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ABSTRACT OF THE DISSERTATION

Restoration and Enhancement of Images Degraded by Light Scattering and
Absorption

by

Yan-Tsung Peng

Doctor of Philosophy in Electrical Engineering (Signal and Image Processing)

University of California, San Diego, 2017

Professor Pamela Cosman, Chair

Images degraded by light scattering and absorption such as hazy, sandstorm, and

underwater images often suffer from color distortion and low contrast because of light

traveling through turbid media. This can prevent systems that operate outdoors in different

lighting conditions from functioning properly, for example, video surveillance systems,

autopilot systems and intelligent transportation systems, which include automatic license

plate recognition, automatic traffic counting, etc. Therefore, it is desirable to develop

an effective method to restore color and enhance contrast for these images. This thesis

presents novel work to advance research on image restoration and enhancement for such

xii



images.

To enhance or restore such a degraded image, the image formation model is

often used to describe it as a “clear” image blended with an ambient light based on the

scene transmission computed using the scene depth from the camera. The transmission

describes the portion of the scene radiance which is not scattered or absorbed and which

reaches the camera. By reversing the image formation process, one can attain the scene

radiance from a degraded image, which is a “clear” image. However, it involves solving

an ill-posed and under-constrained problem because we need to estimate both the ambient

light and scene transmission from a single degraded image.

To attack this problem, we proposed to use image blurriness to estimate ambient

light and scene depth for underwater images. Furthermore, we extended it by combining

light absorption and blurriness to estimate scene depth for underwater scenes in different

lighting conditions and color tones. For any images degraded by light scattering and

absorption, not limited to underwater ones, we proposed a generalization of the common

dark channel prior approach for ambient light and transmission estimation. Additionally,

adaptive color correction is incorporated into the image formation model for removing

color casts while restoring contrast. Based on the experimental results, our proposed

algorithms outperform, both subjectively and objectively, other state-of-the-art algorithms

based on the image formation model.
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Chapter 1

Introduction

Images or videos captured in different conditions sometimes suffer from visibility

degradation because light is scattered and absorbed with distance from the camera

through turbid media, such as fog, haze, sandstorms, or water. The degradation reduces

the visual quality of the images and videos and affects the performance of computer

vision applications. Thus, developing an effective method to restore color and contrast

for such images is desirable.

Even though there are many image enhancement techniques developed, such as

white balance, color correction, histogram equalization, and fusion-based methods [1,

2], they are not based on a physical model, and thus are not applicable for images

degraded by light scattering and absorption with different physical properties. It is

challenging to restore such images because of the variation of physical properties of

different transmission media. For example, light attenuation underwater leads to different

degrees of color change, depending on wavelength, dissolved organic compounds, water

salinity, and concentration of phytoplankton [3]. In water, red light with a longer

wavelength is absorbed more than green and blue light. In a sandstorm, blue light is

absorbed by sand. Fig. 1.1(a)-(e) shows five different images degraded by light scattering

1
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and absorption. Also, scattered ambient light coming from different colors of media is

blended with the scene radiance along the line of sight, resulting in underwater scenes

often having low contrast and color distortions.

1.1 Image Formation Model

Images captured when light travels through turbid media, such as fog, sand, and

water, etc. are degraded by light scattering and absorption. Although the media are

different, their underlying physical influences on imaging are similar [4, 5], meaning that

such images can be described by the image formation model (IFM). Fig. 1.1(f) shows

how an image is described using the IFM [4–6]. The image formation equation is given

by:

 

 

 

 

     
     

(a) (b) (c) (d) (e) 
     

 

 

 
 

(f) 

Ic(𝐱) = Jc(𝐱)𝒕𝒄(𝐱) + Ac[1 − 𝒕𝒄(𝐱)] 

  

Ambient Light (Ac) Scene 

Radiance (Jc) 

Attenuation/Transmission (𝒕𝒄) 
Observed 

Intensity (Ic) 

Light of Sight  

Figure 1.1: (a)–(e) Examples of different images degraded by light scattering and
absorption. (f) IFM. The original image (a) is from [7], (b) is from [10], (c) is from [58]
(d) is from [1] and (e) is from [59].

Ic(x) = Jc(x)tc(x)+Ac(1− tc(x)),c ∈ {r,g,b}, (1.1)
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where x is a 2×1 vector that depicts the coordinates of a pixel in an image, Ic(x) is the

observed intensity of the pixel, Jc(x) is the scene radiance, Ac is the ambient light, and tc

is the transmission map, where c is one of the red, green, and blue channels. The observed

intensity Ic, which is a degraded image, consists of the scene radiance Jc blended with

the ambient light Ac according to the transmission maps tc, where transmission describes

the portion of the scene radiance which is not scattered or absorbed and which reaches

the camera. Thus, a larger value in the transmission map means that the corresponding

scene point is closer to the camera. Note that Ic, Jc, and Ac are assumed to be in a range

[0,1].

In order to restore images degraded by light scattering and absorption, there

has been much research [7–11] on image defogging and visibility restoration using

the IFM [6]. Using the IFM, He et al. [7] proposed the dark channel prior (DCP) to

remove fog/haze in natural terrestrial images via estimation of the ambient light and

transmission. It was observed that because points in the scene closer to the camera

have a shorter path over which scattering occurs, close dark scene points would remain

dark as they would experience less brightening from scattered light. Thus, the DCP can

be used to estimate transmission and scene depth. The ambient light can be estimated

from the farthest scene points based on the scene depth. This motivated many image

restoration approaches [8–19] that improve and extend the DCP for different goals

and applications. However, haze with different color casts may lead to under- or over-

estimated transmission based on the DCP, causing poor restoration results. A color cast is

defined as a tint of a particular color, often unwanted [20]. In [10,11], restoration methods

for hazy and sandstorm images were presented; they used adaptive gamma correction

to solve the transmission over-estimation caused by the low observed intensity due to

color casts, and adopted color correction to compensate for the color cast. Nevertheless,

the underlying reason for inaccurate transmission estimation for images with color casts
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is that the DCP is not as reliable for such images as for those without color casts. This

problem often cannot be solved only by gamma correction. Hence, these methods are

unable to restore heavily tinted sandstorm images because most blue light is scattered

and absorbed, which causes the DCP to fail and leads to inaccurate ambient light and

transmission estimation. In order to estimate medium transmission more precisely, some

researchers exploited learning algorithms to generate a mapping function where the input

is a hazy image, and the output is its depth map [21–23]. However, these methods that

train their mapping functions using synthetic hazy images with bright ambient light are

often unable to restore hazy images with color casts.

Several studies also have been conducted on restoring underwater images based

on the DCP [12–14, 17, 18] or its variants [15, 16]. However, measuring transmission for

underwater images based on the DCP [12–14, 17] frequently fails to generate accurate

results since red light is more attenuated than other wavelengths underwater, and thus

the DCP based on RGB channels ends up considering only the red channel, causing

unreliable transmission estimation. Several DCP variants consider only the green and blue

channels [15], the RGB channels with the red inverted [16], or the minimal information

loss principle (MILP) [18] to try to estimate transmission underwater, but they may still

fail due to different underwater lighting conditions and color tones. Instead of using the

DCP, the maximum intensity prior (MIP) approach [19] calculates the difference between

the maximum intensity of the red channel and that of the green and blue channels to

estimate transmission. However, these methods frequently perform poorly as the light

absorption and lighting conditions that exist in underwater images invalidate these priors.

For example, all the DCP-, MIP-, and MILP-based restoration methods are unable to

restore underwater images with dim ambient light, where the background pixels are dark

and would be wrongly judged as being close.
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1.2 Quality Assessment

One can use no-reference quality assessment tools or full-reference approaches

in order to objectively evaluate image restoration methods. No-reference image quality

assessment approaches measure image quality using only the input image itself. There

are general no-reference image quality metrics that use natural scene statistics to quan-

tify possible losses of “naturalness” for the input image, such as Blind/Referenceless

Image Spatial QUality Evaluator (BRISQUE) [24] and Natural Image Quality Evalu-

ator (NIQE) [25]. Some no-reference image quality metrics are designed for specific

types of images, such as Contrast Enhancement Metric (CEM) [26] for ocean scenes in

fog, Underwater Image Quality Measure (UIQM) [27], and Underwater Color Image

Quality Evaluation Metric (UCIQE) [28]. CEM uses human observations and low-

level contrast enhancement metrics to measure image quality for foggy scenes. UIQM

is a linear combination of three underwater image attribute measures: the colorful-

ness (UICM), sharpness (UISM), and contrast (UIConM) measures, where UIQM =

c1×UICM+c2×UISM+c3×UIConM. UCIQE quantifies image quality via a linear combi-

nation of the variation of chrominance, average saturation, and luminance contrast. A

greater value for both the UIQM and UCIQE all represent higher image quality.

Full-reference image quality assessment approaches require both the input image

and the reference image for quality evaluation. For example, PSNR and SSIM [29] are

full-reference image metrics measuring reconstruction quality and similarity. PSNR is

defined via the mean squared error (MSE) between the input and reference images. The

SSIM index is a similarity measure that consists of three comparison measurements

between the input and reference images: luminance, contrast, and structure. Additionally,

there are two full-reference contrast metrics that measure gradient ratios at visible

edges [30], where one is the metric e that calculates an edge restoration rate and the other
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is the metric r that assesses quality of contrast restoration.

1.3 Thesis Structure

In this thesis, we propose to effectively restore and enhance images degraded

by light scattering and absorption, such as hazy, sandstorm and underwater images.

The rest of the thesis is organized as follows. In Chapter 2, current research on image

restoration using the IFM is reviewed and discussed. Chapter 3 describes our underwater

image restoration method based on image blurriness and light absorption. In Chapter 4,

a generalization of the Dark Channel Prior is proposed to estimate ambient light and

scene transmission for images degraded by light scattering and absorption. Chapter 5

summarizes the conclusions and discusses directions for future work.



Chapter 2

Related Work

In this chapter, previous work on restoration and enhancement for images de-

graded by light scattering and absorption using the IFM will be discussed. First, the

DCP-based method [7] is reviewed, which basically consists of two parts: 1) ambient

estimation and 2) transmission estimation. Next, several variants of ambient light and

transmission estimation methods will be summarized.

2.1 Image Restoration using the IFM

Assuming that light attenuation is homogeneous, the IFM is Ic(x) = Jc(x)tc(x)+

Ac(1− tc(x)),c ∈ {r,g,b}, where the transmission tc can be written as an exponential

decay term [7, 16, 17] based on the Beer-Lambert law [31] of light attenuation:

tc(x) = e−β
cd(x), (2.1)

where d(x) is the distance from the camera to the radiant object and βc is the spectral

volume attenuation coefficient for channel c, where c is one of the red, green, and blue

channels. For hazy terrestrial images, there are three general assumptions: overcast light-
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ing, spatially invariant attenuation coefficients, and wavelength-independent attenuation

βr = βg = βb = β, i.e., tr = tg = tb = t [5]. Therefore, the IFM under these assumptions is

Ic(x) = Jc(x)t(x)+Ac(1− t(x)),c ∈ {r,g,b}, as described in Eq. (1.1).

For hazy images, the DCP was proposed by He et al. [7] to estimation ambient

light and transmission. For each pixel x in an image, the DCP finds the minimum value

among RGB channels in a local patch Ω(x) centered at x, that is:

Jrgb
dcp(x) = min

y∈Ω(x)
{ min

c∈{r,g,b}
Jc(y)} . (2.2)

For an outdoor terrestrial haze-free image, Jrgb
dcp is often close to zero, because at least

one of the three color channels will typically have a low-intensity pixel in the local patch

in Ω(x). It was asserted in [1, Eq. (9)] that Jrgb
dcp = 0 for about 75% of non-sky pixels in

haze-free images.

Dividing both sides of Eq. (1.1) by Ac and applying the minimum operators to it,

the term involving Jc is dropped as being close to zero, and the transmission estimate

t̃rgb(x) =miny∈Ω(x) t(y), described in [4, Eq. (11)], is

t̃rgb(x) = 1− min
y∈Ω(x)

{ min
c∈{r,g,b}

Ic(y)
Ac } . (2.3)

Since t̃rgb has block-like artifacts, it can be refined by median filtering [9], image mat-

ting [32], or guided filtering [33]. To estimate Ac, the DCP for a hazy image is calculated

as:

Irgb
dcp(x) = min

y∈Ω(x)
{ min

c∈{r,g,b}
Ic(y)} . (2.4)

For the DCP of a hazy image, a far and a close scene point, xf and xc, generally have a

relation that Irgb
dcp(xc) ≤ Irgb

dcp(xf) because of scattered light through haze. Therefore, Irgb
dcp

can provide depth information for a hazy image I. Based on Irgb
dcp, ambient light Ac is

selected from one of the farthest and haziest pixels in the input image. In [7], the top
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0.1% brightest pixels in Irgb
dcp were picked. Let P0.1% be the set of positions of those bright

pixels in Irgb
dcp. Then, among these pixels, the one with the highest intensity in the input

image Ic is chosen to provide the estimate of ambient light. The estimated ambient light

Ac can be described as:

Ac = Ic(argmax
x∈P0.1%

∑
c∈{r,g,b}

Ic(x)). (2.5)

Finally, by putting Ic, t̃ and Ac into Eq. (1.1), the estimated scene radiance is

calculated as:

Jc(x) =
Ic(x)−Ac

max (̃tc(x),t0)
+Ac, (2.6)

where t0 is empirically set in the range [0.1,0.4] to increase the exposure of Jc for display.

Note that for the following chapters, if only one transmission map is mentioned in an

image restoration method, it means wavelength-independent attenuation is assumed,

which is tr = tg = tb = t. Fig. 2.1 shows the flowchart of DCP-based image restoration.

As can be seen in Fig. 2.1(e), the restored scene radiance with haze removed has better

contrast.

As previously stated, this method works under three general assumptions. There-

fore, if this method is applied to restoring images degraded by light scattering and

absorption with different lighting conditions and color casts, such as sandstorm, underwa-

ter or dimly-lit images, it only works in limited cases. Such images have different possible

lighting conditions and color casts, which may violate the assumptions underlying the

DCP, leading to inaccurate ambient light and transmission estimation and producing

poor restoration results. Fig. 2.2 gives two successful and two failure examples of depth

estimation using the DCP (Irgb
dcp). The lighting conditions for the original images in the

first two columns of Fig. 2.2 are appropriate to the DCP-based methods. As can be seen,

their foreground has dark pixels which cause the dark channel to have a small value, so
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Figure 2.1: The flowchart of DCP-based image restoration. (a) Original hazy image
Ic. (b) DCP of the hazy image Irgb

dcp, Eq. (2.4). (c) Estimated transmission t̃rgb, Eq. (2.3).
(d) Ambient light pixels (marked in red), Eq. (2.5). (e) Restored scene radiance Jc,
Eq. (2.6).

they are correctly estimated as being close, while their background looks hazy and lacks

dark pixels, so these regions are correctly estimated to be relatively far away.

By contrast, the original images in the last two columns of Fig. 2.2 are examples

where the DCP works poorly. The sandstorm image in the third column of Fig. 2.2

has very small values in the blue channel, so the DCP in Eq. (2.4) has small values

everywhere, which come from the blue channel, and the entire scene is mistakenly judged

as being very close. The underwater image in the fourth column was captured with

artificial lights. In this case, the bright foreground is erroneously viewed as being far

while the dark background is incorrectly deemed to be close.

In order to extend the DCP for different light scattering and absorption conditions,

several DCP variants were proposed for ambient light and transmission estimation with

different lighting conditions and color casts [12, 14–17, 19, 34] or dimly-lit images [39].

Table 2.1 lists various priors, and ambient and transmission estimation methods for

different restoration methods based on Eq. (2.6). Table 2.2 gives detailed formulas for
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Figure 2.2: Examples of depth estimation via the DCP (Irgb
dcp) for sandstorm and under-

water images. (a) and (b) are successful cases while (c) and (d) are failure cases. The
original images of (a), (b), (c) and (d) come from [7], [59], [58], and [19].

those priors.

2.2 Underwater Transmission Estimation for the Red,

Green, and Blue Channels

Image restoration methods that rely on the three assumptions for the IFM often fail

to recover scene radiance underwater because imaging conditions are quite different from

those in open air. The natural illumination underwater undergoes a strong color-dependent

attenuation, which violates the assumption of wavelength-independent attenuation βr =

βg = βb.

Chiang et al. [14] first addressed this problem by proposing a wavelength com-

pensation and image dehazing method for underwater scenes. In this, scene transmission

is estimated according to residual energy ratios of different color channels, related to the

attenuation coefficients βc. However, these ratios were chosen manually, limiting the

practical applicability of this method.
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Table 2.1: Adopted priors, ambient light estimation, and transmission estimation for
various image restoration methods [12, 14–17, 19, 34, 39]

Method Prior (p) on Ic Ambient light estimation (Ac) Transmission estimation (̃t or t̃c)
[12] Irgb

dcp Ic(argmaxx p(x)) t̃rgb(x) = 1−minc,y∈Ω(x){Ic(y)Ac}
[19] Dmip Ic(argminx t̃(x)) t̃Dmip(x) =Dmip(x)+(1−maxx Dmip(x))

[14] Irgb
dcp Ic(argmaxx Ic

dcp(x)) t̃r(x) = 1−minc,y∈Ω(x){ Ic
(y)
Ak }, t̃c′ = (̃tr)

β
c′

βr

[34] Igb
dcp Ic(argminx(Ir

dcp(x)−maxc′ (Ic′
dcp(x)))) t̃g(x) = t̃b(x) = 1−minc′,y∈Ω(x){ Ic′

(y)
Ac′ },

t̃r = (τmaxy∈Ω(x) Ir(y)), τ = avgx (̃tc′
(x))

avgx(maxy∈Ω(x) Ir(y))
[15] Igb

dcp Ic(argmaxx p(x)) t̃gb(x) = 1−minc′,y∈Ω(x){ Ic′
(y)

Ac′ }

[16] Ir′gb
dcp Ic(argminx∈p10%

Ir′gb
dcp

Ir(x)) t̃r′gb(x) = 1−miny∈Ω(x){1−Ir
(y)

1−Ar ,
Ig
(y)
Ag ,

Ib
(y)
Ab }

[17] Irgb
dcp Ic(argmaxx∈p0.1%,c′ ∣Ir(x)− Ic′(x)∣) t̃r(x) = 1−minc,y∈Ω(x){ Ic

(y)
Ac }, t̃c′ = (̃tr)

β
c′

βr

[39] Ir′g′b′
dcp Ic(argminx∈p0.1%

Ir′g′b′
dcp

(∑k Ik(x)) t̃r′g′b′(x) = 1−minc,y∈Ω(x){1−Ic
(y)

1−Ac }

c ∈ {r,g,b}; c′ ∈ {g,b};

Table 2.2: Formulas of different priors [7, 15, 16, 19, 38, 39]

Method Prior on Ic Formula
[7] Irgb

dcp(x) minc∈{r,g,b},y∈Ω(x){Ic(y)}
[19] Dmip(x) maxy∈Ω(x) Ir(y)−maxc∈{g,b},y∈Ω(x){Ic(y)}
[15] Igb

dcp(x) minc∈{g,b},y∈Ω(x){Ic(y)}
[16] Ir′gb

dcp (x) miny∈Ω(x){1− Ir(y),Ig(y),Ib(y)}
[38, 39] Ir′g′b′

dcp (x) minc∈{r,g,b},y∈Ω(x){1− Ic(y)}

In [17], the relations among the attenuation coefficients of different color channels

based on inherent optical properties of water were derived from the ambient light as:

βk

βr =
Ar(mλk+ i)
Ak(mλr + i)

,k ∈ {g,b}, (2.7)

where λc,c ∈ {r,g,b}, represent the wavelengths of the red, green, and blue channels,

m = −0.00113, and i = 1.62517. The transmission maps for the green and blue lights are

then calculated by:

tk(x) = tr(x)
β

k

βr ,k ∈ {g,b}, (2.8)

where tr is estimated by Eq. (2.3).
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As described above, transmission estimation is contingent on the prior and am-

bient light it uses. Both of these frequently cannot be attained in [14, 17] because the

prior they use is the Irgb
dcp. Fig. 2.3 shows an example of a poor restoration result produced

using incorrect ambient light and transmission estimation based on Irgb
dcp in [17]. Here,

the original image has some bright foreground pixels and some dark background pixels.

Thus, instead of picking ambient light from the bright background pixels, the method

selects ambient light from foreground pixels erroneously regarded as being far. Moreover,

wrong ambient light causes transmission maps for RGB channels, t̃r, t̃g, and t̃b, to be

similar to each other for this greenish input image, thus failing to correct the distorted

color.

 

 

 

 

(a) (b) (c) (d) 
 

 

𝐭̃𝒓 𝐭̃𝒈 𝐭̃𝒃 

█ 𝑨𝒄 

Figure 2.3: An example of inaccurate transmission and ambient light estimation causing
an unsatisfying restoration result. (a) Original image, (b) depth map, and estimated
ambient light Ac picked at the position of the red dot, (c) recovered scene radiance
obtained using [17], and (d) estimated transmission maps for the red, green, and blue
channels.

2.3 DCP/MIP Exceptions caused by Artificial Illumina-

tion

Since water absorbs more light as the light rays travel through longer distance

in the water, artificial lighting is sometimes used to provide sufficient light for taking

pictures and videos. Artificial lighting in an underwater image often leads to a bright

foreground. This violates the assumptions underlying the DCP, where bright pixels are
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regarded as being far. Artificially illuminated bright foreground pixels should be less

modified by a restoration method than background pixels because the light, originating

from an artificial lighting source and reflected by foreground objects, travels less far in

the water and is less absorbed and scattered. Depth estimation based on the MIP could

fail when the foreground has bright pixels and the background has dark pixels because

the values of Dmip for the foreground and the background would be similar, which is

unable to produce an accurate depth map. Examples will be demonstrated and discussed

more in Chapter. 3.

Chiang et al. [14] proposed to detect and then remove artificial lighting by

comparing the mean luminances of the foreground and the background. However, this

approach classifies foreground and background pixels based on the depth map using the

DCP, which is often ineffective because of incorrect depth estimation.

Galdran et al. [16] dealt with artificial lighting by incorporating the saturation

prior into Ir′gb
dcp as:

Ir′gb−sat
dcp (x) = min

y∈Ω(x)
{ min

c∈{r′,g,b}
Ic(y),Sat(y)} , (2.9)

where Sat = maxc(Ic
)−minc(Ic

)

maxc(Ic)
, c ∈ {r,g,b} measures the saturation of scene point y. Because

it is assumed that artificially illuminated scene points would have low saturation, these

bright points in the foreground would not be incorrectly judged as being far. However,

it does not solve the problem caused by dark pixels in the background, which still

violate the assumptions underlying the DCP. As shown in Fig. 2.4(b), restoration based

on Ir′gb
dcp estimates the scene depth incorrectly, as the rock in the foreground has bright

pixels because of artificial lighting, so is wrongly judged to be far. In Fig. 2.4(c), depth

estimation based on the Ir′gb
dcp with saturation successfully avoids this problem, but the

dark pixels in the background are still erroneously estimated to be close, also resulting in
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an incorrect ambient light selection and poor restoration result. With more accurately

estimated transmission and properly selected ambient light, Fig. 2.4(d) shows a better

restoration result image.

Figure 2.4: An example of restoring an underwater image with artificial lighting
using [16] and the proposed method in Section 3.2. (a) The original image. The
restoration results and their corresponding depth maps and ambient light (marked with
a red dot) obtained using (b) [16] based on the Ir′gb

dcp , (c) [16] based on the Ir′gb
dcp with

saturation, and (d) a more accurate depth map and properly selected ambient light. The
original image is from [59].
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Chapter 3

Underwater Image Restoration

In this chapter, image blurriness is estimated and applied to restoring underwater

images, which is based on the observation that objects farther from the camera are

more blurry for underwater images. There are two restoration methods introduced. One

is based on image blurriness only, and the other uses both image blurriness and light

absorption.

3.1 Underwater Image Restoration based on Blurriness

In this section, our Underwater Image Blurriness-based restoration method

(UIBR) is proposed Underwater image blurriness estimation includes three steps. Let

Gk,σ be the input image filtered by a k×k spatial Gaussian filter with variance σ2. The

initial blurriness map Pinit is computed as:

Pinit(x) =
1
n

n
∑
i=1

∣Ig(x)−Gk,σ(x)∣, (3.1)

where Ig is the grayscale version of the input image Ic. Both k and σ are set to 2in+1,

and n is set to 4. Next, we apply the max filter to calculate the rough blurriness map Pr

16
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as:

Pr(x) = max
y∈Ω(x)

Pinit(y), (3.2)

where Ω(x) is a z× z local patch centered at x. Here, we set z = 7. (We found that any

patch size from z = 7 up to z = 31 works well for image sizes ranging from 800x600

to 1280x720 in the proposed method of Section 3.2. So z = 7 is used throughout this

chapter.) We refine Pr by filling the holes caused by flat regions in the objects using

morphological reconstruction [42], and then soft matting [32] or guided filtering [33] is

applied for smoothing to generate a refined blurriness map Pblr:

Pblr(x) = Fg{Cr[Pr(x)]}, (3.3)

where Cr is a hole-filling morphological reconstruction operator, and Fg is the soft matting

or guided filtering function. Fig. 3.1 shows an example of each step.

Figure 3.1: An example of image blurriness estimation. (a) Original image, (b) Initial
blurriness map from Eq. (3.1), (c) Rough map from Eq. (3.2), (d) Refined map from
Eq. (3.3).

The blurriness map Pblr can be regarded as an inverted scene depth map, where

larger values represent close scene points, and small values represent farther scene points.

Therefore it can be used to estimate the transmission map directly by stretching it to a

proper range [r0,r1] as:

t̃(x) =
[Pblr(x)−min(Pblr)](r1− r0)

max(Pblr)−min(Pblr)
+ r0. (3.4)
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Ambient light is estimated using the 0.1% farthest scene points based on Pblr,

which means that we choose those pixels in the input image with the bottom 0.1%

smallest values in Pblr to estimate ambient light using Eq. (2.5). Finally, we recover

the scene radiance J using Eq. (2.6) with the estimated ambient light and t̃ calculated in

Eq. (3.4).

3.1.1 Experimental Results

Previous methods for underwater image restoration only used DCP- or MIP-

based methods. In this section, we compare our UIBR against the DCP- and MIP-based

methods. The performance of our method is evaluated by visual comparison with other

methods as well as the examination of the transmission map. We use four underwater

images captured in different lighting conditions for testing, shown in Fig. 3.2, where the

transmission maps all undergo simple individual contrast stretching or scaling steps for

display here.

In Ex.1 of Fig. 3.2, all of the result images look properly enhanced even though

they have a little color difference. Although the transmission map and ambient light are

both inaccurately estimated by [13], its enhanced result is good only because of extra

color correction process in [13].

In Ex.2, the imprecise transmission maps generated by [19], [13], and [34] cause

color distortion in the output images while our method presents more natural color and

better contrast.

In Ex.3, color distortion can be found in the output images obtained by [13]

and [34] due to erroneous transmission estimation while the result images yielded by [19]

and ours are enhanced with better global contrast.
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Ex. 3 

Figure 3.2: Examples of underwater image enhancement in different lighting conditions.
(a) Original image. The enhanced images and the corresponding depth maps obtained
using (b) [19], (c) [13], (d) [34], and (e) the proposed UIBR method.

3.2 Image Restoration based on Blurriness and Light

Absorption

In this section, our Image-Blurriness-and-Light-Absorption Restoration method

(UIBLAR) is proposed, which generates more accurate ambient light and depth estima-

tion. First, we select the ambient light from blurry regions in an underwater image. Then,

based on the ambient light, the depth map and the transmission maps are obtained to
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restore scene radiance. The flowchart of this method is shown in Fig. 3.3.

Figure 3.3: The flowchart of our proposed UIBLAR method. The original image is
from [59].

3.2.1 Ambient Light Estimation

Ambient light determines the color tone of an underwater image as well as its

restored scene radiance. For an underwater image, the lower and upper bounds of its

possible restored scene radiance Jc ∈ [0,1] can be derived by setting Ac = 1 and Ac = 0 in

Eq. (2.6), as:

max(
Ic−1+ t̃′

t̃′
,0) ≤ Jc ≤min(

Ic

t̃′
,1), (3.5)

where t̃′ = max(̃tc,t0) ∈ [t0,1]. Based on Eq. (3.5), restoring an underwater image with

dim ambient light would result in bright scene radiance while using bright ambient light

leads to an opposite result. Consider an extreme ambient light, Ac = 0, as an example,

where Jc =min( Ic

t̃′ ,1). In this case, the restored scene radiance Jc(x) of a far scene point

with the value of t̃′(x) being small would have a larger value than its corresponding

observed intensity Ic(x) and thus be brighter. A bright ambient light would lead to the

opposite result. A visual example can be seen in the first row of Fig. 3.4. As the ambient
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light, though unchanging, is estimated as being brighter, the restored scene radiance gets

darker. Moreover, a small value in one of the color channels of the estimated ambient

light will lead to a substantial increase in that color in the restored image. The second row

of Fig. 3.4 gives an example in which changing values in the red channel of Ac produces

different hues of the restored images.

In general, the value for estimated ambient light of an underwater image is chosen

from far scene points with high intensity. Emberton et al. [35] adopted a hierarchical

rank-based approach based on Igb
dcp, color variance, and gradient to find the brightest

pixel in the most likely region of ambient light. This method is, however, inaccurate in

many cases, as it still uses the assumptions of Igb
dcp. In contrast, we estimate the ambient

light based on image blurriness and variance. We propose an ambient light candidate

selection method which picks three ambient light candidates from the top 0.1% blurry

pixels in the input image, the lowest variance region and the largest blurriness region.

These two regions (which may or may not be the same) are decided using quadtree

decomposition which iteratively divides the input image into four equal-sized blocks

according to the variance or blurriness. The blurriness of a region in the input image is

obtained by averaging Pblr(x) in the corresponding region in the blurriness map.

With three ambient light candidates determined, we pick ambient light for each

color channel separately from them according to the input image. The detailed algorithm

is described in Algo. 1, where S is a sigmoid function given by:

S(a,v) = [1+e−s(a−v)
]
−1
, (3.6)

where s is an empirical constant. Here, we set s = 32. The fixed thresholds we used are

εs = 2−10 and εn = 0.2. Note that the function QUAD–SELECT–LV is a similar function

to QUAD–SELECT–LB with largest blurriness being replaced by lowest variance and

without considering Pblr.
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In AL–ESTIMATE, we determine ambient light for each color channel between

the darkest and brightest ambient light candidates according to the percentage of bright

pixels (Ik > 0.5). When the percentage is high ( ∣I
k
>0.5∣

Size(Ik)
>> εn), meaning that the input

image was taken under sufficient lighting, then ambient light estimated as being brighter

is more suitable. When the image was taken without sufficient lighting ( ∣I
k
>0.5∣

Size(Ik)
<< εn),

ambient light is estimated as being darker. In between these extremes, the ambient

light estimate is calculated by a weighted combination of the darkest and brightest

ambient light candidates. Fig. 3.5 demonstrates the proposed ambient light estimation

and compares the restoration results obtained using each ambient light candidate and the

selected estimated ambient light, where we can see that using our ambient light candidate

selection method generates a more visually pleasing result.

Figure 3.4: Examples of changing brightness or hue of restored scene radiance via
varying ambient light with given transmission maps obtained using our UIBLAR method.
(a) Original images. (b), (c), and (d) are the restored images using different ambient
light. The original images are from [59].
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Algorithm 1 AL–Estimate
1: Input parameter: input image Ic, blurriness map Pblr.
2: Output parameter: estimated ambient light Ac.
3:
4: function AL–ESTIMATE(Ic, Pblr)
5: Ac

cand1
← avgx [QUAD–SELECT–LV(Ic)];

6: Ac
cand2

← avgx [QUAD–SELECT–LB(Ic, Pblr)];
7: Ac

cand3
← 1
∣P0.1%∣

∑x∈P0.1% Ic(x);
8: Ac

max←maxi∈{1,2,3}Ac
candi

;
9: Ac

min←mini∈{1,2,3}Ac
candi

;
10: for k ∈ {r,g,b} do
11: α← S( ∣I

k
>0.5∣

Size(Ik)
,εn);

12: B̃k ← αBk
max+(1−α)Bk

min;
13: end for
14: return Ac;
15: end function
16:
17: function QUAD–SELECT–LB(Ic, Pblr)
18: Igray← rgb2gray(I);
19: Iq← Igray;
20: while Size(Iq)

Size(Igray)
> εs do

21: Partition Iq into four quadrants, I1
q , I2

q , I3
q , and I4

q ;
22: Pick In

q with largest blurriness computed using Pblr;
23: Iq← In

q ;
24: end while
25: return Ic(Position(Iq));
26: end function
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Figure 3.5: An example of ambient light estimation using Algo. 1. (a) The original
image with the lowest variance and largest blurriness estimation blocks outlined in
red and in blue. The white blocks are the final quadrants. The images (b)–(e) are the
restored images obtained using Ac

cand1
, Ac

cand2
, Ac

cand3
, and Ac. (f) The transmissions for

the red, green and blue channels estimated with Ac.

3.2.2 Depth Estimation based on Light Absorption and Image Blur-

riness

We propose to estimate scene depth by combining three depth estimation methods.

We first define the three depth estimation methods, and then explain how they are

sigmoidally combined based on the lighting and image conditions where each performs

best.

The red channel map R is defined as:

R(x) = max
y∈Ω(x)

Ir(y). (3.7)

We obtain a first estimate of depth, denoted d̃R, directly from the red channel map by

assuming that scene points which preserve more red light are closer to the camera:

d̃R = 1−Fs(R), (3.8)

where Fs is a stretching function:

Fs(V) =
V−min(V)

max(V)−min(V)
, (3.9)
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where V is a vector. Some successful examples are shown in Fig. 3.6(a)–(d).

Our second estimate of depth is

d̃D = 1−Fs(Dmip), (3.10)

which uses the prior Dmip and (3.9). This depth map assumes that, for a scene point, a

greater value of red light minus the maximum of green and blue lights means the point is

closer to the camera. This concept was first proposed in [19], where Dmip was used to

estimate transmission, rather than the depth directly.

Our third approach is to use the image blurriness Pr in Eq. (3.2) to estimate depth:

d̃B = 1−Fs(Cr(Pr)). (3.11)

Combining Eq. (3.8), Eq. (3.10), and Eq. (3.11), we propose to estimate underwater scene

depth based on light absorption and image blurriness according to the estimated ambient

light Ac and the average input red value:

d̃n(x) = θb[θad̃D(x)+(1−θa)d̃R(x)]+(1−θb)d̃B(x), (3.12)

where θa = S(avgc(Ac),0.5) and θb = S(avg(Ir),0.1) are determined by the sigmoid

function defined in Eq. (3.6). Finally, the depth map is refined and smoothed by either

soft matting [32] or guided filtering [33]. The estimated depth map d̃n ∈ [0,1] can be

regarded as a map of normalized relative distance for the scene points of the input image.

The explanation for this combined approach is as follows. When the image has

some reasonable level of red content overall (avg(Ir) >> 0.1) and the ambient light is

relatively dim (avgc(Ac) << 0.5) then d̃R alone represents depth well. In this case, θa ≈ 1

and θb ≈ 1, and d̃n(x) ≈ d̃R(x). As the ambient light gets brighter, the possibility that
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d̃R(x) fails to represent scene depth gets higher. Because the ambient light accounts

for more of the observed intensity for a scene point farther from the camera, far scene

points may still have large values in the red channel and be wrongly judged as being

close according to Eq. (3.8), as seen in Fig. 3.6 (e)–(f).

When an underwater image has a brighter ambient light, we find that d̃D is more

reliable to represent scene depth. The red light of a farther scene point is absorbed more

compared to the green and blue light, shown in Fig. 3.6 (c)–(f). So when the image

has some reasonable level of red content overall (avg(Ir) >> 0.1) and the ambient light

is relatively bright (avgc(Ac) >> 0.5) then d̃D alone represents depth well. In this case,

θa ≈ 0 and θb ≈ 1, and d̃n(x) ≈ d̃D(x).

Lastly if there is very little red light in the scene, so avg(Ir) << 0.1, then both

Eq. (3.8) and Eq. (3.10) which directly use red channel values are likely to fail to

estimate scene depth properly. In this case, θb ≈ 0, and d̃n(x) ≈ d̃B(x) mean that the

depth estimation reverts to using the blurriness map alone, as in Section 3.1. In between

these various extremes, the depth map comes from a weighted combination of the three

approaches.

3.2.3 Transmission Estimation and Scene Radiance Recovery

As described in Section 2.1, the transmission estimation of the DCP-based meth-

ods is based on Eq. (2.3). By contrast, we calculate the transmission maps according to

Eq. (2.1), which uses the depth from the camera to scene points. To measure the distance

from the camera to each scene point, the distance d0 between the closest scene point

and the camera must be estimated as well. Via the maximum difference between the

estimated Ac and the observed intensities Ic in the input image, the estimated d̃0 ∈ [0,1]

can be calculated by:
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Figure 3.6: Examples of depth estimation based on light absorption and image blurri-
ness. The original images are in the first row. The depth maps obtained based on the red
channel R, Dmip, and Pblr are in the second, third, and fourth rows. The means of the
estimated ambient light avgc∈{r,g,b}(Ac) in the column (a)–(f) are 0.06, 0.18, 0.5, 0.53,
0.62, and 0.81. The original image (b) is from [68], and (d)–(f) are from [59].

d̃0 = 1− max
x,c∈{r,g,b}

∣ Ac− Ic(x) ∣

max(Ak,1−Ak)
, (3.13)

where k = argmaxc∈{r,g,b} (maxx ∣ Ac − Ic(x) ∣ ). If ambient light accounts for a large

portion of the observed intensities for the closest scene point, the maximum difference

would be small, and d̃0 would be large, i.e., the distance from the camera to the closest

object in the scene is long. Combining Eq. (3.12) and (3.13), the final scene depth map

d̃ f is given by:

d̃ f (x) =D∞×(d̃n(x)+ d̃0), (3.14)

where D∞ is a scaling constant for transforming the relative distance to the actual

distance.

With d̃ f , we can calculate the transmission map for the red channel as:
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t̃r(x) = e−β
rd̃ f (x), (3.15)

where βr ∈ [1
8 ,

1
5] for Ocean Type–I water [3, 14, 52]. Roughly 98% of the world’s

open ocean and coastal waters fall into this category [50]. Then, we can compute

the transmission maps, t̃g and t̃b, for the green and blue channels by Eq. (2.7) and

Eq. (2.8). Note that the typical ranges of the wavelength of red, green and blue light are

λr = 620 ∼ 750 nm, λg = 490 ∼ 550 nm, and λb = 400 ∼ 490 nm. We choose three standard

wavelengths for red, green and blue light λr = 620 nm, λg = 540 nm, and λb = 450 nm, as

used in [17]. We found that the restoration results are not sensitive to values of βr ∈ [1
8 ,

1
6],

and we set βr = 1
7 . We also set D∞ = 8 m for Eq. (3.14), so the range of t̃r is [0.1,1].

Fig. 3.5(f) gives an example of transmission maps for the red, green and blue channels

of a greenish underwater image based on Eq. (2.8) and Eq. (3.15). We can see that with

properly estimated ambient light and our parameters, the UIBLAR method can well

restore the image as shown in Fig. 3.5(e).

At the end, we recover the scene radiance using Eq. (2.6). Fig. 3.7 gives an

example to show the effectiveness of using transmission estimation considering d̃0 for

Eq. (3.14) in our method. Our method with d̃0 produces a more satisfactory restored

result with better contrast and saturated color.

The proposed depth estimation based on light absorption can also handle artificial

lighting gracefully. If ambient light of an underwater image with artificial lighting is dim,

the restoration using the depth map derived by the red channel map R in Eq. (3.7) would

regard those bright pixels as being close and not over-compensate their color. When

ambient light is bright, the red light from the background pixels would attenuate more

than that of the foreground pixels, which could be correctly interpreted as scene depth

using Eq. (3.10). Sec. 3.2.4 will demonstrate restoration examples with artificial lighting.
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Figure 3.7: An example of transmission estimation with and without d̃0. (a) Original
image, and its restored images obtained using the proposed UIBLAR method, where
transmission estimation (b) does not consider d̃0 and (c) considers d̃0 = 0.68.

3.2.4 Experimental Results

Previous underwater image restoration methods used the IFM in Eq. (1.1) only

based on the DCPs or the MIP. In this section, we compare our UIBR method in Sec-

tion 3.1 and the UIBLAR against the DCP- and the MIP-based methods. The performance

of all the compared methods is evaluated in three ways:

1. Subjective visual comparison including examination of the depth map and the

ambient light,

2. Objective quantitative full-reference assessment of restored synthesized underwater

images, and

3. Objective quantitative no-reference quality assessment of restored real-world un-

derwater images.

3.2.4.1 Qualitative Assessment

In the visual comparison, we use six underwater images with different underwater

color tones and lighting conditions for testing, where the depth maps shown all undergo

a simple individual contrast stretching step for display.

In Fig. 3.8, we can see that the original image looks hazy and has bright ambient

light. All methods work well for this case. The UIBR approach and the UIBLAR method
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generate similar depth maps and ambient light to those obtained by the DCP and MIP

methods [16, 17, 19, 34]. All of the result images look restored and enhanced although

some color differences exist.

In contrast, the original image in Fig. 3.9 is dimly lit, which invalidates the DCPs

and MIP. Results from the MIP-based [19] and DCP-based methods [16, 17, 34] look

insignificantly restored because of the incorrect depth map and wrong ambient light

selection from the bright foreground pixels. The UIBR method (Section 3.1) and the

UIBLAR method (Section 3.2) estimate the scene depth and ambient light more correctly.

Figure 3.8: A restoration example where all methods are successful. (a) The original
image. The enhanced results, and the corresponding depth map and ambient light
(marked with a red dot for (b)–(e)) obtained using: (b) [19], (c) [34], (d) [16], (e) [17],
(f) the UIBR method (Section 3.1), and (g) the UIBLAR method (Section 3.2).

Figure 3.9: An example of restoring an underwater image with dim ambient light. (a)
The original image. The restored results, and the corresponding depth map and ambient
light (marked with a red dot for (b)–(e)) obtained using: (b) [19], (c) [34], (d) [16],
(e) [17], (f) the UIBR method (Section 3.1), and (g) the UIBLAR method (Section 3.2).
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Figure 3.10: An example of restoring a greenish underwater image. (a) The original
image. The restored results, and the corresponding depth map and ambient light (marked
with a red dot for (b)–(e)) obtained using: (b) [19], (c) [34], (d) [16], (e) [17], (f) the
UIBR method (Section 3.1), and (g) the UIBLAR method (Section 3.2).

Figure 3.11: An example of restoring an underwater image with artificial lighting. (a)
The original image. The restored results, and the corresponding depth map and ambient
light (marked with a red dot for (b)–(e)) obtained using: (b) [19], (c) [34], (d) [16],
(e) [17], (f) the UIBR method (Section 3.1), and (g) the UIBLAR method (Section 3.2).
The original image comes from [68].

Fig. 3.10 gives an example of restoring a greenish underwater image, which has

some bright pixels in the foreground and dark pixels in the background, making the

DCPs invalid. The depth map based on Irgb
dcp [17] is opposite to the scene depth, resulting

in a wrong ambient light selection and a poor restoration. For the method based on

Igb
dcp [34], even though the ambient light is properly selected, it presents an unsatisfactory

restoration result because most of the pixels are mistakenly regarded as being close. The

methods based on MIP [19] and Ir′gb
dcp [16] both erroneously consider some foreground

pixels as being far and background pixels as being close, also failing to restore the
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Figure 3.12: A close comparison between (a) the UIBR method (Section 3.1) and (b)
the UIBLAR method (Section 3.2) for the original image shown in Fig. 3.11.

image. The UIBR method (Section 3.1), which estimates depth more accurately in this

case, gives an overexposed restoration result because of selecting dimmer ambient light.

Additionally, like [19] and [34], it estimates only one single transmission map without

considering different attenuation levels for RGB channels. Thus, their output images

cannot be properly restored. The proposed UIBLAR method correctly estimates the

depth and ambient light, and thus generates more accurate transmission maps for the

red, green, and blue channels. Using these transmission maps (shown in Fig. 3.5(f)),

our UIBLAR method (Section 3.2) compensates more red and blue light for the original

image than green light.

Fig. 3.11 shows an example of restoring an underwater image shot with artifical

lighting. The method based on Irgb
dcp [17] wrongly regards almost all of the pixels in the

image as being close except for the white objects, leading to a restored image nearly

identical to the original. The Igb
dcp method [34] picks a bright foreground pixel as ambient

light, which makes the background even darker. The Ir′gb
dcp [16] method also produces a

restored image with a dimmer background because of the incorrect depth and ambient

light estimation. Although the MIP-based [19] method selects dark ambient light to

reveal the background scene in the processed image, it also produces an overexposed

foreground. As shown in Fig. 3.12, the UIBR method produces a good result for the
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background by estimating there is a dark ambient light but also overexposes some smooth

regions in the foreground for which depth estimated based on blurriness is inaccurate.

Our UIBLAR method estimates ambient light and depth more precisely and generates a

well-enhanced restored image. We can see from the depth map that the bright pixels in

the original image are regarded as being close, which prevents their overexposure.

Figure 3.13: A restoration example involving artificial lighting. (a) An underwater
image of Pisces V and its out-of-water image. The restored results, and the corre-
sponding transmission map (only t̃r is shown for [17] and our UIBLAR method)
and ambient light obtained using: (b) [19], (c) [34], (d) [16], (e) [17], (f) the UIBR
method (Section 3.1), and (g) the UIBLAR method (Section 3.2). The original image is
from [68].

Lastly, Fig. 3.13 demonstrates restoration of a special case with artificial lighting.

Fig. 3.13(a) shows an image of Pisces V [57], a deep-submergence vehicle, with its

external light on in the underwater scene, as well as its out-of-water image for comparison.

The red light in the underwater image is attenuated more than green and blue light. Unlike

Fig. 3.8–Fig. 3.11 that present the depth maps, we show the corresponding transmission

map estimated by each of the compared methods for the processed image to better explain

the restoration results. Note that scene transmission aims to describe the portion of the

scene radiance not scattered or absorbed but reaching the camera. A larger value in a

transmission map means the corresponding scene point has more scene radiance that

reaches the camera, while a smaller value means the ambient light accounts for more of

the observed intensity of that scene point. Hence, the transmission map for the underwater
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image in Fig. 3.13(a) should have larger values for scene points closer to the artificial

light and smaller values for the points farther from the light.

In Fig 3.13(c)–(f), the methods based on the Igb
dcp [34], Ir′gb

dcp [16], Irgb
dcp [17], and

image blurriness [36] described in Section 3.1 fail to generate such transmission maps,

and produce poor restoration results. The MIP-based method [19] estimates transmission

well, yet its estimated ambient light that has a larger value in the red channel is inaccurate,

leading to a dimmer restoration result. The proposed UIBLAR method attains a more

accurate transmission map and ambient light selection and presents a more precise color

restoration result.

3.2.4.2 Quantitative Assessment

In the quantitative assessment, we evaluate all the compared methods using

synthetic underwater images and real-world underwater images.

First, although the simplified IFM in Eq. (1.1) is widely used to describe the

formation of a hazy image and can also be invoked to explain the formation of an

underwater image, light that travels through water causes image blur because of light

scattering and refraction [43], which is ignored by this model. To synthesize a more

realistic underwater image, image blur must be incorporated in the model. This image blur

can be modeled by a point spread function, where the blur kernel width is proportional

to the scene depth [43, 48, 49]. Combining the IFM and the point spread function, we

describe an underwater IFM as:

Ic(x) = [Jc(x)tc(x)+Ac(1− tc(x))]∗Φ(β
c,d(x)), (3.16)

where Φ is a point spread function of the form [48]:

Φ(β,z) = (e−γz−e−κz)e−a∥xz∥2
z , (3.17)
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where a > 0 and ∣γ∣ ≤ κ are empirical constants, and xz is the coordinate for the point

spread function.

In the quantitative analysis, we first synthesize underwater images for evaluation.

Five ground truth images, for which the depth maps are known, were used to synthesize

underwater images using Eq. (3.16). We focus initially on an indoor image “reindeer,”

which was used in [53] to synthesize a hazy image. The image and its depth map are

shown in Fig 3.14(a). In this image, the foreground pixels are not bright, so it will

not tend to invalidate the DCP and MIP assumptions. Thus, it is useful for testing the

capability of the compared methods to restore underwater images with different ambient

light. For a fair comparison, all of the compared methods use the 7×7 local patch Ω(x)

, a lower bound t0 = 0.1 for the TM in Eq. (2.6), and the guided filtering to smooth the

transmission map. To compare the color restoration results, we adopt two metrics, PSNR

and SSIM.

Figure 3.14: Examples of synthesizing underwater images with four different underwa-
ter color tones using Eq. (3.16). (a) The ground truth image and its depth map. (b)–(e)
Synthesized underwater images with d0 = 4 and rs = 4.

The ground truth image, denoted Jg, its ground truth depth map, dg ∈ [0.6,3.1 m],

and four ambient lights are used to simulate underwater images with four different

underwater color tones, shown in Fig. 3.14. For each color tone, we modify the depth
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map in two test modes to adjust the relative amounts of ambient light and scene radiance

in the synthesized observed intensity. The first test mode, “TestMode–InitD,” adds an

initial distance d0 to the ground truth depth: d0+dg = ds, where ds is the final depth map

used in the synthesis, and d0 takes values in the set {4,5,6,7,8 m} for testing. The second

test mode, “TestMode–ScaleD,” increases the scene depth by multiplying by a scaling

factor: ds = d f +dg× rs, where d f = 4 is a fixed initial distance, and rs ∈ {1,2,3,4,5}.

The transmission map for the red channel is calculated by tr(x) = e−β
r
sds(x) as

Eq. (2.1) with βr
s =

1
5 , and the transmission maps for the green and blue channels are

estimated by Eq. (2.7) and Eq. (2.8) based on the chosen ambient light. For the point

spread function in Eq. (3.17), we set γ =
β

2 , and a = 8. By putting Jg, tc and Ac into

Eq. (3.16), we can synthesize underwater images. Examples are shown in Fig. 3.15.

Figure 3.15: All test synthesized underwater images with Tone I color. The images
from left to right are synthesized (a) using d0 = 4,5, . . . ,8 in “TestMode–InitD” and (b)
using rs = 1,2, . . . ,5 in “TestMode–ScaleD.”

For each test mode, we compute the PSNR and SSIM results between the ground

truth image Jg and the synthesized underwater images restored using the five IFM-based

restoration methods [16, 17, 19, 34, 36], and the proposed UIBLAR method, shown in

Fig. 3.16 and Fig. 3.17. In Fig. 3.16, we see that our UIBLAR method performs better for

all the four underwater color tones. As the scene depth increases, the PSNR and SSIM
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results of the compared methods become close. In Fig. 3.17, the UIBLAR method is

better than the other ones except for [34] in the PSNR results for Tone I and IV colors.

This is because we set D∞ = 8 m in Eq. (3.14) to restore the color of underwater objects

in the range of scene depth [0,16 m], and thus the UIBLAR method does not restore well

scene points farther than this range. However, the proposed method still outperforms all

the other methods in the SSIM results in “TestMode–ScaleD.” Note that the UIBLAR

method excels more in restoring images with Tone II color, which represents very dim

ambient light. This is because dim ambient light violates the assumptions underlying the

DCPs and MIP. Examples of restoring synthesized underwater images with Tone I–IV

colors obtained using our UIBLAR method are in Fig. 3.18.

To measure the effectiveness of transmission estimation based on our proposed

depth estimation, we compare the restoration results obtained using the TMs estimated

based on the DCPs and MIP, as well as ours. That is, we adopt different TM estimation

methods to generate the TM for the red channel t̃r. The transmission maps for the green

and blue channels are then estimated by Eq. (2.7) and Eq. (2.8) based on the proposed

BL. We compare the restoration results obtained using these different transmission

estimation methods. Table 3.1 lists average PSNR/SSIM results over all the tested d0 and

rs obtained using our UIBLAR method and its mixed methods using other transmission

estimation methods based on DCPs, MIP, or image blurriness. Namely, the column

marked d0 contains average PSNR/SSIM of the restoration results over all the test d0 in

“TestMode–InitD,” while the column marked rs contains the results over all the test rs in

“TestMode–ScaleD.” We can see that the proposed transmission estimation outperforms

the others.

Moreover, we demonstrate the average PSNR and SSIM results for all the com-

pared methods in Table 3.2 and Table 3.3 for “TestMode-InitD” and “TestMode-ScaleD.”

We also show the results attained using the exact ambient light and transmission map in
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the compared methods in order to further analyze the preciseness of the ambient light

and transmission estimation methods, individually. In Table 3.2, we see the superiority

of the proposed UIBLAR method in each compared category. In Table 3.3, the UIBLAR

method is better in all the tested underwater color tones on average except for Tone I

color, which represents bright blue BL, where it incurs small PSNR deficits compared

to [19] in the category of the exact transmission map and [34] in that of the exact ambient

light.

In addition to “reindeer”, three more images with ground truth depth maps were

selected from [53] to synthesize underwater images with six different ambient lights (two

for each image), as shown in Fig. 3.19. The ground truth depth dg for the three images,

“lawn,” “flower,” and “road,” are in the range [0.4,11.3 m], [0.5,13.2 m], [0.3,9.5 m],

respectively. To vary the initial distance d0 for each image, we set d0 ∈ {1,2, . . .5 m}

for “flower,” d0 ∈ {2,3 . . .6 m} for “road,” and d0 ∈ {3,4, . . .7 m} for “lawn,” while rs

still takes values in the set {1,2, . . . ,5}. As can be seen in Tables 3.4 to 3.6, the results

are generally in line with those based on “reindeer,” supporting the superiority of the

UIBLAR method. Note that Table 3.6 is like Table 3.1, where the column marked d0

contains average PSNR/SSIM results over all the test d0 in “TestMode–InitD,” while the

column marked rs contains the results over all the test rs in “TestMode–ScaleD,” where

d f is the smallest value in their corresponding d0 set for each test image.

Next, to evaluate performance of all the compared methods on restoring real-

world underwater images, we adopt two non-reference image quality metrics. One is

the Blind/Referenceless Image Spatial QUality Evaluator (BRISQUE) [24], a natural

scene statistics-based distortion-generic blind/no-reference image quality assessment

tool for evaluating possible losses of naturalness of an image because of the presence

of distortions. The score ranges from 0 to 100, where 0 represents the best quality and

100 the worst. We download its software release from [54] for testing. The other is
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Figure 3.16: PSNR results (top) and SSIM results (bottom) obtained using different
restoration methods for “TestMode–InitD.”

the Underwater Image Quality Measure (UIQM) [27]. A greater value of the UIQM

represents higher image quality. In the experiment, our implementation of UIQM uses

αL = αR = 0.1 in UICM, a 8×8 window size for the EME measure and a constant 40 for

Sobel edge detection in UISM, µ(M) = γ(M) = k(M) = 1026 for the PLIP operations in

UIConM, and the default coefficients c1 = 0.0282, c2 = 0.2952, and c3 = 3.5753.

To give an idea of output values for both metrics, Fig. 3.20 lists BRISQUE scores

and UIQM values for real underwater images as well as for synthesized underwater

images with different attenuation levels (for which BRISQUE scores increase and UIQM

values decrease monotonically with attenuation level). In Fig. 3.21, we show 70 real

underwater test images with different contents and a variety of color tones. Table 3.7 lists

the average BRISQUE scores and UIQM values for the original underwater images in

Fig. 3.21 and their restored images from all the compared methods. We can see that the

UIBLAR method outperforms the other methods.
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Figure 3.17: PSNR results (top) and SSIM results (bottom) obtained using different
methods for “TestMode–ScaleD.”

3.2.4.3 Combining IFM-based Restoration and Histogram Equalization

Methods based on the IFM, such as ours, have the goal of restoration, rather than

enhancement. The previous sections aimed to demonstrate that our IFM-based method

outperforms other IFM-based methods both for synthesized images (for which a ground

truth is available, and full-reference fidelity metrics such as PSNR can be used), and for

real underwater images (for which no-reference image quality metrics can be used).

It is also of interest to compare our IFM-based method against an underwater

image enhancement method. The fusion-based enhancement method for underwater

images proposed by Ancuti et al. [1] first generates two images based on the input image:

one has colors adjusted by white balancing and the other is contrast-enhanced via local

adaptive histogram equalization. Then these two images are fused based on their contrast,

saliency, and exposure to produce the final enhanced result with better contrast and white
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Figure 3.18: Examples of restoring synthesized underwater images with Tone I–IV
colors in “TestMode–ScaleD” (rs = 3) obtained using the UIBLAR method. The synthe-
sized images are in the first row, and the corresponding restored images and ambient
light estimates are shown in the second and third rows.

balance.

Histogram equalization [55] is a simple contrast enhancement method that can

be added as a post-processing to an IFM-based method if some application needs the

contrast of an underwater image to be enhanced. In Fig. 3.22, we compare our UIBLAR

method (both with and without histogram equalization contrast enhancement [56]) with

the method by Ancuti et al. [1], using both subjective and objective comparisons. For ob-

jective assessment, we choose two no-reference quality assessment tools, the UIQM [27]

and Underwater Color Image Quality Evaluation Metric (UCIQE) [28]. UCIQE quan-

tifies image quality via a linear combination of the variation of chrominance, average

saturation, and luminance contrast.

Fig. 3.22(a) shows the 10 original images from Emberton’s data set [35]. In

Fig. 3.22(b)-(d), we see that the enhanced images via Ancuti’s method [1] (column (b))

have better contrast compared to those by our UIBLAR method (column (c)). Since
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Figure 3.19: Examples of synthesized underwater images generated using three differ-
ent images with their depth maps and selected ambient lights.

Figure 3.20: Examples of “BRISQUE score/UIQM value” pairs for synthesized (top)
and real (bottom) underwater images. (The images are from [53, 59, 68], and Google
Images.)

UCIQE and UIQM reward high contrast, the images obtained using [1] also have higher

scores than those using our UIBLAR method. Using histogram equalization [56] on our

method, the contrast and UCIQE/UIQM values go up.

Fig. 3.22(e) shows an additional 10 original images. In the top four rows of

Fig. 3.22 (e)-(h), the images are very dark or have artificial lighting. The method [1]

does poorly because contrast enhancement is often not effective for such images, and the

white balancing of [1] sometimes introduces unwanted colors to the output images, such

as the original images in the first row of Fig. 3.22 (a) and (e), which makes the processed

images unnatural even though it boosts its UCIQE/UIQM scores. For the bottom six rows

of Fig. 3.22 (e)-(h), since the color of the original images is more balanced, the white
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Figure 3.21: Test images for BRISQUE. (The images are from [1, 12, 16, 19, 34, 59, 68],
and Google Images.)

Table 3.1: Comparison of average PSNR/SSIM of the restoration results over all the
tested d0 ∈ [4,8 m] and rs ∈ [1,5] obtained using the UIBLAR method and its mixed
methods using the TM estimation for the red channel t̃r based on DCPs, MIP, or image
blurriness.

Method
Tone I Tone II Tone III Tone IV

d0 rs d0 rs d0 rs d0 rs

UIBLAR+MIP 12.3/.62 12.0/.62 10.7/.36 10.9/.37 14.8/.67 14.5/.66 13.9/.66 13.5/.66
UIBLAR+DCPrgb 15.5/.76 15.2/.75 13.0/.63 10.4/.56 13.8/.70 13.2/.71 14.8/.75 13.5/.73
UIBLAR+DCPgb 16.8/.76 15.1/.70 13.1/.65 10.4/.58 16.4/.73 13.7/.70 17.1/.73 13.4/.69
UIBLAR+DCPr’gb 16.2/.77 15.5/.76 13.8/.65 12.6/.61 15.2/.73 14.9/.75 17.2/.79 15.1/.77
UIBLAR+Pblr 14.2/.56 13.1/.57 13.0/.58 11.8/.60 13.8/.64 13.5/.66 15.3/.65 13.4/.65
UIBLAR 17.8/.77 16.0/.74 20.6/.75 17.9/.74 19.1/.79 17.6/.78 19.6/.81 17.0/.78

balancing has little effect on these images. In comparison, the restored and enhanced

results via our UIBLAR method with and without histogram equalization look better for

such images.

Comparing image enhancement methods using UCIQE and UIQM or other

no-reference metrics is difficult because the metrics weight contrast and colorfulness

differently. For example the UIQM algorithm removes the 10% of pixels with brightest

and darkest values before computing the image colorfulness, whereas the UCIQE algo-

rithm uses all pixels. Depending on factors like this and the weight given to different

components, a white balancing step or a histogram equalization step can have a significant

effect on the quantitative output of the metrics.
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Table 3.2: Comparison of average PSNR/SSIM of the restoration results over all the
tested d0 ∈ [4,8 m] for “TestMode–InitD.”

Method
Tone I Tone II Tone III Tone IV

d0 ExtAL† ExtTM† d0 ExtAL ExtTM d0 ExtAL ExtTM d0 ExtAL ExtTM
None 11.6/.59 –/– –/– 10.3/.32 –/– –/– 14.0/.63 –/– –/– 13.2/.63 –/– –/–
[19] 12.7/.63 13.0/.63 19.2/.60 10.5/.31 10.8/.37 16.6/.55 15.3/.68 15.3/.68 14.5/.43 14.5/.67 14.7/.67 15.7/.48
[34] 13.7/.62 19.9/.73 18.1/.64 11.2/.32 12.4/.65 14.5/.44 12.5/.50 19.3/.69 14.5/.43 13.2/.63 17.8/.72 16.4/.61
[16] 15.3/.70 10.6/.27 12.2/.71 10.0/.21 13.4/.56 10.6/.24 17.4/.74 13.9/.57 19.9/.70 16.9/.74 12.5/.47 18.6/.59
[17] 14.7/.69 18.1/.75 16.8/.53 9.3 /.18 11.1/.29 8.7 /.08 14.5/.64 16.9/.75 14.5/.40 14.2/.67 18.7/.77 13.8/.39

UIBR 15.2/.59 15.2/.48 18.1/.79 11.6/.26 14.1/.66 12.4/.33 16.0/.57 17.8/.64 19.1/.64 15.2/.57 16.5/.54 18.1/.69
UIBLAR 17.8/.77 20.8/.80 19.3/.81 20.6/.75 22.7/.89 23.3/.77 19.1/.79 23.6/.85 24.7/.83 19.6/.81 22.2/.84 26.3/.87

† ExtAL and ExtTM represent restoration with the exact ambient light and transmission map.

Table 3.3: Comparison of average PSNR/SSIM of the restoration results over all the
tested rs ∈ [1,5] for “TestMode–ScaleD.”

Method
Tone I Tone II Tone III Tone IV

rs ExtAL† ExtTM† rs ExtAL ExtTM rs ExtAL ExtTM rs ExtAL ExtTM
None 11.3/.59 –/– –/– 10.3/.32 –/– –/– 13.7/.63 –/– –/– 12.9/.62 –/– –/–
[19] 12.6/.63 12.9/.64 21.4/.71 10.5/.29 10.9/.38 13.1/.39 15.1/.68 15.1/.67 17.1/.56 14.4/.67 14.5/.67 18.4/.59
[34] 15.2/.65 19.3/.71 19.9/.74 10.8/.29 10.3/.57 12.6/.37 13.9/.55 17.0/.65 16.6/.54 15.2/.67 17.6/.70 19.0/.67
[16] 14.8/.66 10.6/.28 11.0/.70 10.1/.22 13.2/.53 10.5/.24 16.4/.72 13.8/.59 20.2/.68 15.6/.70 12.5/.47 20.5/.68
[17] 11.0/.55 17.1/.73 12.7/.49 9.3 /.18 11.3/.30 8.8 /.09 13.5/.57 16.1/.72 13.1/.35 11.2/.51 17.7/.75 11.7/.42

UIBR 13.8/.57 14.4/.46 18.7/.78 12.4/.38 13.2/.63 18.4/.57 15.0/.62 16.8/.63 20.4/.78 13.7/.60 15.8/.54 19.0/.77
UIBLAR 16.0/.74 18.7/.77 18.3/.78 17.9/.74 18.5/.81 24.8/.79 17.6/.78 20.9/.81 22.2/.82 17.0/.78 20.2/.80 21.7/.82

† ExtAL and ExtTM represent restoration with the exact ambient light and transmission map.
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Table 3.4: Comparison of average PSNR/SSIM of the restoration results over all the
tested d0 for “TestMode–InitD.”

Method
lawn ∎ lawn ∎ flower ∎ flower ∎ road ∎ road ∎

d0 ExtAL ExtTM d0 ExtAL ExtTM d0 ExtAL ExtTM d0 ExtAL ExtTM d0 ExtAL ExtTM d0 ExtAL ExtTM
None 19.4/.66 –/– –/– 13.2/.48 –/– –/– 19.1/.71 –/– –/– 16.9/.66 –/– –/– 16.7/.66 –/– –/– 15.3/.55 –/– –/–
[19] 18.8/.68 22.0/.71 18.5/.74 13.1/.47 13.4/.49 10.1/.25 21.0/.79 23.2/.81 18.9/.79 19.1/.73 19.8/.73 29.6/.93 19.0/.70 19.9/.73 16.1/.57 15.0/.55 16.8/.60 13.8/.48
[34] 12.6/.49 15.6/.72 17.7/.70 10.7/.30 11.4/.65 10.1/.24 15.6/.72 15.9/.75 23.4/.89 14.1/.71 14.1/.69 26.0/.92 13.9/.55 17.7/.72 14.0/.45 11.7/.36 12.0/.68 10.9/.24
[16] 11.6/.37 15.9/.59 23.0/.85 11.6/.40 16.0/.64 12.3/.42 10.0/.49 10.7/.49 24.1/.90 17.3/.70 7.0 /.19 10.3/.62 10.6/.22 15.4/.52 14.3/.46 10.7/.24 19.1/.78 12.6/.39
[17] 17.7/.64 18.7/.70 11.9/.40 9.8 /.24 11.1/.56 9.0 /.15 11.1/.67 20.6/.86 10.4/.54 15.8/.79 19.9/.91 23.2/.84 15.8/.55 20.6/.77 11.5/.29 13.7/.48 14.3/.59 10.4/.19

UIBR 10.7/.30 16.1/.67 17.8/.72 13.5/.52 17.8/.71 13.7/.55 12.0/.58 13.1/.64 14.4/.72 16.6/.74 13.0/.60 22.3/.91 12.6/.37 17.4/.65 14.1/.45 11.5/.27 18.0/.78 12.6/.38
UIBLAR 22.7/.79 26.5/.85 24.1/.87 19.0/.79 20.8/.83 23.2/.88 24.0/.89 27.8/.89 26.0/.91 19.3/.87 24.9/.89 21.3/.92 22.5/.84 22.4/.84 26.4/.91 19.8/.78 23.1/.85 21.5/.84

† ExtAL and ExtTM represent restoration with the exact ambient light and transmission map.

Table 3.5: Comparison of average PSNR/SSIM of the restoration results over all the
tested rs for “TestMode–ScaleD.”

Method
lawn ∎ lawn ∎ flower ∎ flower ∎ road ∎ road ∎

rs ExtAL ExtTM rs ExtAL ExtTM rs ExtAL ExtTM rs ExtAL ExtTM rs ExtAL ExtTM rs ExtAL ExtTM
None 17.5/.62 –/– –/– 13.0/.45 –/– –/– 16.9/.62 –/– –/– 16.0/.58 –/– –/– 14.8/.60 –/– –/– 14.6/.49 –/– –/–
[19] 17.9/.64 20.1/.66 15.9/.63 12.9/.45 13.1/.46 10.9/.32 18.7/.70 21.5/.71 17.8/.76 18.2/.64 18.6/.64 28.2/.85 17.3/.65 18.5/.66 17.4/.63 14.3/.49 15.8/.53 12.7/.40
[34] 12.3/.45 14.9/.66 15.6/.62 10.8/.31 10.7/.54 10.3/.27 15.3/.70 14.9/.71 22.5/.83 14.5/.68 14.2/.66 25.2/.85 15.4/.58 16.8/.64 17.0/.61 11.6/.34 12.2/.58 11.0/.25
[16] 11.8/.37 15.3/.55 20.4/.78 10.8/.33 15.0/.58 11.3/.35 9.3 /.41 10.0/.42 23.3/.84 11.1/.41 7.0 /.17 9.7 /.53 11.7/.35 14.6/.46 14.6/.54 13.0/.37 17.5/.67 13.4/.46
[17] 16.7/.60 17.6/.66 10.9/.32 9.5 /.21 10.7/.47 8.9 /.14 11.0/.59 21.7/.80 8.8 /.40 14.7/.69 21.3/.83 18.7/.71 13.5/.48 18.2/.69 11.4/.28 13.1/.43 13.6/.50 10.1/.18

UIBR 13.4/.46 16.3/.65 18.9/.75 14.9/.56 15.9/.61 17.9/.69 16.0/.66 14.9/.65 22.1/.81 18.0/.69 15.5/.62 24.3/.85 14.2/.45 16.3/.57 16.5/.59 12.8/.38 16.0/.67 13.7/.49
UIBLAR 21.1/.74 23.2/.79 24.2/.81 17.4/.71 17.9/.72 21.2/.77 21.2/.77 23.4/.77 23.5/.84 19.3/.75 21.8/.76 22.1/.84 18.6/.70 19.2/.72 20.8/.73 17.8/.67 19.2/.70 18.8/.74

† ExtAL and ExtTM represent restoration with the exact ambient light and transmission map.

Table 3.6: Comparison of average PSNR/SSIM of the restoration results over all the
tested d0 and rs obtained using the UIBLAR method and its mixed methods using the
TM estimation for the red channel t̃r based on DCPs, MIP, or image blurriness.

Method
lawn ∎ lawn ∎ flower ∎ flower ∎ road ∎ road ∎

d0 rs d0 rs d0 rs d0 rs d0 rs d0 rs

UIBLAR+MIP 19.8/.68 18.6/.64 13.3/.49 13.1/.46 20.9/.78 19.5/.68 17.9/.72 17.1/.63 18.5/.71 16.8/.64 15.9/.58 15.2/.52
UIBLAR+DCPrgb 21.3/.76 18.9/.70 12.0/.66 10.9/.55 20.0/.86 20.4/.81 17.4/.80 19.3/.80 20.4/.77 17.9/.67 15.9/.71 14.1/.58
UIBLAR+DCPgb 14.7/.64 14.2/.62 12.0/.66 10.9/.55 19.1/.79 18.1/.77 15.5/.72 15.0/.70 19.8/.78 17.6/.68 13.9/.70 12.3/.55
UIBLAR+DCPr’gb 21.9/.77 20.9/.73 15.0/.77 13.5/.67 22.1/.91 21.1/.83 17.4/.80 19.3/.80 20.7/.77 18.1/.68 19.6/.78 16.9/.68
UIBLAR+Pblr 21.7/.77 20.8/.72 16.7/.71 15.7/.62 17.8/.77 18.1/.74 15.6/.68 16.4/.67 20.0/.81 17.0/.64 18.3/.75 15.5/.64
UIBLAR 22.7/.79 21.1/.74 19.0/.79 17.4/.71 24.0/.89 21.1/.77 19.3/.87 19.3/.75 22.5/.84 18.6/.70 19.8/.78 17.8/.67

Table 3.7: Average BRISQUE scores and UIQM values of the original images in
Fig. 3.21 and their restored versions from all the compared methods.

Original [19] [34] [16] [17] UIBR UIBLAR
BRISQUE 36.31 34.49 31.45 33.57 31.61 31.73 30.24

UIQM 2.60 2.83 3.05 2.65 2.75 3.17 3.23
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Figure 3.22: Comparisons between the processed images obtained using [1] and the
UIBLAR method with and without contrast enhancement. The UCIQE score/UIQM
value pair is shown below each image. (a) and (e) Original images. The processed
results are obtained using (b) and (f) [1], (c) and (g) our method, and (d) and (h) the
proposed method+histogram equalization (The original images in column (a) are from
Emberton’s data set [35] and the ones in column (e) are from [58–60].)



Chapter 4

Generalization of the Dark Channel

Prior

This chapter proposes a Generalization of the DCP (GDCP). It uses the depth-

dependent color change for ambient light estimation and scene ambient light differential

for scene transmission estimation, and works for images with different lighting conditions

and color casts. Fig. 4.1 depicts the flowchart of the GDCP method. In Step 1, we analyze

the depth-dependent color change for the input image Ic using a modified gradient map

to estimate a depth map, and ambient light is estimated from the farthest regions. In Step

2, with the estimated ambient light Ac, the transmission t̃pro is obtained using the scene

ambient light differential. In Steps 3 and 4, adaptive color correction is incorporated

into the IFM to generate output image Jc
ϕ involving both restoring scene radiance and

removing color casts.

47
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Figure 4.1: The flowchart of our GDCP method. The original image is from [11].

4.1 Ambient Light Estimation

We propose the depth-dependent color change as a means to estimate ambient

light. As mentioned previously, for a hazy image, the value of the DCP for a farther scene

point is generally larger than that of a closer scene point because light is more scattered

by the turbid medium. Therefore, the DCP of a hazy image provides us with depth and

light attenuation information, where a larger value in the DCP means that the scene point

is farther and more attenuated. Based on the DCP, one of the farthest and haziest pixels

in the input image is chosen to be the ambient light estimate.

The original ambient light estimation [7] using the DCP works properly for

most hazy images; however, it frequently fails when we are dealing with other kinds

of degraded images, such as sandstorm or underwater images with different lighting

conditions and color casts that violate the underlying assumptions of the DCP. For

example, for most underwater images, red light in a far scene is absorbed more than

that in a closer scene so ambient light for such images often has a small value in the red
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channel. In such cases, the DCP values of far scene points are frequently smaller than

those of close scene points, failing to represent depth for the image and thus leading to

inaccurate ambient light estimation, as can be seen in Fig. 2.2(d). If we only consider

the red channel of underwater images, closer scene points may have larger values in this

channel than farther scene points.

Thus, we propose to generalize the DCP based on the depth-dependent color

change, which describes whether a given color channel tends to have larger or smaller

values as the depth from the camera increases. For example, for an underwater image, red

light usually decreases as depth increases. To describe the depth-dependent color change,

a three-bit indicator s = srsgsb is used, where sc = 1 represents that as depth increases,

light for the channel c tends to increase, while sc = 0 indicates that light for c tends to

decrease, where c ∈ {r,g,b}. Thus, we have 8 different values for the indicator in total:

s ∈ {000,001, . . . ,111}.

To determine the indicator for an image, we estimate a rough depth map Dr based

on the observation that farther scene points are more blurry than closer ones, i.e., gradients

of a farther scene tend to be smaller than those of a closer scene. To construct Dr, the

gradient map G is first computed as G(x) =
√

Gh(x)2+Gv(x)2, where Gh and Gv are the

horizontal and vertical 3×3 Sobel operators applied to the input image. Next, assuming

depth in a small local patch is uniform, the modified gradient map Gm is estimated by

dilating the gradient map G and filling the holes caused by smooth regions of objects

using morphological reconstruction operators [42]. Then, we set Dr(x) = 1−Fs(Gm(x)),

where Fs(Gm(x)) = Gm(x)−minx(Gm)

maxx(Gm)−minx(Gm)
linearly stretches Gm to the range [0,1].

The relationship between depth and Ic is modeled via regression analysis: Îc(x) =

bc+ac×Dr(x), where ac and bc are estimated using argminac,bc∑x (Ic(x)− Îc(x))2
. The

indicator for channel c is
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sc =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if ac > 0;

0 if ac ≤ 0,

where c ∈ {r,g,b}. In addition, a larger ∣ac∣ means higher significance of the corresponding

channel c to determine the scene depth. In [7], Irgb
dcp(x) = minc,y∈Ω(x) Ic(y) was used as

depth information for a hazy image I, where a far and a close scene point, xf and xc,

generally have a relation that Irgb
dcp(xc) ≤ Irgb

dcp(xf). However, it does not hold for cases

where light attenuates as the depth increases. Therefore, rather than using Eq. (2.4) as

the depth map estimate for purposes of estimating ambient light, we propose to estimate

a more accurate depth map D using the depth-dependent color change indicator srsgsb

and ∣ac∣ as:

D(x) = min
c,y∈Ω(x)

(1−wc ∣ sc− Ic(y) ∣ ), (4.1)

where wc = tanh(k∣ac∣) is the significance weighting factor for channel c, where k = 4 is

an empirical constant. The function tanh(z) = ez
−e−z

ez+e−z is the hyperbolic tangent, and we

use it as our significance weighting function as shown in Fig. 4.3.
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Figure 4.2: The flowchart of the depth-dependent color change determination.

Using the indicator s and the significance weighting factors w = [wr,wg,wb], we

have developed a general formulation for DCP-based methods. It is found that one

approach for hazy images [7], two approaches for sandstorm images [10, 11], three
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Figure 4.3: The significance weighting function.

approach for underwater images [12–16], and two approaches for night-time terres-

trial images [38, 39] are all special cases of Eq. (4.1), as will be discussed later. Our

formulation allows one to adjust the importance of each channel while estimating depth.

Fig. 4.4 shows comparisons of depth estimation based on the DCP [7], DCP

variants [15,16,39], and the proposed depth estimation for degraded images with different

lighting conditions and color casts. Fig. 4.4(a) shows a hazy image and its estimated

depth maps. We can see that Irgb
dcp works for the hazy image since its s and w indicate

that the values of all three color channels, which are all significant, tend to increase as

the depth increases. Fig. 4.4(b) shows an underwater image where both Irgb
dcp and Igb

dcp

work since the image indicator s = 111 and w are similar to those for Ic in Fig. 4.4(a).

However, the depth estimated using Ir′gb
dcp is not accurate for Ic in Fig. 4.4(b), because

its sr = 1 means the values of the red channel tend to increase as the depth increases but

Ir′gb
dcp , which inverts the red channel, considers the values of the red channel decrease as

the depth increases. The sandstorm image in Fig. 4.4(c) has very small values in the blue

channel, causing Irgb
dcp to only consider the blue channel and to fail to produce a proper

depth map. As can be seen in Fig. 4.4(d), Ir′gb
dcp works well for the underwater image since

the values in the red channel tend to decrease and those in the green and blue channels
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tend to increase as the depth increases based on its s while Irgb
dcp, assuming an opposite

tendency in the red channel, does not work at all. Igb
dcp works somewhat imprecisely (fish

is wrongly judged as being far) because it does not consider the red channel. Fig. 4.4(e)

and (f) show two underwater images with artificial lighting, for which Irgb
dcp, Igb

dcp and Ir′gb
dcp

all do poorly estimating the depth because none of them works for the case where the

values in the green channel tend to decrease as the depth increases. Ir′g′b′
dcp works well for

cases where the values in all three color channels tend to decrease as the depth increases,

such as the underwater image in Fig. 4.4(f) and the dimly-lit image in Fig. 4.4(g). The

GDCP method, which incorporates the depth-dependent color change indicators and

significance weighting factors, is capable of generating proper depth maps for all of these

degraded images with different color change and lighting conditions.

Ambient light is estimated from the pixels of the input image that correspond to

the top 0.1% brightest pixels in D (farthest away pixels) as

Ac =
1

∣ P0.1%
D ∣

∑
x∈P0.1%

D

Ic(x), (4.2)

where P0.1%
D is the set of positions of the top 0.1% largest-valued pixels in D.

4.2 Scene Transmission Estimation

In [7], the DCP-based transmission estimate t̃rgb(x) = 1−minc,y∈Ω(x){
Ic
(y)
Ac } can

also be expressed as:

t̃rgb(x) = max
c,y∈Ω(x)

{1−
Ic(y)

Ac } = max
c,y∈Ω(x)

{
Ac− Ic(y)

Ac } . (4.3)

The transmission is commonly written as an exponential decay term [7] based on the

Beer-Lambert law [31] of light attenuation as t̃(x) = e−βd(x), where d(x) ≥ 0 is the
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Figure 4.4: Comparisons of depth estimation based on the DCP [7, 10–14], DCP
variants [15, 16, 39], and the GDCP method for images with different light lighting
conditions and color casts. The first row of images shows (a) A hazy image with s =
111, (b) an underwater image with s = 111, (c) a sandstorm image with s = 111, (d)-(f)
underwater images with s = 011, 001, 000, and (g) a dimly lit image with s = 000. The
next four rows show the estimated depth images using the compared methods. The last
row shows the proposed depth images. Note that N/A indicates that the corresponding
depth estimation method is not applicable to the image. The original image of (g) and
depth images shown here undergo simple individual contrast stretching or scaling steps
for display. Original images are taken from [7], [59], [58], [19], [60], and [67].

distance from the camera to the radiant object and β is the spectral volume attenuation

coefficient, so t̃ ≥ 0. In [7], whenever Eq. (4.3) would yield a negative number (that is,

Ac < Ic(y), ∀y ∈ Ω(x)), then t̃(x) gets clipped to zero. Therefore, scene transmission

estimated using Eq. (4.3) would be inaccurate.

In order to address this problem, we propose to estimate transmission based on

scene ambient light differential as:
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t̃pro(x) = max
c,y∈Ω(x)

(
∣ Ac− Ic(y) ∣

max(Ac,1−Ac)
), (4.4)

where median filtering [9] and linearly stretching (to the range [0.2,max(̃tpro)]) are then

applied to refine the estimated transmission. The intuition behind this expression for t̃pro

is that the numerator captures the absolute difference between the observed intensity and

the ambient light, and large values of this quantity correlate with proximity to the camera.

That is, the observed intensity for a closer scene point consists more of the scene radiance

and less of the ambient light, and based on Eq. (4.4), it will have large t̃pro. By contrast,

the observed intensity for a farther scene point consists less of the scene radiance and

more of the ambient light. Therefore, its calculated t̃pro is small.

4.3 DCP Generalization based on Scene Ambient Light

Differential and depth-dependent color change

Our approach is a generalization of the DCP-based approaches both for ambient

light estimation and transmission estimation. First, consider transmission estimation

using Eq. (4.4) based on the scene ambient light differential.

1. When the ambient light is bright (Ac ≥ 0.5) and Ac ≥ Ic, c ∈ {r,g,b}, which holds

for many foggy and hazy images, then max(Ac,1−Ac) = Ac, so the expression

Eq. (4.4) becomes identical to the DCP [7] as:

t̃pro(x) = max
c,y∈Ω(x)

(
Ac− Ic(y)

Ac ) = t̃rgb(x). (4.5)

2. When the ambient light is dark (Ac ≤ 0.5) and Ac ≤ Ic, c ∈ {r,g,b}, which holds for

most dimly lit images, Eq. (4.4) reduces to the DCP-based method [39] which uses
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the inverted RGB channels and is meant for night videos:

t̃pro(x) = max
c,y∈Ω(x)

(
Ic(y)−Ac

1−Ac ) = t̃r′g′b′(x). (4.6)

3. When Ar ≤ 0.5 and Ar ≤ Ir, and Ak ≥ 0.5 and Ak ≥ Ik, k ∈ {g,b}, which holds for

some underwater images where red light is greatly absorbed, Eq. (4.4) reduces to

the DCP-based method [16] which uses the RGB channels with the red inverted:

t̃pro(x) = max
y∈Ω(x)

(
Ir(y)−Ar

1−Ar ,
Ag− Ig(y)

Ag ,
Ab− Ib(y)

Ab ) = t̃r′gb(x). (4.7)

4. In [10] and [11], Huang et al. found that sometimes images with strong color

casts (in which one color channel had a small value in Ac and Ic < Ac) would lead

to transmission over-estimation. They adopted adaptive gamma correction to try

to solve the transmission over-estimation problem caused by the low observed

intensity. Our general formulation has a solution to this over-estimation situation

as well. For example, when Ib ≤Ab ≤ 0.5, and Ak ≥ 0.5 and Ak ≥ Ik, k ∈ {r,g}, which

holds for most sandstorm images where blue light is greatly absorbed by sand,

Eq. (4.4) can be considered as a variant of t̃rgb [7] which uses the RGB channels

with the blue adjusted:

t̃pro(x) = max
y∈Ω(x)

(
Ar − Ir(y)

Ar ,
Ag− Ig(y)

Ag ,Γb
Ab− Ib(y)

Ab ), (4.8)

where Γb =
Ab

1−Ab ≤ 1 is a multiplicative factor that down weights the blue channel

to overcome the over-estimation problem. That is, as Ab gets darker and Ib ≤

Ab, Γb becomes smaller, making the blue channel less important in estimating

transmission.
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Next, ambient light estimation based on the depth-dependent color change

(Eq. (4.1) and (4.2)) is a generalization of the DCP-based methods as follows:

1. D reduces to Irgb
dcp [7] when wc = 1, ∀c and s = 111, which means that the values in

RGB channels tend to increase as depth increases. This is the situation for most

hazy images and some underwater images. In such cases,

D(x) = min
c,y∈Ω(x)

(1− ∣ 1− Ic(y) ∣ ) = min
c,y∈Ω(x)

Ic(y) = Irgb
dcp(x). (4.9)

2. D reduces to Igb
dcp [15] when wr = 0,wg =wb = 1 and s = −11 (“−” in s means don’t

care), which means that the values in the green and blue channels tend to increase

as depth increases while those in the red channel are ignored in estimating depth.

This corresponds to some underwater images where red light is almost completely

absorbed. In such cases,

D(x) = min
y∈Ω(x)

{1,1− ∣ 1− Ig(y) ∣,1− ∣ 1− Ib(y) ∣} = min
c∈{g,b},y∈Ω(x)

Ic(y) = Igb
dcp(x).

(4.10)

3. D reduces to Ir′gb
dcp [16] when wc = 1, ∀c and s = 011, which means that the values

in the green and blue channels tend to increase as depth increases while those in

the red channel tend to decrease. This is the situation for most underwater images

where red color attenuates more as depth increases. In such cases,

D(x) = min
y∈Ω(x)

{1− Ir(y),1− ∣ 1− Ig(y) ∣,1− ∣ 1− Ib(y) ∣} = Ir′gb
dcp (x). (4.11)

4. D reduces to Ir′g′b′
dcp [38, 39] when wc = 1, ∀c and s = 000, which means that the

values in RGB channels all tend to decrease as depth increases. This is the situation
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for most images taken at night with artificial lighting. In such cases,

D(x) = min
c,y∈Ω(x)

{1− Ic(y)} = Ir′g′b′
dcp (x). (4.12)

4.3.1 Scene Radiance Restoration with Adaptive Color Correction

The input degraded images we are dealing with may have color casts, which need

to be removed in the restoration process. In [45], the degree of a color cast is measured

by Dσ =
∥µ∥2−∥σ∥2
∥σ∥2

, where µ = (µa,µb)
T is a vector that contains the means of the chromatic

components in the CIELab color space, and σ = (σa,σb)
T has the chromatic variances. A

larger Dσ means a stronger color cast, and Dσ ≤ ε is taken to mean no color cast, where ε

is a threshold.

We found that if scene radiance is recovered from a degraded image with a color

cast using Eq. (2.6), it often leads to an even stronger color cast. Thus, we propose to

incorporate color correction into the IFM for removing color casts more effectively.

The approach is to adjust ambient light. Based on Eq. (2.6), we have:

Jc(x) =
Ic(x)
f (x)

−[
1

f (x)
−1]Ac (4.13)

where f (x) =max(̃trgb(x),t0) ∈ [t0,1], and 1
f (x) −1 ≥ 0. Hence, a large value in ambient

light Ac would result in small values in Jc whereas a small value in Ac leads to an opposite

result. Without considering what the “true” ambient light is, if the algorithm assumes a

bright ambient light has suffused throughout the observed image, and attempts to restore

the image on the basis of that assumption, the resulting restored image will be darker,

as the extra brightness is removed, compared to the restoration that would have resulted

from an assumption of a dimmer ambient light. A visual example can be seen in the first

row of Fig. 4.5, where as the ambient light is estimated as being brighter (in terms of



58

luminance), the restored scene radiance gets darker.

In the same fashion, a small value in one of the color channels of the ambient

light will lead to a substantial increase in that color in the restored image. The second row

of Fig. 4.5 gives an example in which changing values in the red channel of Ac produces

different hues of the restored images. Going from (b) to (c) to (d), the assumed values of

the green and blue channels remain constant, but the red value drops from 0.65 to 0.35

to 0.05. As the ambient is assumed to have less red, the restored image based on that

assumed ambient has more red. That is, we can adjust the estimate of ambient light based

on the input image in order to remove color casts.

    

    
    

Ac ■ (.75, .55, .37) ■ (.82, .69, .55) ■ (1, .88, .70) 
    

    
    

Ac ■ (.65, .56, .71) ■ (.35, .56, .71) ■ (.05, .56, .71) 
(a) (b) (c) (d) 

 

Figure 4.5: Examples of changing hue or brightness of restored scene radiance by
adjusting ambient light with given transmission estimated using the GDCP method. (a)
Original images. (b), (c), and (d) are the restored images using different ambient light.
The original images are from [10] and [59].

Iqbal et al. [44] proposed to keep constant the color channel with the dominant

color cast, and scale up the other channels to correct the image color based on the gray

world assumption [46]. This approach may suffer from color distortion when there is a

strong color cast. Motivated by [44, 45], and using Dσ as defined in [45], we calculate

color correction coefficients ϕc as



59

ϕ
c = {

maxk∈{r,g,b} Ik
avg

Ic
avg

}

1√
max(ξ(Dσ),1)

,ξ(z) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

z, z > ε

∞,z ≤ ε,
(4.14)

where Ic
avg =max(avgx Ic(x),0.1), and 1

√

max(ξ(Dσ),1)
aims to avoid color distortion when

there is a strong color cast. Here, we set ε = 0.

Then, we adjust the ambient light Ac with the color correction coefficients ϕc as

Ac
ϕ =

Ac

ϕc . At the end, by putting Ac
ϕ into Eq. (2.6), the resulting estimate of scene radiance

is

Jc
ϕ(x) =

Ic(x)−Ac
ϕ

max (̃tpro(x),t0)
+Ac

ϕ, (4.15)

where t0 is set to 0.3 for the GDCP method. According to Eq. (4.14), when Dσ ≤ ε, which

means there is no color cast, then ϕc = 1, and Ac
ϕ = Ac. Otherwise, we use 1

√

max(Dσ,1)

to adjust the color correction coefficients. Fig. 4.6 shows examples of scene radiance

restoration with and without incorporating adaptive color correction coefficients. We

can see that the restored images without using correction coefficients have stronger

color casts than the original images while the ones using correction coefficients present

more visually pleasing results. Therefore, instead of performing color correction on

the recovered J, we can achieve both scene radiance restoration and color correction by

adjusting the ambient light estimate with the color correction coefficients.

4.4 Experimental Results

In this section, we evaluate various kinds of DCP-based restoration methods for

foggy, hazy, sandstorm, and underwater images. For terrestrial images, we compare

the GDCP method against several state-of-the-art IFM-based image restoration methods

described in [7, 10, 11, 21, 23]. For the underwater images, we choose the methods
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Figure 4.6: Examples of scene radiance restoration with and without adaptive color
correction. (a) Original images with the estimated ambient light. Restored scene
radiance (b) without, and (c) with using color correction coefficients. The original
images are from [11], kkj.cn, and [62].

described in [15, 17–19] to compare with our proposed one. The output images are

evaluated in two ways:

1. Subjective visual comparison including examination of estimated transmission;

2. Objective quantitative no-reference quality assessment of restored images.

4.4.1 Qualitative Assessment

In the visual comparison, we use 10 degraded images, including 2 hazy/foggy, 4

sandstorm, and 4 underwater images, with different color tones and lighting conditions

for testing.

kkj.cn
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In Fig. 4.7, the original image is hazy with bright ambient light and does not have

a color cast. All methods work well for this case.

 

      
      

      
      

 (a) (b) (c) (d) (e) (f) (g) 
 

Figure 4.7: A restoration example where all methods are successful. (a) The original
image. The restored results, and the corresponding transmission maps obtained using:
(b) [7], (c) [21], (d) [23], (e) [10], (f) [11], and (g) the GDCP method. The original
image is from [6].

 

    
    

    
    

(a) (b) (c) (d) (e) 

 

Figure 4.8: An example of restoring a dark hazy image with a color cast. (a) The
original image. The restored results, and the corresponding transmission maps obtained
using: (b) [7], (c) [21], (d) [23], and (e) the GDCP method without considering color
correction (ϕc = 1). The original image is from [6].

Fig. 4.8 gives an example of restoring a dark hazy image with a bluish color

cast using restoration methods without color correction. So, in this example, we set

ϕc = 1, ∀c ∈ {r,g,b} for the GDCP method, resulting in Ac
ϕ = Ac. In the figure, the

methods [7, 21, 23] barely enhance the contrast of the image because of imprecise

transmission estimation for dark hazy images, while the processed result using the GDCP

method has better contrast due to a more accurate transmission map estimation. Fig. 4.9

demonstrates more restoration results for the dark hazy image in Fig. 4.8(a) but using
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methods with color correction explicitly incorporated into the algorithm. As can be seen,

the image obtained using [10] presents even a more serious color cast. The method [11]

estimates transmission inaccurately, wrongly regarding the entire scene as very close

to the camera, leading to a negligible restoration result. The GDCP method, adjusting

ambient light using color correction coefficients ϕc = [1.44,1.28,1], is able to remove

the color cast by magnifying intensities in the red and green channels while enhancing

the contrast for the input image.

   
   

   
   

(a) (b) (c) 

 

Figure 4.9: Restoring the dark hazy image with a color cast in Fig. 4.8 (a) using the
methods with color correction incorporated. The restored results, and the corresponding
transmission maps obtained using: (a) [10], (b) [11], (c) the GDCP method (ϕc =
[1.44,1.28,1]).

Fig. 4.10 shows four examples of restoring sandstorm images with different color

distributions. Based on the histograms of the original images, we can consider the images

from the first to last row to be shot in sandstorms of different densities ranging from thin

to thick. In the first row of Fig. 4.10, the scene transmission estimated by [11], [21],

and [23] is inaccurate, so their processed images are not sufficiently enhanced. Although

the processed image by the method [7] has good contrast compared to the original image,

it has a more severe color cast. The processed images by the GDCP method and [10]

both look color corrected, but the one using the GDCP method has better contrast.

For the second image, the transmission estimated using the methods [21, 23] is
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wrong, and the restored images are almost the same as the original sandstorm image.

The DCP method [7] only enhances contrast of the image but does not deal with the

color cast. The method [11] fails to enhance contrast of the image and does poorly on

color correction. The GDCP method and [10] both correct color for the image while the

restored image using the GDCP method has better contrast.

For the third image, the processed images obtained using the method [7,10,11,21]

are hardly enhanced. The method [11] does not correct color properly, so the result image

looks a little greenish. Although the method [23] enhances contrast of the image, its color

cast problem worsens as well. The GDCP method is able to produce a better enhanced

and color-corrected result.

For the last image, the original image with a thick sandstorm has very little blue

color, which invalidates all the methods except for the proposed GDCP method. Lastly,

Fig. 4.11 demonstrates restoration of underwater images with different color tones and

lighting conditions. The first row of Fig. 4.11 shows an example of restoring a bluish

underwater image. All methods work well for this case, and the result images all look

restored and enhanced although some color differences exist.

The second original image of Fig. 4.11 is dimly lit, which invalidates the DCP-,

MIP-, and MILP-based methods. Therefore, the processed images by the DCP-based [15,

17], MIP-based [19], and MILP-based [18] methods look insignificantly restored because

of the incorrect transmission estimation. The GDCP method based on scene ambient

light differential can estimate scene transmission more accurately and generate a more

satisfying enhanced result for the image.

The third input image of Fig. 4.11 shows an example of restoring an image that

has more blue and green color than red. We can see that the processed images from the

methods [15,17,19] are negligibly restored because of inaccurate transmission estimation.

The method [18] can slightly enhance the contrast of this image, but the processed image
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(a) (b) (c) (d) (e) (f) (g) 
 

Figure 4.10: Example of restoring sandstorm images with different color distributions.
(a) The original images and their color histograms. The restored results, and the
corresponding transmission maps obtained using: (b) [7], (c) [21], (d) [23], (e) [10],
(f) [11], and (g) the GDCP method. The original images are from [10], [64], and [65].
Note that it is better to view this figure on a screen.

by the proposed method is more vivid and has better contrast.

The last image of Fig. 4.11 shows an example of restoring a greenish image,

where the methods [15, 17–19] barely restore the image, whereas the GDCP method

produces a more visually pleasing result with better contrast.

4.4.2 Quantitative Assessment

Image restoration methods can also involve objective evaluation [25, 27, 28, 30].

For terrestrial scenes, we choose 58 terrestrial images with haze, fog, and sandstorm,
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etc., shown in Fig. 4.12, and adopt three non-reference image quality metrics for testing.

The first two are blind contrast metrics that measure gradient ratios at visible edges [30],

where one is the metric e that calculates an edge restoration rate and the other is the

metric r that assesses quality of contrast restoration. Large values for e and r mean better

contrast. The third one is the Natural Image Quality Evaluator (NIQE) [25], a blind

image quality assessment model that measures the quality of distorted images based on

the space domain natural scene statistics, where a small value represents better quality.

Table 4.1 shows the average e, r and NIQE values for the restored images from all the

compared methods of Fig. 4.12, where the proposed method performs better than the

other methods.

For underwater scenes, we choose 55 underwater images with different color

tones and lighting conditions, shown in Fig. 4.13, and adopt three non-reference image

quality metrics for testing: UIQM [27], UCIQE [28], and NIQE. Table 4.2 demonstrates

average UIQM, UCIQE, and NIQE values of the original images in Fig. 4.13 and their

restored versions from all the compared methods, where the GDCP method outperforms

the other methods.

Table 4.1: Average e, r and NIQE values for the restored images from all the compared
methods of Fig. 4.12.

Original [7] [21] [23] [10] [11] Proposed
e − 0.72 0.12 0.60 0.55 0.29 1.54
r − 1.35 1.12 1.44 1.35 1.42 2.12

NIQE 4.46 4.13 4.57 4.23 4.22 4.18 3.64

4.5 Acknowledgement

This chapter, in full, is a reprint of a published paper, Y.-T. Peng and P. C. Cosman,

“Single Image Restoration using Scene Ambient Light Differential,” IEEE Int. Conf. on
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Table 4.2: Average UIQM, UCIQE, and NIQE values of the original images in Fig. 4.13
and their restored versions from all the compared methods.

Original [19] [15] [17] [18] Proposed
UIQM 2.82 3.55 3.65 3.55 3.61 4.16
UCIQE 0.51 0.57 0.59 0.57 0.55 0.63
NIQE 4.94 4.17 4.07 4.15 4.12 3.85

Imag. Process. (ICIP), pp. 1953-1957, Sep. 2016, and of a submitted paper, Y.-T. Peng,

K. Cao, and P. C. Cosman, “Generalization of the Dark Channel Prior for Single Image

Restoration” (submitted to IEEE Trans. Image Process., Jul. 2017). The dissertation

author was the primary investigator and author of these papers.
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(a) (b) (c) (d) (e) (f) 

 

Figure 4.11: Example of restoring an underwater images with different color tones and
lighting conditions. (a) The original images. The restored results, and the corresponding
transmission maps obtained using: (b) [19], (c) [15], (d) [17], (e) [18], (f) the GDCP
method. The original images come from [59], and [16]. Note that it is better to view
this figure on a screen.
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Figure 4.12: Terrestrial images for quantitative testing. The images are from [6,7,10,11],
and Google Images.

Figure 4.13: Underwater images for quantitative testing. The images are from [16, 19,
59], and Google Images.



Chapter 5

Conclusion and Future Work

For underwater image restoration, we have proposed to exploit image blurriness

and light absorption to estimate the background light, scene depth, and transmission

maps for underwater scenes with different color tones and lighting conditions instead

of using the DCPs or MIP, which only work for limited cases. Satisfying restored and

enhanced results were demonstrated. The proposed depth estimation works well for a

wide variety of underwater images.

For images degraded by light scattering and absorption, such as hazy, sandstorm,

underwater images, and dimly-lit images, we proposed to use the depth-dependent color

change, scene ambient light differential, and adaptive color-corrected IFM to better

restore them. We first analyze the depth-dependent color change of the input image to

measure scene depth for ambient light estimation. With the estimate of ambient light,

the scene ambient light differential is calculated to estimate scene transmission. Lastly,

the input image is restored based on the adaptive color-corrected IFM. This unifying

framework was demonstrated to work for a wide variety of degraded images with different

color tones/casts, contents, and lighting conditions

There are several possible future directions to extend our work as follows.

69
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1. To extend image restoration to video restoration, instead of directly applying an

image restoration approach to each frame of a video, we may use temporal redun-

dancy between frames to reduce computation costs. If an IFM-based restoration

approach is adopted, ambient light should be unchanged if the lighting condition

remains the same. Thus, it is unnecessary to estimate it for each frame. Transmis-

sion for the background should also tends to change only slightly from frame to

frame.

2. Even though the proposed generalized DCP works for a wide variety of different

degraded images, it will still fail for a scene that violates the underlying assumptions

of the DCP. For example, suppose a white object exists in a close scene of a hazy

image where red, green, and blue lights increase as the depth increases. Based on

the DCP, the object will be wrongly regarded as being far. To resolve this problem,

we may combine image blurriness with the DCP to increase accuracy of depth

estimation.
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