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Abstract

One of the oldest and most reliable findings regarding human
inference is that the order of evidence affects the final judg-
ment. These order effects are non-Bayesian by nature and are
difficult to explain by classical probability models. We use
the empirical results of two jury decision-making experiments
to compare two different models of human belief updating: the
belief-adjustment model and the quantum inference model. We
also provide evidence to suggest the belief-adjustment model
has limited predictive power when accounting for tasks involv-
ing extreme evidence whereas the quantum inference model
does not.

Keywords: inference; jury decision-making; order effects;
recency effects; belief-adjustment model; quantum inference
model

Introduction

Human inference provides a rich source of evidence for a
non-Bayesian belief updating process. Consider a physician
deciding whether a certain patient has an infection or not. The
physician first examines the patient and takes a medical his-
tory. At this point, the physician has some degree of belief
in the presence of the infection. Then the physician orders
a laboratory test and revises those beliefs. Now, suppose the
physician had proceeded by first administering the laboratory
test followed by the physical examination. Would the physi-
cian ultimately have the same belief about the infection when
the order of information is reversed? Bergus, Chapman, Levy,
Ely, et Oppliger (1998) would argue that the order of infor-
mation, physical examine followed by laboratory test versus
laboratory test followed by physical examine, has a signifi-
cant impact on the physician’s final belief in the presence of
the infection.

Order of information plays a crucial role in the process of
updating beliefs across time (Hogarth & Einhorn, 1992). The
presence of order effects makes a classical or Bayesian ap-
proach to inference difficult. Specifically, suppose a decision-
maker must ascertain the probability that a certain hypothe-
sis, H, is true after seeing two pieces of evidence, X and Y.
Classical probability requires P(X,Y|H) = P(Y,X|H), and by
Bayes rule we must have P(H|X,Y) = P(H|Y,X). Thus, a
simple Bayesian model makes no distinction between differ-
ent orders of information.

In this paper, we compare two possible explanations for or-
der effects, the belief-adjustment model (Hogarth & Einhorn,

1992) and the quantum inference model (Busemeyer & True-
blood, 2009). The belief-adjustment model accounts for order
effects by either adding or averaging evidence. The quantum
inference model explains order effects by transforming a state
vector with different sequences of operators for different or-
derings of information.! We first examine both models with
data collected from a jury decision-making experiment con-
ducted by McKenzie, Lee, et Chen (2002). Then we test both
models using new data collected from two new experiments
that extend the work of McKenzie et al.

A Jury Decision-Making Experiment

McKenzie et al. conducted two experiments to examine the
effects of case order and strength on changes in subjects’ con-
fidence ratings. In this study, subjects were asked to read a
criminal case concerning a burglarized warehouse and to rate
their confidence in the defendant’s guilt, G. In the first experi-
ment, one group of participants read a strong prosecution, SP,
followed by a weak defense, WD. The other group read the
information in the reverse order, the weak defense followed
by the strong prosecution. For the second experiment, the first
condition was identical to the first condition in experiment
1. However, in the second condition, subjects read a weak
prosecution, WP, followed by the weak defense. In both ex-
periments, subjects provided confidence ratings as a number
between 0 and 20 before reading either case, after reading the
first case, and after reading the second case. A separate group
of subjects rated the strength of the prosecution and defense
and did not participate in the inference task. By averaging the
data from condition one of experiment 1 with condition one
of experiment 2 and converting the mean confidence ratings
to probabilities, we have the results shown in Table 1.

One of the most interesting aspects of these results is that
the weak defense increased confidence in guilt when pre-
ceded by the strong prosecution but decreased confidence in
guilt when preceded by the weak prosecution. The inter-
pretation of the defense as evidence for guilt when coupled
with the strong prosecution and evidence for innocence when
coupled with the weak prosecution resists explanation by the
standard belief-adjustment model (McKenzie et al., 2002).

'We use quantum theory as a mathematical tool and do not attach
the physical meaning associated with quantum physics. This type of
approach is similar to the use of stochastic processes outside the
domain of physics.
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Table 1: Probability of Guilt from Experiments 1 and 2

After second case

Pr(G | SP, WD) =0.719
Pr(G | WD, SP) =0.75
Pr(G | WP, WD) = 0.525

After first case
Pr(G | SP) =0.672
Pr(G | WD) =0.51
Pr(G | WP) = 0.600

An extended version of this model, the minimum accept-
able strength model (MAS), uses a variable reference point
to model these results (McKenzie et al., 2002). As an alter-
native to the MAS model, the quantum model uses a series
of transformations to explain the phenomena. Before we pro-
ceed with fitting the two models, we will outline the belief-
adjustment model and the MAS model. We will also provide
an intuitive description of the quantum model.”

The Belief-Adjustment Model

The belief-adjustment model assumes individuals update be-
liefs by a sequence of anchoring-and-adjustment processes
(Hogarth & Einhorn, 1992). The algebraic description of the
model is

Cr =Cr—1+wi-(s(xx) —R) ¢))

where 0 < C; < 1 is the degree of belief in the defendant’s
guilt after reading case k, s(x;) is the strength of case k, R
is a reference point, and 0 < wy < 1 is an adjustment weight
for case k. Hogarth et Einhorn argue that evidence can be
encoded either in an absolute manner or in relationship to
the current belief in the hypothesis. If evidence is encoded
in an absolute manner and there exists a positive/negative re-
lationship between the evidence and hypothesis, R = 0 and
—1 <s(x¢) < 1. However, if evidence is encoded in relation-
ship to the current belief, R = C;— and 0 < s(x) < 1. Also,
Hogarth et Einhorn assume that the adjustment weight wy, de-
pends on the level of current belief and the sign of the dif-
ference s(x;) — R. Specifically, if s(x;) <R, then wy = Cp_1.
However, if s(x;) > R, then wy, = 1 — Cy_1.

Using this information, we can rewrite the belief-
adjustment model as either an adding model or an averaging
model. The adding model results when information is en-
coded in an absolute manner and is given by

C, — Cr—1 4+ Cr—1 - s(x), if s(x) <0
T G+ (1=Cry) -s(a),  ifs(y) >0

On the other hand, the averaging model results when infor-
mation is encoded in relationship to the current belief and is
given by

Ck:{ Ci1+Cr1- (s(xk) — Cr1),
Cro1+ (1= Cry) - (s(xk) — Cr—1)

Rearranging the terms above shows that the current belief is
an average of the prior belief and the strength of the new evi-
dence weighted by the prior belief.

if s(xx) < Gy
if s(xk) >Cr1

2Trueblood et Busemeyer (2010) contains a complete mathemat-
ical description of the quantum inference model.

The MAS model extends the belief-adjustment model by
defining the reference point as a case’s minimum acceptable
strength (McKenzie et al., 2002). Thus, equation 1 becomes

Cre = Cr1 +wi - (s(xx) —mg—1) (2)

where my_1 is the minimum acceptable strength of the previ-
ous case and —1 < s(x) < 1. Neither the adding or averaging
models can predict that a defense would increase confidence
in guilt. However, it is possible to select a value for m;_; such
that the difference between the strength of the weak defense
and my_1 is positive. Therefore, confidence in guilt increases
as a result of the weak defense. The downside to the MAS
model is the increase in parameters. The adding and averag-
ing models specify a parameter for each case, namely s(xy).
However, the MAS model also needs a minimum acceptable
strength parameter for each case; thereby, doubling the num-
ber of parameters needed in the original model.

The Quantum Inference Model

There are several reasons for considering a quantum approach
to human judgments. First, judgment is not a simple read
out from a pre-existing or recorded state, instead it is con-
structed from the current context and question. Thus, mak-
ing a judgment changes the context which disturbs the cog-
nitive system. This implies that changes in context produced
by the first judgment influence the next judgment resulting
in order effects. Therefore, human judgments do not obey the
commutative rule of classic probability theory suggesting that
classical probability theory is too limited to fully explain var-
ious aspects of human judgment and decision-making. Other
such phenomena include violations of the sure thing axiom
of decision-making (Tversky & Shafir, 1992) and violations
of the conjunctive and disjunctive rules of classic probability
theory (Gilovich, Griffin, & Kahneman, 2002).

We describe the quantum inference model in terms of the
specific jury decision-making task outlined above; however,
this model can be extended to any number of hypotheses and
pieces of evidence (Busemeyer & Trueblood, 2009). The
quantum inference model assumes that a decision-maker can
view the two complementary hypotheses, guilty (/;) and not
guilt (h;), from three different points of view. The first point
of view is considered neutral (N) and is associated with the
judgment made before either case is read. The second point
of view is associated with the prosecution’s case (P), and the
third point of view is associated with the defense’s case (D).
The prosecution is assumed to present evidence for guilt (e}),
and the defense is assumed to present evidence for innocence
(e2). Considering all possible combinations of hypotheses
and evidence, we have four patterns of the form i; Ae;. These
four patterns or joint events define a four dimensional vector
space. An individual’s beliefs about these events are repre-
sented as a four dimensional state vector, \, situated within
this four dimensional vector space. The three points of view
are represented mathematically as three different bases for
this vector space. Thus, there are three different vector repre-
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sentations of Y corresponding to the neutral basis, the pros-
ecution basis, and the defense basis: yy = ®, yp = a, and
yp = B. The four dimensional unit column vectors ®, o, and
B represent the probability amplitudes for the joint events,
h; \ e, with respect to the different bases, or points of view.3

A set of matrix operators act on  to transform an individ-
ual’s beliefs in correspondence with changes of perspective.
Specifically, the probability amplitudes for one point of view
are transformed into the probability amplitudes for a different
point of view by unitary transformations:

oao=Up ®

B:Udn~(l).

For example, suppose an individual makes a judgment after
reading the prosecution and then again after reading the de-
fense. First, the individual sees the prosecution present evi-
dence (e1) favoring the guilty hypothesis. We project yp =
onto the subspace corresponding to the evidence:

ah] ey ah] ey
_ | Qe 0
VP= g o
hy Ney hy Ney
ahz/\ez 0

We then normalize this projection to ensure that the length of
the new state vector, (Wp | e1), equals one. When the indi-
vidual is questioned about the conditional probability of guilt
given the prosecution, the revised state is projected onto the
guilty subspace. With the presentation of the defense, the
revised state vector, (Wp | 1), is transformed from its vec-
tor representation associated with the prosecution basis to its
vector representation associated with the defense basis by
Uip = Uiy - U;'n.“ Now, we project our revised state onto
the e, subspace since the defense is assumed to present ev-
idence for innocence. Again, we normalize the state vector
and project it onto the guilty subspace to calculate the condi-
tional probability of guilt given the prosecution followed by
the defense. Order effects arise because the unitary transfor-
mations are non-commutative. Figure 1 provides a schematic
for the different sequences of transformations used for the dif-
ferent case orderings.

The model parameters define the specific matrix operators,
Upn and Uy, used to transform one representation of  to an-
other. We define a parameter for each case. So, there is a pa-
rameter associated with the strong prosecution, weak defense,
and weak prosecution. Thus, to model the data collected by
McKenzie et al. the quantum model uses three parameters.

Fitting the Data

We fit both the MAS model and the quantum model to the
six probabilities shown in Table 1. Both models capture the

3Probability amplitudes determine the belief about a particular
event. Probabilities are calculated from probability amplitudes by
taking the modulus of the amplitude and squaring.

4UT is the conjugate transpose of U. For unitary matrices, U' is
also the inverse of U.

U pd

T

Yp YN Yp
\N/

Udin

Uap

T

Yp YN Vp

Upn

Figure 1: Transformations for different case orderings: de-
fense followed by prosecution (top) and prosecution followed
by defense (bottom).

qualitative properties of the data. Namely, Pr(G | SP) <
Pr(G | SPWD) and Pr(G | WP) > Pr(G | WP,WD). The
quantum model fit the data with three parameters with the
sum of squared error (SSE) equal to 0.00056; whereas, the
MAS model fit the data with four parameters with the SSE
= 0.0022. The SSE for the models is very small since we
are examining differences in probabilities. Of the four pa-
rameters in the MAS model, three were associated with the
minimum acceptable strength. The fourth parameter was the
gradient parameter of a logistic function used map the av-
erage independent strength ratings from participants into the
interval [—1,1]. If we compare the SSE from the quantum
model to the SSE from the MAS model, we see that the SSE
for the quantum model is much smaller than the SSE for the
MAS model:

SSEmas  0.0022

= —3.93.
SSE,  0.00056

Furthermore, since the quantum model has less parameters
and a smaller SSE, it will have a lower BIC value than the
MAS model.

Experiment 1: Extending McKenzie

McKenzie et al. did not examine all possible combinations of
case strength and order. Assuming there are only two possi-
ble strengths, weak and strong, there are twelve total possible
conditional probability judgments that can be made (see Table
2). Thus, we designed a new experiment to collected data for
these twelve probabilities. Participants in this new study read
eight different scenarios involving a defendant standing trial
for either robbery, larceny, or burglary. Each participant was
placed into one of eight conditions for each scenario. These
eight conditions arise from the eight possible sequential judg-
ments that can be made when taking into consideration order
and case strength (e.g. weak prosecution followed by strong
defense). Participants were placed in a different condition
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for each crime so they would experience all eight conditions
by the end of the experiment. The participants reported the
likelihood of the defendant’s guilt before reading either case,
after the first case, and after the second case.

Table 2: Conditional Probabilities for Jury Task

After first case | After second case

Pr(G | WP) Pr(G | WP, WD)  Pr(G | WP, SD)

Pr(G | SP) Pr(G | SP, WD) Pr(G | SP, SD)

Pr(G | WD) Pr(G | WD, WP)  Pr(G | WD, SP)

Pr(G | SD) Pr(G | SD, WP) Pr(G | SD, SP)
Method

Participants in the study were 299 undergraduate students
from Indiana University who received experimental credit for
introductory psychology courses. For each scenario, there
were approximately 38 participants in each each condition.
All stimuli were presented on a computer and students en-
tered their responses using the computer keyboard. For each
scenario, participants were asked to imagine that they were
jurors on the trial. They were also told that in each crime, the
defendant was arrested after the police received an anony-
mous tip. One of the eight scenarios was directly patterned
after the crime used by McKenzie et al. Likelihood of the de-
fendant’s guilt was reported on a continuous scale from 0 to
1 with 0 = certain not guilty, 0.5 = equally likely, and 1 =
certain guilty.

Results

Eight of the 299 participants were excluded from the analyses
because the majority of their initial ratings (before being pre-
sented with the prosecution or defense) were 0. These partici-
pants most likely assumed a literal interpretation of "innocent
until proven guilty’.

We first analyzed each scenario alone, and our analysis re-
vealed a prevalence of recency effects. These effects arise
when decision-makers place disproportionate importance on
recent evidence (e.g. Pr(G | SP,SD) < Pr(G | SD,SP)). For
each crime, there were four defense-prosecution pairs (SD v.
SP, SD v. WP, WD v. SP, and WD v. WP) that could ex-
hibit order effects. A two sample t-test showed the majority
of pairs exhibited a significant recency effect (p < 0.05).

Since the scenarios were designed to be very similar, we
reanalyzed the data by collapsing across all eight scenarios.
A two sample t-test showed a significant recency effect for
each of the four defense-prosecution pairs (p < 0.001).

Fitting the Data

The presence of recency effects in this new data set confirms
earlier findings and provides the largest data set so far for
comparing models that explain recency effects. Hogarth et
Einhorn discovered that recency effects are prevalent in sim-
ple, step-by-step tasks with short series of evidence. Further-
more, there is evidence of recency effects in studies involving

mock trials (Furnham, 1986 ; Walker, Thibaut, & Andreoli,
1972). Unlike the study conducted by McKenzie et al., none
of the cases in this study caused a reversal in likelihood judg-
ment when paired with opposing cases of different strengths.
This might be due to the use of a standard numeric mea-
sure instead of a 21-point confidence scale. There is research
showing that standard numeric measures can be insensitive to
some judgment phenomena (Windschitl & Wells, 1996).

Since the data does not exhibit the effects found by
McKenzie et al., we can fit the standard belief-adjustment
model instead of the extended MAS model. We fit the aver-
aging model, the adding model, and the quantum inference
model to the mean likelihood of guilt for the eight differ-
ent crimes as well as the averaged data. All three models
use four parameters to fit the twelve data points associated
with each crime. These parameters were fit by minimizing
the sum of squared error between the data and model predic-
tions. The four parameters used by the averaging and adding
models arise from the four case strengths, s(x;), in equation
1. The four parameters for the quantum model arise from the
matrix operators used to transform the state or belief vector.
The minimized SSE for all three models are shown in Table
3. From this table, we see that both the adding and quantum
models fit better than the averaging model. Also, the quan-
tum model fits slightly better than the adding model in most
cases.

Table 3: Model Fits

Crime  Averaging Adding Quantum
1 0.0719 0.0112  0.0132
2 0.0634 0.0083 0.0056
3 0.1185 0.0213 0.0070
4 0.0939 0.0156  0.0127
5 0.0913 0.0091 0.0109
6 0.0656 0.0130  0.0113
7 0.0913 0.0217  0.0089
8 0.0620 0.0164  0.0023
Average 0.0704 0.0059 0.0058

Figure 2 shows the model fits for the averaging model and
quantum model for the strong defense-weak prosecution pair
for the averaged data. From the figure, we see that the quan-
tum model provides a much better fit. Fits for the remaining
defense-prosecution pairs are similar.

Experiment 2: Extreme Evidence

To provide even more of a distinction between the quantum
model and the belief-adjustment model, we conducted a sec-
ond jury decision-making experiment involving extreme evi-
dence. In this task, subjects read about an individual on trial
for a crime in which the defense had an irrefutable argument.
Specifically, the defense stated that the defendant was giving
a public lecture when the crime was committed. The prosecu-
tion’s argument was moderately strong: a witness claimed to
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Quantum Model: SD versus WP
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Figure 2: Averaging and quantum model fits to the mean like-
lihood of guilt for the strong defense-weak prosecution pair.
Error bars on the data show the 95% confidence interval.

have seen the defendant near the scene of the crime. It seems
reasonable to believe that the probability of guilt after hearing
the defense will be near zero. Now, if the prosecution is pre-
sented after the defense, it is unlikely that the probability of
guilt will increase by much. In terms of the belief-adjustment
model, this places tight restrictions on the value of the pros-
ecution strength parameter, s(x,). To see this, let’s examine
the adding version of the model:

Cpo=Cq+(1—-Cy)-s(xp)

where C,, is the evaluation of the guilty hypothesis after hear-
ing the prosecution’s case and the irrefutable defense. We
might assume the evaluation of the hypothesis after hearing
just the defense, Cy, is near zero, say C; = €;. Thus, s(x,)
must also be a near zero, say s(x,) = €, in order for C,, to
remain small:

CPZS] +(1—8])~82=81—|-82—8] -e) =~ 0.

Now, suppose the prosecution is presented before the de-
fense. According to the adding model,

C,=Co+(1-Co)-s(xp)

where C is the evaluation of the guilty hypothesis before
hearing either the prosecution or defense. We might assume

that Cy ~ 0.5. Thus, we have
C,=05+05-80~0.5

showing the prosecution has little impact on the initial evalua-
tion of the hypothesis. However, it seems unlikely that initial
beliefs will be unaltered by the presentation of the prosecu-
tion. On the contrary, we might expect this prosecution to
be very effective when no prior defense is presented. Essen-
tially, the problem arises from the model’s assumption that
the strength of the prosecution, s(x),), is determined indepen-
dently of other evidence.

This study used 164 undergraduate psychology students.
Subjects were placed into one of two conditions correspond-
ing to the two possible case orders: prosecution followed by
defense or defense followed by prosecution. Similar to exper-
iment 1, subjects entered responses on a computer and were
told that the defendant was arrested after the police received
an anonymous tip. Instead of providing the likelihood of the
defendant’s guilt, subjects were asked to rate their confidence
in guilt on the same 21-point scale used by McKenzie et al.
Like experiment 1, a significant recency effect was found
(p < 0.023).

We converted the confidence ratings to probabilities and fit
the quantum model and the adding model to the mean of these
probabilities. We did not fit the averaging model since exper-
iment 1 shows the adding model outperforms the averaging
model. Figure 3 shows the model fits for the two models.
Both the quantum model and the adding model use two pa-
rameters to fit the data. The SSE for the quantum model was
0.0002; whereas, the SSE for the adding model was 0.0158.
By comparing the ratio of the SSE from the two models, we
see that the quantum model provides a much better fit to the

data:
SSEqaging  0.0158

SSE,  0.0002

The standard belief-adjustment model cannot capture de-
pendences between the strength of the prosecution and the
irrefutable defense. As a result, the model provides a poor
fit to the data. Unlike the belief-adjustment model, the quan-
tum model does not assume individuals combine evidence by
simple arithmetic procedures such as adding or averaging. In-
stead, the quantum model supports the idea that evidence is
viewed from different perspectives, and it is these different, or
incompatible, points of view that allow the quantum approach
to capture the effects of extreme evidence.

79.

Conclusion

One might question the extent to which quantum probabil-
ity models are rational. Like classic (Kolmogorov/Bayesian)
probability theory, quantum theory is based on a coherent set
of axioms. Then the question falls back on which set of ax-
ioms is most appropriate for an application. For example,
models based on the axioms of quantum probability theory
have been used to explain paradoxical phenomena arising
in cognitive science such as violations of rational decision
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Quantum Model
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Figure 3: Adding and quantum model fits to the mean proba-
bility of guilt from experiment 2. Error bars on the data show
the 95% confidence interval.

making principles (Pothos & Busemeyer, 2009), paradoxes
of conceptual combination (Aerts, 2009), human judgments
(Khrennikov, 2004), and perception (Atmanspacher, Filk, &
Romer, 2004).

Here we provide evidence in support of a quantum prob-
ability explanation of order effects. Using data collected by
McKenzie et al., we show that the quantum inference model
out performs the minimum acceptable strength model. We
also provide evidence that the quantum model performs as
well or slightly better than the belief-adjustment model when
fitting data from experiment 1. Finally, we describe some
of the limitations of the belief-adjustment model in relation-
ship to irrefutable evidence. We argue that the quantum infer-
ence model is not faced with these limitations and provides
more reasonable predictions. In the future, we plan to con-
tinue empirically investigating the quantum inference model
in the hope of developing a more coherent theory concerning
human inference tasks.
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