UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Within-Individual Variation in Cognitive Performance is Not Noise: A Case for Examining Within-Person Variation on Cognitive Assessments

Permalink

https://escholarship.org/uc/item/4n82j1ht

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 45(45)

Authors

Vaughan, Arabella Birney, Damian

Publication Date

2023

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Within-Individual Variation in Cognitive Performance is Not Noise: A Case for Examining Within-Person Variation on Cognitive Assessments

Arabella Vaughan

University of Sydney, Sydney, Australia

Damian Birney

University of Sydney, Sydney, Australia

Abstract

Despite the long-standing recognition that individuals vary in their cognitive performance across relatively short time periods, little research has integrated an understanding of short-term within-individual variation in cognitive performance into our theories of cognitive ability. We contend that systematic patterns of between-individual differences in within-individual variation are meaningful and should not be viewed merely as measurement error. We argue that predominant cognitive testing methods using between-individual analysis of single-occasion scores are limited in their capacity to develop a process account of why individuals with the same test score differ in practical contexts. We propose that short-term repeated measures paradigms (e.g., the Experience Sampling Method) be used to understand the nature and sources of between-individual differences in within-individual variation. Finally, we outline considerations for researchers when adapting this paradigm for cognitive assessment and present initial findings from our lab on the feasibility of this paradigm.