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Noise Reduced Realized Volatility: A Kalman Filter Approach

John P. Owens ∗ and Douglas G. Steigerwald†

Abstract

Microstructure noise contaminates high-frequency estimates of asset price volatil-

ity. Recent work has determined a preferred sampling frequency under the assumption

that the properties of noise are constant. Given the sampling frequency, the high-

frequency observations are given equal weight. While convenient, constant weights

are not necessarily efficient. We use the Kalman filter to derive more efficient weights,

for any given sampling frequency. We demonstrate the efficacy of the procedure

through an extensive simulation exercise, showing that our filter compares favorably

to more traditional methods.
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1 Introduction

Long-standing interest in asset price volatility, combined with recent developments in its

estimation with high-frequency data, has provoked research on the correct use of such data.

In this paper we offer a framework for high-frequency measurement of asset returns that

provides a means of clarifying the impact of microstructure noise. Additionally, we provide

Kalman filter based techniques for the efficient removal of such noise.

In a series of widely cited articles, Andersen, Bollerslev, Diebold, and Labys (2001a,b)

and Barndorff-Nielsen and Shephard (2002a,b) lay out a theory of volatility estimation

from high-frequency sample variances. According to the theory, realized volatility estima-

tors can recover the volatility defined by the quadratic variation of the semimartingale for

prices. Realized volatility estimators are constructed as the sums of squared returns, where

each return is measured over a short interval of time.1

Realized volatility differs markedly from model-based estimation of volatility. The

widely used class of volatility models derived from the ARCH specification of Engle (1982)

place constraints on the parameters that correspond to the interval over which returns are

measured. Empirical analyses of these models rarely support the constraints. In contrast,

realized volatility estimators do not require a specified volatility model.

The asymptotic theory underpinning realized volatility estimators suggests that the es-

timators should be constructed from the highest frequency data available. One would then

sum the squares of these high-frequency returns, giving each squared return equal weight.

1Andersen (2002) provides a survey of both theory and empirics for realized volatility.
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In practice, however, very high frequency data is contaminated by noise arising from the

microstructure of asset markets.

By now, it is widely accepted that market microstructure contamination obscures high-

frequency returns through several channels. For example, transaction returns exhibit nega-

tive serial correlation due to what Roll (1984) terms the bid-ask bounce. When prices are

observed at only regular intervals, or are treated as if this were the case, measured returns

exhibit nonsynchronous trading biases as described in Cohen, Maier, Schwartz, and Whit-

comb (1978, 1979), and Atchison, Butler, and Simonds (1987), and Lo and MacKinlay

(1988, 1990). Because transaction prices are discrete and tend to cluster at certain frac-

tional values, prices exhibit rounding distortions as described in Gottlieb and Kalay (1985),

Ball (1988), and Cho and Frees (1988). Noise cannot be removed simply by working with

the middle of specialist quotes; while mid-quotes are less impacted by asynchronous trade

and the bid-ask bounce, mid-quotes are distorted by the inventory needs of specialists and

by the regulatory requirements that they face.2

Simulations by Andersen and Bollerslev (1998) and Andreou and Ghysels (2002),

among many others, illustrate the effects of finite sampling and microstructure noise on

volatility estimates under a variety of specifications. Differences in model formulation and

assumed frictions make drawing robust conclusions about the effects of specific microstruc-

ture features difficult. Nevertheless, from the cited work, it is clear that microstructure

frictions, as a group, cannot be safely ignored.

2Surveys by O’Hara (1995), Hasbrouck (1996), Campbell, Lo, and MacKinlay (1997), and Madhavan
(2000) document these and other microstructure frictions.
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Essentially, three strands of research exist that treat the problem of microstructure noise

in realized volatility estimation. The first attempts to remove the noise with a simple

moving-average filter as in Zhou (1996). Andersen, Bollerslev, Diebold and Ebens (2001)

and Corsi, Zumbach, Muller and Dacorogna (2001) who select a sample frequency of five

minutes based on a volatility signature plots and then apply a moving-average filter. In

contrast, Russell and Bandi (2004) work with an explicit model of microstructure noise.

Rather than filtering the data to reduce the noise, they determine an optimal sampling fre-

quency in the presence of noise. To do so, they construct a mean-squared error criterion that

trades off the increase in precision against the corresponding increase in noise that arises

as the sampling frequency increases. Although squared returns are given equal weight for

a given asset, the optimal sampling interval that arises can vary across assets. Ait-Sahalia,

Mykland, and Zhang (2003) and Oomen (2004) offer similar treatments. Finally, Hansen

and Lunde (2004) derive a Newey and West (1987) type correction to account for spurious

correlations in observed returns.

Theory suggests that noise volatility remains relatively constant. However, it is known

that return volatility varies markedly. Thus, the relative contributions of noise and actual

returns towards observed returns vary. During periods of high return volatility, return inno-

vations tend to dominate the noise in size. In consequence we propose a somewhat different

estimator in which the weight given to each return varies. Observed returns during periods

of high volatility are given larger weight.

Our argument has three parts. First, we frame a precise definition of noise in terms
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of market microstructure theory. Second, we show how the Kalman filter can be used to

remove the microstructure noise. We pay particular attention to how the variability of the

optimal return weights depends on high-frequency volatility. Third, we demonstrate the

efficacy of the filter in removing the noise.

2 Model

To formalize, consider a sequence of fixed intervals (5-minute periods, for example) in-

dexed by t. The log of the observed price at t is p̃t = pt + ηt, where pt denotes true price

and ηt denotes microstructure noise. The observed return is

r̃t = rt + εt, (1)

where rt = pt − pt−1 is the latent (true) return and εt = ηt − ηt−1 is the return noise.

We employ assumptions typical of the realized volatility literature. Our first assumption

concerns the latent (true) price process.

Assumption 1. (Latent price process.)

The log true price process is a continuous local martingale. Specifically,

pτ =

Z τ

0

vsdws

where ws is standard Brownian motion and the spot volatility process vs is a
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strictly positive cadlag process such that the quadratic variation (or integrated

volatility) process, Vτ , obeys

Vτ =

Z τ

0

vsds <∞

with probability one for all τ .

Assumptions about noise dynamics must be selected with care. Close study of mi-

crostructure noise reveals strong positive correlation at high frequency.3 The correlation

declines sharply with the sampling frequency, due to intervening transactions. To under-

stand these effects, we discuss three prominent sources of noise.

The bid-ask bounce, discussed by Roll (1984), arises because transactions cluster at

quotes rather than the true price. Hasbrouck and Ho (1987) show that this source of noise

may be positively correlated as a result of clustered trade at one quote (due to the break up

of large block trades). However, the positive noise correlation due to trade clustering nearly

vanishes between trades more than a few transactions apart. In similar fashion, positive

noise correlation arising from the common rounding of adjacent transactions, vanishes at

lower sampling frequencies.

The nonsynchronous trading effect, discussed by Lo and MacKinlay (1990), arises

when transactions are relatively infrequent. If transactions are infrequent relative to the

measurement of prices at regular intervals, then multiple price measurements refer to the

3Noise outcomes of adjacent price measurements are almost perfectly correlated when no transaction
intervenes (they are not perfectly correlated because, although measured price remains constant in the absence
of new transactions, the latent true price changes through time).
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same transaction, inducing positive noise correlation. Again, the positive noise correlation

vanishes as the sampling frequency declines.

To determine the sampling frequency at which noise is uncorrelated, Hasbrouck and

Ho (1987) study a large sample of NYSE stocks. They find no significant correlation

for observations sampled more than 10 transactions apart. Hansen and Lunde (2004)

find supporting evidence in their recent study of Dow Jones Industrial Average stocks.

In consequence, we assume that the sampling interval contain at least 10 transactions, to

justify treating microstructure noise as an i.i.d. sequence.

Assumption 2. (Microstructure noise.)

The microstructure noise forms an i.i.d. sequence of random variables each

with mean zero and variance σ2η < ∞ and independent of the latent return

process.

We do not make any distributional assumptions about microstructure noise. However,

as the noise is composed of a sum of several largely independent features, and because

these features tend to be symmetric, the assumption of normally distributed noise may be

a plausible approximation. Consequently, we consider normally distributed microstructure

noise in Section 3.

Under Assumption 2, it is clear that return noise forms an MA(1) process with a unit

root. To determine the covariance structure of observed returns, we assume that latent

returns form a weakly stationary martingale.
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Lemma 1 If in addition to Assumption 1 and Assumption 2, rt forms a weakly stationary

process with unconditional mean zero and unconditional variance σ2r, then the autocovari-

ance function of observed returns obeys

Cov (r̃t, r̃t−k) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
σ2r + 2σ

2
η if k = 0

−σ2η if k = 1

0 if k > 1

.

Moreover, the first-order autocorrelation is given by

ρ = − σ2η
σ2r + 2σ

2
η

For each day, which contains n intervals, define the following three volatility measures.

1. The integrated volatility, V =
Pn

t=1 σ
2
t .

2. An infeasible estimator, constructed from latent returns, V̄ =
Pn

t=1 r
2
t .

3. A feasible estimator, V̂ =
Pn

t=1 r̂
2
t , where r̂t = r̃t in the absence of noise.

To motivate the form of the feasible estimator, decompose the estimation error as

V − V̂ = V − V̄ + V̄ − V̂ . (2)

The behavior of V − V̄ as a function of step length and the underlying volatility process

has been studied by Barndorff-Nielsen and Shephard (2002a). If the step length is cho-
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sen (hence n is fixed), then this part of the error is beyond the control of the researcher.

Therefore, we focus on minimizing the the mean squared error E
³
V̄ − V̂

´2
, where r̃0 =

(r̃1, · · · , r̃T ) and T = n · J (J is the number of days in the sample). It is well known that

the mean squared error is minimized by choosing

V̂ = E
¡
V̄ |r̃¢ = EÃ nX

t=1

r2t

¯̄̄̄
¯ r̃
!
=

nX
t=1

E
¡
r2t |r̃

¢
.

Thus, in order to minimize the effects of microstructure noise, we must extract expected

squared latent returns from observed returns. The effectiveness with which the extraction

can be achieved depends on the correct treatment of the microstructure noise.

2.1 Kalman Filter and Smoother

The Kalman filter provides a technique to separate (observed) contaminated returns into

two components: the first corresponds to (latent) true returns and the second to microstruc-

ture noise. To construct the filter, we follow the notation in Hamilton (1994) (Harvey,

1989 also provides textbook treatment). The state vector consists of latent variables,

ξ0t =
¡
rt, ηt, ηt−1

¢
. The observation equation relates the state vector to observed returns

r̃t = H
0ξt (3)
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where H 0 = (1, 1,−1). The state equation describes the dynamic evolution of the state

vector

ξt+1 = Fξt +Rvt+1 (4)

where v0t = (rt, ηt) with covariance matrix Qt =

⎛⎜⎜⎝ σ2t 0

0 σ2η

⎞⎟⎟⎠ and the coefficient matrices

are F =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0

0 0 0

0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ andR=

⎛⎜⎜⎜⎜⎜⎜⎝
1 0

0 1

0 0

⎞⎟⎟⎟⎟⎟⎟⎠.

The Kalman filter delivers the linear projection of the state vector ξt given the sequence

of observations {r̃1, · · · , r̃t}. The Kalman smoother delivers the corresponding linear

projection onto the extended sequence r̃. While these linear projections make efficient use

of information, they may have larger MSE’s than nonlinear projections. As conditional

expectations need not be linear projections, we distinguish between linear projections and

conditional expectations. Let Êt represent linear projection ontoFt = {r̃t, r̃t−1, . . . , r̃1, 1}.

Let ξ̂τ |t = Êt (ξτ ) and let

Pτ |t = E
∙³
ξτ − ξ̂τ |t

´³
ξτ − ξ̂τ |t

´0¸
(5)

represent the mean squared error matrices of these projections. For example, the one-

step-ahead mean squared error matrix Pt|t−1 is a diagonal matrix with the first diagonal

element equal to σ2t and the second equal to σ2η. The third diagonal element we define as

ct = V ar
¡
η̂t−1|t−1

¢
. The ct are determined though a recursion described below. Let ut
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denote the one-step-ahead prediction error for the observed returns. Then it follows that

the variance of ut, which we denote by Mt, is given by Mt = H 0Pt|t−1H = σ2t + σ2η + ct.

The projections from the Kalman filter are given by the recursion

r̂t|t
¡
σ2t
¢
=

σ2t
Mt

¡
r̃t + η̂t−1|t−1

¢
(6)

η̂t|t =
σ2η
Mt

¡
r̃t + η̂t−1|t−1

¢
(7)

ct+1 =
σ2η (σ

2
t + ct)

Mt
. (8)

The recursion and the boundary conditions η̂t|t = 0 and c1 = σ2η determine the sequence of

filtered returns and filtered noise.

The projections from the Kalman smoother, which are the elements of ξ̂τ |T = ÊT (ξτ),

are

r̂t|T
¡
σ2t
¢
= r̂t|t

¡
σ2t
¢− σ2t

σ2t + ct

¡
η̂t|T − η̂t|t

¢
(9)

η̂t−1|T = η̂t−1|t +
ct

σ2t + ct

¡
η̂t|T − η̂t|t

¢
. (10)

Smoothed quantities exhibit smaller variances than their filtered counterparts. For example,

if we let dt+1 = V ar
¡
η̂t|T

¢
, then it can be shown that

dt = ct

µ
σ2t + σ2η

σ2t + σ2η + ct

¶
−
µ

ct
σ2t + ct

¶2
(ct+1 − dt+1) . (11)

As is easily verified from their definitions, dT+1 = cT+1. Consequently, dT < cT , and,
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by an induction argument, it follows that dt < ct for t = 1, 2, . . . , T , establishing that

V ar
¡
η̂t|T

¢
< V ar

¡
η̂t|t
¢

for t = 1, 2, . . . , T − 1.

The smoother estimates the latent returns as weighted averages of contemporaneous,

lagged, and future observed returns. If variance is constant, so that σ2t = σ2r for all t, then

the weights are nearly the same for all smoothed returns. To see the point clearly, consider

a numerical example. If σ2r = 10, σ2η = 1, and T = 7, then, ignoring weights less than

0.001, we have that

r̂4|7 = 0.006r̃2 + 0.0709r̃3 + 0.8452r̃4 + 0.0709r̃5 + 0.006r̃6

while

r̂3|7 = 0.0059r̃1 + 0.0709r̃2 + 0.8452r̃3 + 0.0709r̃4 + 0.006r̃5.

Thus, an almost identical weighting scheme determines the third and fourth optimally esti-

mated latent returns. For large samples, the weights are even more consistent. Except for

a few returns at the beginning and end of the sample, the assumption of constant volatility

leads to estimates of latent returns that are essentially a weighted average of the observed

returns where the weights, for all practical purposes, are constants.

If, as is almost certainly the case in practice, latent returns do not exhibit constant

volatility, then the optimal weights for estimating latent returns in (6)-(8) and (9)-(10) are

not constant. Instead, during periods of high volatility the optimal weights are larger for

the currently observed return and lower for the other returns.
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2.2 Bias

With the estimated latent returns r̂t|T = Ê (rt|r̃), it seems natural to estimate realized

volatility by
Pn

t=1 r̂
2
t|T (note, r̂2t|T stands for

¡
r̂t|T
¢2). Yet because filtering is a linear

transformation, while squaring is not, r̂2t is a downward biased estimator of E (r2t |r̃). Fortu-

nately, the size and direction of the bias is determined in the normal course of constructing

the Kalman smoother. For the bias E
³
r2t − r̂2t|T

´
, the properties of projection mappings

imply4

E
h¡
rt − r̂2t|T

¢2i
= E

h
ÊT
¡
r2t − 2r̂t|T rt + r̂2t|T

¢i
= E

£
r2t − r̂2t|T

¤
. (12)

Thus, the bias equals the (1, 1) element of the mean squared error matrix for r̂t|T .

We find that the bias is

bt
¡
σ2t
¢
= bft

¡
σ2t
¢−µ σ2t

σ2t + ct

¶2
(ct+1 − dt+1) , (13)

where bft (σ2t ) (the bias of the filtered return r̂t|t) is

bft
¡
σ2t
¢
= σ2t

µ
σ2η + ct

σ2t + σ2η + ct−1

¶
. (14)

Recall that ct is the element of the variance for the filtered prediction of ηt−1 and dt is the

corresponding variance element for the smoothed prediction. As shown in (11), for t < T

the smoothed estimator has lower variance than the filtered estimator.5 As a result, the

4Brockwell and Davis (1987, Proposition 2.3.2).
5If t = T , then the smoothed estimator is identical to the filtered estimator.
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bias of the smoothed estimator is smaller than the bias of the filtered estimator and so we

concentrate on the smoothed estimator in what follows.

To determine the magnitude of the bias, consider the simple case in which σ2t = σ2r

(constant volatility). The bias, bt, is well approximated by

σ2r

⎛⎝1− 1q
1 + 4σ2η/σ

2
r

⎞⎠ .

In accord with intuition, the bias is a decreasing function of the return variance and an

increasing function of the noise variance. If σ2η
σ2r
= .1, then the bias is 15 percent of the

return variance and 50 percent larger than the expected squared noise term.6 If the noise

variance dominates, so that σ2r/σ2η ' 0, then the bias is approximately σ2r. If the return

variance dominates, then the bias is near zero.

3 Multivariate Normal Approach

To analyze the multivariate normal case, it is convenient to work in vector form. Let

r = (r1, r2, . . . , rT )
0 and η = (η0, η1, . . . , ηT )

0 so that

r̃ = r+Bη.

6The bias of the filtered estimator is approximately −2ρσ2r (recall ρ < 0).
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Here B is a selection matrix with first row [−1,−1, 0, · · · , 0]. The covariance matrix of r

is Λ = diag (σ2t ). The Kalman smoother equations (in vector form) are

r̂ = Λ
¡
Λ+ σ2ηBB

0¢−1 r̃ and Σ = σ2ηB
¡
I+ σ2ηB

0Λ−1B
¢−1

B0. (15)

From Assumption 1 it follows that rt|σ2t ∼ N (0, σ2t ). If we extend the assumption to

⎛⎜⎜⎝ r

η

⎞⎟⎟⎠ ∼ NT

⎛⎜⎜⎝0,
⎛⎜⎜⎝ Λ 0

0 σ2ηI

⎞⎟⎟⎠
⎞⎟⎟⎠ ,

then it is simple to derive the conditional distribution of r̃|r. Specifically,

r|̃r ∼ NT (r̂,Σ) , (16)

where r̂ and Σ are identical to the quantites from the Kalman smoother (15).

Under the assumption of joint normality r̂ = E (r|r̃), so the smoothed estimator is the

conditional expectation rather than simply the optimal linear projection. Similarly, Σ =

V ar (r|r̂), rather than simply the MSE matrix of the linear projection. This is especially

useful for understanding the source of the bias that arises from squaring filtered returns.

Here

V ar (rt|̃r) = E
¡
r2t |̃r

¢− E2 (rt|̃r) . (17)

The optimal estimator E (r2t | r̃) exceeds the square of the optimal estimator for latent re-
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turns E2 (rt| r̃). The correction term V ar (rt|̃r) does more than simply correct for the bias.

Because the correction term corresponds to the conditional covariance matrix of r given

the observed returns, the correction delivers the conditional expectation of squared returns.

In consequence, we are able to form an optimal nonlinear estimator from an optimal linear

estimator as

E
¡
r2t |̃r

¢
= E2 (rt|̃r) + V ar (rt |̃r) .

4 Implementation

The above analysis, in which it is assumed that {σ2t} and σ2η are known, suggests the use of

the bias-corrected estimator

V̂
¡
σ2t
¢
=

nX
t=1

£
r̂2t|T

¡
σ2t
¢
+ bt

¡
σ2t
¢¤
.

To implement the method, we need estimators of {σ2t} and σ2η.

If the latent return variance is assumed constant, then σ2t = σ2r and the bias corrected

estimator V̂ (σ2r) is a function only of σ2r and σ2η. From Lemma 1, the first two autoco-

variances of the observed returns series are sufficient for determining the variance of the

noise and the expected variance of the true returns. (If one wishes to make further distrib-

utional assumptions, then ML estimators may be used in place of the method of moments

estimators.) Andersen, Bollerslev, Diebold and Embens (2001a) employ an MA(1) esti-

mator that, while similar to V̂ (σ2r), does not contain smoothed estimates and makes no bias
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correction.

For the case in which the return variances are not constant, we begin with r̂2t|T
¡
σ̂2r
¢

and

bt
¡
σ̂2r
¢
. We then estimate the time-varying variance with a rolling window7

σ̂2t|T =
1

25

t+12X
k=t−12

¡
r̂2k|T

¡
σ̂2r
¢
+ bk

¡
σ̂2r
¢¢

. (18)

The estimated time-varying variances from (18) together with σ̂2η, yield r̂2t|T
¡
σ̂2t
¢

(from (9))

and bt
¡
σ̂2t
¢

(from (13)).

For the case of constant variance, laws of large numbers ensure the consistency of σ̂2r

and σ̂2η. Similar results are derived for ML estimators in Ait-Sahalia, Mykland and Zhang

(2003). To establish consistency if the return variance is not constant, it seems natural

to specify a dynamic structure for {σ2t}. Rather than focus on this problem, we seek to

recover latent realized volatility with a general purpose filter that minimizes mean squared

error.

5 Performance

To test the performance of the suggested filter against realistic scenarios, we use a model

for the simulated latent returns that is consistent with the return behavior of the S&P 500

7The rolling window width of 24 corresponds to two hours, which balances bias and variance in the
presence of diurnal features.
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stock index. A popular special case of Assumption 1 is

dpt = σtdwt

dσ2t = θ (ω − σt) dt+ (2λθ)
1/2 dwσt

(19)

where wt and wσt are independent Brownian motion. Drost and Werker (1996, Corollary

3.2) provide the map between (19) and the (discrete) GARCH(1,1),

pt − pt−1/m = r(m),t = σ(m),t z(m),t

σ2(m),t = φ(m) + α(m)r
2
(m),t + β(m)σ

2
(m),t−1/m

(20)

where z(m),t is (for the purposes of simulation) i.i.d. N(0, 1). Andreou and Ghysels (2002)

find that 5-minute returns from the S&P 500 index are well approximated by the values

φ(m) = 0.0004, α(m) = 0.0037, β(m) = 0.9963. (21)

These parameters imply an unconditional return variance of σ2r = 7.9 basis points over

the 5-minute interval. While this unconditional variance is high (daily estimates of return

variance are roughly 8 basis points), an appropriate rescaling by multiplying by 1/78 results

in such small parameter values that simulation is difficult. As the relative mean squared

error measurements that we report are invariant to such scaling, we follow Andreou and

Ghysels and use the values in (21).

From (20) and (21) we simulate latent returns, rt. We construct observed returns as
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r̃t = rt + ηt − ηt−1, where ηt is generated as an i.i.d. N
¡
0, σ2η

¢
random variable. To

determine the noise variance, we invert the formula for ρ in Lemma 1 to obtain

σ2η =
−ρ
1 + 2ρ

σ2r.

Hasbrouck and Ho (1987) report estimates of ρ between -.4 and -.1, so we allow ρ to take

the values [−.4,−.3,−.2,−.1]. As decreasing the value of ρ increases σ2η, the resultant

values of noise variance vary from σ2η = 1 (for ρ = −.1) to σ2η = 15.8 (for ρ = −.4).

To mirror trading days on the NYSE, which are 6.5 hours long, each simulated day

contains 78 five-minute returns. We generate 10,000 trading days, a span that roughly

corresponds to 50 years. For each day, j, we construct the latent realized volatility

V̄j =

78jX
t=(j−1)78+1

r2t ,

the feasible bias-corrected realized volatility estimator

V̂j
¡
σ̂2t|T

¢
=

78jX
t=(j−1)78+1

£
r̂2t|T

¡
σ̂2t|T

¢
+ bt

¡
σ̂2t|T

¢¤
,

and the infeasible bias-corrected estimator V̂j (σ2t ).

To compare this filter to methods that assume constant return variance, such as the

MA(1) filter mentioned above, we construct V̂j
¡
σ̂2r
¢
. To determine the gains from smooth-
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ing, we also construct the estimator based on filtered (rather than smoothed) quantites

V̂ f
j

¡
σ̂2t|t
¢
=

78jX
t=(j−1)78+1

h
r̂2t|t
¡
σ̂2t|t
¢
+ bft

¡
σ̂2t|t
¢i

,

where σ̂2t|t is obtained from (18) with r̂2k|t
¡
σ̂2r
¢

and bfk
¡
σ̂2r
¢

in place of r̂2k|T
¡
σ̂2r
¢

and bk
¡
σ̂2r
¢
,

respectively. Finally, for completeness, we construct V̂ f
j

¡
σ̂2r
¢
.

To judge the quality of the realized volatility estimators, we measure the mean squared

error (MSE) of each estimator relative to the infeasible (optimal) estimator. For example,

the relative MSE for V̂
¡
σ̂2t|T

¢
is

MSE
h
V̂
¡
σ̂2t|T

¢i
MSE

h
V̂ (σ2t )

i =

P10000
j=1

³
V̄j − V̂j

¡
σ̂2t|T

¢´2
P10000

j=1

³
V̄j − V̂j (σ2t )

´2 .

In Table 1, we present the relative efficiency calculations. Regardless of the degree

of noise variance, or indeed of the decision to smooth, the gain from estimating a time-

varying return variance is substantial. For the case with the smallest noise variance, the

relative MSE for the smoothed estimator is reduced by more than half (from 3.5 to 1.4).

As one would expect, increasing the noise variance renders the estimation problem more

difficult, yet even for the highest noise variance the relative MSE for the smoothed estimator

is substantially reduced (from 6.7 to 4.7). Moreover, while smoothing always leads to an

efficiency gain, the magnitude of the efficiency gain resulting from smoothing is dominated

by efficiency gain from allowing for time-varying volatility.

To determine the impact of diurnal patterns, we generate time-varying volatility that
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Constant Variance Time-Varying Variance
σ2η V̂ f

¡
σ̂2r
¢

V̂
¡
σ̂2r
¢

V̂ f
¡
σ̂2t|t
¢

V̂
¡
σ̂2t|T

¢
15.8 8.4 6.7 5.7 4.7
5.9 7.6 6.0 3.9 3.4
2.6 6.1 5.1 2.4 2.2
1.0 3.9 3.5 1.5 1.4

Table 1: Relative Efficiency

Constant Variance Time-Varying Variance
σ2η V̂ f

¡
σ̂2r
¢

V̂
¡
σ̂2r
¢

V̂ f
¡
σ̂2t|t
¢

V̂
¡
σ̂2t|T

¢
15.8 8.1 6.5 5.5 4.6
5.9 7.4 5.9 3.8 3.3
2.6 6.0 5.0 2.4 2.2
1.0 3.9 3.5 1.5 1.4

Table 2: Relative efficiency with a diurnal pattern.

mirrors the U-shape pattern often observed in empirical returns. To do so, we construct a

new sequence of return variances
n
σ2∗(m),t

o
:

σ2∗(m),t = σ2(m),t

µ
1 + 1/3 cos

µ
2π

78
t

¶¶
,

where σ2(m),t is obtained from (20). Note that with the cyclic component, the expected

variance doubles between the diurnal peak and trough. This process mimics the U-shape

pattern as the maximum of the cosine term to corresponds to the beginning and ending of

each day.

In Table 2, we find that the relative MSE measurements are surprisingly robust to the

presence of diurnal patterns. When noise variance is about an order of magnitude smaller

than the expected innovation variance (when σ2η = 1.0), the MSE of the realized volatility

estimator is about 4 percent larger when based on filtered returns. When noise variance
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is roughly twice as large as the expected innovation variance (when σ2η = 15.8), the filter

based mean squared error is about 10 percent larger. Larger gains are achieved by the

estimator based on the rolling volatility proxy, especially when noise volatility is relatively

small. The mean squared errors based on the naive estimators are between 40 and 160

percent larger than corresponding mean squared errors based on the volatility proxy. The

improvements from smoothing, relative to filtering, are shown in the last column.

Although currently used filters vary widely, we are aware of none that exploit the gains

available from either smoothing or from the used of a high-frequency volatility proxy. Most

filtering methods in uses are similar to the filtered naive estimator. Notice that the mean

squared errors of the filtered naive estimators are more than double those of the smoothed

estimators based on our proposed smoothed estimator based on the volatility proxy.

6 Conclusions

This article applies market microstructure theory to the problem of removing noise from

a popular volatility estimate. The theory suggests that a Kalman smoother can optimally

extract the latent squared returns, which are required for determining realized volatility

from their noisy observable counterparts. However, the correct specification of the filter

requires knowledge of a latent stochastic volatility state variable, and is therefore infea-

sible. We show that a feasible Kalman smoothing algorithm based on a simple rolling

regression proxy for high-frequency volatility can improve realized volatility estimates. In

simulations, the algorithm substantially reduces the mean squared error of realized volatil-
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ity estimators even in the presence of strong diurnal patterns. The broad conclusion is that

realized volatility estimators can be improved in an obvious way, by smoothing instead of

merely filtering the data, and in a less obvious way, by bias correcting and using a straight-

forward proxy of latent high-frequency volatility.
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