relevance Property that will be used to identify
the category AUX; thisis the basis of our algorithm for AUX identification. Our goal is identification
only, not full control. So to recognize that are, for example, is an auxiliary is sufficient; to learn the
rules that control when to choose are instead of is or were, for example, is beyond the scope of this
paper.

The Closed-Category Relevance Property can be viewed abstractly as a two-place predicate
R which takes a word as its first argument and a feature dimension as its second argument:
R(word, dimension). Its purpose is to relate words to features that control their usage. It is meant to
capture the idea that animacy, for example, has no bearing on the word are, i.e., ~R(are, animacy),
but that tense, for instance, does: R(are,tense).

The Closed-Category Relevance Property is defined as follows: R(word, dimension) is true iff
word can encode some but not all of the values in dimension. R(are,tense) is true because are can
encode present and future time but not past time. The definition is satisfied because are can encode
some but not all of the values on the tense dimension. R(are,animacy) is false bacause are can
be used in both animate (“The dogs are running”) and inanimate (“The computers are running”)
contexts, so it trivially encodes both the values on the animacy dimension.

3 The AUX Learning Algorithm

The Closed-Category Relevance Property has been embodied in a computer model of language
acquisition called ALACK, which runs in Common Lisp on a Sun 4.

3.1 The Input to the Algorithm

The input to ALACK relevant to this discussion consists of: (1) a segmented string of words, each
of which is segmented into grammatical morphemes, (2) a list of semantic categories corresponding
to each word, drawn from the set {thing,event,statenull} where thing marks a perceptually
salient physical object, event marks a perceptually salient event, action, or process, state marks
some ongoing state, and null is the default which applies to all other words, and (3) a list of sets

of feature values, which are empty sets for words marked null, nonempty otherwise.

3.2 The Algorithm and an Example

In this section, we describe the steps of our Closed-Category Relevance algorithm, and show how
each step processes the following input that is based on actual input to ALACK:

person 1st-person, 2nd-person, 3rd-person
number | singular, plural
tense past, present, future

animacy | animate, inanimate
modality | modal, nonmodal
aspect perfective, imperfective, progressive

Table 1: Features used as examples throughout the text. They, and the actual
values within them, are used as illustration in the text, and of course do not
constitute a claim as to what is indeed linguistically complete and correct.
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(((the) (men) (are) (walk ing))
(null thing null event)
(() (3rd-person plural animate) () (present progressive)))

The feature values are drawn from the same sets of feature dimensions described in the introduc-
tion. ALACK embodies the Closed-Category Relevance Property in a manner logically equivalent
to the following.

e Step 1. All words marked null are collected into a set E. In this case, E = {are, the}. It is
this set that is tested for closed-category relevance; the treatment of the other words is beyond
the scope of this paper.

o Step 2. All the feature values are collected into a set F'. In this case, F = {3rd-person, plural,
animate, present, progressive}. ALACK filters the input to make sure that F' contains only

one value from each feature dimension. Inputs violating this constraint are ignored.

e Step 3. Unless they have been built already, ALACK constructs all the triples £ x G x H
where
G={z|zC FAl|z|=1}

H = {dim(f) | f € F}
dim(f)=y iffey

For example, dim(singular) = number, since number = {singular, plural}. Three examples of
ExGx H are (are, {present},tense), (are, {animate}, animacy), and (the, {plural}, number).

e Step 4. If a triple (e, S,d) where e € E and d € dim(F) has already been constructed, set
S is updated to include the new feature value f € F: S = So1a U {f}. So for example, if
ALACK gets the following input

(((the) (ball) (is) (fall ing))
(null thing null event)
(() (3rd-person singular inanimate) () (present progressive)))

then the example triple (are, {animate}, animacy) is updated to

(are, {animate, inanimate}, animacy)

e Step 5. All the updated triples are tested against the following rule:

(z) Y, y) = _'R(z) y)

Since animacy = {animate, inanimate}, the example triple matches the left-hand side, which
forces the conclusion —R(are,animacy); i.e., are is not closed-category relevant for animacy,
as discussed above. But are is still relevant for tense: the triple (are, {present},tense) has
not been changed. Pinker’s model and ours agree that all dimensions not explicitly found to
be irrelevant are relevant by default.

ALACK organizes some feature dimensions into a set, or domain, which we will call the verbal
domain. In the current implementation of ALACK, this domain is as follows:
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verbal = {tense, aspect}

Formally, category inference is done as follows. Given morpheme z and dimension y,

R(z,y) A (y € verbal) = z € AUX

The rule is justified by the previous discussion on Steele’s generalization (Steele et al., 1981).
ALACK'’s implementation does not yet include modality; aspect has been included since it works
well for English. For example, since R(are,tense) and tense € verbal, the rule allows are € AUX
to be concluded.

4 Analysis of AUX Learning Algorithm

Correctness. Clearly the closed-category relevance property leads to an algorithm that is not
correct for all Boolean functions. For example, suppose that English had an auxiliary hawn whose
paradigm, or grammar chart, looked like this:

"HAWN":
Modality

modal nonmodal

* past
Tense
- present
* future

where the stars mean to use the auxiliary, and the blanks mean ¢ (the null morpheme), for instance.
The auxiliary hawn is irrelevant along both the tense and modality dimensions, even though both
dimensions are (1) important to auxiliary identification, as discussed below, and (2) important to
the proper usage of hawn. Though Closed-Category Relevance is not correct from the standpoint
of full logical generality, it is only a small stipulation beyond the generalization of (Steele 1981);
English has nothing like hawn. This leads to the Closed-Category Relevance Conjecture: All
the auxiliaries in all the world’s languages that have auxiliaries are relevant for tense or modality or
both. This Conjecture goes beyond Steele’s generalization in that the Conjecture would not allow
something like hawn, while Steele’s generalization would. Steele’s generalization is satisfied by any
encoding of tense or modality; the Conjecture demands that the encoding satisfy the Relevance
Property as well.

Complexity Analysis. We wish to examine the time complexity of determining - R(w, d) for
a given w,d as the total number of dimensions T in features is increased. For the sake of this
argument, we can stipulate that in the implementation, the triples (e, S,d) are accessed by their
dimension via a function h, where h(d) = {(e, S,d’) | d’ = d}. If h is chosen to be implemented in
an array A, one may simply search A linearly for the desired dimension d, i.e., the search time is
O(T). If A is sorted, the time drops to O(log(T')). If h is a hash function, that time can be lowered
significantly.

5 Cross-Linguistic Analysis of Relevance

The idea of Closed-Category Relevance has interesting implications when applied to Bickerton’s
work (Bickerton, 1984). Suppose we are given the problem of identifying the auxiliaries in some
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of the creole languages that Bickerton has studied. For instance, in Hawaiian Creole, three aux-
iliaries to try are bin, go, and stei. For Lesser Antilles Creole, the auxiliaries are ka, ke, and
te. Two of the auxiliaries in Saramaccan are ta, and bi-o-ta. It is possible to translate his
notation for tense, modality, and aspect (see Table 1, p. 183) into this system in the following
way. Let features = verbal = {tense, modality,aspect} where tense = {anterior, nonanterior},
modality = {realis,irrealis}, and aspect = {punctual, nonpunctual}. Then for Hawaiian cre-
ole, R(stei, aspect), R(go, modality), R(bin,tense), and for Lesser Antilles Creole, R(ka,aspect),
R(ke,modality), and R (te,tense). Now in a case like Saramaccan where auxiliaries are built up
morphologically, closed-category relevance can be applied successfully to each morpheme individ-
ually or to a whole word, e.g. R(bi-o-ta,tense) or R(ta, aspect). Closed-Category Relevance is
confirmed for auxiliaries in these languages. Although the above demonstration hardly constitutes
a full confirmation of Closed-Category Relevance, it does show that further tests of Relevance in
other languages are worthwhile. It also lends credence to the idea of Closed-Category Relevance as

an acquisition principle.

6 Comparison to Pinker’s Learning Method

This section will do three things: show that Pinker’s Method is logically correct, analyze its com-
putational complexity, and compare it to Closed-Category Relevance.

6.1 Correctness

The set of features described in Table 1 can be viewed as an instance of the following format, where
the given set of features is simply a set of dimensions, and each dimension is simply a set of values.
To make the statement of Pinker’s method more precise, we introduce here a set of feature-names,
with the obvious bijection between features and feature-names: features = {dim;,dima,...,dim,},
dim; = {valy,vals,..., valy;)}, and feature-names = {d;,ds,...,dn}. The input to Pinker’s proce-
dure is first a sequence of attribute-lists, which we will index with ¢ € {1,2,3,...}. Each attribute-list
is a set of pairs, with a feature name in the first slot of the pair and a value from the corresponding

feature dimension in the second:
attribute-listy = {(dg,,valy,), (dg,, valy,), ..., (dq.,valg )}
The procedure is also provided with a morpheme m; on each trial, where
m; €M ={my,mz,....Miy..., My}

The goal is to discover (learn) the Boolean expression B; for each m;, where B; is a possibly complex
Boolean expression built up from the pairs in the attribute-lists, using conjunction and disjunction
only, without negation, and m; < B;.

Pinker’s solution to this learning problem is to build a big multi-dimensional array, a Paradigm,
and to fill single array locations by (1) reading each input g as a set of coordinates and (2) placing
m,;_ at the location specified by these coordinates. The array is built up one dimension at a time;
the dimensions to add are selected at random from the image of {z | (z,y) € atiribute-list,}, for
some q. That is, the array can be built up only from dimensions that occur somewhere in the input.
Pinker does not say what to do with the morpheme entries when a new dimension is added; one
possibility would be simply to forget them all and start over with a bigger matrix. We will neglect
this problem and assume that we begin with a big enough matrix.
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Given a sufficiently large matrix, Pinker’s method is correct, since it is simply storing the ex-
amples into the matrix as they come in. Although this result is new (Pinker didn’t give correctness
proofs), it is very minor, and serves only to provide a background for the next result, which is the
complexity result.

6.2 Complexity

Since Pinker’s learning procedure P chooses feature dimensions dim; at random, it is quite possible
that P will choose an irrelevant dimension, say dimg, even though B only requires the use of some
other dimensions, say dim;, dim,, and dims. It is important to dispose of irrelevant dimensions,
since, among other things, Pinker’s method for finding auxiliaries does not tolerate irrelevant di-
mensions. We will first give Pinker’s statement of his method for disposing of irrelevant dimensions,
show its correctness, and then give its time complexity.

Here is Pinker’s (Pinker, 1984) method for eliminating irrelevant dimensions, which he calls
Procedure I3. His use of “cells” corresponds to “array locations” in this paper; similarly, “paradigm”
means “array”, and “affix” means “morpheme”:

If the same affix appears in all the cells defining a dimension across a given combination
of values of the other dimensions, and this is true for every possible combination of values

of the other dimensions, eliminate that entire dimension from the paradigm. (Pinker,
1984) p. 186.

For example, suppose that features = {X,Y,Z}, X = {a,b,c},Y = {d,e, f}, Z = {3, k,1}, and
feature-names = {X,Y,Z}, and suppose further that the input consists of the following three input
attribute-lists for morpheme m:

attribute-list, = {(X, <), (Y, f), (Z,5)}

attribute-list; = {(X,¢), (Y, f),(Z,k)}
attribute-lists = {(X, ¢), (Y, £),(Z,1)}

The (complete) array resulting from these inputs is:

22
f 1
Y e
d Jkl
abc 7
X

where the asterisks correspond to the three inputs. Pinker’s elimination method says that the Z
dimension can be eliminated from the array, leaving just dimensions X and Y. We now show that

this is logically correct.

Note that the possible attribute-lists for m as shown in the array can be represented as follows:
cfivefkVvefl=cf(jVvkvl)=cf(true) =cf
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since jVkVI = true. Now since the resulting expression, cf, contains no reference to the Z
dimension, that dimension can be eliminated. It should now be clear that this argument can be
carried out in general for any number of dimensions, values, and inputs.

Procedure I3 can now be stated formally. Let S = {fi, f2,-.-, fx} be a set of feature dimensions.
Let B(S) be a Boolean expression based on the members of S. Given m iff B(S), dimension f; € S
can be eliminated from S only if [B(S) iff B(S — {fi})]- In our example, S = {X,Y,Z} and f; = Z.
So

B(S) = BUX,Y,2}) = cfj Vefk Vefl = of = BUX,Y}) = B(S - {£})

This is just a formal way of saying that dimension Z can be eliminated from consideration, just as
it was in the array realization above.

Result: Procedure I3 is NP-complete. Proof: The elimination of f; from S requires that the
expression B(S) <= B(S—{f;}) be shown to be a tautology. The tautology problem is NP-complete.

This result will be used shortly. First, a predicate similar in spirit to our Closed-Category
Relevance predicate can be defined: R'(word, dimension) iff (word <& B(S)) A (dimension € S).
Pinker’s AUX identification method can now be approximated by the following expression. Pinker
left several terms mathematically undefined.

Prob(R'(word, tense) V R'(word, modality), Phon(word), Syn(word)) = word € AUX

That is, a word is an auxiliary if it satisfies an undefined predicate (Prob) based on a probabilistic
combination of its arguments: the ability of the word to encode tense or modality (R’), an undefined
predicate (Phon) based on certain phonological properties of the word, and an undefined predicate
(Syn) based on certain other syntactic properties of the word. Now if Prob is strict in its first
argument, Prob must be at least NP-complete. Hence Pinker’s auxiliary identification procedure is
at least NP-complete under the assumption that Prob needs the output of R'.

6.3 Comparison to Closed-Category Relevance

Figure 1 showed that there exist logical, if not linguistic, counterexamples to Closed-Category Rel-
evance. By contrast, section 6.1 showed that under assumptions (1) — (5) in section 1, Pinker’s
procedure could handle any logically possible AUX rule, including Figure 1. Section 4 showed, how-
ever, that Closed-Category Relevance leads to an algorithm that is fast, while section 6.2 showed
that Pinker’s procedure is NP-complete.

7 Conclusion

The Closed-Category Relevance Property has been defined and has been shown to lead to an efficient
algorithm for the identification of Auxiliary Verbs. Relevance was shown to hold in several languages
other than English, demonstrating that the same algorithm could be applied to Auxiliary Verb
identification in those languages. Finally, Pinker’s method was subjected to an analysis which,
under certain reasonable assumptions, proved it logically correct but NP-complete.
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