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abstract of the dissertation

The Effects of Numerical Scheme Resolvability for Large-Eddy Simulations

by

Ayaboe Edoh

Doctor of Philosophy in Aerospace Engineering

University of California, Los Angeles, 2017

Professor Ann R. Karagozian, Chair

The dissertation addresses the formulation of Large-Eddy Simulations (LES) with

direct consideration of a base finite difference scheme, and with the intent of reduc-

ing numerical error influences on the closure model and ultimately the solution.

As such, spectral characteristics of the explicitly-defined LES filter are considered

with respect to the discretization method’s spectral accuracy (i.e., resolvability).

Analysis and development of discrete filtering stencils is undertaken, placing em-

phasis on the ability to specify desired scale-separation (e.g., cut-off wavenumber

and scale-discriminant attenuation) relative to the computational grid. Assess-

ment of the LES procedure is preceded by the establishment of a suitable base

scheme, comprised of high-order discretizations and the addition of stabilization

presented in a filter-based artificial dissipation form. Subsequent robustness and

preservation of the overall solution accuracy is achieved by tuning the dissipation

according to the dispersion characteristics of the underlying numerical method

and seeking to deliberately remove the effects of discretization error. Extension

to LES is then established by properly defining the explicit filter in relation to

these numerical characteristics. Effectiveness of the procedure is evaluated by

means of a priori and a posteriori inspection of turbulence calculations for the

Burgers and Navier-Stokes equations, wherein the impacts of discretization and

filter cut-off are assessed in light of scale-similarity and “perfect” (i.e., a DNS-

ii



based closure) modeling. Results demonstrate the benefits of employing mutually

tuned high-order discretizations and filters in the limit of the idealized “perfect”

model, yet highlight the likely possibility of modeling error overshadowing such

gains when actual closures, such as scale-similarity models, are used. In an at-

tempt to enhance the scale-similarity models considered herein, the filter-based

artificial dissipation is employed in order to enforce the prescribed LES field, and

is shown to reduce overall model error. Meanwhile, its use is shown to be bene-

ficial even in the presence of “perfect” modeling, wherein the dissipation can be

tuned to specifically target discretization errors.
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CHAPTER 1

Large-Eddy Simulations

The need to study physical phenomena in engineering systems has seen the in-

creased use of numerical simulations as a complement to experimental efforts. The

ability to specify test conditions and interrogate the flow-field permits one to by-

pass diagnostic and facility challenges that would otherwise hinder investigating

some of the taxing regimes considered in engineering efforts. These include areas

such as turbulence and reactive flow, along with the strong instabilities that can

arise from their coupling (Harvazinski et al., 2015).

Advancements in computing power and resources have allowed researchers to

make fundamental insights into these crucial areas by means of fully-resolved

computations, (i.e.: Direct Numerical Simulations, DNS) (Kim et al., 1987; Polud-

nenko and Oran, 2010; Lagha et al., 2011). However, the large disparity in scales

that exist even in moderate- to high-Reynolds Number (Re) flows typically rel-

egates these efforts to simplified canonical configurations. The need to provide

both fundamental and predictive information for the design of practical systems

at high Reynolds numbers – which introduce complexities pertaining to both geo-

metric and physical elements – has motivated the development of under-resolved

formulations that are capable of approximating the full flow field. Part of this

class of methods is the Large-Eddy Simulations (LES) methodology, in which one

designates the scales to be computed and seeks to model influences of the neglected

portion of the field through so-called closure terms to the governing equations. In

most cases, one chooses to remove the small-scales from the calculation, believ-
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ing these to exhibit universal characteristics, as in the case of turbulence. The

premise then suggests the existence of tractable and relatively general model clo-

sure forms. In essence, the intention of LES constitutes an indirect calculation to

the full problem, designed to render the computational workload manageable.

While the formulation for LES and its subsequent governing equations is typ-

ically associated with a low-pass filtering of spatial scales, it may also include

temporal filtering. In this way, one may recover the Reynolds-Averaged Navier-

Stokes (RANS) representation by considering a sufficiently large temporal filter

width (Pruett, 2000; Pruett et al., 2003). RANS has proven to be a computation-

ally efficient tool for engineering use (Hirsch and Tartinville, 2009; Corson et al.,

2009); however, the fact that the equations implicitly solve for mean quantities

makes it such that one may not be able to capture important time-sensitive phe-

nomena. These shortcomings are generally explained by the fact that RANS im-

plicitly models all scales, which may obfuscate important dynamics. As a response

to this, one may thus consider reducing the temporal filter width, eventually re-

covering an Unsteady-RANS formulation (Speziale, 1998). Again, the utility of

such a formulation needs to be judged relative to the dynamics one hopes to cap-

ture. In classic notions of turbulence where the spatial stiffness may dominate

its temporal counterpart, the more traditional tendency of filtering relative to the

spatial dynamics in LES may play the implicit role of employing the model con-

tributions conservatively1. Nevertheless, the ability to specify the resolved versus

modeled components – either spatially, temporally, or both – renders the LES

formalism an attractive option for investigating a broad range of problems.

The various performances achievable by LES are largely anticipated by the as-

1The spatio-temporal nature of the fluid equations results in frequency and wavenumber
cut-offs being related; in this way, filtering in space implies a temporal filtering (Garnier et al.,
2009). In general, numerical restrictions on time-step sizes make it such that one is resolved
well-enough relative to physical time-scales, thus corresponding to filter-to-grid ratios above
unity in time.
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sumptions employed in deriving the governing equations (e.g., temporal filtering

with long-time averaging in order to recover RANS-like behavior). The conse-

quences imposed by the underlying assumptions can then be seen to reside within

the influence of the model terms. In this way, proper representation of the closures

is paramount to achieving the intended predictive capabilities of the method. This

has naturally spurred a deep interest and a need to develop suitable models, either

by phenomenological (i.e.: functional) approaches or from a symmetry-preserving

(i.e.: structural) standpoint (Sagaut, 2006). Also increasingly recognized, how-

ever, is the interplay of the different sources of error within LES, namely: 1)

projection error as it pertains to representing the continuous field in a discrete

manner (e.g., nodal schemes); 2) model error as it relates to estimating the behav-

ior of the closure terms; and 3) discretization error as it affects calculation of the

resolved scales. As a result, the continual advancement of LES for accurate and

predictive calculations calls for a somewhat holistic perspective in the formulation

of the overall approach. The current research effort thus seeks to investigate some

of the inter-related consequence of these elements, notably focusing on the role

that numerical discretization error plays in affecting the accuracy of the overall

LES formulation.

1.1 Consequences of Numerical Error

As noted above, the suitability of the closure model in LES is fundamental

to retrieving the expected dynamical predictions. However, another significant

consideration is the influence of numerical error on the computational results.

This is particularly true when considering “coarse-grid” LES, in which case even

the smallest resolved scales may exhibit non-negligible dynamical energy. These

high, grid-relative wavenumbers can become contaminated by discretization er-

ror. When considered in the absence of sufficiently well-resolved diffusive effects,
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the lingering inaccuracies may then affect the model performance, which typically

relies on resolved-scale information.

The work of Ghosal (1996) performs a priori type analysis in order to esti-

mate the dynamical contributions of numerical error (i.e.: truncation and alias-

ing) relative to model terms derived from statistical closure theory. The study

shows the latter to be overwhelmed in typical LES implementations that presume

the filter width to be identical to the mesh grid (i.e.: grid- or implicit-filtering).

Ghosal furthermore notes that low-order methods generally produce large trun-

cation error but low aliasing error; meanwhile, the converse is highlighted to be

the case for high-order discretizations. Kravchenko and Moin (1997) perform a

posteriori computations that confirm the analysis of Ghosal, furthermore noting

the impact of different discrete derivative representations (e.g, divergence versus

skew-symmetric, rotational, or advection forms of the convective operator) on

the non-linear stability of the methods (Blaisdell et al., 1996). Moreover, the

linear analysis of Geurts and van der Bos (2005a) interprets the influence of dis-

cretization error as inducing high-pass effects on the equations, which alludes to

the well-established notion that the numerical method inherently filters the LES

solution.

Notable, particularly with respect to efforts in simulating turbulent reactive

flow, is evidence of heightened sensitivity of the LES solution to the numerical

scheme. Cocks et al. (2015) compare the performance of different algorithms, each

employing identical closure models for the simulation of a bluff-body stabilized

flame. In the case of non-reactive flow, given sufficient resolution, the codes are

shown to be in agreement with each other and with the experimental data. When

reactions are enabled, however, each implementation is seen to be qualitatively

different. Furthermore, none are seen to match the reference data. This perceived

increase in complexity is somewhat surprising since the span of turbulent scales is

typically presumed to shrink due to the lower Reynolds number of reactive flow.
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Nevertheless, the test case underscores the potential for numerical errors to be

increasingly consequential in reacting LES.

A proposed response to the issues of discretization error has been the adoption

of explicitly-filtered LES formulations, which consider the filter width to be larger

than the mesh grid support. Analyses confirm that the dynamical influence of

numerical errors is successfully diminished relative to model contributions. Such

an approach, however, is not popularly used due to perceived inefficiencies when

considering the computational degrees of freedom (DOF) required to resolve a

given filter width. For example, a filter-to-grid ratio (FTGR) of two corresponds

to a factor of sixteen in computational overhead (e.g., 24, considering a three-

dimensional domain and the time-step being proportionally scaled according to

a CFL ∼ 1 condition). In some instances, explicit-filtering has been shown to

be outperformed by implicit-filtering, likely owing to a fortuitous cancellation of

numerical and modeling errors in the latter implementation (Lund, 2003). Grid-

filtering formulations do not, however, provide a reliable means by which one

can assess the overall algorithm accuracy, both in terms of the numerics and the

modeling. This is in contrast with the explicitly-filtered context which allows for

grid-converged LES (Bose et al., 2010; Radhakrishnan and Bellan, 2012). In such

a case, one chooses to keep the filter-width constant while decreasing the grid

resolution, thus making the numerically-error-prone modes less relevant2.

While advancement of LES is directly tied to model development, the impact

of taking the numerical treatment into consideration is two-fold: 1) minimizing

the influence of discretization error on the resolved scale, which would naturally

improve the LES solution; and 2) from the standpoint of model development,

2Fixing the LES filter while reducing the grid leads to grid-converged LES; the anticipated
model contribution does not change yet succumbs to less numerical artifacts. On the other
hand, if the filter width is reduced in tandem with the grid (as for implicitly-filtered LES),
one eventually approaches the DNS limit; in this case, while the numerical errors are reduced,
the model contribution has also decreased and it becomes difficult to ascertain its fundamental
properties and limitations.
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removal of numerical artifacts in order to present a more clear interpretation of

the model performance. As previously mentioned, employing filter-to-grid ra-

tios above unity can enforce the separation of poorly-resolved scales from the

model contribution; yet, this can come with non-negligible computational over-

head. Utilizing high-order or spectrally-optimized schemes such as Dispersion

Relation Preserving (DRP) stencils (Tam and Webb, 1993) allows a larger por-

tion of the resolved scales to be properly represented, thus reducing the need

for large filter-to-grid ratios3. This increased resolvability should be particularly

useful in the case of LES (Fauconnier et al., 2009) – which is inherently under-

resolved. But while one may target a particular cut-off or filter width, these

definitions are somewhat ambiguous. As a result, it becomes important to specify

the spectral attenuation properties of the LES filter, which requires an under-

standing of its construction and manipulation. By employing an appropriately

scale-discriminant cut-off, one may further ensure maximization of the resolved

LES field given a desired filter-to-grid ratio. Selection of the filter is known to

be reflected in the modeling but is also important for taking full advantage of a

high-accuracy discretization. And so, this consideration also plays a role in the

perceived efficiency of the explicit LES implementation. All in all, the aim resides

in the idea of tuning the LES formulation (e.g., filter type, filter-to-grid ratio, etc

...) to the spectral capability or resolvability of the base scheme.

1.2 Focus and Outline of Current Studies

The present work aligns itself with efforts towards the implementation of high-

order numerical schemes within the Cartesian component of a dual-mesh frame-

3Additional care should also be taken with respect to the potential of aliasing error; consider-
ations such as the “3/2” rule (Orszag, 1971), and analogous concepts for the cubic non-linearities
present in the compressible fluid equations, thus constitute a second guideline by which to select
an appropriate filter-to-grid ratio.
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work, intended for internal reactive flow LES calculations. As a result, the current

work seeks to understand how best to leverage high-accuracy discretizations for

LES and the eventual development and validation of compressible model closures

geared towards turbulent reactive flows. Focusing within this Cartesian realm,

uniform and periodic domains are considered for a finite difference implementa-

tion, the simplicity of which provides a clean background for understanding the

respective consequences of the numerical scheme, the LES model, and the selected

filter formulation.

In an incremental approach towards these motives, the thesis first focuses

on the characterization of numerical schemes; it includes the construction and

spectral analysis of discrete filtering stencils in Chapter 2, the formulation of

filter-consistent stabilization methods in Chapter 3, and a study of the pairing

of the stabilization and the high-order numerical schemes in Chapter 4 for long-

time, temporally-accurate evolution of non-linear flow solutions. Next, the thesis

inspects the impact of the numerical base scheme on LES calculations in relation

to the filter formulation and model choice. Notably, Chapter 5 considers LES of

the 1D Burgers equation as a prototype of the fluid equations and provides a priori

and a posteriori analysis, assuming “perfect” and scale-similarity type closures.

Chapter 6 then extends these lessons to the compressible Navier-Stokes equations

(NSE) and uses the simulation of the Taylor-Green vortex within an explicitly-

filtered LES framework as the testbed. Finally, Chapter 7 provides summarizing

remarks and future work directions.
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CHAPTER 2

Discrete Filtering Schemes

This chapter was taken with some modifications from the AIAA conference pro-

ceedings article “Discrete Filtering Formulations for Large-Eddy Simulation” (Edoh

et al., June 2016).

2.1 Background

Fundamental to the concept of LES is the notion of scale-separation, which is

responsible for decomposing the full solution field into the “large eddies” (to be

resolved) and the small scales (to be modeled). This delimitation of content

may be expressed in different ways; however, the idea of low-pass filtering is

perhaps most common and intuitive with respect to the act of suppressing high-

wavenumber or high-frequency modes.

The manner in which the small-scales are removed can largely be understood

from inspecting the spectral response of the associated filter. The presumption of

a spectrally-sharp Fourier cut-off is abstractly desirable as it clearly truncates the

effective resolution without altering lower wavenumber content. As a consequence,

it furthermore relieves the LES model from needing to account for large-scale ef-

fects, which are influenced by the geometry; the tractability of modeling such

problem-dependent phenomena is improbable and would otherwise be contrary to

the idea of universal modeling in LES. An a priori type investigation by Stefano

and Vasilyev (2002), for instance, compare a model built from a spectrally-sharp
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filter to one that is built from a smooth top-hat filter. The study highlights a

reduced susceptibility to model error for the former, along with more accurate

representations of the energy cascade process. Such characteristics emphasize the

utility of employing a sharp filter (in the spectral sense). Unfortunately, prac-

tical implementation of the Fourier filter reveals some difficulties. For example,

a priori studies have shown low correlations between Smagorinsky and Scale-

Similarity models and true closures when employing a spectrally-sharp filter (Liu

et al., 1995). In addition, a posteriori model implementations meant to represent

the associated cross-scale interactions incur difficulties. For example, dynamic

model procedures utilizing spectral-sharp test-filtering have demonstrated poor

performance (Liu et al., 1994). A possible explanation for the lack of success –

particularly with respect to models of the eddy-viscosity type – in being able to

represent the effects of the sharp-spectral filter may be related to their inability to

properly emulate the exponential order of the spectral filter (Pruett and Sochacki,

2001). An even more practical hinderance to the use of Fourier spectral filtering

relates to geometric limitations, namely the need for homogeneous (i.e., periodic)

boundaries and a uniform grid. Such requirements largely limit general use. Dis-

crete filtering is therefore presented as a simple and thus attractive alternative

that also provides tractable design of the spectral response characteristics.

Discrete filtering operates in physical space by using linear combinations of

nodal solution values. This allows one to achieve localized spectral attenuation

that also accommodates implementation in complex geometries. Nodal-based ele-

ment methods for instance (e.g., Spectral Difference, Discontinuous-Galerkin etc)

are globally unstructured; however, one can utilize the structured inter-element

node arrangement in order to systematically derive filter stencils – the respective

weights of which can be pre-calculated based on the available support and de-

sired spectral response traits (Mirzaee et al., 2012; Lodato et al., 2013). Discrete

filtering on fully unstructured meshes is also possible, albeit more algorithmi-
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cally expensive and challenging with respect to manipulating spectral response

characteristics. Marsden et al. (2002) leverage local interpolation functions, while

Haselbacher and Vasilyev (2003) provide a more efficient procedure based on least-

squares gradient reconstruction. Regardless, in most cases, specification of the

spectral response is determined by a shape optimization procedure that yields

the proper filter stencil coefficients (von Storch, 1978; Lele, 1992; Vasilyev et al.,

1998; Bogey and Bailly, 2004). Even on uniform structured grids, such optimiza-

tion techniques have been used to derive suitable high-order boundary closure

schemes (Gaitonde and Visbal, 2000) or to generate self-similar schemes for con-

sistent multi-resolution LES studies (Radhakrishnan and Bellan, 2012).

In the special case of uniform grids, one may avoid further complications asso-

ciated with such shape optimization procedures by employing particular “families”

of filter stencils that are easily tunable. The predetermined manipulation of their

properties provides greater flexibility, which then simplifies their use in applica-

tions such as dynamic adaptation of spectral response characteristics, either in the

spatial or temporal sense. With regards to such filter schemes, of note is the class

of Purser filters (Purser, 1987), from which the Shapiro (Shapiro, 1971, 1975) and

binomial stencils (Jahne) emerge for use as optimal low- and high-pass discrete

filters, respectively. Also useful are compact Padé-type implementations such as

the scale-discriminant Tangent stencils and the naturally invertible Sine stencils

(Raymond and Garder, 1991). The following sections detail the respective formu-

lations of these and other stencils, relating them to the general construction of

discrete filters, and furthermore evaluates their spectral response characteristics

with the intended goal of understanding how to apply such forms in LES.
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2.2 Construction

First considering the one-dimensional (1D) case for simplicity, a general explicit

discrete stencil can be written as,

ūi =
K∑
r=J

brui+r . (2.1)

Such a weighted-sum perspective thus draws natural links between discrete fil-

tering and notions such as averaging or interpolation. The above can then be

summarized as a general operator,

ū = G{u} , (2.2)

where u is the input signal and ū is the filtered result. In order to understand the

spectral consequences of these stencils, it is helpful to consider the transfer func-

tion of the operator which may be derived by substituting the following Fourier

representation of the solution,

u(xi) =
∑
k

û(k)eıkxi , (2.3)

into Equation 2.11. In this way, the effect of the filtering operation in Equation

2.2 on the solution modes can be understood as a simple multiplication of the

filter’s transfer function with the original signal in Fourier space, F{G{u}} ∼
Ĝ(k)·û(k). Depending on the stencil coefficients br, the filter transfer function may

be complex. Therefore, the dissipative and dispersive effects on the input function

are understood by re-rewriting the transfer function in complex exponential form,

Ĝ = Aeıφ ,

where

 A = |Re{Ĝ}|+ |Im{Ĝ}| ,
φ = tan−1{Im{Ĝ}/Re{Ĝ}}

. (2.4)

1Note: The imaginary number, ı =
√
−1 is used in order to avoid confusion with the index i.
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As such, A corresponds to growth effects and φ corresponds to phase effects.

From this perspective, it then becomes evident that successive applications of the

filter (e.g., ū = G{G{...{u}}}) can be summarized as ˆ̄u = [Ĝn(k) · û] for n applica-

tions of the filter. Consequently, the overall impact on amplitude is geometric (i.e.,

Atotal = An) while that on the phase is additive (i.e., φtotal = n ·φ). Implicit in this

type of analysis of the resulting transfer functions is the assumption that the sten-

cil in question is applied globally – which furthermore supposes a constant mesh

size. Proper interpretations of hybrid stencils may require alternate methods.

Jordan (2007), for example, performs a composite modified wavenumber analysis

of boundary and interior point stencils on a uniform mesh and demonstrates dif-

ferent predictions on spectral performance for the overall coupled hybrid system

compared to predictions derived from inspection of the schemes individually.

As mentioned, customization of the spectral characteristics can be achieved

via shape optimization, where error in the spectral transfer function is minimized

relative to a target response. Equation 2.5 shows how this is done relative to the

L2 energy norm, L2

min
br

∫ kr,max

kr,min

[
R{Ĝ(k)− Ĝt(k)}

]2

dk +

∫ ki,max

ki,min

[
I{Ĝ(k)− Ĝt(k)}

]2

dk , (2.5)

where Ĝt(k) is the target spectral response shape. The optimization is then taken

with respect to the stencil coefficients such as to minimize the functional (see

Appendix C of Vasilyev et al. (1998) for details). Further control in the design

process is achievable by specifying the bounds of interest [kmin, kmax] or by increas-

ing error sensitivity through a logarithmic change of variables (Bogey and Bailly,

2004). As an alternate to the energy norm, one may consider an infinity norm and

employ optimization strategies based on the Remez multiple exchange algorithm,

as done by Linders and Nordstrom (2015) with respect to the efficient derivation

of new optimized dispersion-relation preserving (DRP) finite difference schemes.

A more traditional expression for filtering in the context of LES is the convo-
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lution of the input signal with a particular kernel, G(x),

ū(x) =

∫
[G(x− y) · u(y)] dy, (2.6)

with

∫
G(y)dy = 1 . (2.7)

Equation 2.7 is a normalization that calls for the filtering operation to preserve

constant modes. Some well-used functions include the top-hat, Gaussian, and

spectral-sharp filter kernels (see Table 6.1 for a list of their physical and spectral

space operators in the instance of symmetric applications). Written in the con-

volution form above, the filtering operation is then executed by evaluating the

corresponding integral. In this respect, using kernels such as the top-hat (or other

compact generalizations such as the B-splines used in the Smoothness-Increasing

Accuracy Conserving methods (Mirzaee et al., 2012)) limits the need to introduce

possible errors associated with forcibly needing to truncate the kernel. In the case

where the kernel is non-compact, one typically chooses to truncate the evaluation,

as is typically done with the Gaussian function, which features sufficient physical

space decay for such a suitable approximation to be made.

Figure 2.1 plots the respective physical and spectral functions for the sym-

metric forms of the Gaussian, top-hat and spectral-sharp kernels. Figure 2.1(a)

highlights their spatial compactness (or lack thereof), while Figure 2.1(b) demon-

strates their performances with respect to achieving the spectral scale separation

abstracted in the idea of LES. As evident, the top-hat filter is convenient to use

in physical space but is highly oscillatory and slowly-decaying in spectral space

because of its sinc function representation. The direct opposite is true of the

spectral sharp filter which is a top-hat function in wavenumber space yet is a sinc

function in physical space. On the other hand, the Gaussian kernel maintains

its functional structure in both physical and spectral space and shows suitable

decay characteristics, although it is nowhere as sharp as the spectral function in

wavenumber space.
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filter G(x) Ĝ(k) = F{G(x,∆)}

Gaussian
(

6
π∆2

) 1
2 exp

(
−6x2

∆2

)
exp

(
−k2∆2

24

)

top-hat

 1/∆ if |x| ≤ ∆/2

0 otherwise

sin( 1
2
k∆)

1
2
k∆

= sinc
(

1
2
k∆
)

spectral cut-off 1
πx

sin
(
πx
∆

)
= 1

∆
sinc

(
πx
∆

)  1 if |k| ≤ π/∆

0 otherwise

Table 2.1: Physical kernel and spectral function representations of symmetric filter

kernels.
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Figure 2.1: Gaussian, Top-hat, and Spectral Sharp symmetric filters with filter-

width ∆ = (2∆x) from Table 6.1: a) Physical space kernel G(x), Spectral space

function |Ĝ(k)|.

For cases where the input signal u is a known function (e.g., finite element

type numerical schemes express the solution variable in terms of known closed-

form bases), the convolution integral in Equation 2.6 can be derived analytically

(i.e., quadrature-free). Usually, however, the convolution operation is estimated

14



by a numerical quadrature rule which directly reverts the integral expression to

the discrete form introduced in Equation 2.1. Important to note are the possible

oversights that may stem from focusing on the design and characteristics of the

filter kernel without taking into account the quadrature rule for numerical integra-

tion of the convolution integral. For instance, Figure 2.2 plots two interpretations

of a symmetric top hat kernel with filter width ∆ = (2∆x). The plot compares

the exact spectral representation with the transfer functions recovered when uti-

lizing either Simpson’s rule ([b−1, b0, b1] = [1/6, 2/3, 1/6]) or the Trapezoidal rule

([b−1, b0, b1] = [1/4, 1/2, 1/4]) to evaluate the convolution integral discretely. No-

tably, the quadrature choice can have a strong impact on the spectral character-

istics of the effective filter operation, particularly towards high wavenumbers. It

can thus be advantageous to consider the discrete filter representation of Equation

2.1 directly in order to anticipate such deviations in performance.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.8
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Figure 2.2: Spectral response for the top-hat filter assuming ∆ = (2∆x), com-

paring the exact representation versus discrete approximations to the convolution

integral utilizing Simpson and Trapezoidal quadrature rules.

Reconciling the discrete filtering stencils with the convolution form can be

accommodated by defining the associated kernel as a sum of dirac delta functions,

Gdisc(x) =
∑

r br · δ(x+ ∆xr). The coefficients br can thus be seen to holistically

contain quadrature, kernel, and basis function information (in the case of finite
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element schemes) relative to a discrete approximation of the filter convolution

equation. Consequently, understanding how to prescribe the discrete filter weights

is central to the construction and manipulation of transfer function characteristics.

A preliminary approach in seeking to define these coefficients is to require the

discrete filtering operation to preserve a specific set of monomials:

xm =
K∑
r=J

br

∫
[δ(xr − y) · ym] dy, where xr = x+ ∆xr . (2.8)

Substituting a useful change of variables (z = xr− y) and evaluating about x = 0

(Mirzaee et al., 2012), one recovers the constraints for the coefficients:

xm =
K∑
r=J

br

∫
[δ(z) · (x+ ∆xr − z)m(−1)] dz , (2.9)

→ 0m =
K∑
r=J

br(∆xr)
m (taking x = 0) . (2.10)

Closer inspection of these conditions reveals them to correspond to eliminating

high-order terms (∼ ∂mu) in the Taylor series expansion of ū with respect to the

unfiltered variable, u. The first condition (x0) guarantees that constant modes are

preserved and also communicates that ū is a zeroth-order derivative of u – and

thus essentially an interpolated variable of the input. The preservation of higher

order monomials by the filter convolution can then be seen as demanding a higher

order interpolation of the input signal, such that ū = u+O(∆xM). An equivalent

derivation of the filter order is available by considering the Taylor-series expansion

of the stencil (Equation 2.1) and utilizing the spectral response of the filter Ĝ(k)

to determine the associated series coefficients (Pruett and Sochacki, 2001):

ū =
∞∑
m=0

dm(∆x)m∂mu , dm ≡
∂mk Ĝ(k)

∣∣
k=0

m!
(√−1

)m . (2.11)

In other words, the number of vanishing derivatives of the spectral response at

k = 0 corresponds to the filter order.

Also interesting to note is that Equation 2.10 can be viewed as a set of discrete

moment conditions. This is consequential for such things as commutation error
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in LES, which results from ignoring the effects of differentiating spatially-varying

filters (e.g., Ecom = ∂u−∂ū 6= 0 for non-constant filter widths, ∆(x)). Such effects

are typically excluded in LES modeling but can be substantial depending on the

spatial variation of the filter width. As an attempted relief to such concerns, it

has been shown that the magnitude of commutation error decreases in accordance

with the number of vanishing moments of the filter kernel (Vasilyev et al., 1998).

Recalling that the monomial conditions of Equations 2.9-2.10 simultaneously ex-

press discrete moment relations as well as Taylor series coefficients thus leads one

to conclude that commutation error decreases with the use of high-order filters2.

The top-hat and Gaussian filters can both be shown to be second-order; mean-

while, the spectral sharp filter is essentially of infinite order. Through the design

of the discrete filter coefficients, one is able to control the desired order of the ker-

nel and also control the possible influence of commutation errors on the solution

– typically judged relative to numerical errors inherited from the base scheme.

Further specification of the filter stencil coefficients is then typically made

relative to desired spectral characteristics such as the elimination of odd-even

modes (i.e., Ĝ(kNyquist = π/∆x) = 0) or the adherence to an effective cut-off

frequency (i.e., Ĝ(k1/2) = 0.5) (Lund, 1997). These requirements appear as ad-

ditional constraints to the optimization procedure of Equation 2.5. Figure 2.3

shows the transfer function of a five-point, fourth-oder biased discrete filter sten-

cil (J = −1,K = 3) with coefficients listed in Table 2.2. It is apparent that

the resulting response has an induced phase component due to the stencil asym-

metry. Fortunately, these misgivings are relegated to high wavenumbers where

there is also sufficient damping from the scheme. Another observation is the pres-

2The observation that commutation error decreases with filter order is typically used to
rationalize the subsequent neglect of commutation modeling for high-order filters; however,
(Geurts and van der Bos, 2005b) importantly shows that the magnitude of the typical non-linear
closures (i.e., uu − ūū) is also reduced with respect to filter order and that both contributions
(non-linear and commutation) are of similar magnitude. Therefore, the idea of modeling one
without the other loses validity.
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ence of overshoots (|Ĝ| > 1), which suggests modal growth and thus can threaten

solution stability3. These may be reduced by establishing a suitable optimiza-

tion constraint that would enforce monotonically decreasing responses such that

∂kĜ(k) ≤ 0. Nevertheless, such biased stencils, are typically used as boundary

closure schemes; therefore, the unwanted phase and growth effects are expected

to be localized. Sensitivity of the interior solution accuracy to boundary infor-

mation, however, may nevertheless be consequential. For such considerations,

methods such as eigenvalue matrix analysis (Kim, 2010) or energy estimates (e.g.,

Kreiss Theory (Larsson and Gustafsson, 2008) may provide additional insights on

global stability properties relating to the coupling of different stencils. Further-

more, the optimization procedure provided in Equation 2.5 may be used to reduce

phase effects while maintaing the desired spectral damping properties, as shown

in Vasilyev et al. (1998).

Ĝ(0) = 1; Ĝ(π/∆x) = 0; ∂mk Ĝ(0) = 0 (for m = [1, 2, 3]) (2.12)

b−1 b0 b1 b2 b3

1/16 3/4 3/8 -1/4 1/16

Table 2.2: Biased stencil coefficients of fourth-order biased stencil from Table 5

(with αf = 0) of Gaitonde and Visbal (2000).

While the development so far has remained general, the subsequent analysis

will focus on uniform grid arrangements as this relates to the intended Cartesian

portion of the dual-mesh code in development. Conclusions may also be valid

in a transformed computational space. The fact that the filtering at hand is

meant to achieve scale-separation for LES furthermore requires the convolution

operator to be dissipative to leading order (rather than dispersive) – and thus the

3Of note are the biased “de-centered” explicit Shapiro stencils of Falissard (2015) which can
achieve 2R+ 1 order and have a monotonic modulus.
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Figure 2.3: Fourth-order biased stencil from Table 5 (with αf = 0) of Gaitonde

and Visbal (2000).

corresponding stencils are required to be at least of order even{M}. Most ideally,

the filter operation is expected to be purely dissipative with no phase error(*φ = 0)

which suggests the use of symmetric and unbiased stencils, where bj = b−j. In

such circumstances, it is worthwhile to consider established families of discrete

filter stencils for the design of spectral characteristics. These provide sufficient

flexibility in prescribing such things as cut-off and high-wavenumber damping, in

addition to controlling the level of scale-separation. The following sections thus

explore explicit and implicit (i.e., Padé) discrete filter stencil families, offering

useful generalizations and quantifying their spectral performance in light of their

anticipated use in explicitly-filtered LES formulations.

2.3 Explicit Stencil Families

Explicit discrete filtering schemes present a simple way of calculating filtered quan-

tities, ū, based on surrounding input values, u. Ascribing to the call for a purely

dissipative operator allows Equation 2.1 to be re-written as a symmetric stencil,

ūi = b0ui +
R∑
r=1

br · (ui+r + ui−r) , (2.13)
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with a transfer function,

Ĝ(k) = b0 +
R∑
r=1

2br · cos(rk∆x) , (2.14)

where

 cos θ = 1− 2 sin2(θ/2) ,

cos(rθ) = 2 cos[(r − 1)θ]− cos[(r − 2)θ]
. (2.15)

This representation can then be re-expressed in terms of dissipative difference

stencils by employing the trigonometric identities in Equation 2.15. By first rec-

ognizing that the second-order, narrow dissipative stencils satisfying,

δ2r
x = {δ2

x}r and δ2r
x =

∂2r

∂x2r
+O(∆x2) , (2.16)

have the following spectral function,

F{δ2r
x u} =

1

(∆x)2r
[(−4)r · sin2r(k∆x/2)] · û(k) , (2.17)

then the original stencil of Equation 2.13 can be re-written solely in terms of

dissipative differences:

ūi =

[
εEF,0 +

R∑
r=1

εEF,2r(∆x)2rδ2r
x

]
{ui} . (2.18)

This highlights the damping or attenuating effect of filtering and further provides

insight into how such discrete filtering stencils are relatable to artificial dissipa-

tion methods – useful as scheme stabilization agents (see Chapter 3). Evoking

differencing stencils also hints at differential filtering techniques (Germano, 1986;

Sagaut, 2006) which offer additional flexibility in filter implementations on un-

structured meshes through the solution of auxiliary equations (Mullen and Fischer,

1999; Bull and Jameson, 2016). Referring to the filtering in term of operators,

one can also re-write Equation 2.18 as,

ū = G{u} = [I +D]{u} , (2.19)

which makes further delimitation between the actions of scaling constant modes

by I and of differencing gradients by D. Modification of the latter is responsible

for tuning the dissipation characteristics.
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As previously noted, one would like to tailor the spectral characteristics of the

discrete filter scheme through selection of the stencil coefficients. Remembering

that constant modes should be preserved, it becomes evident that εEF,0 = 1. The

following section explores the specification of the remaining εEF,2r coefficients,

largely from a spectrally-motivated perspective. This is shown with respect to the

class of explicit Purser filter stencils; some useful generalizations are furthermore

offered for the manipulation of spectral properties.

2.3.1 Explicit Purser Filters

The explicit stencils of Purser (1987) draw inspiration from the fact that the

filter transfer function Ĝ(k) resembles the complement of a probability cumulative

distribution function (CDF) defined by FCDF (z) for the random variable z. The

shape of the CDF, in turn, is determined by its derivative: the probability density

(PDF) function fPDF (z). By selecting a polynomial-based PDF with finite or

semi-finite support (i.e., a one-sided distribution), one can then integrate and

write the corresponding CDF as a rational function. Subsequent derivation of the

associated spectral transfer function is achieved by a change of variables on the

integral limits. By using a suitable basis for these limits (e.g., F{δ2}), the filter

response will then be expressed in polynomials of the δ2 difference operator and

one can then easily identify the related coefficients εEF,2r.

Purser originally chooses the Beta PDF distribution (Johnson et al., 1994) as

a candidate, which has finite support over an interval [0, 1]. Employing proper

normalization, the Purser filter’s transfer function is written as,

Ĝ(k) = 1−
∫ ĝ`(k)

0

fPDF (z)dz , (2.20)

with,

fPDF (z) =
(CR + CS + 1)!

CR!CS!
zCR(1− z)CS and ĝ`(k) = sin2

(
k∆x

2

)
. (2.21)
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Substituting in the Beta distribution PDF as well as the change of variable into

the integral limits then gives the Purser filter as,

ĜPurser(k) = 1−[
(CR + CS + 1)!

CR!CS!

] CS∑
k=0

 CS

k

 (−1)k

(k + CR + 1)
sin2(k+CR+1)

(
k∆x

2

)
.

(2.22)

This can then be put in a difference form of as,

ūi =

[
1 +

R∑
r=CR+1

εEF,2r(∆x)2rδ2r
x

]
{ui} , (2.23)

with


εEF,2r =

[
(CR+CS+1)!
CR!CS !

] CS

r − CR − 1

( (−1)r−CR

r

) (−1
4

)r
CR ≥ 0 , Cs ≥ 0 , CR + CS + 1 = R

.

(2.24)

Several benefits arise from deriving transfer functions from a PDF distribution.

Firstly, the transfer function is guaranteed to be monotonic because the CDF

is strictly increasing; this is a reasonable requirement for achieving clear scale-

separation in LES. Secondly, distribution properties such as the median, mean,

variance and higher-order moments of the PDF are typically well understood in

terms of the available distribution parameters and provide natural insight into

characterizing and specifying such things as the effective cut-off frequency (kc) or

sharpness of the filter response. Assuming the effective cut-off frequency to be

kc = k1/2 such that |Ĝ(k1/2)| = 0.5, the median is sufficient to characterize the

filter width ∆1/2 = π/k1/2. The median for the Beta distribution can then be

approximated based on the PDF parameters:

sin2(k1/2∆x/2) ≈ CR + 2/3

CR + CS + 4/3
. (2.25)

This estimate of the median is valid for (CR, CS) ≥ 1, for which there is a 4% rela-

tive error; when (CR, CS) ≥ 2, the relative error of the expression further decreases

22



to a 1% (Kerman, 2011). Alternatively, Purser (1987) provides an asymptotic

measure based on the mode and mean of a lightly skewed unimodal distribution

that requires the assumption that both (CR, CS) are large.

Considering a fixed polynomial order R = CR + CS + 1 of the Beta distribu-

tion, one is able to generate a basis of response functions according to the pair of

[CR, CS] parameters. These schemes correspond to a set stencil size of (2R + 1).

The resulting bases can then be interpolated in order to produce intermediate

response shapes as required. In general, the CR parameter controls roll-off, while

higher values increases the range of low-frequency preservation as well as sharp-

ness. Meanwhile the CS parameter controls smoothness towards the odd-even

modes (k∆x) → π, and thus it works as a complement to CR. This behavior is

intuitively understandable by considering the PDF and noting that larger values

of CR shift the mean towards the upper limit of the bounds (i.e., high wavenu-

mers) while larger values of CS shift the mean towards the lower limit. With

respect to the difference form of Equation 2.23, it becomes evident that increas-

ing CS for a fixed R introduces lower derivatives δ2r<2R and results in reducing

the formal order of the filter according to the stencil’s Taylor-series expansion. In

other words, a Purser filter that has 2 ·CR vanishing discrete moments is of order

2 · (CR + 1) = 2 · (R−Cs). The case of [CR = R− 1, CS = 0] thus corresponds to

the maximal order filter given a set stencil size. Such maximal order stencils are

classically referred to as Shapiro stencils. Shapiro derived the associated br coef-

ficient analytically (Shapiro, 1971, 1975), and these have been re-discovered and

validated through the optimization efforts of Bogey and Bailly (2004). The class

of Shapiro filters approach an ideal low-pass response towards infinite order (i.e.,

as R→∞), wherein all modes are preserved with the exception of an eliminated

Nyquist frequency, kNyquist = π/∆. The associated Shapiro spectral response is,

ĜShapiro(k) = 1− sin2R(k∆x/2) . (2.26)

These filters are of order 2R and inherently build on the derivative operator
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F{δ2r
x } ∼ sin2r(k∆x/2). Also of note are the odd-numbered Binomial stencils

which correspond to the special case of [CR = 0, CS = R − 1] for the Purser

schemes. These stencils have spectral response,

ĜBinomial,odd(k) =
1

2R
[1 + cos(k∆x)]R , (2.27)

=
1

2R−1
[1− sin2(k∆x/2)]R , (2.28)

and are inherently second-order. They are built from averaging operators F{µ2r} ∼
[1+cos(k∆x)]r. The Binomial stencils can furthermore be used to approximate an

ideal high-pass response as R → ∞, thus serving as complements to the Shapiro

stencils (e.g., Ĝhigh-pass = 1−Ĝlow-pass). Figure 2.4 demonstrates the response char-

acteristics of the Shapiro filters, noting how an ideal low-pass filter is approached

as the filter order 2 · (CR + 1) increases. Meanwhile Figure 2.5 plots the transfer

function of odd-stenciled Binomial filters, confirming these to be second-order and

suggesting their complement (1− Ĝ) to approach and ideal high-pass response.

The Shapiro and Binomial filters are special cases of the Purser stencil; how-

ever, it is useful to understand the general impact of the parameters [CR, CS] on

the transfer function. Figure 2.6 plots response functions for the basis R = 3, cor-

responding to a stencil width of 7. Figure 2.6(a) shows how the effective cutoff is

affected: as CR decreases, CS increases accordingly and producers lower cut-offs.

But while plotting the response in terms of (k∆x) suggests that the filter sharpness

main remain unchanged, the filter width is inversely proportional to wavenumber

which means that as the cut-off decreases, more scales are attenuated for a given

change in θ = (k∆x). Therefore in order to truly preserve scale-discriminance,

the spectral response would need to become more sharp as kc → 0. Figure 2.6(b)

plots the transfer function error |1−Ĝ(k)| on a logarithmic scale and demonstrates

how including lower derivates in the difference expression of Equation 2.23 (i.e.,

higher values of CS) reduces the formal filter order and thus reduces preservation

properties. Figure 2.7 plots the same information for the basis R = 6. Intuitively,
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Figure 2.4: Shapiro filters (see Equation 2.26) of order 2 · (CR + 1) corresponding

to Purser filters with parameters [CR, CS] = [R− 1, 0]: a) Growth factor |Ĝ|, and

b) Growth factor error |1− Ĝ|.
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Figure 2.5: Binomial filters (see Equation 2.27) of second order corresponding to

Purser filters with parameters [CR, CS] = [0, R− 1]: a) Growth factor |Ĝ|, and b)

Growth factor error |1− Ĝ|.
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it shows how larger stencil widths can generate a larger set of basis response func-

tions that also cover a wider range of cut-offs. The increase in the density of the

bases furthermore reveals that one can interpolate and yield intermediate transfer

functions that better retain the sharpness qualities of the individual schemes.
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Figure 2.6: Purser filter response basis for R = (CR + CS + 1) = 3 : a) Growth

factor |Ĝ|, and b) Growth factor error |1− Ĝ|.
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Figure 2.7: Purser filter response basis for R = (CR + CS + 1) = 6 : a) Growth

factor |Ĝ|, and b) Growth factor error |1− Ĝ|.

Of further note is the way in which all transfer functions derived thus far
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inherently eliminate odd-even modes, Ĝ(kNyquist) = 0. This is a consequence of

the Beta distribution having finite support and the fact that Equation 2.20 is

integrating across the full interval during the derivation of the discrete stencils.

In order to alter the high-wavenumber damping of the scheme, one can choose

to either re-scale the CDF (i.e., the integral in Equation 2.20) or to re-scale the

integral limits. Assuming a re-scaling factor µ ∈ [0, 1], the latter approach results

in modified coefficients ε′EF,2r≥2 = µr · εEF,2r≥2, while the former technique is

more simple and yields ε′EF,2r≥2 = µ · εEF,2r≥2. Re-scaling the CDF is chosen

as the preferred method; the impact of such modifications is more intuitive and

insensitive to the underlying PDF distribution. In this way, the re-scaled operator

can simply be expressed as,

ū = [I + µ · D]{u}. (2.29)

2.3.1.1 Generalized Explicit Purser Filters

Central to the derivation of Purser filters are two things: 1) the selection of an

appropriate PDF function, and 2) properly transforming the integral limits of

the CDF in order to parameterize the response in terms of spectral functions

with known difference representations. As a result, manipulating either of these

components can lead to new generalizations of the Purser filters.

For example, one could derive a PDF shape – which implicitly controls the

derivative of the filter’s spectral response – and use Lagrange interpolation in order

to re-write the distribution as a polynomial function. This potentially provides

an alternate way of designing custom filter transfer functions. In this way, cut-off

and sharpness properties can be manipulated. Alternatively, one could use such a

procedure in order to derive self-similar stencils that maintain the proper damping

characteristics between grids of different resolution, useful for conducting studies

of grid-converged LES (Radhakrishnan and Bellan, 2012).
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Regarding the second suggestion provided above, one can alternatively seek

to manipulate the integral limits. For instance, a general high-order term such

as ĝ`(k) = [
∑

i≥1−ε2i sin2i(k∆x/2)] could be used, permitting that ĝ` ∈ [0, 1].

Such transformations could be used to cleverly modulate how the CDF behaves

with respect to wavenumbers k, thus allowing for additional customizability of the

filter response shape (Edoh et al., June 2016). A natural inclination is to use the

traditional Purser filters as the integral limit. Defining the integral limit function

as a traditional Purser filter of parameters R` = CR` + CS` + 1, the resulting

generalized Purser stencil then reads,

ĜPurser, gen(k) = 1−
[

(CR + CS + 1)!

CR!CS!

] CS∑
k=0

 CS

k

 (−1)k

(k + CR + 1)
z(k+CR+1)

∣∣z=ĝ` ,
(2.30)

with the a difference form of the stencil being,

ūi =

1 +
R∑

r=CR+1

εEF,2r


R∑̀

r`=CR`+1

(−1) · εEF,2r`(∆x)2r`δ2r`


r  {ui} , (2.31)

where coefficients εEF,2r` are based on applying [CR` , CS` ] to Equation 2.24. In

this way, one naturally creates stencils based on powers of (
∑R`

r`
δ2r`).

The overall filter stencil is of length 2R` · R + 1, while the formal filter order

is 2 · (CR` + 1) · (CR + 1). The median, can furthermore be estimated using a

generalization of 2.25,

ĝ`(k1/2) ≈ CR + 2/3

CR + CS + 4/3
. (2.32)

In order to demonstrate the effects of such a modification, Figure 2.8 looks at

the effects of [CR, CS] on a R = 3 Beta distribution that utilizes integral limits

based on [CR` , CS` ] = [0, 2] and [CR` , CS` ] = [2, 0] stencils. In other words, the

integral limits correspond to the {−D} operators of 2R = 6 Binomial and Shapiro

filters, respectively. These are then compared to the basis set of traditional Purser

filters (e.g., [CR` , CS` ] = [0, 0]) of equivalent stencil width, R = 9. The higher R
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Figure 2.8: Comparison of traditional Purser filter with R = (CR + CS + 1) = 9

(in red) versus generalized Purser filter response basis (see Equation 2.31) with

R = (CR +CS + 1) = 3 for [CR` , CS` ] = [0, 2] (in green) and [CR` , CS` ] = [2, 0] (in

blue) : a) Growth factor |Ĝ|, and b) Growth factor error |1− Ĝ|.

value leads to a much richer set of responses for the given stencil size, which trans-

lates to more precise interpolation and manipulation of the filter characteristics.

Comparing the classic Purser filter to the proposed generalizations, it is evident

that the set [CR` , CS` , CR, CS] = [2, 0|2, 0] is equivalent to [0, 0|8, 0] (an eighteenth-

order, nineteen point Shapiro filter) and that the set [CR` , CS` , CR, CS] = [0, 2|0, 2]

is equivalent to [0, 0|0, 8] stencil (a second-order, nineteen point Binomial filter).

Besides these, the generalized Purser formulations are shown to yield a new dis-

tinct set of response functions. New interpolations can furthermore be constructed

by mixing the bases generated from different integral functions. In general, the

traditional Purser schemes are preferable; although, utilizing the generalized forms

in “cascade” filtering techniques (i.e., repeated applications of a base operator as

done by Jeanmart and Winckelmans (2007)) may at times be algorithmically more

efficient.
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2.4 Implicit Stencil Families

Implicit filtering stencils – otherwise referred to as Compact or Padé schemes –

utilize the surrounding filtered variables, ū, in addition to the surrounding input

variables, u. Applying the interpretation of filtering as a convolution operation,

this amounts to the following general form:∫
[G`(x− y) · ū(x)] dy =

∫
[Gr(x− y) · u(x)] dy . (2.33)

These implicit schemes require the solution of a linear system and thus incur ad-

ditional computational effort. Nevertheless, they remain attractive due to their

ability to match the capabilities of high-order explicit schemes on a compact sten-

cil width. For instance, Gaitonde and Visbal (2000) employ biased tri-diagonal

type Padé filters in order to maintain high-order boundary closures. Also, ideal

low-pass representations can be well-approximated despite short stencil widths

(Alpert, 1981). The benefits from this can be understood in another way: im-

plicit stencils can achieve high performance without needing very high discrete

derivative operators that become increasingly dubious to use on non-smooth,

under-resolved features. This furthermore highlights the potential benefits for

the use of implicit filtering stencils in LES computations.

In the case of a uniform grid, symmetric implicit stencils are written as,

ūi +
L∑
`=1

a` (ūi+` + ūi−`) = b0ui +
R∑
r=1

br (ui+r + ui−r) , (2.34)

with spectral function,

Ĝ(k) =
b0 +

∑R
r=1 2br · cos(rk∆x)

1 +
∑L

`=1 2a` · cos(`k∆x)
, (2.35)

and a difference operator representation,[
εIF,0 +

L∑
`=1

εEF,2`(∆x)2`δ2`
x

]
{ūi} =

[
εEF,0 +

R∑
r=1

εEF,2r(∆x)2rδ2r
x

]
{ui} , (2.36)
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such that,

[I +D`]{ū} = [I +Dr]{u} . (2.37)

Again, consistency with the preservation of constant modes is achieved by setting

εIF,0 = εEF,0. In the case where one looks to scale the damping properties of the

stencil in similar fashion to Equation 2.29, manipulation of the spectral response

in Equation 2.35 to be of the form Ĝ = (Î + µD̂) suggests the following operator

arrangement for implicit stencil re-scaling:

[I +D`]{ū} = [I + µ · Dr + (1− µ) · D`]{u} . (2.38)

The formal order of the stencil can furthermore be determined by Equation 2.11

or can be estimated from,

ū ≈ 1

ε′IF,0
·
[
ε′EF,0u+

∞∑
r=0

ε′EF,2r(∆x)2r∂2ru−
∞∑
`=0

ε′IF,2`(∆x)2`∂2`u

]
, (2.39)

where the prime notation (ε′) takes into account the Taylor-series contributions

of the dissipative differencing stencils, δ2r
x .

Perhaps the most widely used implicit filter stencils are the tri-diagonal and

penta-digaonal schemes of Lele (1992), which take advantage of tractable matrix

inversion techniques (e.g., the Thomas algorithm) and furthermore offer simple

tuning of the filter cut-off kc. But while these stencils are largely motivated by

Taylor-series analysis, it is possible to derive more general implicit formulas based

spectral analysis. Most simply, one can consider the transfer function of Equation

2.35 as a rational function,

Ĝ(k) =
α̂(k)

β̂(k)
. (2.40)

In order to guarantee a stable scheme, one then needs to ensure:

|α̂(k)| ≤ |β̂(k)| ∀ k s.t. |Ĝ(k) ≤ 1| . (2.41)

This observation can be used to greatly simplify and generalize the derivation of

new implicit filter stencils.
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The following section thus builds on explicit schemes from the previous section

by introducing the class of implicit Purser filters, which includes the sub-class of

implicit Shapiro stencils (also referred to as Long filters (Long et al., 1978)). In

addition to this, the family of Tangent stencils (Raymond, 1988) is presented and

shown to be attractive due to its enhanced sharpness capabilities.

2.4.1 Implicit Purser Filters

The proposed extension of Purser filters to implicit stencils is first motivated by

considering the Long filter (Long et al., 1978) (also referred to as an implicit

Shapiro filter) which takes the spectral form,

ĜLong(k) =
1− sin2R(k∆x/2)

1− (1− δ∆) sin2R(k∆x/2)
, with δ∆ ∈ 〈0,∞〉 . (2.42)

The tuning parameter δ∆ is used to prescribe the effective cut-off of the filter.

The response approaches an ideal low-pass as δ∆ → 0, which corresponds to a

spectral-sharp filter with ∆ = (2∆x). This behavior is attainable regardless of

the formal order of the filter. For instance, Figure 2.9(a) plots the response of a

second-order Long filter for various values of the tuning parameter and compares

these to a high-order 10th-order explicit Shapiro filter. While the low-wavenumber

performance is dominated by the formal order of the scheme (see Figure 2.9(b)),

the low-order implicit method is able to surpass the tenth-order explicit Shapiro

filter at high wavenumbers, in terms of estimating an ideal low pass. This points

to the strong potential utility of these implicit schemes.

Since the Long filter is built on explicit Shapiro stencils (which are a sub-class

of the Purser filters), it is reasonable to think that general implicit Purser filters

can be built in a similar fashion. These are written to take the operator form,

[I + (1− δ∆) · DPurser,exp]{ū} = [I +DPurser,exp]{u} , (2.43)
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with the spectral representation:

ĜPurser,imp(k) =
ĜPurser,exp(k)

1 + (1− δ∆) · [ĜPurser,exp(k)− 1]
, with δ∆ ∈ 〈0,∞〉 . (2.44)

According to the requirement of Equation 2.41, it is apparent that this form is

naturally stable and that it recovers the equivalent explicit Purser stencil when

δ∆ = 1, a fact that will prove consequential with respect to assessing the invert-

ibility of the stencil (see Section 2.6.1). The resulting implicit Purser filter can

be shown to be of equivalent order and stencil width as the underlying explicit

Purser stencil that it is built from. Figure 2.10(a) plots the response of an im-

plicit Purser filter built from [CR, CS] = [0, 1] (i.e., a Binomial filter), which has a

five-point stencil width. By inspecting the response error plot of Figure 2.10(b),

it is evident that the original order of the explicit filter is 2 · (CR + 1), and that

this is maintained for the implicit scheme. By looking at the response itself, we

notice that smaller values of the tuning parameter δ∆ are required to approximate

an ideal low-pass filter. This is related to the underlying explicit Purser stencil

which is sub-optimal in terms of low-wavenumber preservation – this is in contrast

to the Shapiro stencils utilized in Long filter formulation.

In keeping with the spectrally-motivated derivation of implicit stencils, it is

also possible to think of Padé stencils that are made from different explicit Purser

schemes. This would allow the construction of tri-diagonal type schemes that

could be used for efficient inversion. For example, the following is a general

expression for Purser-based Padé filters of different implicit and explicit stencil

widths:

[I +D(CR1
,CS1

)

Purser,exp ] {ū} = [I +D(CR2
,CS2

)

Purser,exp ] {u} . (2.45)

In this case, neither stability nor formal order are naturally guaranteed; they de-

pend on the judicious selection of [CR1 , CS1 ] and [CR2 , CS2 ]. These parameters

would also be responsible for tuning the filter cut-off, although this is much less

evident than the simple way in which the schemes of Equation 2.44 are tuned (via
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Figure 2.9: Second-order Long filter response as a function of tuning parameter

δ∆ (see Equation 2.42), also equivalent to a implicit Purser filter response built

from explicit stencil [CR, CS] = [0, 0]: a) Growth factor |Ĝ|, and b) Growth factor

error |1− Ĝ|.
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Figure 2.10: Second-order, five-point implicit Purser filter response built from ex-

plicit stencil [CR, CS] = [0, 1] as a function of turning parameter δ∆ (see Equation

2.44): a) Growth factor |Ĝ|, and b) Growth factor error |1− Ĝ|.
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simple coefficient scaling of the implicit stencil by δ∆). As before, Equation 2.41

would need to be satisfied in order to guarantee stability. In addition, considering

Equation 2.39 suggests the formal order will be determined by min(CR1 , CR2),

which is impractical since changing these is necessary for manipulating the spec-

tral shape. This differs from the Lele schemes which are constructed around

Taylor-series considerations and so are able to maintain their formal order de-

spite changes to the tuning parameter. A similar feature may be achievable with

the scheme proposed in Equation 2.45, but this is not easily evident. Neverthe-

less, it is important to acknowledge the special case of Equation 2.45 in which

D(CR2
,CS2

)

Purser,exp = 0, as it relates to a discrete generalization of the inverse Helmholtz

differential filter of Germano (1986)and its hyper-viscous forms (i.e., Butterworth

filters (Butterworth, 1930)). These schemes have the benefit of being naturally

invertible (i.e., |Ĝ(k)| > 0), which facilitates deconvolution procedures (e.g., re-

trieval of the unfiltered solution from filtered data), necessary as part of certain

LES modeling techniques (Bull and Jameson, 2016).

Briefly retreating to the fundamental idea that Purser filters are derived from

CDF distributions under a change of variable, it also becomes evident that implicit

Purser schemes arise from rational polynomial representations of PDF functions,

fPDF (z). While these may be derived from an optimization procedure, one may

also consider the one-sided distributions (only valid for z ≥ 0) listed in Table 6.2.

As previously stated, using such established distributions is advantageous as their

shape characteristics are well characterized by function parameters and can then

be used to describe the derived filter transfer function. Inspecting the polynomial

form of the respective CDFs, one can surmise that substituting z = ĝ`(k) would

result in implicit representations. However, because these distributions are one-

sided, the CDF does not reach unity on a finite domain which means that the

resulting transfer function of the filter will naturally be invertible. Increasing the

high-wavenumber damping is then tantamount to scaling up the integral limit of
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Distirbution fPDF (z) FCDF (z)

Log-logistic (β/α)(z/α)β−1

(1+(z/α)β)2
zβ

αβ+zβ

Dagum ap
z

(
(z/b)ap

[(z/b)a+1]p+1

)
[1 + (z/b)−a]−p

Table 2.3: One-sided probability and cumulative distribution functions (Tadika-

malla, 1980).

Equation 2.20 by a factor µ ≥ 0. These proposed schemes, along with the gener-

alizations introduced above in Equations 2.43 and 2.45 provide great flexibility in

designing the spectral characteristics of implicit filters.

2.4.2 Tangent Filters

The family of implicit Tangent filters introduced by Raymond (1988) are defined

by the transfer function,

ĜTangent(k) =
cos2R(k∆x/2)[

cos2R(k∆x/2) + δ∆ sin2R(k∆x/2)
] (2.46)

=
[
1 + δ∆ tan2R(k∆x/2)

]−1
, with δ∆ ∈ [0,∞〉 , (2.47)

with the difference form of Equation 2.36 being defined by the following coeffi-

cients:

εEF,2r≥2 =

 R

R− r

 1

4r
,

εIF,2 6̀=2L = εEF,2r ,

εIF,2L = [1 + (−1)Rδ∆]εEF,2R with L = R . (2.48)

Re-written in the form of Equation 2.47, the Tangent filter can be understood

to be a combination of averaging [cos2R(k∆x/2)] and derivative [sin2R(k∆x/2)]

operators – in other words, it cleverly combines Binomial and Shapiro stencils

(Raymond and Garder, 1991).
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The tuning parameter δ∆ is used to control the effective filter cut-off frequency,

and the spectral response has the special property of yielding ∆1/2 = (4∆x)

for δ∆ = 1, regardless of the filter order 2R. This suggests the stencil to be

naturally well-conditioned for mid-wavenumber damping (see Section 2.6.1 for

more on stencil conditioning) and thus amenable to filtering for aliasing control,

which requires a ∆c = (3∆x) cut-off for quadratic non-linearities (Orszag, 1971)

(e.g., incompressible flow) and a ∆c = (4∆x) cut-off for cubic non-linearities (e.g.,

compressible flow in terms of primitive variables).

2.5 Spectral Response Characteristics

Sections 2.3 and 2.4 above have introduced explicit and implicit discrete filter

families that offer the useful flexibility of specifying spectral response characteris-

tics. Amongst the desired aspects to manipulate are the effective filter width, kc,

as well as the degree of scale-discriminant attenuation. In the context of scheme

stabilization (see Chapter 3), this can play a role in terms of minimizing dissi-

pative error. Meanwhile, with respect to LES, such metrics dictate the amount

of scale-separation and thus inherently define the type of information embedded

within the resolved scales.

Expanding on the relevance to LES, focus is traditionally placed on the filter

width as this identifies the effective LES resolution. However, the definition is

a vague characterization, and as a result, two filters of equivalent kc may have

very different spectral sharpness behavior. Such an example is the top-hat and

spectral sharp filters shown in Figure 2.1(b). Evidently, the top-hat filter exhibits

a stronger roll-off at low-wavenumbers which suggests suppressed activity in the

large-scales compared to the spectral-sharp filter. This furthermore implies that

a model corresponding to the former would need to supply dynamical information

across a range of scales, rather than the classic perspective of only needing to
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represent features below the cut-off. Also important to consider are the impli-

cations of response sharpness for implicit LES (ILES) formulations that utilize

periodic filtering of the solution in order to represent the presumed dissipative

effects of a closure model on the resolved field (also termed relaxation-filtering

(Berland et al., 2008; Fauconnier, 2013; Aubard et al., 2013)). In this context,

repeated applications of a filter operation can remove significant signal content

depending on the scale-preservation properties of the scheme, thus lowering the

effective cut-off wavenumber over time (i.e., systematically coarsening the effective

LES resolution). As a result, assessing the filter cut-off along with the associated

scale-discriminant characteristics can be important in evaluating the implications

of applying different filter stencils.

The effective filter width may be defined in various ways. Most traditionally,

one uses the second-moment of the filter kernel,

∆c =

√∫
x2G(x)dx , (2.49)

thus identifying the standard deviation of the function as the cut-off scale. This

definition, however, is not valid for filters of order greater than two because of

the vanishing moments related to filter order. As a result, alternate and accurate

characterizations are important and necessary. Lund (1997) highlights how erro-

neously quantifying the effective cut-off metric can introduce significant levels of

error in dynamic LES modeling, for example. Examining the evolution of resolved

kinetic energy, Lund notes the sensitivity of results to improper specification of

filter-to-grid ratio, α = (∆c/2∆x); he demonstrates noticeable error between even

slight deviations of α = 2.0 versus α = 1.96

To aid in the proper description of the filter width for discrete filters, Lund

proposes three alternatives to the traditional second-moment designation: 1) us-

ing the cut-off wavenumber kc corresponding to the second moment of spectral

response function Ĝ(k); 2) choosing kc = k1/2 such that Ĝ(k1/2) = 0.5; and 3)
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fitting a trigonometric interpolation to the discrete filter weights in physical space

and choosing the first zero-crossing as the effective cut-off, noting that the re-

sulting interpolant is analogous to the spectral filter’s physical-space sinc function

kernel. Of these three choices, option 2 is most typically used due to its simplicity,

although option 1 is deemed most accurate by Lund. The subsequent analyses

assume this definition, unless noted otherwise.

2.5.1 Scale-Separation Performance

As previously noted, the nature of scale-separation can also influence requirements

of LES closure model and implicitly defines the way information is preserved on the

resolved scales, k & kc. In this respect, it is useful to parametrize the performance

of the available discrete filter schemes. This is explored here as a function of cut-

off resolution ( kc = k1/2 = π/∆1/2) and of the filter order, which is directly

related to preservation properties of the scheme. As part of this, sharpness is also

quantified by inspecting a measure of the transition width:

∆θ = θ2 − θ1 s.t.

 |Ĝ(θ1 = k1∆x)| = 0.95 · |Ĝ(θ = 0)|+ 0.05 · |Ĝ(θ = π)|
|Ĝ(θ2 = k2∆x)| = 0.95 · |Ĝ(θ = π)|+ 0.05 · |Ĝ(θ = 0)|

.

(2.50)

The spectral response comparisons highlight the utility and potential limitations

of the different stencils. The explicit Purser, implicit Purser, and Tangent stencils

are considered. In addition, the popular tri-diagonal scheme of Lele (1992) is

considered and defined for arbitrary order 2R as the following,

ĜLele,tri(k) =
b0 + 2

∑R
r=1 br cos (r k∆x)

1 + 2δ∆ cos (k∆x)
, (2.51)
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where the stencil coefficients are constructed from Taylor-series considerations as,

1 = b0 + 2
[(∑R

r=1 br

)
− δ∆

]
,

0 =
(∑R

r=1 br r
m
)
− δ∆ , with m = 2 · [1, ..., R− 1] ,

0 = b0 + 2
∑R

r=1(−1)rbr ,

1/2 = b0 + 2
[∑R

r=1 br cos
(
r k1/2∆x

)]
− δ∆ cos

(
k1/2∆x

)
, (2.52)

with δ∆ ∈ 〈0.5, 0.5〉 for stable operation. Figures 2.11 and 2.12 show the perfor-

mance maps for different discrete filtering schemes and communicates their re-

spective spectral sharpness characteristics as a function of the filter width (∆1/2)

and the filter order (2R). Also included is information on the associated stencil

width, speaking to the potential cost of the scheme.

Figure 2.11 shows the map of the classic explicit Purser filters. The class of

Binomial stencils is found on the constant line for second-order filters; these are

shown to have the lowest filter resolution ∆1/2 (i.e., lowest θ1/2 = k1/2∆x) for a

given stencil length. On the other hand, one can identify the Shapiro filters as

the schemes yielding the smallest filter cut-off (i.e., highest θ1/2 = k1/2∆x) for

a given stencil length; they form the right boarder of the map. In general, it is

apparent that achieving sharp responses requires very wide stencils. For example,

a transition width of approximately ∆θ = 0.2π is achieved with a forty-point

explicit Purser scheme. Such hinderances serve to highlight the potential benefits

of employing high-order implicit formulations instead.

Figure 2.12(a) shows the performance map for the class of Long filters, which

can be interpreted as implicit Purser filters built from Shapiro stencils. As before,

it it apparent that sharpness increases with the filter order. Furthermore, tracking

the lines of constant order, it is apparent that increasing 2R eventually leads to

strong asymmetry in the performance map relative to θ1/2 (at least based on the

chosen definitions of θ1 and θ2). The cut-off wavenumber at which sharpness

is sub-optimal can be seen to coincide with the underlying explicit stencil from

which the Padé representation is built (i.e., the case when δ∆ = 1). Therefore, as
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the formal order of the scheme is increased, the Long stencil is seen to be largely

under-performing with respect to sharpness for ∆1/2 ∼ (3∆x).

In order to recover performance in this range, it is possible to consider a Padé

representation built from another explicit Purser stencil such that the sub-optimal

point is shifted away from the desired cut-off range. This is demonstrated in Figure

2.12(b), which showcases the use of explicit stencils tuned to ∆1/2 = (4∆x) to

build the implicit method. In this way, the scheme is made sub-optimal at this

mid-wavenumber and sharpness is regained for use at the higher and lower modes.

A consequence of these manipulations is the fact that larger stencils are required

for a given scheme order, and this stems from the fact that the base explicit Purser

filters to be employed are sub-optimal in this respect. Therefore, further shifting

the design point towards coarser resolutions would entail an additional price in

the required stencil width (for a given order scheme).

Judiciously selecting the underlying explicit Purser stencil in the derivation

of implicit schemes can also be applied to the naturally-invertible implicit Purser

formulation of Equation 2.45 (taking D(CR2
,CS2

) = 0). In the case Shapiro type

stencils are utilized, one recovers the implicit Sine filters (Raymond and Garder,

1991) (discrete analogues to the inverse Helmholtz filter of Germano (Germano,

1986) and hyper-viscous interpretations such as the Butterworth filters (Butter-

worth, 1930)). In the instance one uses arbitrary explicit Purser stencils, one

can produce generalized Sine filters. In both cases, the stencils are inherently

invertible (|Ĝ| > 1), which may be desirable for LES modeling requiring decon-

volution procedures (Bull and Jameson, 2016). The performance maps of such

filtering methods are respectively shown in Figure 2.12(c) and 2.12(d) for an im-

plicit Sine filter and a generalized implicit Sine filter derived from Purser stencils

with mid-wavenumber cut-offs tuned to ∆1/2 = (4∆x). As before, using non-

Shapiro stencils incurs a cost in stencil width relative to the formal order of the

scheme. Nevertheless, doing so can allow one to achieve sharper characteristics as
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demonstrated in comparing Figures 2.12(c) and 2.12(d).
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Figure 2.11: Map of filter transition width (∆θ/π) (as defined by Equation 2.50)

for traditional explicit Purser filters (see Equation 2.22) versus filter cut-off fre-

quency (k1/2∆x/π) (as defined by Equation 2.25) for 2R-th order filters (denoted

by dashed contour lines), colored by stencil width (2R + 1).

The performance map of the Tangent stencil is provided in Figure 2.12(e).

Most evident is the fact that its sharpness characteristics are superior to the

other forms presented and that the map is naturally symmetric about ∆1/2 =

(4∆x), demonstrating enhanced scale-discriminant damping away from this mid-

wavenumber cut-off – as previously noted, a property desired for the maintenance

of spectral sharpness towards low k1/2. This shows great promise for its use in

high-order LES and stabilization implementations, where one hopes to limit the

impact of dissipative effects on the overall scheme accuracy.

Finally, Figure 2.12(f) plots the map for the tri-diagonal Lele scheme defined

by Equations 2.51-2.52. Interestingly, the well-used method, has a very restricted

range of applicability that results from the fact that stability is only achieved for

the tuning parameter δ∆ ∈ 〈0.5, 0.5〉. Therefore, as the filter order is increased,

the minimum cut-off wavenumber shifts up and the range of attainable cut-offs is

also reduced. The resulting map can furthermore be seen as a direct subset of the

Long filter map shown in Figure 2.12(a). In order to mitigate such limitations of

this tri-diagonal scheme, it may be beneficial to employ formulations with larger
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Figure 2.12: Map of filter transition width (∆θ/π) (as defined by Equation

2.50) versus filter cut-off frequency (k1/2∆x/π) for 2R-th order filters (denoted

by dashed contour lines), colored by stencil width (2R + 1): a) Long filter, b)

implicit Purser filter based on Equation 2.43 with D(CR,CS)
Purser,exp tuned to ∆1/2 =

(4∆x), c) implicit Sine filter based on Equation 2.45 with D(CR2
,CS2

)

Purser,exp = 0 and

[CR1 , CS1 ] = [R − 1, 0], d) generalized implicit Sine filter based on Equation 2.45

with D(CR2
,CS2

)

Purser,exp = 0 and [CR1 , CS1 ] tuned to ∆1/2 = (4∆x), e) Tangent filter, and

(f) Lele tri-diagonal filter.
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implicit operators (e.g., penta-diagonal formulations etc...); however, this detracts

from the attractiveness of these Lele-type schemes: the ability to easily invert the

stencils.

The featured performance maps give useful insight on the way in which one can

employ the different classes of discrete filters. Again, it should be noted that the

importance of scale-discriminant attenuation is non-linear in terms of the cut-off

frequency. For example, a transition length of ∆θ/π = 0.2 entails very different

things at high cut-off wavenumbers compared to low cut-off wavenumbers. For a

low cut-off, this could correspond to making the distinction between a ten points-

per-wave (e.g., θ/π = 0.2) and a five points-per-wave (e.g., θ/π = 0.4) feature. In

this case, it would seem that most of the schemes are comparable in performance.

Meanwhile, for a high cut-off, a transition length of ∆θ/π = 0.2 could correspond

to making the distinction between a four points-per-wave (e.g., θ/π = 0.5) and

a three points-per-wave (e.g., θ/π = 0.7) feature. The inability to make careful

distinctions between 4∆x and 3∆x resolutions, for example, also has important

consequences in terms of aliasing control. Based on the performance maps, it can

then be surmized that the invertible sine filters are inadequate for deliminating

between high-wavenumber features. Instead, it may be advisable to employ other

stencils such as the Tangent or generalized implicit Purser filter idea featured in

Figure 2.12(b). These can furthermore be rendered invertible by using a rescaling

technique, as suggested in Equation 2.38 (also see Appendix A).

2.6 Further Practical Considerations

Several additional implementation specifics regarding discrete filtering could be

addressed; however, the following section focuses on two: stencil invertibility and

multi-dimensional use of the filter. With respect to the former, implicit schemes

require one to consider complications that may arise from the need to invert a lin-
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ear system; this may be assessed by considering the conditioning of the stencils,

and doing so allows one to surmise useful guidelines for suggested use of the pro-

posed discrete filter families. Secondly, practical application of filtering requires

multi-dimensional formulations; therefore, it is important to understand different

extensions of the one-dimensional schemes introduced thus far.

2.6.1 Stencil Invertibility

Inversion of a system introduces the potential for numerical complications asso-

ciated with the stability of the procedure. In some cases, improperly formulated

direct methods can allow small numerical error perturbations to drastically alter

the final result; meanwhile, in the case of iterative procedures, one may encounter

stalled convergence. The susceptibility to such inversion errors depends on the

specific method but is also related to the system’s conditioning. A condition

number may be defined as,

κ = max{λ}/min{λ} , where λ = eig{LHS} . (2.53)

Here, λ represents the eigenvalue spectrum of the linear system [LHS]·−→x = RHS.

For the one-dimensional Padé filters on periodic boundary conditions, one may

write the following:

λ(k) = 1 +
L∑
`=1

2a` · cos(`k∆x) . (2.54)

Utilizing this information, it is possible to assess the conditioning associated with

different implicit schemes as a function of filter order (2R) and filter width (∆1/2).

With respect to the stencils in consideration, it furthermore becomes evident that

the conditioning of the system is strongly relatable to extreme values (either large

or small) of the tuning parameter, δ∆.

Figure 2.13 shows color maps of log{κ} as a function of filter order and filter

width for the different stencils. From these, it may be concluded that increased

filter sharpness is concomitant with a larger condition number (i.e., an increas-
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Figure 2.13: Map of filter order (2R) versus filter cut-off (θ1/2/π), colored by

logarithm of condition number κ as defined by Equations 2.53-2.54 (dashed white

line corresponding to κ = 10): (a)Long filter , (b) Tangent filter, (c) tri-diagonal

Lele filter, and (d) implicit Purser filter with [CR` , CS` ] = [0, 0] and CR = CS.

46



ingly ill-conditioned system), thus communicating the difficulty of producing such

scale-discriminant characteristics. Furthermore, the condition number maps repli-

cate the previous skewness found in the scale-separation performance of the prior

section. And so, while the spectral characteristics of the Tangent filter shown

in Figure 2.12(e) are quite impressive, inspecting the condition number in Fig-

ure 2.13(e) reveals that practical use is limited to mid-wavenumbers and that

the range of acceptable cut-offs is shrunk with increasing order of the filter. With

respect to the Purser stencils, in Section 2.5.1, it is shown how the resulting sharp-

ness performance can be manipulated by the underlying Purser stencil from which

the final implicit filter is derived. Here, in Figures 2.13(a)-2.13(d), it is evident

that the underlying explicit stencil also has an associated effect on the condition

number of the associated implicit scheme. For example, the Long stencil has a

minimal condition number for values of its tuning parameter (δ∆ = 1) that are

associated with its explicit scheme. By designing implicit schemes around explicit

Purser filters with lower cut-offs, the area of optimal conditioning can thus be

effectively shifted down. Of further note, it was previously observed that the

performance map of Lele tri-diagonal stencils (Figure 2.12(f)) replicates that of

the Long stencils (Figure 2.12(a)) at high-wavenumber cut-offs. But while this

may be true, comparing their respective conditioning maps (Figures 2.13(f) and

2.13(a)) reveals that there are some differences in terms of conditioning, with the

tri-diagonal Lele formulation demonstrating slightly poorer conditioning.

2.6.2 Implementation for Multi-dimensions

The familiarity gained with one-dimensional (1D) filter stencils may be extended

to multi-dimensions. There are several ways in which this can be done, each

offering a balance between performance and efficiency.

Perhaps most common, one can choose to employ the one-dimensional opera-
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tors successively in each spatial direction:

ū = G∏{u} ,
= G1{G2{...{u}...}} . (2.55)

In spectral space, this amounts to a product of each directional transfer function

and allows one to easily apply the desired attenuating properties to all directions.

An example of this is plotted in Figure 2.14(a) which shows the magnitude of the

resulting two-dimensional (2D) transfer function Ĝ∏ corresponding to a fourth-

order 1D Shapiro filter, Ĝ(k) = 1− sin4(k∆x/2). The cost of performing multiple

filtering operations is offset somewhat by the opportunity to leverage efficient

banded matrix direct solvers. Nevertheless, such an implementation has a large

stencil footprint, relating to the implied presence of cross-derivative terms.

As an alternative to the product approach, it is interesting to consider a one-

step approach such as,

ū = G∑{u} ,
→

[
I` +

NDim∑
n=1

D`,n
]
{ū} =

[
Ir +

NDim∑
n=1

Dr,n
]
{u} , (2.56)

where the one-dimensional dissipation operators are summed. This formulation

avoids the footprint overhead by avoiding cross-derivative terms, which offers im-

plementation efficiency. However, in terms of implicit filters, the resulting for-

mulation is sparse and will likely require an iterative inversion technique (e.g.,

Krylov methods, Gauss-Siedel/Jacobi methods). An accompanying consequence

of the G∑ operator is the fact that the one-dimensional filtering properties are

not extended to multi-dimensional features. For example, odd-even mode at-

tenuation is not maintained for higher dimensional odd-even modes. This is

demonstrated in Figure 2.14(b) which plots |Ĝ∑|. In addition, using the origi-

nal one-dimensional coefficients can lead to under-damping (or even instability)

of the multi-dimensional features and thus requires one to perform an appropriate
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rescaling of the coefficients. The inconsistency arising between filters of differing

dimensionality thus makes it harder to compare results derived in 1D versus 2D,

etc... when employing this approach.

In order to recover the independence of the filter response relative to the

dimensionality of the problem, it is possible to construct special mixed-derivative

forms that preserve the 1D characteristics along mixed modes, k = (k1, k2) with

k1 = k2:

ū = G∑∗{u} ,
→ [I` +D`,NDim] {ū} = [Ir +Dr,NDim] {u} . (2.57)

Falissard (2013) works to extend the 1D attenuating properties to multi-dimensions

and constructs an operator DNDim (for 2D) defined as,

DFal
2D =

R∑
r=1

εEF,2rδ
2r
2D , (2.58)

with δ2r
2D = (∆x1)2rδ2r

x1
+ (∆x2)2rδ2r

x2
−

r−1∑
n=1

αn(∆x1)2n(∆x2)2r−2n δ2n
x1
δ2r−2n
x2

, (2.59)

with additional constraints,

αn ≥ 0,
n=1∑
r−1

αn = 1, αn = αr−n . (2.60)

The reader is referred to the Falissard paper (Falissard, 2013) for the three-

dimensional (3D) extension and further details. Relative to this difference form,

the genuinely multi-dimensional formulation of Falissard has the advantage of uti-

lizing the same 1D coefficients ε2r as the 1D schemes it is derived from. Further-

more, the footprint of the resulting stencil can be manipulated based on the choice

of αn constraints (see Equation 2.60), which controls the influence of mixed deriva-

tive terms. Figure 2.14(c) shows the transfer function magnitude of Ĝ∑Fal and

confirms that the one-dimensional attenuation along k = (k1, 0) and k = (0, k2)

are indeed valid for two dimensional features k = (k1, k1).
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Figure 2.14: Color map of spectral responses of two-dimensional filtering im-

plementations of a one-dimensional fourth-order Shapiro filter, Ĝ(k) = 1 −
sin4(k∆x/2): a) serial implementation G∏, b) traditional single-step implemen-

tation G∑, c) Falissard (Falissard, 2013) single-step implementation G∑Fal (with

α =,), and d) anisotropic correction (AC) (Sescu et al., January 2009) single-step

implementation G∑AC .

Although the Falissard implementation G∑Fal successfully extends the 1D oper-

ators to multi-dimensions, the resulting function can still exhibit strong anisotropy

in the mid-wavenumber range. Therefore the anisotropy-corrected (AC) schemes

of Sescu et al. (January 2009) can be considered. These utilize information from

the orthogonal and diagonal directions and seek to minimize the difference be-

tween the 1D and multi-dimensional spectral functions. The resulting scheme is
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more simply expressed (for 2D) in terms in stencil form:

ūi,j =

(
1

1 + β

) R∑
r=−R

br

{[
Er
i +

β

2
Dx

]
+

[
Er
j +

β

2
Dy

]}
{ui,j} ,

where

 Dx = (Er
iE

r
j + E−ri Er

j ), and Dy = (Er
iE

r
j + Er

iE
−r
j ) ,

Er
i {ui,j} = ui+r,j, and Er

j {ui,j} = ui,j+r
.

(2.61)

The coefficients br are identical to the 1D stencils and adhere to the following

relations,
R∑
n=0

(εEF,2n · c2n,r) = br , (2.62)

where br = b−r for symmetric schemes and cr,2n are coefficients describing the 1D

second-order, dissipative, narrow-stencil representation:

δ2n{ui} = c2n,0 +
n∑
j=1

c2n,j (ui+j + ui−j) . (2.63)

The definition of the multi-dimensional operator DAC
2D in terms of difference oper-

ators may furthermore be determined by applying the relations of Equations 2.15,

2.17, and 2.62 to the transfer function representation for the 2D symmetric stencil

of Equation 2.61:

Ĝ∑AC(k1, k2) = 2b0 +

(
2

1 + β

) R∑
r=1

br · [cos(rk1∆x) + cos(rk2∆x)

+
β

2
[cos(r(k1 + k2)∆x) + cos(r(k1 − k2)∆x)]

+
β

2
[cos(r(k1 + k2)∆x) + cos(r(k2 − k1)∆x)]] , (2.64)

where cos(α± β) = cosα cos β ∓ sinα sin β . (2.65)

The anisotropic-correction parameter, β, is derived from an optimization proce-

dure and is responsible for enhancing isotropic characteristics (see Sescu et al.

(January 2009) for more details). Figure 2.14(d) demonstrates the improved
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isotropy of the resulting method, although it is noted that the original 1D at-

tenuation properties are altered – the alterations mostly being relegated towards

the high wavenumbers.

The aforementioned multi-dimensional formulations are each shown to yield

advantages and disadvantages. Henceforth, however, it can be assumed (unless

otherwise noted) that G∏ is employed for any multi-dimensional filtering opera-

tions.

2.7 Demonstration Test Case: Signal Post-Processing

The potential utility of the different discrete filter formulations previously studied

is here demonstrated by the task of removing noise from a signal. By manipulating

the spectral properties of the filter via an understanding of the stencil specification,

it is possible to retrieve an acceptable approximation to the original signal.

An example in two-dimensions is chosen, where the Gaussian pulse is defined

to be,

forig,2D(x1, x2) = Ae
−
[

(x1−µx1 )

2σ2 )+
(x2−µx2 )

2σ2 )
]
. (2.66)

The parameters are chosen to be the following: N = Nx = Ny = 100, L = 1, A =

1, σ = (0.05)L. The perturbation used to derive the corrupt signal (see Equa-

tions 2.67-2.68) is then defined such as to induce both one-dimensional and multi-

dimensional noise features. Also note that the parameters Cκ,xn , φU,xn are varied

only with respect to the corresponding xn direction and that [κmin = N/4, κmax =

N/2] once again targets the perturbed modes.
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fcorrupt,2D(x1, x2) = forig,2D(x1, x2) + δpert,2D(x1, x2) (2.67)

δpert,2D(x1, x2) =
κmax∑
κmin

Cκ,x2 · sin
(

2πκx1

L
+ φU,x2

)

+
κmax∑
κmin

Cκ,x1 · sin
(

2πκx2

L
+ φU,x1

)
,

with Cκ,xn =


(

1
κ

)
· U(κ), (x1 − µx1)2 + (x2 − µx2)2 ≤ (4σ)2

0, otherwise
.

(2.68)

Figure 2.15(a) and Figure 2.15(b) plot the original and perturbed signals re-

spectively. Meanwhile Figure 2.16(a) and Figure 2.16(b) plot their corresponding

normalized spectra |f̂(κ1, κ2)|2/|f̂(0, 0)|2. It is confirmed that the perturbations

are localized around the pulse in physical space as implied by Cκ,xn and that no-

table noise is induced in wavenumber space starting at (kn∆x) = 0.25π. Here

the benefits of employing high-order and tuned filtering will be shown to become

evident. Figures 2.15(c) shows results of the second-order Shapiro filter (equiva-

lent to a second-order Tangent filter tuned to (k1/2∆x) = 0.5π) and highlights the

inability to remove enough of the noise due to improper tuning. Figure 2.15(e)

plots the solution filtered by a second-order Tangent filter tuned to the spectral

point at which the erroneous noise appears, (k1/2∆x) = 0.25π; the result is shown

to have removed much of the noise but to have depleted the original pulse height.

Finally Figure 2.15(f) shows the solution filtered by a tenth-order Tangent filter

also tuned to (k1/2∆x) = 0.25π, which successfully removes erroneous modes while

sufficiently maintaining content below the prescribed cut-off – in this case allowing

the original pulse strength to be preserved. Analogous information is provided by

the corresponding spectral plots shown in Figures 2.16(c), 2.16(e), and 2.16(f). It

is clear that proper filtering can do well to retrieve the original signal, as shown
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in Figure 2.16(f) for the tuned and scale-discriminant implementation.

Also interesting to witness is the impact of the multi-dimensional filter im-

plementation. Figure 2.15(d) plots a filtered solution resulting from the use of a

second-order Shapiro stencil implemented with the summation multi-dimensional

form of Equation 2.56 (here used without re-scaling of the one-dimensional filter

coefficients). Unlike the G∏ implementation, the G∑ operator is known to damp

single- and multi-dimensional features differently. In this case, it is apparent

that the resulting filtered signal is more noisy than the product G∏ implemen-

tation shown in Figure 2.15(c). Inspection and comparison of the corresponding

spectra in Figures 2.16(c) and 2.16(d) indeed confirms that the G∑ operator, with-

out re-scaling, preserves the one-dimensional filtering characteristics but does not

address multi-dimensional components. The spectral plot of Figure 2.16(d) mir-

rors the previous theoretical perdition shown in Figure 2.14(b). With proper

re-scaling, one can indeed apply the desired damping characteristics to multi-

dimensional modes satisfying k1 = k2, however, the one-dimensional treatments

become altered, usually diminished in their attenuating properties. Thus, this

highlights the importance of employing isotropic multi-dimensional operators such

as G∏,G∑Fal ,G∑AC presented in Section 2.6.2.

Naturally, the performance of the different filter formulations is highly depen-

dent on the nature of the erroneous content. The magnitude of the perturbation

and the scales it affects can challenge the filtering methods in various ways. In

addition, the practicality of certain implementations should be considered. For ex-

ample, while the tenth-order Tangent filter used in the above examples performed

well, it becomes rather ill-conditioned as one moves away from a (k1/2∆x) = 0.5π

designation, a 4 PPW resolution (see Section 2.6.2). Nevertheless, the demon-

strated success in being able to manipulate the spectral properties of the filtering

methods is attractive. Leveraging of such schemes can become significant, not only

in the context of LES but also in the more general arena of scheme stabilization,
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Figure 2.15: 2D Gaussian pulse signal: a) original signal, b) corrupt signal, c)

G∏ filtered result with second-order Shapiro stencil, d) G∑ filtered result with

second-order Shapiro stencil (without coefficient re-scaling), e) G∏ filtered result

with second-order Tangent stencil tuned to (k1/2∆x) = 0.25π, and f) G∏ filtered

result with tenth-order Tangent stencil tuned to (k1/2∆x) = 0.25π.
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Figure 2.16: Normalized Power Spectral Density (PSD) of the 2D Gaussian pulse

signals (log{|f̂(k1, k2)|2/|f̂(0, 0)|2}): a) original signal, b) corrupt signal, c) G∏
filtered result with second-order Shapiro stencil, d) G∑ filtered result with second-

order Shapiro stencil (without coefficient re-scaling), e) G∏ filtered result with

second-order Tangent stencil tuned to (k1/2∆x) = 0.25π , and f) G∏ filtered result

with tenth-order Tangent stencil tuned to (k1/2∆x) = 0.25π.
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as will be demonstrated in the following chapters. x
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CHAPTER 3

Filtering and Artificial Dissipation

This chapter is taken with some modifications from the AIAA conference pro-

ceedings articles “Highly-Accurate Filter-Based Artificial-Dissipation Schemes for

Stiff Unsteady Fluid Systems” (Mundis et al., January 2016) and “Comparison

of Artificial Dissipation and Filtering Schemes for Time-Accurate Simulations”

(Edoh et al., 2015).

3.1 Background

The under-resolution associated with LES often requires one to consider incor-

porating suitable stabilization methods. These are required in order to maintain

robustness of the calculation in the absence of physical diffusion mechanisms in

the scale of typical LES meshes. In the absence of high-wavenumber dissipation,

aliasing and discretization errors are able to accumulate and thus can threaten

numerical stability (Phillips, 1959). In an attempt to maintain scheme robust-

ness, one can consider formulations such as secondary conservation methods that

include the class of non-dissipative kinetic energy or entropy preserving schemes

(Morinishi et al., 1998; Tadmor and Zhong, 2006). These methods are known

to enhance non-linear stability by implicitly satisfying discrete auxiliary conserva-

tion laws (e.g., kinetic energy, entropy) that both improve physical accuracy of the

simulation and impose bounds on the admissible numerical solutions. Although

less susceptible to numerical instability, such schemes are not devoid of accumu-

lated high-wavenumber error and still require damping. Therefore, it is useful
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to also consider numerical dissipation techniques for active removal of contami-

nated high-wavenumber content. Such methods include artificial dissipation (AD)

and solution-filtering (SF). Being closely related, nuances in their similarities and

differences are studied in the present chapter.

Perhaps more commonly used for stabilization, artificial dissipation (AD)

methods – primarily developed with regards to shock capturing (von Neumann

and Richtmyer, 1950) – introduce additional damping terms into the governing

equations1. These artificial contributions emulate physical diffusion but can affect

an arbitrarily wide range of the resolved scales, thus potentially hindering solu-

tion accuracy. Another consequence of altering the original equations is the way

in which the new AD terms couple with other spatial contributions (e.g., convec-

tive discretizations) as well as the temporal integration method. In this regard,

it is possible for the AD method to not only affect damping but to also alter the

dispersive characteristics of the original method. Furthermore, the CFL stability

limits can also be affected.

As an alternative to artificial dissipation, solution-filtering (SF) can be used for

stabilization. These schemes originated from the need to control aliasing issues in

meteorological computations, which are severely under-resolved (Shapiro, 1971).

Unlike the artificial dissipation treatment, the damping of solution-filtering is

administered as a type of corrector step to the incremental integration of the

governing equations. In this way, the desired modes are attenuated while keeping

the original spatial and temporal properties of the base scheme intact. A new

challenge arises, however, with respect to determining how often the solution

variables are filtered. For example, one can choose to filter after N time-steps or

at each stage of a Runge-Kutta integration – the choice of which affects the overall

dissipation accumulated over time. The potential for excessive modal attenuation

1Upwinding stencils are inherently dissipative and may be interpreted as the addition of a
properly scaled artificial dissipation term to a central (non-dissipative) scheme.
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furthermore requires judicious use of solution-filtering in the case of stiff problems,

where there may be large disparities in the time-scales associated with different

physical phenomena. In response to these ambiguities, algorithms based on kinetic

energy criteria have been developed in order to automate the decision of when to

filter relative to the flow evolution (Tantikul and Domaradzki, 2010; Flad et al.,

2016).

Despite originating from different fields, there is a strong resemblance be-

tween artificial dissipation and solution-filtering methods. This is made evident

by rewriting the filtering stencils as difference operators (see Equation 2.18) and

noting the implied presence of dissipative operators. Naturally, these stabiliza-

tion methods have been applied interchangeably. For instance, solution-filtering

has been re-adapted for shock-capturing purposes (Visbal and Gaitonde; Bogey

et al., 2009); meanwhile, Yee et al. (1999) re-cast dissipative portions of shock-

capturing TVD (total variation diminishing) and WENO (weighted essentially

non-oscillatory) stencils for use as characteristic-based filters. A better under-

standing of how these damping techniques relate to each other can therefore pro-

vide valuable insights on how to properly apply them to different situations.

For example, both artificial dissipation and solution-filtering can be seen to

have direct application to LES modeling. The classic eddy-viscosity model concept

corresponds to a second-order dissipative contribution δ2 (scaled by a coefficient

based on velocity gradient components Silvis et al. (2017)); thus its numerical im-

pact is analogous to artificial dissipation methods. While the incorporation of the

dynamic model procedure of Germano (Germano et al., 1991) and subsequent im-

provements (Lilly, 1992; Park and Mahesh, 2009) have been pivotal to the success

of such eddy-viscosity models, basic linear analysis reveals inherent limitations rel-

ative to their suitability for high-order filter formulations (Pruett and Sochacki,

2001). In response, hyper-viscous eddy-viscosity models have also been studied

and have shown improvements (Jeanmart and Winckelmans, 2007). The link to
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such successes is likely tied to the high-order dissipative spectral characteristics

of the models; thus, studying the design of artificial dissipation schemes can in-

directly find relevance to the realm of functional LES modeling. With respect to

solution-filtering, Mathew et al. (2003, 2006) have re-interpreted the Approximate

Deconvolution method (ADM) of Stolz and Adams (Stolz and Adams, 1999) as

a solution-filtering algorithm. The use of filtering as a model – termed relaxation

filtering – has been explored (Berland et al., 2008; Aubard et al., 2013) and related

to an effective hyper-viscous eddy-viscosity model that scales with the frequency

of filtering applications (Fauconnier, 2013).

The inherent relation of solution-filtering and artificial dissipation thus pro-

vides different perspectives from which one can formulate improved scheme stabi-

lization for LES methods. Most notable, perhaps, is the opportunity to leverage

a well-established understanding of the spectral specification of filters and adapt

these to a generalized artificial dissipation framework. This would further allow

the incorporation of stiff-preconditioning techniques (Turkel, 1999; Venkataswaran

and Merkle, 2000; Mundis et al., January 2016) as well as the derivation of gen-

eralized hyper-viscous LES models, to be used either independently or as proper

stabilization for other LES models (i.e., mixed-modeling) (Vreman et al., 1996;

Winckelmans et al., 2001) that would be amenable to high-order filter formu-

lations. Therefore the following chapter focuses on comparing solution-filtering

and artificial dissipation methods, highlighting their respective weaknesses and

advantages.

3.2 Solution-Filtering

Solution-filtering (SF) is applied as a corrector step to the integration of a general

governing equation, here taken to be the linear 1D advection equation integrated
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using a forward Euler temporal scheme:

1) u∗,n+1 = un + (∆t) ·Ro(u
n) , where Ro{u} = −λδx{u} ,

...

2) un+Nf = G{u∗,n+Nf} .

(3.1)

In general, the filtering operation of step 2 can occur regularly after every Nf

time-steps, after each stage of a Runge-Kutta method, or at arbitrary intervals

ascribing to a particular indicator. The consequence of the filtering operations are

made more evident by combining steps 1 and 2 into a single effective evolution

equation. This is done most simply for the case of Nf = 1, wherein filtering occurs

after each time-step2. Assuming a general implicit filter defined by the difference

form of Equation 2.36, the resulting modified equation reads:[
εIF,0 +

L∑
`=1

εIF,2`(∆x)2`δ2`
x

]{
un+1 − un

∆t

}
=

R∑
r=0

εEF,2r(∆x)2rδ2r
x {Ro{un}}

+

(
1

∆t

) R∑
r=0

εEF,2r(∆x)2rδ2r
x {un}

−
(

1

∆t

) L∑
`=0

εIF,2`(∆x)2`δ2`
x {un} ,

(3.2)

which uses the definition of un+1 = un + ∆u. Substituting ∆u ≈ ∆t · Ro{un}
(which implicitly assumes that un+1 ≈ u∗,n+1) and using εIF,0/εEF,0 = 1 then

2See Fauconnier (2013) who addresses interval filtering with general Nf .
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gives,

εIF,0 ·
un+1 − un

∆t
= εEF,0 ·Ro{un}

+ (∆x)

[
R∑
r=1

εEF,2r(∆x)2r−1δ2r
x

]
{Ro{un}}

− (∆x)

[
L∑
`=1

εIF,2`(∆x)2`−1δ2`
x

]
{Ro{un}}

+

(
∆x

∆t

)[ R∑
r=1

εEF,2r(∆x)2r−1δ2r
x

]
{un}

−
(

∆x

∆t

)[ L∑
`=1

εIF,2`(∆x)2`−1δ2`
x

]
{un} .

(3.3)

Relative to the original governing equation (step 1 of Equation 3.1), it is appar-

ent that additional dissipative terms are induced in the equations. These, further-

more, are seen to scale according to a numerical wave speed, |λnum| = (∆x/∆t).

Therefore, the relative influence of the artificial terms is unchanged in the case

that |λnum| is constant. The consequences of this scaling relative to the phys-

ical nature of the equation is made more apparent by employing the definition

(∆x/∆t) = (|λ|/CFL), which forms a stability condition for the advection equa-

tion in question. From this point of view, there is no reason that the CFL would

be kept at a set ratio relative to the physical wave speed, λ. Instead, its pre-

scription is typically determined based on accuracy considerations, where smaller

time-steps (and thus smaller CFL) are concomitant with smaller temporal er-

ror. In the case of solution-filtering, however, it becomes apparent that smaller

time-stepping results in increased damping effects associated with the filtering of

un – the consequences of this administered dissipation depends on the relative

magnitude of |λ| and the CFL3.

3Relative to the concomitant filtering of the residual (Ro), one could also presume that
solution-filtering also produces dispersive effects. This, however, would violate the notion that
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3.2.1 Temporally-Consistent Solution-Filtering

The evolution equation relating to solution-filtering described by Equation 3.3

highlights the temporal inconsistency of the stabilization approach and conveys

that the associated dissipation error of the scheme is inherently tied to the fre-

quency of filtering (i.e., the time-step size, considering a constant Nf ). Inspecting

Equation 3.3, an apparent solution to this problem would be to re-scale the dis-

sipative filter coefficients relative to the CFL, such that ε∗2n≥1 = CFL · ε2n≥1. In

the one-dimensional example considered here, this modification is analogous to a

scalar artificial dissipation scheme; for systems of equations, one could further-

more consider matrix dissipation (Swanson et al., 1998). The need to scale the

filter coefficients by the time-step size has also been recognized in Asthana and

Jameson (2014) who work to stabilize high-order Flux Reconstruction schemes by

using convolution-based filtering, made to be consistent (to first order in time)

with respect to artificial dissipation.

In terms of explicit filter stencils (εIF,2`≥1 = 0 ∀ `), the suggested modifications

are trivial. In the case of implicit filter stencils, however, there is a significant

implementation overhead associated with the fact that the linear system to be

inverted would vary in time according to CFL = (|λ|∆t/∆x), where λ is typically

a function of the solution variable u for general non-linear equations. This would

then require real-time inversion of the system, which may constitute too large of a

computational overhead. Ideally, the required system inversion would preferably

be calculated as a pre-processing step (e.g. via a stored LU decomposition) to be

applied during run-time. Possibly, one could choose to freeze the left hand matrix

and to update it periodically, however, this introduces new sources of error (e.g.,

the filtering operator in step 2 of Equation 3.1 is purely dissipative. A modified equation
analysis (see Appendix of Edoh et al. (2015)) reveals that the induced dispersive contributions
in Equation 3.3 are necessary in order to offset the phase error generated through coupling of
the temporal scheme and the new dissipative components. As a secondary effect, the new odd-
derivative terms also couple with the integration schemes and contribute to the overall damping
characteristics of the original solution-filtering scheme.
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linearization) that could furthermore corrupt the time-accurate integrity of the

scheme.

Another concern is the proposed scaling, intended to reduce damping across

all wavenumbers while maintaining the general spectral response shape. The pro-

posed re-scaling achieves this for explicit stencils, but fails to do so for implicit

stencils. In the case of the Padé schemes, simple re-scaling of all coefficients can

be shown to drastically alter the transfer response. This is demonstrated in Fig-

ures 3.1(a) and 3.1(b) which respectively plot the growth factor for a fourth-order

explicit Shapiro scheme and a fourth-order implicit Long scheme (using δ∆ = 0.1)

with the proposed re-scaling. As mentioned, the explicit stencil maintains its gen-

eral spectral characteristics; meanwhile, the implicit stencil is completely altered.

The unintended alterations to the implicit filter’s transfer function, furthermore,

nullify previous efforts to understand and predictably prescribe its spectral char-

acteristics.

A better understanding of why this happens can be garnered by inspecting the

resulting transfer function modified by the proposed rescaling:

Ĝ∗ =
Î + µD̂r
Î + µD̂`

= Î +
µ
(
D̂r − D̂`

)
Î + µD̂`

. (3.4)

This expression only recovers the intended re-scaling of,

Ĝ∗ = Î + µ
(
Ĝ − Î

)
, (3.5)

in the case of an explicit stencil, where D̂` = 0. Instead, spectral satisfaction of

Equation 3.5 is attained when employing the operator scaling previously provided

in Equation 2.38. Writing the resulting temporally-consistent form of Equation
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3.3 gives,

εIF,0 ·
un+1 − un

∆t
= εEF,0 ·Ro{un}

+ (|λ|∆t)
[

R∑
r=1

εEF,2r(∆x)2r−1δ2r
x

]
{Ro{un}}

− (|λ|∆t)
[

L∑
`=1

εIF,2`(∆x)2`−1δ2`
x

]
{Ro{un}}

+|λ|
[

R∑
r=1

εEF,2r(∆x)2r−1δ2r
x

]
{un}

−|λ|
[

L∑
`=1

εIF,2`(∆x)2`−1δ2`
x

]
{un} ,

(3.6)

which still recovers the desired temporal consistency of the scheme, yet maintains

the response qualities of the implicit scheme (see Figure 3.1(b)). Furthermore, the

aforementioned computational overhead associated with inverting a time-varying

system is avoided by relegating the CFL scaling to the righthand size of the system,

which corresponds to differencing the original signal u. In this way, it should also

be noted that the scaling should be done conservatively4.

The implications of this CFL re-scaling for multi-dimensional use can also

be considered. In the case where successive 1D operators are applied in each

direction, the associated response can be written as,

Ĝ∗∏,NDim =
NDim∏
n=1

[
Î + µn

(
Ĝn − Î

)]
. (3.7)

This naturally suggests that N-dimensional waves will be scaled as
∏N

n {µn}, which

means that mixed-modes will have their coefficients further reduced than one-

dimensional modes. This is consistent with the notion that mixed directions have

4Note, the scaling should be done conservatively (i.e., |λ|δ2{u} → δ{|λ|δ{u}}) with special
averaging (Kamakoti and Pantano, 2009) such that narrow-stencil representations are recovered,
rather than wide stencil formulations that may be susceptible to odd-even decoupling.

66



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

(b)

Figure 3.1: Effects of proposed filter re-scaling methods: a) Growth factor |Ĝ| of

explicit fourth-order Shapiro stencil with re-scaling (using µ = 0.5 using Equation

3.5) and without re-scaling; b) Growth factor of implicit fourth-order Long filter

Shapiro stencil with re-scaling (with µ = 0.5 using Equation 3.5 in red, versus

Equation 3.4 in black) and without-rescaling.

a coarser effective grid length (e.g., the diagonal length of a rectangular grid),

which entails a lower effective CFL.

3.3 Filter-based Artificial Dissipation

The ability to regain temporal consistency by re-scaling the solution-filtering co-

efficients by the CFL number can be very useful. Extension of these treatments to

such things as pseudo-time iteration (Merkle and Athavale, 1987) (e.g., for stiff-

physical systems), however, is not straight-forward and can lead to stalled conver-

gence (Mundis et al., January 2016) and unintended dispersive errors. As a poten-

tial remedy to this, one may consider the use of artificial dissipation schemes rather

than solution-filtering. These methods are well-established for use in pseudo-time

and for stiff-regimes (Venkataswaran and Merkle, 2000). Perhaps lacking in the

traditional use of artificial dissipation, however, is knowledge of the customized
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design of the spectral damping characteristics. Though recent efforts have been

made in developing optimized artificial dissipation stencils (Mansouri and Hixon,

2015), attaining a level of specification as found in the realm of filtering is still

strongly desirable. In this way, it is attractive to leverage the stencils belonging

to different filter families and to re-express them as artificial dissipation schemes.

This is done here and termed filter-based artificial dissipation.

Equation 3.6 is the evolution equation relating to the temporally-consistent

solution-filtering. It can be seen to take on an artificial dissipation form, and thus

gives insight into deriving the new filter-based artificial dissipation schemes. It

suggests that one would need to filter both the solution un as well as the residual

Ro; the resulting scheme may be written in the following ordinary differential

equation (ODE) form for a Forward (explicit) Euler integration method:

un+1 − un
∆t

= Ro{un}+ (∆t) ·RAD,ex{Ro{u}}+RAD,ex{un} , (3.8)

where,

RAD,ex{u} =

[
R∑
r=1

εEF,2r(∆x)2r−1δ2r−1
x −

L∑
`=1

εIF,2`(∆x)2`−1δ2`−1
x

]
{|λ|δu} . (3.9)

Note, the above equation assumes that all coefficients ε2n≥1 are properly normal-

ized by εIF,0 and presumes that proper averaging of non-constant coefficients (e.g.,

|λ|) is performed in order to ensure telescoping properties for discrete conserva-

tion in practical use. According to the premise of solution-filtering from which

it is derived, an artificial dissipation scheme as written in Equation 3.8 should

only impart dissipation while avoiding any alterations to the base scheme’s phase

characteristics. This formulation, however, is non-traditional in that it includes

both artificial dissipation and artificial dispersive terms. Adaptation to multi-

stage schemes, where Rs
o{u} =

∑s
m amsRo{um}, can also become algorithmically

complicated and may degrade temporal accuracy5.

5the solution-filtering evolution equation shown in Equation 3.3 is based on the assumption
that ∆u ≈ ∆t ·Ro, which implies the possibility of splitting errors in the derivation of Equation
3.8.
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In order to derive a more tractable and traditional implementation for the

filter-based artificial dissipation, it is useful to consider exact integration and to

assume all damping to be the result of adding a dissipative term to the original

residual. Under this semi-discrete perspective, the new method takes the following

form,

∂u

∂t
= Ro{u}+RAD{u} , (3.10)

where RAD{u} = u′′ , (3.11)

such that [I +D`] {u′′} = RAD,ex{u} . (3.12)

In this way, extension to multi-stage schemes is straightforward. One simply needs

to add RAD to the original residual. The form of the system to solve in Equation

3.12 is derived by considering the spectral function D̂ = Ĝ−Î in an operator form.

In essence, the filter-based artificial dissipation extracts the damping component

of the filtering scheme and adds it to the ODE residual. Multi-dimensional forms

are derived by a similar exercise. For simplicity, however, the additive approach

relating to G∑ is employed henceforth, where RAD =
∑NDim

n RAD,n.

A few consequences in the interpretation of Equation 3.10 is the fact that the

artificial dissipation scheme is not precisely consistent with the solution-filtering.

As a consequence, the phase characteristics of the base scheme can be altered and

temporal coupling with the intended damping behavior is expected to be stronger.

Additionally, the adaptation of implicit filter stencils to the artificial dissipation

form now requires the inversion of the system in Equation 3.12; this is in contrast

to Equation 3.8, where the implicit nature of the filter stencil is mathematically

represented by proper filtering of the residual (Ro) and the previous time-step

solution (un) – an allusion to the class of residual based compact schemes (RBC)

(Lerat and Corre, 2001).

In order to better assess the subtle difference between the proposed schemes of

Equation 3.8 versus Equation 3.10, it is helpful to write a multi-stage Runge-Kutta
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integration scheme for the general ODE, ∂tu = R{u}:

u(tn + ∆t) = un +

∫ tn+∆t

tn
R{u} = un+1, (3.13)

≈ un + (∆t) ·
S∑
s=1

b̃sR{un+c̃s}, (3.14)

where un+c̃s = un + (∆t) ·
S∑
j=1

ãsjR{un+c̃s} .

The more traditional interpretation offered by Equation 3.12 would produce the

following stage-values:

un+c̃s = un + (∆t) ·
S∑
j=1

ãsj
[
Ro{un+c̃s}+RAD{un+c̃s}

]
. (3.15)

Meanwhile, the scheme offered by Equation 3.8 – conjured to be more congruent

with the temporally-consistent solution-filtering of Equation 3.3 – would have the

stage calculations read as the following (assuming solution-filtering is done at each

integration stage):

un+c̃s = un + (∆t) ·RAD,ex{un}

+(∆t) ·
S∑
j=1

ãsj
[
Ro{un+cs}+ (∆t) ·RAD,ex

{
Ro{un+c̃s}

}]
.

(3.16)

This form does not naturally adhere to the multi-stage formulation due to the

additional RAD,ex{un} term that is not scaled by the stage coefficients asj. Thus,

this proposed formulation would need to be analyzed as a fully discrete scheme.

The implementation of Equation 3.12 is chosen due to its more traditional form

and straight forward extension to high-order temporal schemes.

3.4 Spectral Assessment of Stabilization Methods

The spectral performance of the proposed solution-filtering and filter-based arti-

ficial dissipation schemes is assessed in this section. Because the schemes funda-

70



mentally differ in their interaction with the integration method, focus is placed on

consequences pertaining to temporal scheme coupling as well as relating to issues

of temporal consistency.

In order to inspect the algorithms spectrally, von Neumann analysis (VNA) is

employed, where we define the complex-valued amplification factor Ĝ such that,

ûs = Ĝs · ûn . (3.17)

The amplification factor may be decomposed into growth and phase information as

shown in Equation 2.4 and thus communicates the solution’s evolution assuming

linearity. Von Neumann analysis derives an expression for the amplification factor

by considering the fully discrete equations. Substituting Fourier representations

for the residual (i.e., discrete derivatives), yields the following system of equations

to be solved in the case of multi-stage integration:

Ĝn+1(k) = Î + (∆t) ·
S∑
s=1

b̃s(Ĝs · R̂) , (3.18)

such that Ĝs = Î + (∆t) ·
S∑
j=1

ãsj(Ĝj · R̂) . (3.19)

In the current exercise, the one-dimensional linear advection equation is considered

on a uniform and periodic domain:

∂tu−Ro{u} = 0 with Ro{u} = −λ∂xu , (3.20)

Substituting Fourier representations into the discrete representation of the respec-

tive derivatives yields,

R̂o = −λ · ıkmod = −λ · ık
′
mod

∆x
, (3.21)

with kmod serving as the modified wavenumber of the differencing scheme used

on the spatial derivatives (Kravchenko and Moin, 1997). In this manner, the

solution-filtering scheme is analyzed to have an overall amplification factor of
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Ĝn+1 = (Ĝfil · Ĝ∗,n+1) (assuming filtering at the end of each full time-step); mean-

while, the filter-based artificial dissipation scheme is analyzed with respect to Ĝn+1

based on subsequent spectral representations of the discretized residual R{u} =

Ro{u} + RAD{u}. The following considers a sixth-order standard discretization

of ∂xu, which yields kmod(k) = (1/30) · [45 sin(k∆x− 9 sin(2k∆x) + sin(3k∆x)].

For integration, the third-order Runge-Kutta temporal scheme of Wray is con-

sidered (see the Butcher Tableaux of Table 4.2 in Chapter 4 for the integration

coefficients, [c̃s, ãsj, b̃s]).

Figure 3.2 shows the growth factor |Ĝ| of the different stabilization schemes as

a function of the CFL number. Figure 3.2(a) shows the case of the base scheme

without any stabilization. Here, it is evident that the integration method produces

some mid-wavenumber damping, and that this behavior – which is unfounded for

the purely hyperbolic system – is correctly diminished as the CFL is reduced

and temporal error is decreased. Figure 3.2(b) plots the added effect of including

solution-filtering to the base scheme. The overall growth factor is a product of

the original damping and the filter operator. In this case, reducing the CFL has

little effect on the imparted dissipation characteristics which are dominated by

the solution-filtering contribution. While the extent to which this is true depends

on the chosen cut-off wavenumber k1/2 for the filter, one can anticipate that the

relative decoupling between the time-step size (i.e., CFL number) and the effective

dissipation could lead to temporal-consistency issues as ∆t → 0. Next, Figure

3.2(d) reveals how re-scaling the filter coefficients by the time-step size allows the

damping to be reduced according to the CFL. The case of the filter-based artificial

dissipation scheme in Figure 3.2(c) shows congruent damping characteristics, with

discrepancies relative to the temporally-consistent filtering only arising under non-

negligible temporal coupling effects (i.e., as the time-step size increases).

In order to understand the long-term implications of the stabilization schemes,

Figure 3.3 plots the cumulative damping as |Ĝ|1/CFL, thus highlighting any tem-
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Figure 3.2: Growth factor |Ĝ| as a function of CFL and corresponding to tenth-

order Tangent stencil stabilization (θ1/2 = 0.5π) used with the third-order Runge-

Kutta integration scheme (see Table 4.2) and sixth-order central discretization of

the 1D hyperbolic equation (see Equation 3.20): a) base scheme with no stabiliza-

tion, b) solution-filtering, c) temporally-consistent solution-filtering as proposed

in Equation 3.5, and d) filter-based artificial dissipation as proposed in Equation

3.15.

poral consistency issues with the different formulations. In the case of the base

scheme shown in Figure 3.3(a), we note that the system is increasingly preserved

as one decides to take smaller time-steps. Again, this is expected as the governing

equations are hyperbolic and any damping is the result of errors in the integra-
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tion method. Conversely, Figure 3.3(b) demonstrates how for solution-filtering,

the effective cut-off is increasingly coarsened (in the cumulative sense) as the time-

step is decreased. In this example, reducing the time-step size by two orders of

magnitude has resulted in a coarsening of the computation, from ∆ ≈ 4∆x to

∆ ≈ 8∆x. This underlines the potential issue with traditional solution-filtering

implementations: decoupling the stabilization from the integration process makes

the dissipation agnostic to the physics and thus calls for additional precautions

with respect to how much damping is administered over time. The proposed re-

scaling of the solution-filtering schemes by CFL in Figure 3.3(c), however, seems

to maintain the desired cut-off under time-step refinement (note: the curves for

CFL = 10−2 and 10−4 are almost identical, thus suggesting asymptotic behavior).

The fall-off in spectral response is largely preserved, although high-wavenumber

damping is reduced. The reduction in cumulative high-wavenumber dissipation,

however, is not believed to threaten stability since the damping effect is geometric;

meanwhile, the accumulation of solution error (i.e., aliasing) is characteristically

additive. Figure 3.3(d) reiterates that the filter-based artificial dissipation is able

to maintain the spectral damping response in a temporally-consistent manner.

While the re-scaled solution-filtering and filter-based artificial dissipation for-

mulations can be shown to be largely equivalent in 1D, their behavior deviates at

moderate CFL, in which case the artificial dissipation method undergoes stronger

coupling with the integration scheme. Comparing the damping responses in Fig-

ures 3.2(b) and 3.2(d), such coupling is seen to be mainly manifested at the

high-wavenumbers. A secondary difference in the two formulations is the asso-

ciated effect on phase characteristics. As previously discussed, solution-filtering

is purely dissipative and thus would preserve the dispersive characteristics of the

base scheme. Figure 3.4(a) shows the relative phase error of the base scheme for

CFL = 100 and 10−2. As expected, the dispersive error is dictated by the accu-

racy of the spatial scheme at smaller time-steps. But as the CFL is increased,
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Figure 3.3: Cumulative Growth factor |Ĝ|1/CFL as a function of CFL and cor-

responding to tenth-order Tangent stencil stabilization (θ1/2 = 0.5π) used with

the third-order Runge-Kutta integration scheme (see Table 4.2) and sixth-order

central discretization of the 1D hyperbolic equation (see Equation 3.20): a) base

scheme with no stabilization, b) solution-filtering, c) filter-based artificial dissi-

pation as proposed in Equation 3.5, d) temporally-consistent solution-filtering as

proposed in Equation 3.15.

temporal error effects begin to take effect. As evidenced in Figure 3.4(b), the

same is true in the case of the filter-based artificial dissipation scheme, except

that the temporal coupling effects may be much more drastic (depending on the

underlying filter stencil and the integration method). In this particular case,
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Figure 3.4: Normalized phase (φ{Ĝ}/[CFL × (k∆x)]) as a function of CFL and

corresponding to tenth-order Tangent stencil stabilization (θ1/2 = 0.5π) used with

the third-order Runge-Kutta integration scheme (see Table tbl:Butcher) and sixth-

order central discretization of the 1D hyperbolic equation (see Equation 3.20): a)

no stabilization, and b) filter-based artificial dissipation as proposed in Equation

3.15.

one notices a pronounced reduction in phase accuracy which somewhat mirrors

the dissipative activation of the filter stencil. While this may be unwanted in

terms of dispersive accuracy, such misgivings are tempered by the fact that the

sharp increase in phase error is accompanied by an increase in the damping of

the stabilization. There are no such phase complications, however, in the case of

the temporally-consistent solution-filtering method; nevertheless, the filter-based

artificial dissipation formulation will be used henceforth as it provides simpler

extension to dual-time iterative procedures – necessary for implicit integration

methods (Mundis et al., January 2016).

76



3.5 Demonstration Test Case: Feature Preservation

The inherent consequence of temporal consistency for stabilization is briefly demon-

strated here. The spectral analysis of Section 3.4 has shown that the original

solution-filtering algorithm imparts the same amount of damping regardless of

the time-stepping. Therefore, it accumulates large amounts of dissipation, assum-

ing a fixed frequency of filtering (with respect to number of time-steps). This

leads to an issue of temporal consistency that is addressed by the CFL re-scaling

or artificial dissipation formulations proposed.

Consider the following monochromatic signal,

u(x) = cos

(
2πκpx

L

)
, (3.22)

to be convected by the advection equation of Equation 3.20 with λ = 1. The grid

is uniform and periodic on x ∈ [0, L = 1] such that x(0) = x(L). Here, an integral

wavenumber of κp = Nx/4 is chosen for the primary signal, corresponding to four

points-per-wave (PPW). The signal is properly convected with minimal dissipation

and dispersion error by optimized spatial and temporal methods: the fourth-order,

eleven-point central discretization from Bogey and Bailly (2004), and the fourth-

order, six-stage Low-Dissipation-Dispersion Runge-Kutta integration method of

Hu et al. (1996).

In order to highlight the effectiveness of the stabilization schemes, erroneous

high-wavenumber modes are added to the original signal according to,

u′(x) = u(x) +

Nx/2∑
κ=Nx/3

(
1

κ

)
· sin

(
2πκx

L
+ φU(κ)

)
. (3.23)

The additional modes constitute waves between 3 PPW and 2 PPW, assigned

with randomized phase φU(κ). In applying the stabilization, the goal is to re-

trieve and maintain the original signal u(x). A tenth-order Tangent stencil with

(k1/2∆x) = (2/3)π is chosen due to its scale-discriminant properties which per-
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mits preservation of the original signal with strong attenuation of the erroneous

content.
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Figure 3.5: Effect of the stabilization method signal after being convected for four

wavelengths of the primary mode u(x): a) CFL = 1.0 and b) CFL = 0.01.

Figure 3.5 plots u(x) and shows the results from employing traditional solution-

filtering and the filter-based artificial dissipation (see Equation 3.15) to u′(x)

after having convecting a distance of four wavelengths forward. In the case of

CFL = 1, shown in Figure 3.5(a), the traditional solution-filtering and filter-based

artificial dissipation schemes do equally well; they have removed the erroneous

high-wavenumber content and have done a decently good job at maintaining the

primary signal. On the other hand, Figure 3.5(b) shows the results for CFL = 0.01

and highlights the temporal inconsistency of traditional solution-filtering; while

the erroneous modes have been eliminated, the main signal is almost completely

removed. This has to do with the large effective coarsening that results from the

cumulative dissipation, as previously highlighted in Figure 3.3(b). On the other

hand, the filter-based artificial dissipation scheme is temporally consistent and

is able to maintain the primary signal and eliminate the noise; it performs in

similar fashion to the CFL = 1.0 scenario. Although not included, tests of the

temporally-consistent filtering formulation based on the scaling of Equation 3.5
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were shown to agree exactly with the filter-based artificial dissipation scheme –

although some discrepancies (i.e., phase error) may occur in general situations, at

least for moderate CFL.

The ability to utilize the spectrally-tuned filtering stencils within a stabiliza-

tion context gives great flexibility for the customization of dissipation schemes

based on accuracy considerations, as will be covered in Chapter 4. Further in-

troducing temporally-consistent implementations such as the filter-based artificial

methods also allows for proper extension to stiff-systems and pseudo-time iteration

methods.
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CHAPTER 4

Design of Scale- and Scheme-Discriminant

Dissipation Methods

This chapter is taken with some modifications from the AIAA conference proceed-

ings article “The Role of Dispersion and Dissipation on Stabilization Strategies

for Time Accurate Simulations” (Edoh et al., January 2016).

4.1 Background

Accurate calculation of the fluid equations requires proper representation of the

corresponding transport and diffusive mechanisms. The careful selection of the

numerical scheme – both spatial and temporal – is thus crucial. In the case

of under-resolved flow such as LES, the characteristics of the equations become

primarily hyperbolic and thus significant emphasis must be placed on capturing

convection properties while minimizing numerical damping. This is particularly

important when considering time-accurate simulations, as compared to steady-

state methods which focus on the removal of error through damping mechanisms.

With respect to spatial methods, the emphasis on transport and minimal nu-

merical damping has called into question the suitability of dissipative upwind-type

spatial discretizations of the convective terms (Sagaut, 2006). Instead, central-

ized stencils are preferred. The performance of these different spatial schemes

may be assessed by a modified wavenumber spectral analysis (Kravchenko and

Moin, 1997) and judged relative to Fourier spectral methods, often taken to be
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an exact reference. Relatedly, high-order methods have traditionally been pre-

ferred since spectral accuracy can be seen to improve in accordance with im-

proved asymptotic convergence. More recently, however, the potential superior-

ity of spectrally-optimized discretizations has been acknowledged for sustaining

feature propagation at low-resolutions. Such schemes, most commonly termed

dispersion-relation-preserving (DRP) schemes, sacrifice asymptotic order conver-

gence and look to extend scheme performance to higher wavenumbers for a given

stencil size (Lele, 1992; Tam and Webb, 1993; Zingg et al., 1996; Bogey and Bailly,

2004; Linders and Nordstrom, 2015). While use of such stencils is predominantly

found in aero-acoustics, the utility for computation of coarse features relative to

the LES grid is natural. For instance, Fauconnier et al. (2009, 2011) formulate a

dynamic finite difference method capable of switching between optimal-order (i.e.,

standard) and optimal-spectral (i.e., DRP) stencils; they mark improved results

for LES calculations of transitional turbulence such as in the case of the Taylor-

Green vortex problem. Keeping with the DRP concept, new compact methods

that rely on auxiliary equations have also been developed. For example, the

schemes from Liu et al. (2013a,b) use nodal and interface value information to

calculate the derivative, which then requires both nodal and interface data to be

advanced in time. Similarly, the “layered” scheme of Bai and Zhong (2017) solves

auxiliary transport equations for the flux derivatives, in similar fashion to some

Discontinuous-Galerkin (DG) concepts. While both of these new methods entail

increased memory costs, they are able to attain spectral-like performance and

also avoid the typical issue of stationary odd-even modes encountered with cen-

tral discretizations on collocated grids. The gain in accuracy at high wavenumbers

provides further utility for use in under-resolved simulations.

While attaining spectral-like performance via nodal methods is attractive,

there is an increased susceptibility to aliasing error. This is a non-linear effect

that can be significant in under-resolved situations (i.e., in the absence of phys-
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ical diffusion mechanisms) It is furthermore known to be a de-stabilizing source

of error (Phillips, 1959) that can be thought to artificially recycle energy into

the large scales. Ghosal (1996) shows how aliasing error can overwhelm LES

model contributions, and how the issue is made worse for high-order schemes.

A similar conclusion can be drawn for DRP methods relating to their enhanced

spectral fidelity. The presence of such non-linear errors might thus motivate one

to also adopt skew-symmetric and split type representations (Blaisdell et al., 1996;

Kennedy and Gruber, 2008), known to reduce aliasing effects, or to perform some

type of de-aliasing – necessary even in the case of the Fourier spectral methods.

For quadratic non-linearities, Orszag (1971) shows that the “2/3” de-aliasing rule

is sufficient for removing all aliasing contributions; in this way, the upper third of

the resolvable spectrum needs to be removed. Similar reasoning then generalizes

to the fact that N -th order non-linearities produce a “2/(N + 1)” de-aliasing rule.

Parallel to looking at spatial discretizations is the need to consider temporal

integration methods. As previously alluded to, the choice of the time scheme can

induce unwanted dispersion and dissipation errors for moderate to large CFL.

Analogous to the topic of spatial schemes, high-order temporal implementations

are also favored due to their improved accuracy. Efforts to extend time-accurate

performance for larger time-stepping has thus also led to the development of op-

timized time schemes such as the Low-Dissipation-Dispersion Runge-Kutta (LD-

DRK) methods (Hu et al., 1996; Bogey and Bailly, 2004). Unfortunately, the

coupling of such schemes with the DRP discretizations does not necessarily en-

hance overall scheme accuracy. As a result, Ramboer et al. (2006) look to optimize

the overall scheme, thus taking into account temporal-spatial coupling effects.

The mitigation of numerical error – whether spectral error or aliasing error –

can largely be addressed by the removal of the problematic high wavenumbers.

This is mainly relating to under performance of the modified wavenumber. The

removal of the erroneous content can be done by judiciously introducing numer-
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ical dissipation, which would furthermore aid in providing scheme stability. The

decision on how best to supply this dissipation is imperative and should be made

according to the characteristics of the base scheme, as doing so can minimize the

impact of damping error. With respect to transport-dominated equations, it is

thus useful to inspect the modified wavenumbers and consider limits implied by

spectral and aliasing considerations. Incorporating temporal effects can provide

additional insight. The following chapter looks at the performance characteris-

tics of different spatial and temporal schemes, both individually and jointly. In

using a scalar advection equation for subsequent analysis, emphasis is placed on

characterizing numerical phase properties and selecting proper levels of numerical

dissipation. In this way, the benefits of scale-discriminant dissipation – which

maintains a clear distinction between the preserved and attenuated scales – are

highlighted with respect to tuning damping characteristics relative to the base

scheme.

4.2 Resolvability of Numerical Methods

In order to understand how dissipation may be used to properly supplement the

base scheme, it is necessary to first characterize the nature of the numerical error.

These errors, which represent differences between numerical approximation and

the exact solution, are implicitly tied to notions of resolution, as consistency

requires that the spatial and temporal discretizations converge to the continuous

operators under refinement. Practical use, however, suggests the need to know

how much resolution is required in order to support a given error tolerance. With

this arises the notion of scheme resolvability. The following first addresses spatial

and temporal schemes separately, then considers their coupled performance via

von Neumann analysis in order to draw insight into how numerical dissipation

may be incorporated into the overall scheme in order to enhance stability while
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maintaining or improving accuracy.

4.2.1 Spatial Characterization

Spectral characterization of spatial schemes is possible through the inspection of

the modified wavenumber, kmod. First, one may establish an exact representa-

tion of the spatial operator by expressing the solution as a Fourier function, as

previously shown in Equation 2.3. Taking the first derivative then gives,

∂xu(xi) =
∑
k

[ık] · û(k)eıkxi . (4.1)

Here, it is evident that the representation of the derivative is simply a re-scaling

of the original Fourier modes by their respective wavenumber, k. In seeking to

derive the modified wavenumber of a discrete derivative stencil, we thus look to

discern the nature of an analogous re-scaling of the original signal.

A general discrete implicit representation of ∂xu ≈ δx{u} may be written as,

u′i +

K∑̀
`=−J`,`6=0

a` u
′
i+` =

1

∆x

Kr∑
r=−Jr

brui+r , (4.2)

where u′i = ∂xu(xi). Substituting Equation 4.1 into Equation 4.2 and performing

the necessary expansions about xi can be shown to yield,

[ikmod] =
1

∆x

{ ∑Kr
r=−Jr br [cos(k∆xr) + ı sin(k∆xr)]

1 +
∑K`

`=−J`,` 6=0 a` [cos(k∆x`) + ı sin(k∆x`)]

}
. (4.3)

As in the case of the discrete filters, the coefficients (a`, br) are chosen in order to

establish consistency with the desired operator and may be optimized with respect

to spectral or asymptotic convergence considerations. In the case of a symmetric

stencil on a uniform grid, the above simplifies to the following:

kmod =
1

∆x

{
2
∑R

r=1 br sin(rk∆x)

1 + 2
∑L

`=1 a` cos(`k∆x)

}
. (4.4)

In this case, the modified wavenumber kmod is real in accordance with the exact

Fourier representation of Equation 4.1. By comparing kmod to the exact scaling
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k, one is then able to assess how well the finite difference scheme can approxi-

mate exact differentiation. Furthermore, as such comparisons are a function of

wavenumber, one may extract information about the spatial resolvability of the

scheme.

scheme CD02 CD04 CD06 CD04-7pt * CD10 CD04-11pt *

b1 1/2 8/12 45/60 0.79926643 1050/1260 0.87275699

b2 −1/12 −9/60 −0.18941314 −300/1260 −0.28651117

b3 1/60 0.02651995 75/1260 0.09032000

b4 −12.5/1260 −0.02077940

b5 1/1260 0.00248459

Table 4.1: Stencil coefficients for the first derivative, with b0 = 0 and br = −b−r
(*optimized coefficients, as written, are only listed to single-precision).
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Figure 4.1: Central-difference scheme comparison: a) normalized modified

wavenumber (kmod/k), and b) relative error of modified wavenumber (|kmod−k|/k).

Table 4.1 includes coefficients for some explicit central difference stencil dis-

cretizations (i.e., a`≥1 = 0, written shortly as CDXX, with XX denoting the

stencil order. Listed are standard schemes as well as spectrally-optimized (i.e.,

DRP) methods which include a specifier regarding stencil width (e.g, CD04-7pt
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is a fourth-order, seven point stencil). The spectral performance of the respective

schemes can easily be inspected by looking at the normalized modified wavenum-

ber (kmod/k). This quantity is plotted in Figure 4.1(a) as a function of (k∆x)/π.

It is apparent that all discretizations provide accurate representation of the deriva-

tive at low wavenumbers (i.e., high resolutions) but become increasingly inaccurate

at high wavenumbers (i.e., low resolutions). The decrease in accuracy at small-

scales is shown to be less severe by employing higher-order stencils. The use

of optimized schemes further improves the range of resolvability, wherein fewer

points per wave (PPW) are needed to represent the derivative of a waveform. For

example, it is apparent that the optimized fourth-order schemes (CD04-7pt and

CD04-11pt) show superior spectral properties relative to the standard five-point,

fourth-order scheme (CD04). This is expected, however, due to the fact that these

optimized schemes utilize larger stencils and thus have more degrees of freedom

(DOF) through which properties may be enhanced. Therefore, it is noteworthy

to compare schemes of equivalent stencils size or DOF. The CD06 and CD04-7pt

schemes each utilize a seven-point stencil. Again, it is evident that the CD04-7pt

scheme accurately resolves a larger part of the spectrum. The same can be said

when comparing CD10 and CD04-11pt, which each utilize an eleven-point stencil.

Assessing the modified wavenumber in terms of relative error on a logarithmic

scale provides an alternate perspective and additional insight. Figure 4.1(b) thus

plots the relative error |kmod−k|/k logarithmically. Such a representation empha-

sizes the theoretical truncation error of the respective schemes, which becomes

evident as (k∆x) → 0 (i.e., at high resolutions). Here it is also evident that the

featured optimized schemes (CD04-7pt and CD04-11pt) are indeed of fourth-order

but have lower error constants relative to their standard counterpart. The per-

spective offered by this logarithmic error plot furthermore reveals the fact that

for a given DOF, the standard schemes outperform their optimized counterparts

at high-resolutions but are less accurate at higher wavenumbers. Looking at Padé
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(i.e., implicit) stencil representations, though not done here, is also useful as these

generally produce enhanced spectral characteristics for given DOF while main-

taining compact stencil widths (Lele, 1992; Mahesh, 1998). By understanding the

relative merits of the spatial discretization schemes, it then becomes possible to

quantify the limits of spatial resolvability. This, in turn, can be used to develop a

suitable numerical dissipation strategy that targets erroneously calculated modes

in scale-discriminant fashion. The approach then results in a scheme-discriminant

procedure that will serve as the base scheme for the eventual LES implementations

to be proposed.

4.2.2 Temporal Characterization

Characterization of the temporal scheme also gives insight on sources of numerical

error. To do this, one can assume a general linear ordinary differential equation

(ODE),

du

dt
= f(u) (4.5)

≈ β · u , where β = eig{f(u)} .

Such a linear expression may be integrated exactly to yield,

u(t) = Ceβt . (4.6)

Based on the linearity assumption, solution advancement in time can furthermore

be expressed as,

u(t+ ∆t) = eβ∆tu(t) . (4.7)

Inspecting the form of Equation 4.7 and comparing it to Equation 3.17 reveals

that eβ∆t corresponds to an amplification factor. In the case of a multi-stage

Runge-Kutta scheme (see Equations 3.14-3.15), the resulting amplification factor

can be written as a “characteristic” polynomial P (β∆t) based on the Butcher
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Tableau coefficients (Sanderse, 2013):

P (β∆t) =
Det[I − (β∆t)D̃]

Det[I − (β∆t)Ã]
, (4.8)

with D̃ = Ã− ẽb̃T , ẽ = [1 · · · 1]T .

This characteristic polynomial can be understood as a Taylor-series approximation

to the exact amplification factor,

eβ∆t =
∞∑
n=0

(β∆t)n

n!
≈ P (β∆t) . (4.9)

As noted in the case of spatial schemes, accuracy of the temporal method may

be improved by considering high-order or optimized implementations. Implicit

integrators can furthermore be understood to be more accurate, as they represent

a rational function (i.e., Padé) approximation to the exponential function.

c̃ Ã

b̃

General Butcher Tableau

(a)

0 0 0

1 1/2 1/2

1/2 1/2

Implicit, Second-order

Crank-Nicolson

(b)

0 0 0 0

8/15 8/15 0 0

2/3 1/4 5/12 0

1/4 0 3/4

Explicit, Third-order

RK (Wray)

(c)

Table 4.2: Runge-Kutta Butcher Tableaux of coefficients.

In order to illustrate the effect of using high-order Runge-Kutta methods, Fig-

ure 4.2 includes ODE magnitude thumbprints |P (β∆t)| of some explicit and im-

plicit integrator schemes. The magnitude thumbprints represent damping effects
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and are compared to the real component of the exact linear integrator, eRe{β}·∆t.

In the case where Re{β} < 0 (i.e., decaying modes), one expects dissipation of the

signal in accordance with the magnitude of the real eigenvalue and independently

of the imaginary component. This results in vertical lines of constant damping as

shown in Figure 4.2(a) for the exact integration method. Inspecting the explicit

methods in Figure 4.2(b) and Figure 4.2(c) reveals that such methods are con-

ditionally stable in the negative real plane. This further results in the effective

dissipation being notably dependent on both the real and imaginary components

of the system eigenvalue. Although the third-order Runge-Kutta (RK3) method

(see Table 4.2(c)) shown in Figure 4.2(b) is of higher asymptotic order than the

second-order Low-Dissipation-Dispersion Runge-Kutta (LDDRK2-5) scheme fea-

tured in Figure 4.2(c) (see Hu et al. (1996); Stanescu and Habashi (1998) for

corresponding Butcher Tableau coeffiecients), the latter is optimized for improved

damping characteristics along the imaginary axis. The accompanying benefits

to the optimization procedure include an enlarged stability region in addition to

more accurate dissipation characteristics for decaying modes – at least for moder-

ate radii of |(β∆t)| from the origin. Therefore, the optimized LDDRK2-5 scheme

is seen to be more accurate than the higher-order RK3 method for dissipation.

On the other hand, the implicit schemes in Figure 4.2(d) and Figure 4.2(e) are

seen to be unconditionally stable for decaying modes (i.e., A-stable) and thus are

more accurate than the explicit methods for large time-steps. Relative to exact

integration, however, it is evident that the second-order Crank-Nicolson scheme in

Figure 4.2(d) does not replicate the fact that |eRe{β}·∆t| → 0 as (β∆t)→ −∞ (i.e.,

L-stability). By contrast, the fourth-order optimized Explicit Singly-Diagonally

Implicit Runge-Kutta (ESDIRK4) method (Bijl et al., 2002) satisfies this property

and thus is better suited for large (β∆t) values (either with respect to the time-

step or system stiffness). This latter scheme is also seen to be superior in terms

of emulating proper dissipative characteristics (i.e., nearly-vertical constant lines
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of dampening), at least for moderate radii of |(β∆t)| from the origin. However,

with respect to the preservation of pure oscillatory modes (i.e., purely imaginary

eigenvalues), the Crank-Nicolson scheme satisfies perfect preservation of the as-

sociated amplitudes regardless of the time-step size, while the ESDIRK4 scheme

exhibits a limited region for accurate preservation.

As a complement to the ODE magnitude thumbprints, one may inspect the

phase thumbprints (φ{P (β∆t)} = tan−1{Im{P (β∆t)}/Re{P (β∆t)}}) in order

to judge dispersion effects stemming from the integration method. Such plots

are included in Figure 4.3 for explicit and implicit schemes. These are further-

more compared to the calculated phase from exact integration, eIm{β}·∆t, which is

shown to interpret phase independently of the real component of the eigenvalue.

This would then suggest horizontal lines of constant phase. Such characteristics

are generally not attainable by any of the temporal schemes in question; how-

ever, the high-order and optimized methods are able to extend their regions of

accurate phase representation, at least for moderate radii of |(β∆t)|. Of further

interesting note is the fact that φ{P (β∆t)} features branch cuts corresponding to

evaluations of the inverse tangent function for determining phase angle; this re-

sults in instances where increasing the time-step size reverses the perceived phase

direction, which can be interpreted as a temporal equivalent to aliasing.

Studying the magnitude and phase thumbprints of different integration meth-

ods thus provides useful information on the dissipation and dispersion proclivities

of the schemes. These then help to anticipate potential benefits or shortcomings

of the respective schemes, to be assessed with respect to the task at hand.

4.2.3 Spatio-Temporal Coupling Effects

While separately understanding the behavior of the spatial and temporal schemes

provides insight into which methods one may wish to select, it is nevertheless im-
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Figure 4.2: Magnitude ODE contours |P (β∆t)|: a) exact integration (Equa-

tion 4.7), b) third-order explicit Runge-Kutta (RK3) scheme (see Table 4.2),

c) second-order, five-stage optimized explicit Low-Dissipation-Dispersion Runge-

Kutta (LDDRK2-5) scheme (Hu et al., 1996; Stanescu and Habashi, 1998), d)

second-order implicit Crank-Nicolson (CN) scheme (see Table 4.2), and e) fourth-

order, six-stage optimized Explicit Singly-Diagonally Implicit Runge-Kutta (ES-

DIRK4) scheme (Bijl et al., 2002).
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Figure 4.3: Phase ODE contours φ{P (β∆t)}: a) exact integration (Equation

4.7), b) third-order explicit Runge-Kutta (RK3) scheme (see Table 4.2), c)

second-order, five-stage optimized explicit Low-Dissipation-Dispersion Runge-

Kutta (LDDRK2-5) scheme (Hu et al., 1996; Stanescu and Habashi, 1998), d)

second-order implicit Crank-Nicolson (CN) scheme (see Table 4.2), and e) fourth-

order, six-stage optimized Explicit Singly-Diagonally Implicit Runge-Kutta (ES-

DIRK4) scheme (Bijl et al., 2002).
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portant to characterize the coupled behavior of the overall numerical treatment.

In some instances, errors from each discretization component may get amplified

when considered jointly; meanwhile, in other circumstances, these errors may bal-

ance each other out. In this way, there may be favorable combinations of spatial

and temporal schemes, which has motivated research into the coupled optimiza-

tion of the temporal and spatial methods (Ramboer et al., 2006). Here, we explore

results relating to the simplified notion that the full potential of the base scheme

is achieved when accurate spatial schemes are used with sufficiently accurate tem-

poral schemes. While additional benefits may arise from a joint spatio-temporal

optimization, synthesizing information from the previous individual spatial and

temporal scheme analyses of Sections 4.2.1 and 4.2.2 provides useful guidance into

how the components interact with each other.

The spatio-temporal coupling effects on dissipation and dispersion are captured

in a spectral sense within the von Neumann analysis introduced in Equations 3.17-

3.19 of Section 3.4. However, the framework as presented thus far makes it harder

to intuitively understand trends associated with the selection of different spatial

or temporal methods. Subsequent impacts of the CFL parameter (responsible for

characterizing respective time and space discretization effects relative to the per-

tinent physics) on performance is also lost. When considering general classes of

ODE integrators – rather than fully-discrete implementations – one gains the ben-

efit of employing a methods-of-lines perspective, wherein the ODE eigenvalues are

directly related to the spatial discretization. By doing this, the system eigenvalues

then become an implicit function of the spatial scheme and thus can be parame-

terized spectrally by a wavenumber, β(k). From here, one may simply inspect the

path of the ODE eigenvalues against the ODE magnitude or phase thumbprints

in order to ascertain the predicted dissipation and dispersion performance of dif-

ferent scheme combinations. This makes the process of selecting an appropriate

integrator method more intuitively clear given the eigenvalue spectrum associated
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with the spatial scheme and prescribed CFL.

Substituting the Fourier representation into the advection equation (see Equa-

tion 3.20) suggests that β = −(λ · ık′mod/∆x). In the case of symmetric represen-

tations of the δx operator, the modified wavenumber is real therefore the system

eigenvalue β is purely imaginary. This represents a strictly oscillatory signal – in

other words, a transport equation. The characteristic polynomial, which captures

dissipative and dispersive traits of the overall system, can then be described as a

function of (β∆t) = (CFLλ ·k′mod(k)). From this, von Neumann stability plots can

then be made. The slight change in perspective offered by this alternate process,

however, allows for some interesting observations to be made. For instance, a

larger max{kmod} is seen to result in a more restrictive CFL limit with respect

to stability and accuracy considerations; in other words, high-order or optimized

spatial discretizations will require more accurate integrators for a given time-step

sizes, or may otherwise suffer the unwanted consequences of increased damping or

phase errors. Such generalized statements are harder to make from performing a

traditional von Neumann analysis procedure. In this new framework, the different

spatial and temporal schemes can more easily be studied jointly.

In order to demonstrate the concomitant need for accurate spatial and tem-

poral schemes, one can look at growth factor and phase error trends. In the case

of pure advection, the exact amplification is unity (|G|exact = 1), while the phase

is taken to be φexact = λk∆t, which assumes exact exponential integration and

a Fourier spatial scheme. Figure 4.4 demonstrates the way in which the choice

of temporal scheme can at times hinder the presumed benefits of employing a

more spectrally-accurate spatial scheme. Figure 4.4(a), for instance, explores the

phase performance of the sixth-order standard central difference scheme (CD06)

with different temporal integrators. Immediately, it is evident that the high-order

and optimized time schemes impart less dispersion error. Next considering the

fourth-order, eleven-point optimized stencil (CD04-11) (Bogey and Bailly, 2004)

94



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

1.2

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

1.2

(b)

Figure 4.4: Relative phase error |φnum − φexact|/φexact of integration methods at

CFL = 1.0 with respective spatial representations: a) CD06, and b) CD04-11.
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Figure 4.5: Relative growth factor error ||G|num − |G|exact|/|G|exact of integration

methods at CFL = 1.0 with respective spatial representations: a) CD06, and b)

CD04-11.
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in Figure 4.4(b), it is apparent that the high-accuracy time schemes are again

more accommodating. The less accurate time schemes are seen to either stifle the

benefits of incorporating an improved spatial scheme or are seen to further degrade

the overall scheme performance. Similar conclusions on performance are drawn

when considering damping characteristics, as shown in Figure 4.5 for the growth

factor error |P (β∆t)| − |Gexact|. In general, the high-accuracy time schemes are

better able to preserve amplitudes of the different wavenumbers. And in the case

of employing a more spectrally-accurate spatial scheme with a larger max{kmod},
the high-accuracy temporal schemes are less susceptible to imparting false tempo-

ral dissipation. In the case of the RK3 method, it is furthermore apparent that the

overall scheme becomes unstable for the prescribed CFL = 1.0, which further high-

lights the temporal method’s inability to adequately support spectrally-accurate

spatial schemes1. A special exception to these trends are time-reversible or en-

ergy conserving schemes (Sanderse, 2013) which demonstrate perfect preservation

for oscillatory systems, regardless of their formal order. Such an example is the

second-order Crank-Nicolson scheme, excluded from Figure 4.5 for this reason.

In accompaniment to the above observations is the fact that the featured

schemes preserve odd-even amplitudes. This can be seen as a direct consequence

of the spatio-temporal coupling effects, where |P (β∆t)| → 1 because β(k) → 0

as k approaches the Nyquist frequency. The lack of high-wavenumber damping in

the featured base schemes thus further motivates the need for suitable numerical

dissipation.

1The LDDRK2-5 scheme is also seen to have a region of instability; however, this is believed
to be a result of the finite precision of the reported Butcher Tableau coefficients (personal
communication with Stanescu)
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4.3 Pairing Stabilization with Base Discretizations

Having gained useful insight on the pairing of spatial and temporal methods that

comprise a base scheme, the task of providing suitable dissipation for abating

numerical error may be addressed. Solution of a hyperbolic-type system suggests

selection of a base scheme that minimizes both dissipation and phase error. As a

result, the incorporation of damping needs to be made with careful deliberation.

In most cases, issues relating to phase characteristics dominate and are gener-

ally driven by the spatial representation, which primarily imparts dispersion er-

ror. As previously noted, the benefits associated with the spectral-fidelity of such

schemes is tempered by the instigation of aliasing effects in the case of non-linear

problems. Therefore, in the spirit of enhancing the overall numerical accuracy

of the base scheme as applied to transport-dominated situations, it is reasonable

to judge the need for numerical dissipation based on the presence of phase er-

ror. To do this, a tolerance on an acceptable level of dispersion error can first be

established.

Table 4.3 tabulates normalized cut-off wavenumbers (kc∆x/π) corresponding

to a 1% relative error in the phase of the base scheme. This is shown for different

couplings of spatial and time integration methods evaluated at a CFL = 1.0. As

expected, higher cut-offs are attainable for the high-order and optimized spatial

schemes. In other words, it is possible to represent modes with fewer points-per-

wave (PPW) by utilizing these more spectrally-accurate stencils. The influence of

the temporal schemes on the effective resolution capacity is furthermore evident.

Again, implementing a high-order or optimized temporal method limits further

deleterious impacts of temporal error on the phase.

The established cut-offs based on phase characteristics should then be assessed

relative to the system’s non-linearities and any relevant aliasing limits. From

these, the most conservative cut-off can be selected for tuning of the numerical
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exact RK3 CN LDDRK2-5 ESDIRK4

CD02 0.08 0.08 0.06 0.08 0.08

CD04 0.24 0.37 0.11 0.24 0.24

CD06 0.35 0.25 0.11 0.35 0.34

CD04-7pt 0.49 0.22 0.11 0.48 0.48

CD10 0.48 0.24* 0.11 0.47 0.46

CD04-11pt 0.58 0.24* 0.11 0.53 0.54

Table 4.3: Cut-off frequencies (kc∆x/π) for an error tolerance |(1−φnum/φexact)| =
0.01 at CFL = 1.0 (* corresponding scheme is unstable at the prescribed CFL).

dissipation. Pulling from the conclusions of Chapter 3, a filter-based artificial

dissipation formulation is chosen henceforth. Specific selection of the dissipation

stencils is made according to scale-discriminant considerations. In this way, the

dissipation scheme maintains scheme accuracy by preserving as much of the well-

resolved modes as possible; meanwhile, it aggressively attenuates the higher modes

that are prone to instigating non-linear numerical instability and spectral-error.

As the phase-based cut-offs listed above ascribe to a 1% error rating, an analogous

(k0.99∆x) prescription of the filter cut-off is adopted, with the anticipation that the

corresponding attenuation will match the fall-off in accuracy of the base-scheme

when a filter scheme of equivalent merit (i.e., formal order or DOF) is utilized.

4.4 Demonstration Test Case: Isentropic Vortex Propa-

gation (2D Euler Equations)

The two-dimensional isentropic vortex is considered here in order to demonstrate

the potential consequences of pairing the dissipation scheme to the dispersion

characteristics of the base method. This test case is often used by authors to show

the stability and preservation properties of numerical schemes. The governing
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system is given by the compressible Euler equations for an ideal gas:

∂Q

∂t
+

Ej
∂xj

= 0 , (4.10)

Q =


ρ

ρui

ρe

 , Ej =


ρuj

ρuiuj + Pδij

(ρe+ P )uj

 ,

eo = p
ρ(γ−1)

+ 1
2
uiui,

P = ρRT,

(4.11)

with constants γ = cp/cv and R = cp−cv. The inviscid nature of the equations

thus requires numerical stabilization in order to control susceptibilities to non-

linear errors. The flow is initialized as velocity and temperature perturbations

made to a background uniform flow Q∞ (Mundis et al., 2015):

δu = −√R∞T∞
(
α
2π

)
(y − yo)eφ(1−r2)

δv =
√
R∞T∞

(
α
2π

)
(x− xo)eφ(1−r2)

δT = −T∞
[
α2(γ−1)
16φγπ2

]
e2φ(1−r2)

(4.12)

with r2 = (x− xo)2 + (y − yo)2 .

The solution definition is then made complete by employing an isentropic relation,

P = P∞(T/T∞)γ/(γ−1).

As the ensuing perturbation is a solution to the governing inviscid equations,

one would expect the feature to be perfectly preserved. The presence of numerical

error stemming from dispersion or aliasing, however, often causes distortion of

the vortex and can threaten robustness of the simulation. Therefore, in order to

achieve long-time preservation of the vortex, one needs to employ accurate and

stable discretizations. Here, the choice of employing numerical dissipation for

long-time preservation of the vortex is studied relative to a base scheme – noting
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the consequences to both robustness and high-accuracy, which may at times be

in conflict.

Here, the vortex is initialized within a background flow propagating in the

x-direction:

ρu∞ = 200.0
[
kg
m2·s

]
ρv∞ = 0.0

[
kg
m2·s

]
ρw∞ = 0.0

[
kg
m2·s

]
ρ∞ = 1.0

[
kg
m3

]
ρe0,∞ = 305714.3

[
kg
m·s2

] . (4.13)

The thermodynamic constants are R∞ = 287.11
[

J
kg·K

]
and γ = 1.4 that yield

c∞ = 400.00 [m/s], T∞ = 398.06 [K], P∞ = 114285.6 [Pa]. The strength of

the resulting vortex is largely controlled by the α parameter, while the gradient

or width of the feature is strongly dependent on the φ parameter designation.

The following investigation relates to a relatively weak vortex (α = 1.0, φ =

1.0), which produces a density perturbation of approximately 4% of the uniform

field. The computational grid is uniform and periodic with length L = 21.0 [m],

which corresponds to approximately ten vortex widths as judged by a relaxation

to uniform conditions (δT/T∞ = 0.001). The resolution of the domain (Nx =

Ny = 60) is chosen such that a majority of the spectrum is represented with

at least a 4 points-per-wave (PPW) resolution. And this corresponds to a 6∆x

resolution across the vortex. As the goal of the present exercise is preservation

of the vortex feature, density is chosen as the observable variable. Figure 4.6

plots the density solution along with a normalized two-dimensional plot of the

resulting spectrum; it furthermore highlights the fact that much of the signal is

captured below (k∆x) = 0.5π, which also pertains to the aliasing limit for cubic

non-linearities as pertaining to the compressible equations (relative to primitive

variables).

Given the spectral qualities of the problem, one can then choose a base dis-

cretization scheme accordingly. Referencing the phase error-based resolvability

metrics included in Table 4.3, it would seem that either tenth-order standard dis-

cretization (CD10) or the optimized fourth-order schemes (CD04-7pt, CD04-11pt)
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Figure 4.6: Initial condition for isentropic vortex test case: a) density solution,

and b) normalized two-dimensional power-spectral density of density solution

(|f̂(k1, k2, t)|2/|f̂(0, 0, t = 0)|2).

would be appropriate for the 4 PPW performance target. The following investi-

gation treats the governing system in conservative form with the inviscid terms

expressed in divergence form. The RK3 integration scheme is considered for inte-

gration purposes. The chosen time-step size of ∆t = 1.75 × 10−4 [s] corresponds

to a one-dimensional convective CFLu,1D = 0.1, therefore temporal error effects

are understood to be minimal. Taking into account an effective Mach number of

0.5 and multi-dimensional effects, the above is conservatively estimated to corre-

spond to approximately one-sixth of the two-dimensional stability-based acoustic

stability limit, CFL(|umag |+c).

CD02 CD04 CD06 CD04-7pt CD10 CD04-11pt

CFLu,1D = 0.1 1538 890 996 940 1076 925

CFLu,1D = 0.01 15262 8794 9798 9270 10615 9128

Table 4.4: Number of time-steps before which respective simulations of the 2D

isentropic vortex integrated by the RK3 method failed.

Left to operate without any stabilization, the central difference methods, both

high- and low-order, quickly go unstable; Table 4.4 lists the approximate num-
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ber of time-steps as a function of CFLu,1D before the respective simulations fail.

Comparing the results of CFLu,1D = 0.1 and 0.01, it is apparent that the cho-

sen time-step size of ∆t = 1.75 × 10−4 [s] is adequately small and justifies the

subsequent neglect of temporal error effects in this analysis. The table, however,

does not necessarily provide any insight on the role that scheme order, stencil

size, or spectral-accuracy may play in the natural robustness of the methods.

The implementations are seen to go unstable after approximately fifteen vortex

widths. Comparing the density solutions, as shown in Figure 4.7, furthermore

highlights that robustness does not necessarily imply accuracy. For example, the

second-order centrally-differenced method (CD02) is able to run for the longest

time but is seen to have significantly more error after having traveled only ten

vortex-widths. The stability of the simulation may in part be tied to modified

wavenumber considerations and the related abatement of aliasing; however, this

cannot entirely be the explanation as the fourth-order CD04 method is seen to

be the most unstable of the high-order methods, despite its small stencil width

and subdued modified wavenumber relative to the higher-accuracy schemes. In

general, the density solution plots of Figure 4.7 suggest that higher spectral fi-

delity provides better preservation of the vortex shape, at least at early times.

This is corroborated by the power spectral density plots of Figure 4.8 that show a

more coherent spectrum for the high-accuracy methods. As suggested, however,

these high-order and optimized schemes are seen to have more erroneous energy

in the high wavenumbers – likely resulting from the effects of an enhanced modi-

fied wavenumber that supports non-linear cascading of modes – which eventually

threaten stability. The challenge of maintaining a robust and accurate solution

can then be seen as being able to preserve the defining spectrum while simulta-

neously avoiding the generation of new modal content that can de-stabilize the

solution. This is a similar concept to that encountered in explicitly-filtered LES,

where one would expect the model contributions to implicitly enforce the proper
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LES resolution.
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Figure 4.7: Isentropic vortex density solution after having traveled ten vortex

widths with respect to different spatial discretization schemes: a) CD02, b) CD04,

c) CD06, d) CD04-7pt, e) CD10, and f) CD04-11pt.

In order to achieve this goal, we seek to proceed under the guidance of the

following proposed rationale: robustness is enhanced through the addition of nu-

merical dissipation, but concomitant accuracy is achieved by tuning the dissipa-

tion relative to the solution spectrum and the resolvability of the base scheme. To

demonstrate this, the performance of the CD04, CD06, and CD04-7pt schemes

are compared when paired with different tuned filter-based artificial dissipation

methods. These three schemes are chosen such as to help delimitate any effects

associated with scheme order and spectral resolvability. Figure 4.9 plots the re-

spective normalized modified wavenumbers kmod/k on top of the responses of two

sixth-order Tangent filter responses, respectively tuned to (k99∆x)/π = 0.35 and

0.5. These cut-offs are chosen such as to correspond to the resolvability metric of

the CD06 and CD04-7pt schemes, respectively, based on a 1% relative phase error
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Figure 4.8: Power special density (normalized by energy of the constant mode)

of isentropic vortex density signal after having traveled ten vortex widths with

respect to different spatial discretization schemes: a) CD02, b) CD04, c) CD06,

d) CD04-7pt, e) CD10, and f) CD04-11pt.

as marked in Table 4.3. In this way, one may seek to remove problematic content

while preserving properly-calculated portions of the spectrum.

Figures 4.10, 4.12, and 4.14 show density contours of the respective density so-

lutions after having traveled ten, thirty, and fifty vortex-widths, where dissipation

has been tuned to the target 4 PPW resolution for the CD04-7pt, CD06, and CD04

discretization schemes, respectively. Clearly seen, is the fact that the optimized

scheme is most capable of preserving the vortex. Additional insight is gained by

analyzing the corresponding two-dimensional spectral contours in Figures 4.11,

4.13, and 4.15. Here it becomes apparent that the tendency of the vortex to stay

coherent corresponds to the preservation of the spectral distribution, while main-

tenance of the vortex strength naturally has to do with preservation of the modal

magnitudes. In this situation, the poorly-resolving schemes show a non-linear

modulation of the modes that tends to push out the spectral content towards
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Figure 4.9: Normalized modified wavenumbers (kmod/kexact) for CD04, CD06, and

CD04-7pts spatial schemes, plotted on top of growth factor |Ĝ| for sixth-order

Tangent scheme tuned to (k0.99∆x) = 0.35π and 0.5π.

higher modes, where it is met by the dissipation and promptly removed. The

combined effect of these two occurrences results in the vortex breaking up into

weaker sub-structures. Figure 4.16 and Figure 4.17 show similar information, this

time with the dissipation tuned to a target ∼ 6 PPW resolution and used with the

optimized CD04-7pt scheme. Here the vortex strength is more quickly depleted,

although coherence is decently maintained. Very similar results (not shown) were

observed for the sixth-order CD06 scheme. The fact that different methods are

seen to perform comparatively is understood to result from the dissipation being

a dominant source of error. By employing alternate discretizations, such as ki-

netic energy preserving (Morinishi et al., 1998) or vorticity preserving methods

(Lerat et al., 2007), one may be able to further reduce irregular modulation of the

spectrum towards high-wavenumbers and decrease the possibility of a subsequent

loss of vortex coherence that results from the sudden removal of content by the

dissipation scheme.

In all instances, the base schemes are rendered stable by the addition of the
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artificial dissipation terms; however, one is able to achieve superior accuracy by

properly resolving the spectrum in question. Simultaneously satisfying the need

for robustness and accuracy then requires proper selection of the base scheme

and the accompanying dissipation, decisions of which should be made relative to

the target spectral content one seeks to represent. Though the current example

has been designed to highlight these notions2, such lessons are extendable to the

context of LES where one seeks to accurately and robustly represent a subset of the

complete turbulent spectrum. In this setting, un-resolved effects are introduced

via modeling; however, it has been shown that the impact and efficacy of these

closures is related to the presence of numerical error (Sagaut, 2006). In this way,

the basic concepts explored thus far – which relate to the design of filters and the

spectral enforcement of solution content in light of numerical error considerations

– is directly tied to LES applications. The consequence of incorporating these

lessons in explicitly-filtered LES implementations is explored in the subsequent

chapters.

2Stronger vortex perturbations may be analyzed by increasing the α and φ parameters. In
such instances, a similar exercise may be carried out, assuming there is sufficient resolution to
represent a majority of the spectral content. Anything less would be tantamount to a LES type
problem, which introduces new challenges.
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Figure 4.10: Effect of filter-based artificial dissipation (sixth-order Tangent stencil

with (k0.99∆x) = 0.5π,) on evolution of the density solution solved with CD04-7pt

spatial scheme: a) ten vortex widths, b) thirty vortex widths, and c) fifty vortex

widths.
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Figure 4.11: Effect of filter-based artificial dissipation (sixth-order Tangent stencil

with (k0.99∆x) = 0.5π,) on evolution of the density solution power spectral density

(|f̂(k1, k2, t)|2/|f̂(0, 0, t = 0)|2) solved with CD04-7pt spatial scheme: a) ten vortex

widths, b) thirty vortex widths, and c) fifty vortex widths.
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Figure 4.12: Effect of filter-based artificial dissipation (sixth-order Tangent stencil

with (k0.99∆x) = 0.5π,) on evolution of the density solution solved with CD06

spatial scheme: a) ten vortex widths, b) thirty vortex widths, and c) fifty vortex

widths.
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Figure 4.13: Effect of filter-based artificial dissipation (sixth-order Tangent stencil

with (k0.99∆x) = 0.5π,) on evolution of the density solution power spectral density

(|f̂(k1, k2, t)|2/|f̂(0, 0, t = 0)|2) solved with CD06 spatial scheme: a) ten vortex

widths, b) thirty vortex widths, and c) fifty vortex widths.

108



x

y

 

 

0 5 10 15 20

5

10

15

20

0.97

0.98

0.99

1

(a)

x

y

 

 

0 5 10 15 20

5

10

15

20

0.97

0.98

0.99

1

(b)

x

y

 

 

0 5 10 15 20

5

10

15

20

0.97

0.98

0.99

1

(c)

Figure 4.14: Effect of filter-based artificial dissipation (sixth-order Tangent stencil

with (k0.99∆x) = 0.5π,) on evolution of the density solution solved with CD04

spatial scheme: a) ten vortex widths, b) thirty vortex widths, and c) fifty vortex

widths.
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Figure 4.15: Effect of filter-based artificial dissipation (sixth-order Tangent stencil

with (k0.99∆x) = 0.5π,) on evolution of the density solution power spectral density

(|f̂(k1, k2, t)|2/|f̂(0, 0, t = 0)|2) solved with CD04 spatial scheme: a) ten vortex

widths, b) thirty vortex widths, and c) fifty vortex widths.
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Figure 4.16: Effect of filter-based artificial dissipation (sixth-order Tangent stencil

with (k0.99∆x) = 0.35π,) on evolution of the density solution solved with CD04-

7pt spatial scheme: a) ten vortex widths, b) thirty vortex widths, and c) fifty

vortex widths.
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Figure 4.17: Effect of filter-based artificial dissipation (sixth-order Tangent sten-

cil with (k0.99∆x) = 0.35π,) on evolution of the density solution power spectral

density (|f̂(k1, k2, t)|2/|f̂(0, 0, t = 0)|2) solved with CD04-7pt spatial scheme: a)

ten vortex widths, b) thirty vortex widths, and c) fifty vortex widths.
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CHAPTER 5

1D Synthetic Turbulence with the Viscous

Burgers Equation

This chapter is written in part from modifications to a previous AIAA conference

proceedings article, “Stabilized Scale-Similarity Modeling for Explicitly-Filtered

LES” (Edoh and Karagozian, June 2017a).

5.1 Background

In order to observe performances of the numerical treatments (i.e., discretiza-

tion and stabilization) in the context of Large-Eddy Simulation (LES), the one-

dimensional (1D) Burgers equation is analyzed:

∂tu+
1

2
∂xuu = ν∂2

xu. (5.1)

Notably simplified in comparison to the full, multi-dimensional Navier-Stokes sys-

tem, the Burgers equation is often used as a surrogate because of its prototyp-

ical non-linear characteristics, which combine hyperbolic (i.e., convection) and

parabolic (i.e., diffusion) components. This allows it to replicate a spectral re-

distribution of energy that is reminiscent of the cascade processes of turbulent

fluid flow. Theoretical studies of the Burgers equation identify its ability to de-

velop an inertial range and the termination of energy towards a viscous-dominated

Kolmogorov-like small scale. The analogous characteristics shared between this

equation and the fluid system has thus motivated use of the Burgers equation as

a testbed for LES model assessment and development (Love, 1980; LaBryer et al.,
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2015; Li and Wang, 2016).

While such LES investigations typically involve comparing a posteriori eval-

uations with filtered reference data (either derived from fully-resolved DNS or

experiments), it can become difficult to identify the different sources of errors

that impact a the LES solution. These erroneous contributions may stem from

modeling or discretization choices, for instance. In order to address these difficul-

ties, one may consider LES computations that employ consistent closures derived

from filtered reference data. This type of approach – here termed quasi a priori

– is introduced by DeStefano and Vasilyev, who supply “perfect” closures to a

running LES computation in order to highlight the effects of filter sharpness on

model robustness (Stefano and Vasilyev, 2002). The tractability of the 1D Burgers

equation accommodates this quasi a priori approach. In this chapter, the analy-

sis technique is employed in order to aid in understanding the roles that scheme

discretization, filtering formulation, and filter cut-off have on the LES solution.

Similar studies looking at the impact of such factors on the accuracy of the LES

solution have been performed by others; however, these typically: 1) presume a

specific closure model within an a posteriori (i.e., real-time calculations of the

model) setting, which can introduce errors arising from the coupling of modeling

and numerical error; or 2) are based on a priori analysis (i.e., study of the models

based on the filtering of full-field, “exact” data) that overlook dynamical effects

of the evolution of the LES field. As a result, employing the LES computation

in the quasi a priori sense can supplement these more traditional approaches and

give targeted insight into the impact of different algorithmic choices.

The following chapter thus seeks to employ concepts explored in Chapters 2-

4 and to demonstrate the impact of discretization and stabilization within the

context of LES. Additional care is then taken with respect to the presumed LES

formulation and its impacts on scale-resolution and scale-separation, as they per-

tain to interactions with the numerics and overall solution accuracy. The quasi a
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priori approach for analysis serves as an intermediate mode of interrogation that

is meant to provide useful insight towards practical (i.e., a posteriori) LES com-

putations. In this vein, the following investigation also looks to different classes

of LES closures: the Approximate Deconvolution method (ADM) of Stolz and

Adams (1999), along with a Bardina-type Scale-Similarity model (SSM). These,

along with “perfect” models, are assessed in light of the base scheme, the stabi-

lization approach, and the accompanying LES filter formulation.

5.1.1 Numerical Set-up

The subsequent LES investigations seek to calculate a turbulence-like solution

of the 1D Burgers problem. A uniform and periodic domain is considered on

x ∈ [0, L = 2π] and the field is initialized by the following energy spectrum (San

et al., 2016),

E(k) = Ak4exp[−(k/ko)
2], (5.2)

such that the signal modes have magnitudes,

|û(k)| =
√

2E(k). (5.3)

The constant A = 2
3
√
π
k−5
o is chosen in order to prescribe an initial mean energy

Emean =
∫
E(k)dk = 1/2. The peak value of this initial spectrum is set to ko = 5,

and the signal is built as a Fourier series:

u(x) = 2

Nx/2∑
n=0

[Re{û(kn)} cos(knx) + Im{û(kn)} sin(knx)] , (5.4)

with û(k) =
√

2E(k) · exp{ı2πUk} . (5.5)

Random phase angles are assigned by a uniform distribution Uk ∈ [0, 1], according

to a conjugate wavenumber relationship Uk = −U−k.

Due to the non-linearity of the Burgers equation, the initial solution gener-

ates higher wavenumbers and the energy cascades down to smaller scales until
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terminating at a viscous-dominated scale, kη. The extent of the scale separa-

tion between the forcing scale ko and the viscous-dominated regime depends on

the magnitudes of the initial perturbation relative to the physical viscosity. An

estimate for this is provided by Kolmogorov-type approximations based on the

integral Reynolds number, where Reuo = uo`o
ν
∼ (ko/kη)

−4/3, with uo ≈ 2
√
Emean.

Determination of the grid required to constitute a fully-resolved computation

is then controllable by assigning the viscosity, here chosen to be ν = 10−3. As

a result, a DNS resolution of Nx = 8192, which corresponds to η ∼ 8∆xDNS,

is chosen. Computations of the DNS solution is performed using fourth-order

standard central finite difference schemes for both convection (in divergence form)

and diffusion. Advancement in time is employed using the optimized fourth-order,

six-stage low dissipation-dispersion Runge-Kutta (LDDRK) method of Hu et al.

(Hu et al., 1996), with a time-step ∆t = ∆xDNS/10.
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Figure 5.1: Kinetic energy spectrum, 2|Ê(k)| = |û(k)|2, for the DNS solution at

various time-steps (∆t = 7.66× 10−5). The Burgers inertial range scaling of k−2

is shown as a dashed line.

Figure 5.1 shows temporal evolution snapshots of the ensuing solution’s kinetic

energy spectrum, 2E(k) = |û(k)|2: the energy cascades towards higher wavenum-

bers, an internal range with the Burgers k−2 scaling is established (Gurbatov

et al., 1997), and the solution eventually begins to decay due to the lack of active

turbulent forcing. The current investigations will thus focus on the transition and
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development of a fully turbulent-like state with t ∈ [0, 0.23]. The large variations

featured in the spectrum towards high-wavenumbers – particularly at later times

– relate to intermittent behavior; these can be eliminated by considering ensemble

averages of different turbulent realizations as done in San et al. (2016).

With respect to the LES computations, the following explicitly-filtered gov-

erning equations are considered,

∂t ¯̃u+
1

2
∂x ¯̃u¯̃u = ν∂2

x
¯̃u− 1

2
∂xτ

SFS,inv, (5.6)

with the sub-filter-scale closure responsible for enforcing the LES field being de-

composed into resolvable sub-filter scale (RSFS) and sub-grid scale (SGS) com-

ponents:

τSFS,inv = ũu− ¯̃u¯̃u

=
(
ũũ− ¯̃u¯̃u

)
+
(
ũu− ũũ

)
= τRSFS,inv + τSGS,inv . (5.7)

Here, the overall filter operator G ¯̃∆
is applied to Equation 5.1 and represents the

combined effect of projecting the continuous solution onto a coarser and discrete

grid (G∆̃) and then explicitly defining an LES filter (G∆̄). In the case of a posteriori

evaluations, specific models that approximate τmodel ≈ τSFS are employed and the

equation is integrated. In the special case of the quasi a priori analysis, the closure

is pre-computed from the “exact” DNS calculation and projected onto the LES

grid in a consistent manner with the filter formulation at hand. Therefore, relative

to the LES equation, this “perfect” model contribution acts as an independent

one-way source term that seeks to drive the simulation towards the exact filtered

solutions. In this way, the closure model does not react to the current LES

solution and one can designate any deviations relative to the reference field as

non-model sources of error. This then allows one to characterize the effects of

discretization error on accuracy1. In order to minimize temporal-inconsistencies,

1Note that while the convective schemes are varied in the current analysis, the viscous terms
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the LES computations are carried out at the same time-step size as the DNS, and

the exactly-built closure is available and supplied at each stage of the numerical

integration scheme. Furthermore, the filtered-DNS reference solution is used as

the initial condition to the LES computation.

The following steps are taken in order to derive filtered quantities ¯̃q from

the DNS data (note that the exact projection to coarser grids and its dynamical

consequences are not explicitly defined, but are approximated by steps 1 and 2

below):

1. The DNS solution is filtered to a wavenumber k∆xLES = L/Nx,LES relating to

the Nyquist frequency of the LES grid in question; this is done using a spec-

trally sharp cut-off filter, thus producing an intermediate filtered solution,

u∗DNS on the DNS grid.

2. The resulting field u∗DNS is projected onto the LES grid using a physical

“comb” filter such that ũ(xk)LES = ũ∗(xk)DNS (this assumes all LES points

to be collocated with the DNS grid).

3. The LES field ũ(xk)LES is then filtered according to the explicit LES filter

G∆̄, thus yielding the final representation on the LES grid, ¯̃uref (also referred

to as the filtered-DNS solution, fDNS).

As relating to the ambiguity of the projection procedure outlined above, it is

important to understand that the choice of quasi a priori implementation may in-

troduce some inconsistencies relating to [(¯̃u¯̃u)LES 6= (¯̃u¯̃u)fDNS]. While these terms

are expected to cancel out in actual a posteriori computations, it is not necessarily

the case with the projected reference data (see Equation 5.8). On one hand, in

the case of a “perfect” model, one can employ the following implementation for

are kept to be fourth-order accurate.
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the quasi a priori investigation:

∂t ¯̃u+
1

2
δx ¯̃u¯̃u = νδ2

x
¯̃u− 1

2
δx

[
ũu− ¯̃u¯̃u

]
fDNS

. (5.8)

This, however, can lead to erroneous contributions in the DNS-assisted analysis

relating to the aforementioned inconsistency. Alternatively, one could avoid these

incongruities and choose to compute the following:

∂t ¯̃u+
1

2
δx

[
ũu
]
fDNS

= νδ2
x
¯̃u. (5.9)

To demonstrate the difference in these implementations, Figure 5.2 plots the

energy spectrum for the filtered-DNS result along with solutions from the two pro-

posed implementation options used in the reference-model-assisted setting. It is

apparent that both methods impressively enforce the LES field quite well, but that

the choice of Equation 5.8 introduces additional high-wavenumber error. Never-

theless, the implementation of Equation 5.8 is selected in the case of “perfect”

modeling in order to incorporate more realism in the evolved quasi a priori solu-

tion that may stem from the dynamic feedback of the convective terms calculated

at run-time.
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Figure 5.2: Comparison of the filtered-DNS (fDNS) reference (black line) kinetic

energy spectrum, 2|Ê(k)| = |û(k)|2, and the quasi a priori evaluations using

Equation 5.8 (dashed blue line) versus Equation 5.9 (solid green line) at time-step

N = 1300 (t ∼ 0.1).
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In order to assess the accuracy of the LES computations, the evolution of the

L2 error of the solution is tracked relative to the appropriately-filtered reference

solution. This corresponds to an overall assessment of the computational accuracy,

but is supplemented by analysis of the energy spectra along with different metrics

of the kinetic energy dissipation rate overaged over the domain Ω:

dEΩ

dt
= −εΩ , (5.10)

where EΩ = avg

{
1

2
u

}2

Ω

=
1

2

∫ km

−km
|û(k)|2dk , (5.11)

εΩ = avg
{
ν(∂xu)2

}
Ω

= ν

∫ km

−km
k2|û(k)|2dk . (5.12)

With respect to these metrics, one can choose to inspect the temporal derivative of

energy, dE/dt, or the inner product of strain, ε(t), as defined above. In the case of

an unfiltered and fully-resolved computation, these two metrics are identical and

communicate the conservation of energy from large to small scales. For example,

a DNS calculation of the unfiltered equations shows the two metrics to be almost

identical, as shown in Figure 5.3. In the case of LES equations, however, these

definitions are expected to differ, providing different perspectives. The strain-

based definition, ε(t), estimates the dissipation rate based on small-scale activity

(note the k−2 scaling of its definition in Equation 5.12); meanwhile, the dE/dt

metric puts more focus on the large wavenumber component. As the filtering

procedure attenuates high-wavenumber content, one should thus expect dE/dt

and ε(t) to differ.

These contrasting behaviors are shown in Figure 5.4 which compares the energy

spectra of the DNS solution and filtered-DNS (i.e., reference solutions) on two

LES grids of Nx,LES = [256, 512], each filtered with a sixth-order Tangent stencil

with cutoff ∆̄1/2 = 4∆xLES. As expected by the scale-discriminant behavior

of the discrete filter in question, the low-wavenumber content is well-preserved

while scales in the range of k ∈ [k1/2, k∆xLES ] are strongly attenuated. Figure 5.3

includes the evolution of the respective energy dissipation metrics for the DNS
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Figure 5.3: Evolution of alternate kinetic energy dissipation rate metrics for DNS

and filtered-DNS (fDNS) reference solution. The explicit LES filter is taken to

be a sixth-order Tangent stencil, tuned according to ∆̄1/2 = 4∆xLES: Energy

dissipation rate −dE/dt (see Equation 5.11), strain-rate ε(t) (see Equation 5.12).
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Figure 5.4: Kinetic energy spectrum, 2|Ê(k)| = |û(k)|2, for the DNS solution

(with grid resolution NxDNS = 8192) and filtered-DNS (fDNS) reference solutions

(with grid resolution NxLES = [256, 512]) at time-step N = 1300 (t ∼ 0.1). The

explicit LES filter is taken to be a sixth-order Tangent stencil, tuned according to

∆̄1/2 = 4∆xLES.
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Figure 5.5: Comparison of the DNS and the filtered-DNS (fDNS) solutions at

time-step N = 1300 (t ∼ 0.1): a) full domain, and b) magnified portion of the

domain.

and filtered-DNS solutions. It is evident that the dE/dt definition of the filtered

fields is very similar to that of the fully-resolved DNS, with only slight differences

in the peak dissipation rate. This suggests that energy is removed from the large-

scales in similar fashions. On the other hand, the strain-rate ε(t) definition gives

starkly different characterizations of the filtered solutions relative to the DNS.

As mentioned, this is due to the amount of high-wavenumber content, or lack

thereof. Depending on the desired emphasis for scrutiny, one may find more

insight from one metric over the other. For instance, in evaluating the presence of

high-wavenumber error, the strain rate definition will be more sensitive to small-

scale noise and can offer more critical assessments of the respective models at

hand.

Also useful to note in Figure 5.3(b) is the time at which the curves of the

filtered solutions deviate from that of the DNS (t ∼ 0.05). This corresponds

approximately to the time at which the true spectrum evolves past the LES filter

width ∆̄. Going forward, this event will show itself to be consequential as it marks

the point at which LES models need to begin extrapolating the dynamics of the

small-scales onto the LES field. Therefore, this event is anticipated to coincide
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with a rise in solution error, as will be shown in subsequent analyses.

In terms of observing the respective solutions, Figure 5.5 plots the DNS and

filtered DNS results at t ∼ 0.1, which corresponds to the time of peak energy

dissipation rate for the fully-resolved flow. Here, one notices the shock-like struc-

tures in the DNS solution that are characteristic of the viscous Burgers equation.

Filtering this solution, however, removes high-wavenumber content that would

otherwise be responsible for representing these sharp features. Therefore, the fil-

tered solutions are seen to contain oscillations near the shocklets. While one may

typically interpret the LES solution as a projection of the continuous result onto a

coarser grid (e.g., comb filtering the exact solution in physical space), the derived

LES solution in Figure 5.5(b) suggest more nuanced consequences of filtering flows

that contain sub-grid discontinuities2.

5.2 Assessing Numerical Error Effects in LES with Exact

Modeling

As previously indicated, the Burgers equation will be utilized in order to study the

impact of numerical discretization and scheme stabilization on solution accuracy,

while also looking into the effects of the LES filter formulation as dictated by

the filter-to-grid ratio FTGR = ∆̄/(2∆xLES) and the spectral characteristics of

the presumed LES filter. Here, the consequences of these algorithmic choices is

considered free of modeling errors by consistently deriving the “exact” LES model

closure to be employed in the quasi a priori procedure according to Equation

5.6-5.7. While the conclusions drawn from using a “perfect” sub-filter scale term

τSFS =
[
ũu− ¯̃u¯̃u

]
D̃NS

may become moot when one is required to employ practical

2The consequences of filtering flows containing discontinuities is theoretically investigated
in Sagaut and Germano (2005), who note the appearance of parasitic contributions and the
disappearance of jump conditions. The authors seek to resolve these issues by developing pseudo-
jump relations for sub-grid models.
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models in an a posteriori setting, this idealized mode of inspection provides a best-

scenario characterization of numerical and LES formulation effects on solution

accuracy.

5.2.1 Impacts of Discretization and Filter Width

The energy spectra of the dynamically-computed quasi a priori results are shown

in Figure 5.6 for the case of a spectral sharp LES formulation. Figure 5.6(a) con-

stitutes implicitly-filtering (i.e., filter-to-grid ratio of unity or FTGR = 1) with

no modeling and shows an increased energy pile up towards the smallest resolved

scales. This behavior is seen to be more pronouced for the high-order schemes

which do less to attenuate high wavenumbers, a consequence of their accurate

modified wavenumber. Figure 5.6(b) then incorporates the “exact” closure con-

tribution, again for FTGR = 1, and shows a slight reduction in energy pile-up.

There is still, however, noticeable error in the mid- to high-wavenumber range

and little distinction between the discretization schemes (CD02, CD06, CD10,

CD04-11pt). Subsequently increasing the filter-to-grid ratio is then seen to fur-

ther reduce these numerical errors (see Figures 5.6(c) and 5.6(d)). Here, we note

that the “perfect” closure is able to enforce a spectral-sharp attenuation of the

sub-filter scales. Any deviation from the reference filtered DNS solution is then

clearly attributable to the choice in discretization scheme. For example, the low-

order CD02 method shows persistent error for FTGR = 2 and requires higher

filter-to-grid ratios. Meanwhile, the high-accuracy discretizations are more suit-

able at modest FTGR and are thus preferable in terms of resolution efficiency

(e.g., the required degrees of freedom use to calculate a desired LES resolution

∆̄). This confirms the fundamental analysis of Ghosal (1996) that advocates em-

ploying LES formulations with FTGR > 1. Deliberately taking into consideration

the resolvability performance of the base numerical scheme can thus be advanta-

geous in producing more accurate results. Furthermore, an important observation
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is made through these exercises: a model that is consistent with the explicit LES

filter will not only seek to represent proper comportment of the resolved scales,

but will also work to enforce the presumed LES spectral resolution.This notion

shall be employed later on in considering the incorporation of stabilization via

filter-based artificial dissipation.
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Figure 5.6: Effect of discretization scheme and filter-to-grid ratio FTGR on the

kinetic energy spectrum, 2|Ê(k)| = |û(k)|2, at time-step N = 1300 (t ∼ 0.1).

LES solutions assume a spectral-sharp filter formulation: FTGR = 1 (no model),

FTGR = 1 (perfect model), FTGR = 2 (perfect model), FTGR = 4 (perfect

model).

Figure 5.7 again demonstrates these concepts by plotting the quasi a priori

solution error, normalized relative to the reference fields. As before, the influence
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of the discretization scheme on accuracy is shown to be dependent on the filter-

to-grid ratio. At FTGR = 1, exclusion of a model makes it such that scheme

choice has little impact; incorporating the “perfect” model then improves this only

marginally. Upon enforcing FTGR > 1, however, the model contribution becomes

more prominent at the small-scales and one sees pronounced benefits to employing

high-accuracy discretizations, with errors decreasing by orders of magnitude. Also

of interesting note is the way in which the optimized fourth-order scheme (CD04-

11pt) is seen to outperform the standard tenth-order discretization (CD10) for

FTGR = 2. This trend is tied to the spectral fidelities of the respective methods

at different resolutions (see Figure 4.1). At FTGR = 4, the standard scheme is

more accurate than the optimized stencil, as expected by the resurgent importance

of asymptotic order on scheme performance for high resolutions; in the context of

LES, these trends are thus only recovered at sufficiently high filter-to-grid ratios.

As another point of inspection, it is interesting to consider the implication of

the spectral characteristics of the explicit LES filter on sensitivities to discretiza-

tion accuracy. In order to highlight these effects, one can consider alternate ex-

plicit LES formulations based on second, sixth, and tenth-order Tangent filter

formulations. Figure 5.8 plots the respective spectral characteristics of these fil-

ters (each tuned according to k1/2) in comparison with the spectral-sharp filter.

Noting the scale-discriminant behavior of each response, it becomes evident that

smoother formulations employ less scale-separation and would require the closure

model to provide information regarding the large-scales. This, for example, is the

case of the low-order filter stencil. As previously noted, this additional require-

ment may hinder the generality of closure models and increase the challenge of

model development (Stefano and Vasilyev, 2002).

Figure 5.9 plots quasi a priori normalized solution error at FTGR = 2 and

4 for these Tangent filter LES formulations, measured relative to the appropriate

reference field; the closure model is again built to be consistent with the presumed
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Figure 5.7: Effect of discretization scheme and filter-to-grid ratio FTGR on the

time evolution of the relative L2 LES solution error computed by the quasi a

priori evaluation, |¯̃uLES − ¯̃ufDNS|2/|¯̃ufDNS|2. LES solutions assume a spectral-

sharp filter formulation: FTGR = 1 (no model), FTGR = 1 (perfect model),

FTGR = 2 (perfect model), FTGR = 4 (perfect model).
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Figure 5.8: Comparison of spectral-sharp and discrete Tangent growth factor

|G(k)| for different filter-to-grid ratios (FTGR) as tuned according to k1/2, as:

FTGR = 2 (∆̄1/2 = 4∆x), and FTGR = 4 (∆̄1/2 = 8∆x).

explicit LES filter. For both filter-to-grid ratios considered, one witnesses a re-

duction of the solution error as the LES filter formulation is made more spectrally

sharp. This, in particular, holds for the high-accuracy methods and enforces the

intuitive notion that such schemes are necessary for supporting LES calculations

that presume a spectral-like sharp cut-off. On the other hand, the second-order

discretization scheme CD02 demonstrates less sensitivity to the underlying LES

filter. In addition to these is the previous observation that increasing the filter-

to-grid ratio reduces error in the solution.

While the current assessments evaluate the solution relative to the consistently-

filtered DNS data, one may also be interested in replicating the spectrally-sharp-

filtered reference solution, which represents the “idealized” case of scale-separation.

In doing so, one would naturally conclude that the respective accuracies would

directly correspond to how well the discrete filter matches the spectral-sharp fil-

ter. With respect to the Tangent stencils shown in Figure 5.8, it then becomes

apparent that the scale-discriminant high-order schemes would yield more favor-

able results. Alternatively, one could seek to employ different cut-off designations
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Figure 5.9: Effect of discretization scheme and filter-to-grid ratio (FTGR) on

time evolution of the relative L2 LES solution error computed by the quasi a

priori evaluation, |¯̃uLES − ¯̃ufDNS|2/|¯̃ufDNS|2. Assumes a discrete Tangent filter

formulation, tuned according to k1/2: a) second-order filter, FTGR = 2, b) second-

order filter, FTGR = 4, c) sixth-order filter, FTGR = 2, d) sixth-order filter,

FTGR = 4, e) tenth-order filter, FTGR = 2, f) tenth-order filter, FTGR = 4.
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(e.g., k0.99 versus k1/2) for a given filter and note which minimizes the ensuing

error. This, for instance, may constitute a basis by which the effective discrete

filter cut-off can be characterized.

5.2.2 Impact of Stabilization

As in the calculation of an isentropic vortex (see Section 4.4), one can consider

adding dissipation as a way of removing poorly-resolved components of the dis-

cretization. This also serves as a stabilizing agent in instances where such errors

threaten the long-time robustness of the simulation. The deliberate addition of

numerical dissipation is often avoided in the context of LES, as turbulent flow

dynamics may be highly sensitive to artificial damping. The idea of including nu-

merical dissipation, therefore, tends to be more accepted within a rationalization

that the stabilization serves as a closure model. This is the idea behind implicit

LES, including solution filtering (also referred to as relaxation filtering). But even

in the realm of explicit LES, eddy-viscosity models are often incorporated with

other closures under the pretense of a mixed-modeling approach. Nevertheless

these eddy-viscosity terms are functional in representing the cascade and loss of

energy to the small-scales; Yet, they effectively behave as a stabilizing agent of

the primary model (e.g., a scale-similarity term). For now, such abstractions are

avoided. Instead, this section seeks to demonstrate how the LES solution can be

improved by judicious selection of an artificial dissipation contribution, even in

the case of the “perfect” modeling employed as part of the quasi a priori anal-

ysis. Here, the tenth-order Tangent filter, being a close approximation to the

spectral-sharp filter, is considered for the explicit LES formulation.

As with other algorithmic components, the choice of damping should take into

account the underlying LES filter formulation – which in turn can be chosen to

reflect the resolvability performance of the base scheme. In this way, the dissi-

pation should work to provide appropriate assistance to the primary model for
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enforcement of the LES resolution and will not be tasked with representing more

intricate closure dynamics (e.g., back scatter). Here, stabilization is considered

in the form of filter-based artificial dissipation (see Section 3.3). Focusing on a

filter-to-grid ratio of FTGR = 2 with the optimized CD04-11pt discretization,

the implicit Tangent stencil (see Section 2.4.2) is employed as the stabilization

stencil.

Figure 5.10 plots the solution errors for different stabilization stencils (second-,

sixth-, and tenth-order) tuned to a range of cut-offs based on a k1/2 designation.

Evidently, both the order of the dissipation scheme and its tuning affect the solu-

tion accuracy. In sum, the spectral characteristics of the dissipation are paramount

relative to the LES filter formulation and the underlying base scheme. As k1/2

is shifted towards the grid cut-off, the amount of damping applied to the LES

resolution is reduced. Figure 5.11 shows this by plotting the growth factors of the

dissipation schemes in question.

In the case of the second-order Tangent dissipation in Figure 5.10(a), the dis-

sipative stabilization is seen to systematically add error to the baseline solution

calculated without stabilization. This is in contrast to the high-order dissipation

schemes shown in Figures 5.10(b) and 5.10(c) for the sixth- and tenth-order Tan-

gent stencils, respectively. In these latter instances, there exists an intermediate

tuning of the dissipation that yields a more accurate result than the non-stabilized

scenario. For the sixth-order dissipation, this occurs for k1/2∆x = 0.8π; mean-

while, for the tenth-order dissipation, this occurs for k1/2∆x = 0.7π. Upon careful

consideration, it can be shown that these tuning parameters both correspond to

k0.99∆x ≈ 0.6π. Recalling that the modified wavenumber analysis of the opti-

mized CD04-11pt scheme yielded a 1% error at k∆x = 0.58 (see Table 4.3), these

observations gain some rationale. As the current model is “perfect”, improvement

of solution accuracy can be assumed to come with respect to mitigating the lin-

gering influences of numerical error. A first step to address this is the selection
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Figure 5.10: Effect of filter-based artificial dissipation on the time evolution of the

relative L2 LES solution error computed by the quasi a priori evaluation, |¯̃uLES−
¯̃ufDNS|2/|¯̃ufDNS|2. LES solutions assume a spectral-sharp filter formulation with a

CD04-11pt scheme discretization: a) second-order Tangent stabilization stencil, b)

sixth-order Tangent stabilization stencil, and c) tenth-order Tangent stabilization

stencil.

of a proper filter-to-grid ratio, which allows the model contribution to dominate

the discretization error. However, remnants of these errors are still present as

evidenced by how the choice of scheme plays a role in Figure 5.9. Therefore, one

can seek to directly target this source of error through the dissipation scheme.

Figure 5.12 shows the solution error when tuning the dissipation scheme to the

discretization scheme according to the k0.99 specification. Here, the sixth-order
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Figure 5.11: Comparison of spectral-sharp and discrete Tangent growth factor

|G(k)| for different filter-to-grid ratios (FTGR) as tuned according to k1/2, as:

second-order stencil, b) sixth-order stencil, and c) tenth-order stencil.

stabilization performs best. The reason for this is then evident when comparing

the dissipation growth factor relative to the normalized modified wavenumber of

the CD04-11pt scheme, as demonstrated in Figure 5.13, and noticing that they are

in closer agreement compared to the second- and tenth-order dissipation stencils.

In the case of the second-order Tangent dissipation, too much erroneous content is

preserved; meanwhile, the tenth-order Tangent dissipation may be removing too

much of the high-wavenumber content, including needed model contributions. In

other words, at least for this situation, the removal of error should properly balance

the error generated by the discretization scheme. Employing this philosophy, one
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Figure 5.12: Effect of filter-based artificial dissipation (tuned to k0.99∆x = 0.6π)

on the time evolution of the relative L2 LES solution error computed by the quasi

a priori evaluation, |¯̃uLES − ¯̃ufDNS|2/|¯̃ufDNS|2. LES solutions employ a CD04-

11pt discretization and assume a tenth-order Tangent filter formulation tuned to

∆̄1/2 = 4∆x.
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Figure 5.13: Growth factor |Ĝ(k)| of Tangent dissipation stencil tuned to

k0.99∆x = 0.6π, plotted in comparison to the normalized modified wavenumber

(kmod/k) of the optimized CD04-11pt scheme (dashed black).
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may then seek a stabilization scheme by consulting available performance maps

(e.g., Figures 2.11 and 2.12) and matching the dissipation response characteristics

of transition width and cut-off to that of the base scheme (e.g., the normalized

wavenumber).

5.3 Assessing Numerical Error Effects in LES with Scale-

Similarity Modeling

The quasi a priori analysis employed in the previous section takes advantage

of a “perfect” DNS-derived model in order to single out effects relating to dis-

cretization error, as well as to observe impacts of LES parameters such as the

filter-to-grid ratio (FTGR) on solution accuracy. Notable conclusions are drawn

from this idealized investigation, such as the need to tune explicit LES formula-

tions (i.e., filter response, including cut-off) relative to the spectral fidelity of the

base numerical scheme. Neglecting to do so is shown to neutralize the potential

benefits of applying high-accuracy discretization methods. In order to transition

these insights to a more practical setting, the following analysis considers spe-

cific closure models of the scale-similarity type, which are known to exhibit high

correlations when compared to the exact closure (Liu et al., 1995; Li and Wang,

2016; Carati et al., 2001). Here, the Approximate Deconvolution Method (ADM)

of Stolz et al. (2001) in addition to the Scale-Similarity Model (SSM) of Bardina

(Bardina et al., 1983) are chosen as candidate models.

To understand the rationale of the Approximate Deconvolution Method, one

can first consider the sub-filter-scale component (SFS) and its subsequent de-

composition into resolved sub-filter-scale (RSFS) and sub-grid-scale (SGS) com-

ponents, as shown in Equation 5.7. This decomposition explicitly differentiates

actual sub-gird contributions (i.e., unresolved dynamics) from scales that are re-

solved but fall below the cut-off of the explicitly-defined LES filter (i.e., the re-
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solved sub-filter scales). For the common case of implicitly-filtered LES (i.e.,

grid-filtered, with ∆̄ = 2∆x), the τRSFS component is negligible and exactly zero

in the case of a spectral-sharp filtering of the equations. In turn, one recovers the

more classical explicit LES notion, wherein the sub-filter and sub-grid scales are

synonymous. In the case where filter-to-grid ratios are greater than unity or for

sufficiently smooth filter responses, however, the RSFS component can become

important. As a result, decomposition of the SFS term can reduce ambiguities in

decisions regarding the modeling approach to be taken.

As the LES filter is explicitly defined with respect to ∆̄, the RSFS term

τRSFS = [ũũ− ¯̃u¯̃u] can be built by first recovering ũ = G−1
∆̄
{¯̃u} via a deconvolution

procedure3 (see Appendix A) or by solving a consistent auxiliary equation (Bull

and Jameson, 2016). Having the RSFS component well-defined4 then diminishes

the opportunity for erroneous modeling of the total SFS term. For instances where

∆̄ > ∆̃ (where ∆̃ = 2∆xLES), the resolved SFS component can be used as a sur-

rogate to the entire closure. In this case, one then considers τSFS ≈ τRSFS, with

the assumption presumably becoming increasingly valid for larger filter-to-grid

ratios. Substituting this approximation into the governing Burgers LES equation

then reproduces the Approximate Deconvolution method:

∂t ¯̃u+
1

2
∂x ¯̃u¯̃u = ν∂2

x
¯̃u− 1

2
∂xτ

SFS≈RSFS → ∂t ¯̃u+
1

2
∂xũũ = ν∂2

x
¯̃u .

(5.13)

The ADM approach ascribes to the scale-similarity philosophy in the sense that

the RSFS uses the large-scales (i.e., resolved scales) of the SFS to estimate the

complete closure. Therefore, because the ADM approach implicitly relies on the

3In the case of a zeroth-order deconvolution, where ũ ≈ ¯̃u, then the ADM method is tanta-
mount to residual filtering (Lund, 2003; Radhakrishnan and Bellan, 2012).

4As an alternative to deconvolution procedures, the RSFS is sometimes modeled by the
gradient model (also referred to as the non-linear model, or the tensor diffusivity model), which
is used for second-order LES filter formulations but may be generalized as a truncated Taylor-
series approximation to the RSFS term (Pruett and Sochacki, 2001; Sagaut, 2006).
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presence of a RSFS component, its use is largely limited to LES formulations that

employ either smooth filtering or filter-to-grid ratios above unity.

As an alternative to the ADM procedure, one can consider the closure term

corresponding to the filtered continuous equations and seek to emulate this by

using the available LES variable; doing so with respect to the current working

variable ¯̃u gives [uu− ūū] ≈ [¯̃u¯̃u− ¯̃u¯̃u] and is here labeled as a Bardina-type Scale-

Similarity model (SSM) for the explicitly-filtered LES equations. In essence, the

SFS is approximated by the filter scales. Further generalizations of the modeling

approach is provided by Liu et al. (1995) who write the proposed scale-similarity

closure as τSSM = Css[
̂̃̄u¯̃u − ˆ̃̄u ˆ̃̄u] and gives flexibility in the choice of a test filter

G∆̂ and scaling coefficient. Pruett et al. rationalize the selection of Css as a means

of minimizing the error in the Taylor-series expansion of the true stress and show

that this error is minimized for the Bardina model, where Css = 1 and G∆̂=∆̄.

Substituting the Scale-Similarity model into the explicit LES formulation yields

the following:

∂t ¯̃u+
1

2
∂x ¯̃u¯̃u = ν∂2

x
¯̃u− 1

2
∂xτ

SFS≈SSM → ∂t ¯̃u+
1

2
∂x

[
¯̃u¯̃u+

(
¯̃u¯̃u− ¯̃̄u ¯̃̄u

)]
= ν∂2

x
¯̃u .

(5.14)

In this representation, it also becomes evident that the proposed model includes a

velocity-increment contribution (¯̃u¯̃u− ¯̃̄u ¯̃̄u) that only vanishes in the special case of

a spectral filter, wherein ¯̃u = ¯̃̄u. The presence of this non-linear velocity increment

is expected to instigate high-wavenumber activity beyond the desired LES cut-off,

as well as to increase aliasing effects.

Having a functional form of the models along with the exact DNS solution

provides the opportunity to carry out a priori comparisons of the proposed clo-

sures and examine these relative to the exact LES closure contribution for ex-

amining such things as correlation and magnitude information. The following

section considers these scale-similarity-type closures as candidates for practical
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LES computations. As before, the effects of discretization and LES parameters

(e.g., filter response and cut-off) are explored with respect to the overall solution

error. The following considers explicit LES formulations based on the class of

discrete Tangent filters, as opposed to a spectral-sharp filter, in order to further

observe practical implementations.

5.3.1 Impacts of Discretization and Filter Width

Having candidate models at hand, it is interesting to compare both a priori and

a posteriori assessments as a way of extracting possible trends that shed insight

into limitations of the respective methods. This is done here with respect to the

LES parameters such as filter-to-grid ratio, as well as with respect to numerical

factors such as discretization.

5.3.1.1 The Approximate Deconvolution Method (ADM)

An a priori evaluation of the ADM model is performed by filtering the DNS data

and manipulating it according to the τRSFS closure. Figures 5.14(a), 5.15(a), and

5.16(a) plot the correlation coefficient of the RSFS component relative to the total

exact SFS and also analyze these qualities relative to the LES filter, where second-

, sixth-, and tenth-order Tangent stencils are considered. As a general trend, we

note that the model correlation improves as the filter-to-grid ratio increases. This

is the case for all the LES filters considered. This makes sense, as the RSFS

is the resolved sub-component of the SFS closure and its dynamical relevance

would increase as the presence of these scales is increased. Even at a filter-to-grid

ratio FTGR = 2, one observes correlation coefficients above 0.95 for the tenth-

order Tangent formulation. Next, inspecting the effects of the LES filter, there is

the interesting observation that low-order formulations induce higher correlations.

Reverting back to the spectral response plot of Figure 5.8, the reason perhaps
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becomes more clear: smooth filters increase the relevance of the RSFS towards

the larger scales where greater energy-content resides. Therefore, in this way, the

RSFS again becomes more accurate.

Somewhat similar trends are observed when comparing the magnitude of the

RSFS closure to that of the “perfect” model. Figures 5.14(b), 5.15(b), and 5.16(b)

plot this for each LES filter formulation. Again, one notices that increasing the

filter-to-grid ratio improves accuracy of the model. However, unlike the correlation

coefficient, the magnitude of the RSFS relative to the SFS closure is increased for

the more scale-discriminant tenth-order filter.

Naturally, the extent of the model’s success is related to the specific problem

and such things as the LES resolution as compared to the resolution of the full

dynamics. This is noted by the sudden decrease in performance near t ∼ 0.05,

which was previously highlighted as the time at which the fully-resolved DNS

spectrum evolves past the prescribed LES filter width k∆̄. Thereafter, the models

face a greater challenge as they seek to extrapolate the sub-filter scale dynamics.

Having somewhat characterized the ADM model, parametric a posteriori eval-

uations of different discretization schemes are used to provide additional insight

into the impact of numerical errors. Here, the operator re-scaling as detailed in

Appendix A is employed. Figure 5.17 plots the solution error of the LES results as

compared to the filtered reference solution for filter-to-grid ratios FTGR = 2 and

4. Prior to the threshold time t ∼ 0.05, there is a clear demarcation wherein the

high-accuracy schemes exhibit less error. Eventually, however, all of the solutions

are seen to rapidly increase in error likely owing to the surge in model inaccuracy.

The respective dissipation rate metric ε(t) is plotted in Figure 5.18 and corrobo-

rates the inability of the model to curtail the accumulation of small-scale error.

Figure 5.19 plots the accompanying spectra at t ∼ 0.1 and reveals that the ADM

method inherently tries to enforce the LES field by filtering the non-linear resid-

ual. Nevertheless, this does not serve to actively remove any high-wavenumber
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content that may gather over time. Cascade of this energy is furthermore seen

to be tied to the spectral resolvability of the numerical scheme, as previously es-

tablished, with the high-accuracy discretizations exhibiting more content towards

the grid cut-off. The presence of this content past the prescribed LES cut-off

is also a result of the smooth characteristics of the LES filter; in the limit of a

spectral-sharp filter, the presence of such sub-filter error would not occur since

such content is unilaterally removed from the residual (Edoh et al., June 2016).

In general, the above figures confirm the previously-established notion that

increasing the filter-to-grid ratio improves results. However, this is shown to

improve the solution error only marginally. In addition, impacts of the numerical

scheme are not evident – at least for the higher-order methods. This is in contrast

to the “perfectly-modeled” quasi a priori analysis in Section 5.2 which reveals

stark differences in accuracy, provided a suitable filter-to-grid ratio FTGR >

1. The current lack of differentiation in numerical scheme performance suggests

the overwhelming presence of modeling error over discretization effects. Similar

conclusions are drawn when considering quasi a priori analysis of the current

models (not shown).

Referring to the a priori model evaluations in Figures 5.14-5.16, one recalls

a predicted improvement in the ADM model correlation in accordance with the

LES filter smoothness (e.g., lower-order discrete filter formulations). This idea is

indeed observed in the a posteriori evaluations – although marginally – when com-

paring the second- (see Figures 5.17(a)- 5.17(b), 5.18(a)- 5.18(b) 5.19(a)- 5.19(b))

and tenth-order (see Figures 5.17(c)- 5.17(d), 5.18(c)- 5.18(d) 5.19(c)- 5.19(d))

Tangent formulations.

Particular to the ADM model is the role of the deconvolution procedure on

error effects. Figures 5.17(c)- 5.17(d), 5.18(c)- 5.18(d), 5.19(c)- 5.19(d) consider a

high-accuracy deconvolution (kcond = 103 per the re-scaling approach of Appendix

A), while Figures 5.17(e)- 5.17(f), 5.18(e)- 5.18(f), 5.19(e)- 5.19(f) show results of
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Figure 5.14: A priori comparisons of the Approximate Deconvolution method

(ADM)for a second-order Tangent LES filter formulation: a) correlation coefficient

ρ(τmodel, τSFS), and b) magnitude |τmodel|2/|τSFS|2.
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Figure 5.15: A priori comparisons of the Approximate Deconvolution method

(ADM) for a sixth-order Tangent LES filter formulation: a) correlation coefficient

ρ(τmodel, τSFS), and b) magnitude |τmodel|2/|τSFS|2.
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Figure 5.16: A priori comparisons of the Approximate Deconvolution method

(ADM) for a tenth-order Tangent LES filter formulation: a) correlation coefficient

ρ(τmodel, τSFS), and b) magnitude |τmodel|2/|τSFS|2.

a zeroth order deconvolution, where ũ ≈ ¯̃u (kcond = 1). The latter is clearly seen to

be less accurate to the extent that discretization effects for the high-order schemes

on solution error are even less apparent during the starting phase t < 0.05 (see

Figures 5.17(c)- 5.17(d) versus Figures 5.17(e)- 5.17(f)). Filter-to-grid ratio effects

are also nullified. With respect to the energy spectra (see Figures 5.19(c)- 5.19(d)

versus Figures 5.19(e)- 5.19(f)), it is seen that the “low-order” deconvolution

tends to redistribute energy near the LES cut-off. This is then also manifested

as much larger values of the normalized dissipation rate metric ε(t) (see Figures

5.18(c)- 5.18(d) versus Figures 5.18(e)- 5.18(f)). And so, it is apparent that the

accuracy of the deconvolution can induce important modeling errors that further

obfuscate the impact of discretization and LES parameter choices. Nevertheless,

such low-accuracy deconvolutions have the advantage of potentially inhibiting

aliasing effects through the non-linear term ∂xũũ.
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Figure 5.17: Effect of discretization scheme and filter-to-grid ratio (FTGR) on the

time evolution of the relative L2 LES solution error computed by a posteriori eval-

uation, |¯̃uLES− ¯̃ufDNS|2/|¯̃ufDNS|2. LES solutions assume a discrete Tangent filter

formulation, tuned according to k1/2. The Approximate Deconvolution method

(ADM) is applied using re-scaled deconvolution (see Appendix A): a) second-order

LES filter (FTGR = 2, kcond = 1.e3), b) second-order LES filter (FTGR = 4,

kcond = 1.e3), c) tenth-order LES filter (FTGR = 2, kcond = 1.e3), d) tenth-order

LES filter (FTGR = 4, kcond = 1.e3), e) tenth-order LES filter (FTGR = 2,

kcond = 1.e0), and f) tenth-order LES filter (FTGR = 4, kcond = 1.e0).
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Figure 5.18: Effect of discretization scheme and filter-to-grid ratio (FTGR) on

the time evolution of the normalized kinetic energy dissipation rate ε(t). LES

solutions assume a discrete Tangent filter formulation, tuned according to k1/2.

The Approximate Deconvolution method (ADM) is applied using re-scaled decon-

volution (see Appendix A): a) second-order LES filter (FTGR = 2, kcond = 1.e3),

b) second-order LES filter (FTGR = 4, kcond = 1.e3), c) tenth-order LES filter

(FTGR = 2, kcond = 1.e3), d) tenth-order LES filter (FTGR = 4, kcond = 1.e3),

e) tenth-order LES filter (FTGR = 2, kcond = 1.e0), and f) tenth-order LES filter

(FTGR = 4, kcond = 1.e0).
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Figure 5.19: Effect of discretization scheme and filter-to-grid ratio (FTGR) on

the kinetic energy spectrum, 2|Ê(k)| = |û(k)|2, at time-step N = 1300 (t ∼
0.1). LES solutions assume a discrete Tangent filter formulation, tuned according

to k1/2. The Approximate Deconvolution method (ADM) is applied using re-

scaled deconvolution (see Appendix A): a) second-order LES filter (FTGR = 2,

kcond = 1.e3), b) second-order LES filter (FTGR = 4, kcond = 1.e3), c) tenth-order

LES filter (FTGR = 2, kcond = 1.e3), d) tenth-order LES filter (FTGR = 4,

kcond = 1.e3), e) tenth-order LES filter (FTGR = 2, kcond = 1.e0), and f) tenth-

order LES filter (FTGR = 4, kcond = 1.e0).
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5.3.1.2 A Bardina-type Scale-Similarity Model (SSM)

Next the Bardina-type Scale-Similarity model (SSM) is considered. Again, the

DNS data is filtered and manipulated in order to conduct an a priori evaluation

of the τSSM closure. Figures 5.20(a), 5.21(a), and 5.22(a) plot the correlation

coefficient of the SSM model as a function of time. Unlike the RSFS/ADM clo-

sure, the SSM model does not constitute a subset of the true SFS, but rather

a filtered-scale (e.g., large-scale) approximation to the small-scale dynamics. As

a consequence, the observed performance of SSM is much degraded in compari-

son to the previous ADM a priori analysis. Inspecting the correlation coefficient

relative to the exact closure, the SSM model shows decent performance at low

filter-to-grid ratios (FTGR), but degrades when the LES filter width becomes too

large relative to the gird. This is in contrast to the ADM method which is seen

to improve under such circumstances. The reason for this may lie in the way the

SSM model is made to use increasingly larger scales in order to approximate the

true closure – this eventually becomes ill-founded as one eventually approaches

forcing or geometry-dependent scales. Interestingly, however, correlations are im-

proved as the smoothness of the filter reformulation is increased. In this way, the

second-order Tangent implementation shows a ∼ 0.95 correlation for FTGR = 2,

compared to the tenth-order filter which has a correlation of ∼ 0.8.

With respect to assessing the model magnitude relative to the true closure, Fig-

ures 5.20(b), 5.21(b), and 5.22(b) show incremental degradation of performance as

the filter-to-grid ratio is increased. Also, smoother filter formulations are revealed

to have lower representations of the closure magnitude during the start-up phase

t < 0.05, which again may be a consequence of building the model off of the large

scales, even while the dynamics may be fully represented on the LES resolution.

Contrastingly, the ADM procedure makes no assumptions while the dynamics

reside within the LES cut-off range. As previously noted, further inspection of

the effect of the SSM closure in Equation 5.14 also reveals that it approaches the
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RSFS with zeroth-order deconvolution at the limit of a spectral-sharp filter. In

this way, the model’s shortcomings can be understood as an abatement of the

nonlinear term ũu ≈ ¯̃u¯̃u in addition to a velocity increment relating to ¯̃̄u 6= ¯̃u that

can generate unwanted content past the LES cut-off and threaten algorithmic

stability.

0 0.05 0.1 0.15 0.2 0.25

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

(a)

0 0.05 0.1 0.15 0.2 0.25

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 5.20: A priori comparisons of the Bardina-type Scale-Similarity model

(SSM) for a second-order Tangent LES filter formulation: a) correlation coefficient

ρ(τmodel, τSFS), and b) magnitude |τmodel|2/|τSFS|2.
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Figure 5.21: A priori comparisons of the Bardina-type Scale-Similarity model

(SSM) for a sixth-order Tangent LES filter formulation: a) correlation coefficient

ρ(τmodel, τSFS), and b) magnitude |τmodel|2/|τSFS|2.
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Figure 5.22: A priori comparisons of the Bardina-type Scale-Similarity model

(SSM) for a tenth-order Tangent LES filter formulation: a) correlation coefficient

ρ(τmodel, τSFS), and b) magnitude |τmodel|2/|τSFS|2.

The anticipated short-comings of the SSM method are confirmed by a pos-

teriori LES calculations. Figure 5.23 pots the solution error and indeed reveals

the anticipated result of decreased performance at a higher filter-to-grid ratio. In

addition, there is diminished differentiation between the numerical schemes (at

least beyond the low-order CD02 stencil), especially in comparison to the ADM

closure. This again suggests the pervasiveness of model error. Inspecting the

evolution of the ε(t) metric in Figure 5.24 shows that the SSM treatment ad-

mits much more high-wavenumber activity than desired. And unlike the ADM

method, this error is exacerbated by increasing the filter-to-grid ratio (at least in

a relative sense). The spectra of Figure 5.25 provide additional insight, demon-

strating the large amount of content past the target LES cut-off. Under certain

conditions, such developments can lead to unmitigated pile-up and can eventually

lead to numerical instability. As anticipated, the velocity increment identified

in Equation 5.14 actively induces this high-wavenumber activity, which in turn

is maintained based on the discretization scheme’s modified wavenumber charac-

teristics. For example the low-order CD02 scheme has less energy near the grid
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Figure 5.23: Effect of discretization scheme and filter-to-grid ratio (FTGR) on

the time evolution of the relative L2 LES solution error computed by a posteriori

evaluation, |¯̃uLES − ¯̃ufDNS|2/|¯̃ufDNS|2. LES solutions assume a discrete Tangent

filter formulation, tuned according to k1/2, employed with the Bardina-type Scale-

Similarity model (SSM closure: a) second-order Tangent LES filter (FTGR = 2,

kcond = 103 ), b) second-order Tangent LES filter (FTGR = 4, kcond = 103), c)

tenth-order Tangent LES filter (FTGR = 2, kcond = 103), and d) tenth-order

Tangent LES filter (FTGR = 4, kcond = 103).

cut-off in comparison to the higher-order schemes; the same observation is sup-

ported by inspecting the evolution of ε(t). Meanwhile, the ADM procedure is

seen to inherently enforce the explicit LES filter and to be less susceptible to the

proliferation of small-scale content based on the discretization scheme. Employing
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increasingly scale-discriminant LES formulations for SSM, however, is shown to

reduce such errors, likely owing to (¯̃u¯̃u− ¯̃̄u ¯̃̄u)→ 0.

0 0.05 0.1 0.15 0.2 0.25

1

2

3

4

5

6

7

8

(a)

0 0.05 0.1 0.15 0.2 0.25

1

2

3

4

5

6

7

8

(b)

0 0.05 0.1 0.15 0.2 0.25

1

2

3

4

5

6

7

8

(c)

0 0.05 0.1 0.15 0.2 0.25

1

2

3

4

5

6

7

8

(d)

Figure 5.24: Effect of discretization scheme and filter-to-grid ratio (FTGR) on

the time evolution of the normalized kinetic energy dissipation rate based on

the strain-rate metric ε(t) (see Equation 5.12). LES solutions assume a discrete

Tangent filter formulation, tuned according to k1/2, employed with the Bardina-

type Scale-Similarity model (SSM closure: a) second-order Tangent LES filter

(FTGR = 2, kcond = 103 ), b) second-order Tangent LES filter (FTGR = 4,

kcond = 103), c) tenth-order Tangent LES filter (FTGR = 2, kcond = 103), and d)

tenth-order Tangent LES filter (FTGR = 4, kcond = 103).

Because of the presence of high-wavenumber content with the SSM model, it is

often implemented with an additional eddy-viscosity model (Winckelmans et al.,
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Figure 5.25: Effect of discretization scheme and filter-to-grid ratio (FTGR) on the

kinetic energy spectrum, 2|Ê(k)| = |û(k)|2, at time-step N = 1300 (t ∼ 0.1). LES

solutions assume a discrete Tangent filter formulation, tuned according to k1/2,

employed with the Bardina-type Scale-Similarity model (SSM closure: a) second-

order Tangent LES filter (FTGR = 2, kcond = 103 ), b) second-order Tangent LES

filter (FTGR = 4, kcond = 103), c) tenth-order Tangent LES filter (FTGR = 2,

kcond = 103), and d) tenth-order Tangent LES filter (FTGR = 4, kcond = 103).

2001). While the reasoning for this mixed-model approach can be rationalized

by the sub-filter scale decomposition of Equation 5.7, wherein respective models

address the RSFS and SGS components (Carati et al., 2001), a more practical

explanation stems from the fundamental need to removed the velocity increment

contributions. In this way, one can consider adding the filter-based artificial dis-
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sipation of Section 3.3. The impact of such a modification is explored in the

following section as a stabilization to both the ADM and SSM models.

5.3.2 Impact of Stabilization

Here, the influence of dissipation in its ability to mitigate computational errors

is examined. In the quasi a priori evaluation of Section 5.2, a “perfect” model

was assumed; as a result, the dissipation was tuned such as to target the lingering

numerical error. In the context of practical LES modeling, however, one may

need to quell more urgent sources of inaccuracy. The non-stabilized study of the

ADM and SSM closures in Section 5.3 demonstrates that a significant portion of

the error stems from the LES model, to the point that none of the high-accuracy

schemes (e.g., CD06, CD04-11pt, and CD10) are much differentiable. Therefore,

in the current context of stabilizing these scale-similarity-type models, tuning

the dissipation relative to the numerical scheme is not effective. Instead, it is

more advantageous to reduce model error with the expectation that numerical

scheme choice will become identifiable under perfect-like modeling. Inspecting

the dissipation rate metric ε(t) and the energy spectra of the a posteriori studies

suggests that a significant source of the solution error stem from the inability

to enforce the LES resolution – in other words, the models are inappropriately

allowing high-wavenumber content past the designated cut-off. As a result, the

influence of numerical dissipation (administered in the form of filter-based artificial

dissipation) is chosen here to be identical to the explicit LES filter and satisfies the

purpose of enforcing the prescribed LES field. A tenth-order Tangent LES filter

formulation is considered at a filter-to-grid ratio FTGR = 2 (∆̄1/2 = 4∆xLES).

In order to further bring generality to the stabilization scheme, a dynamic

procedure is implemented, where the dissipation is scaled by a coefficient (C/Co)
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such that the integrable equation reads,

∂t ¯̃u = Ro{¯̃u}+ (C/Co) ·RAD{¯̃u} . (5.15)

Ro{¯̃u} corresponds to the original LES residual (including any closure models),

while RAD{¯̃u} constitutes the filter-based artificial dissipation. In order to satisfy

the LES resolution, the dissipation scheme is chosen to be identical to the ex-

plicit LES filter. However this enforcement should ideally be active as necessary,

thus also limiting the possibility of un-necessary dissipative error. The following

definitions of the scaling coefficients are applied:

C =
|¯̃u− G∆̄{¯̃u}|2

|G∆̄{¯̃u} − G∆̂{¯̃u}|2
such that ∆̂ > ∆̄ , (5.16)

Co =

∫ (k∗c∆x)/π

(k∆̄∆x)/π
[(1− |Ĝ∆̄|) · kβ] d(k∆x/π)∫ (k∆̄∆x)/π

(k∆̂∆x)/π
[(|Ĝ∆̄| − |Ĝ∆̂|) · kβ] d(k∆x/π)

. (5.17)

Equation 5.16 is a measure of the extraneous energy contained past the primary

LES cut-off ∆̄, normalized for sake of dimensionality by the energy contained

within a band of adjacent scales k ∈ [k∆̂, k∆̄]. Next, this measure is adjusted

according to the amount of energy expected in each of the bands k ∈ [k∆̂, k∆̄] and

k ∈ [k∆̄, k
∗
c ] (where k∗c ∈ 〈k∆̄, k∆xLES ]), assuming a kβ inertial range scaling (see

Equation 5.17). Based on this, the filter-based artificial dissipation is fully “on”

with (C/Co) ≥ 1, when the k ∈ [k∆̄, k
∗
c ] portion of the resolved sub-filter scales

are completely saturated in proper proportion to the expected unfiltered field. In

order to make the damping more aggressive, the upper bound of the integral in the

numerator of Equation 5.17 can be made to approach (k∆̄∆x)/π, thus making the

dissipation less tolerant of content past the LES cut-off, ∆̄. This, however, comes

with the risk of adding too much dissipation. The current scaling, being based on

an L2 norm of the solution, represents a measure of kinetic energy. It is inherently

global and does not require a least-squares optimization in multi-dimensions, un-

like the dynamic procedure of Germano (Germano et al., 1991; Lilly, 1992; Park
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and Mahesh, 2009). Instead, a level of consistency is achieved by embedding the

dissipation operators within the sensors. In this way, anisotropic effects can also

naturally be accounted for. In the current exercises β = −2 and Ĝ∆̂ is chosen to

also be a tenth-order Tangent stencil, tuned to a filter-to-grid ratio FTGR = 4

(∆̂1/2 = 8∆xLES). This adaptive formulation is reminiscent of the automatic fil-

tering criterion of Tantikul and Domaradzki (2011), which considers the kinetic

energy ratios between different wavenumber bands; other related schemes include

the adaptive filtering of Flad et al. (2016) which incorporates aliasing considera-

tions, as well as the original relaxation scheme employed by Stolz et al. (2001) for

stabilizing the ADM closure.

Figure 5.26 shows the impact of the stabilization in terms of the solution er-

ror. As before, there is little-to-no differentiation between the performance of

the higher-order schemes which suggests that modeling error is still prevalent.

Nevertheless, the accuracy of the computations is seen to be improve relative

to the non-stabilized scenarios of ADM (see Figures 5.17(c) and 5.17(e)) and

SSM (see Figure 5.23(c)). The adaptive procedure is shown to hold the solu-

tion error relatively constant and hold off the accumulation of model error past

t > 0.05. These observations are once more confirmed by the strain-rate met-

ric ε(t) in Figure 5.27 that suggests a reduction in the small-scale activity. For

example, when considering the CD04-11pt discretization, the high-accuracy de-

convolution exhibits max{εLES/εfDNS} ∼ 1.15 compared to the unstabilized case,

where max{εLES/εfDNS} ∼ 2.4. For the zeroth-order deconvolution, incorporat-

ing the present adaptive dissipation yields max{εLES/εfDNS} ∼ 2.5 in comparison

to max{εLES/εfDNS} ∼ 6.0 without. The same is true for improvements to the

SSM closure; with stabilization, one observes max{εLES/εfDNS} ∼ 1.5 compared

to max{εLES/εfDNS} ∼ 2.8 without dissipation. Another interesting trend re-

lates to the fact that the high-accuracy schemes now show improvement – albeit

somewhat marginal – compared to the low-order CD02 scheme, at least for the
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Figure 5.26: Effect of discretization scheme and filter-to-grid ratio (FTGR) on

the time evolution of the relative L2 LES solution error computed by a posteriori

evaluation, |¯̃uLES−¯̃ufDNS|2/|¯̃ufDNS|2. LES solutions assume a tenth-order discrete

Tangent filter formulation, tuned according to ∆̄1/2 = 4∆xLES. A filter-based

artificial dissipation stencil consistent with explicit LES filter is employed with

the adaptive procedure (see Equations 5.15-5.17 with k∗c∆x = π): a) ADM model

(deconvolution: kcond = 103), b) ADM model (deconvolution: kcond = 1), and c)

Scale-Similarity model.
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Figure 5.27: Effect of discretization scheme on the time evolution of the normalized

kinetic energy dissipation rate based on the strain-rate metric ε(t) (see Equation

5.12). LES solutions assume a tenth-order discrete Tangent filter formulation,

tuned according to ∆̄1/2 = 4∆xLES. A filter-based artificial dissipation stencil

consistent with explicit LES filter is employed with the adaptive procedure (see

Equations 5.15-5.17 with k∗c∆x = π): a) ADM model (deconvolution: kcond =

103), b) ADM model (deconvolution: kcond = 1), and c) Scale-Similarity model.
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Figure 5.28: Effect of discretization scheme and filter-to-grid ratio (FTGR) on

the kinetic energy spectrum, 2|Ê(k)| = |û(k)|2, at time-step N = 1300 (t ∼ 0.1).

LES solutions assume a tenth-order discrete Tangent filter formulation, tuned

according to ∆̄1/2 = 4∆xLES. A filter-based artificial dissipation stencil consistent

with explicit LES filter is employed with the adaptive procedure (see Equations

5.15-5.17 with k∗c∆x = π): a) ADM model (deconvolution: kcond = 103), b) ADM

model (deconvolution: kcond = 1), and c) Scale-Similarity model.
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ε(t) metric. This is the case for all the closures considered and encourages the

potential benefits of employing high-accuracy schemes. Comparing the respective

spectra in Figure 5.28 to the non-stabilized implementations of ADM (see Fig-

ures 5.19(c) and 5.19(e)) and SSM (see Figure 5.25(c)), one again notes that the

dissipation indeed reduces some of the small-scale content and thus is helping to

enforce the LES resolution.

5.4 Synopsis of Trends

The investigations of the current Chapter into the interacting effects of discretiza-

tion, LES formulation, modeling, and stabilization provide useful insight which

one may seek to employ and verify with respect to the more advanced fluid sys-

tem. The list of broad observations can be summarized as follows for the special

case of “perfect modeling”:

1. Reduction in solution error is achieved by proper selection of the LES filter-

to-grid ratio (FTGR) relative to the resolvability (i.e., spectral accuracy)

of the base discretization scheme. At low filter-to-grid ratios (e.g, grid-

or implictly-filtered LES, FTGR = 1), the ability of the model to enforce

the LES field is significantly impeded by the overwhelming presence of dis-

cretization error near the grid cut-off. Larger filter-to-grid ratios approach

grid-converged LES, and solution error is diminished as the influence of the

exact model overshadows numerical artifacts.

2. Scale-discriminant LES filter formulations make it such that the choice of nu-

merical scheme is more impactful, with high-accuracy schemes being prefer-

able. At modest filter-to-grid ratios, optimized schemes are superior; how-

ever, standard schemes regain merit for sufficiently large filter-to-grid ratios.

3. Even in the scenario of “perfect modeling”, one may further improve accu-
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racy by removing lingering numerical error contributions. Therefore a nu-

merical dissipation scheme can be tuned such as to target the scales poorly

resolved the discretization. In this case, matching the dissipation scheme’s

growth-factor response to the normalized modified wavenumber of the con-

vective scheme has shown to yield the best results. This is believed to stem

from the fact that sufficient erroneous content is removed without also un-

dermining the exact model contributions.

The lessons learned from the “perfect model” analysis are then balanced by con-

sidering practical LES models such as the ADM and SSM closures, which reveal

the following trends:

1. Incorporation of real closures for a posteriori use introduces large amounts

of modeling error that obfuscates discretization effects; a clear demarcation

is made between the low-order CD02 scheme and the higher-order methods

(CD06, CD04-11pt, CD10) but not much difference is seen between the

high-accuracy methods (contrary to the case of “perfect modeling”).

2. Improvement of solution accuracy largely resides in decreasing the model

error. As most closures are inadequate at enforcing the LES spectral reso-

lution, one may incorporate numerical dissipation and formulate it relative

to the presumed explicit LES filter. In this way, the stabilization is made to

help the primary model in satisfying the LES field, and thus reduces solu-

tion error. In doing so, intuitive trends regarding the benefits of employing

high-oder methods are recovered (although still marginal) when comparing

amongst the high-accuracy discretizations.

3. The Approximate Deconvolution method (ADM) is generally superior to

the the Scale-Similarity model (SSM), provided sufficiently accurate decon-

volution procedures are employed. The former model inherently tries to

enforce the LES spectral resolution while the latter instigates content past
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the desired LES cut-off due to the contribution of a velocity-increment that

is inherent in its formulation.

The proceding chapter will thus consider the 3D compressible Navier-Stokes equa-

tions and will look at simulation of the Taylor-Green vortex as an analogous

testbed to the current prototypical 1D viscous Burgers investigation, where anal-

ysis will seek to confirmation the preliminary conclusions garnered here.
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CHAPTER 6

3D Taylor Green Vortex with the Compressible

Navier-Stokes Equations

This chapter is written in part from modifications to a previous AIAA confer-

ence proceedings article “Inspecting Interactions of Discretization, Filter Formu-

lation, and Stabilization in LES: Lessons from the Taylor-Green Vortex” (Edoh

and Karagozian, June 2017b).

6.1 Background

While the explorations of the previous chapter utilize the 1D Burgers equation in

order to extract important generalizations regarding the overall LES treatment,

it remains to see how these lessons extend to the full fluid equations. To this

effect, the current chapter considers the three-dimensional (3D) Navier-Stokes

equations (NSE) (see Equation 6.1). Incorporating variable density is necessary for

considering non-negligible Mach effects and offers greater generality in the study

of fluid behavior; numerical investigation of incompressible-like conditions is then

made possible by proper low-Mach preconditioning formulations that typically

employ an iterative pseudo-time procedure (Merkle and Athavale, 1987; Turkel,

1999; Venkataswaran and Merkle, 2000). Specifically, the compressible form of the

equations includes the ability to simulate high-pressure reactive flow – a long-term

direction of the current research initiative – and thus deserves proper familiarity.
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∂Q

∂t
+
∂Ej
∂xj

=
∂Vj
∂xj

,

Q =


ρ

ρui

ρeo

 , Ej =


ρuj

ρuiuj + Pδij

(ρeo + P )uj

 , Vj =


0

τ dij

τ djkuk + qj

 ,

P = (γ − 1)

[
ρeo −

1

2
ρuiui

]
,

τ dij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ
∂uk
∂xk

δij,

qi = κ
∂T

∂xi
.

(6.1)

As apparent, simultaneous solution of the different conservation laws consti-

tuting the system (i.e., mass, momentum, energy) introduces several non-linear

equations, with dynamics being further complicated by thermodynamic coupling.

As a result, the NSE system admits far more symmetries and represents a sig-

nificant increase in complexity relative to the prototypical Burgers equation pre-

viously studied. In this way, the threats to numerical accuracy and stability are

further heightened. For example, accumulation of error in the evolution of momen-

tum can directly feed into the mass and energy equations through the convective

terms. And in the instance where diffusive mechanisms are under-represented (as

they are in the LES of high-Reynolds number flow) or are entirely absent (as in

the continuity equation equation), such potential for error-inheritance increases

computational susceptibilities to instability and inaccuracy.

Despite the new physical and algorithmic intricacies introduced by the fluid

system, a tractable assessment of numerical scheme appropriateness can be made

by considering canonical flows. One such example, explored herein, is the Taylor-

Green vortex (TGV) first introduced for the incompressible equations (Taylor
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and Green, 1937; Brachet et al., 1983). Subsequent investigations of the test

case have included low Mach number initializations for the compressible system

(DeBonis, 2013). Most intriguing about the Taylor-Green vortex is the natural

transition from a laminar to a turbulent state, followed by a subsequent decay

process. The initialization (see Equation 6.15) essentially constitutes a single

large vortex, which then eventually breaks down into smaller features. In this

sense, the test case offers the opportunity to witness a scheme’s ability to predict

the proliferation of an initial large-scale perturbation towards turbulence through

the generation of small-scales (see Figure 6.1). In addition, calculations at the

inviscid limit (Re → ∞) have been used to highlight non-linear scheme stability

properties such as secondary-conservation (Gassner et al., 2016).

While the triply-periodic problem domain is amenable to spectral computa-

tions which are often cited as reference solutions (Brachet et al., 1983), a popular

objective in the community has been the task of recovering the proper dynam-

ics with physical-space methods on an under-resolved mesh. Quite often, implicit

LES (ILES) implementations are studied, wherein the inherent scheme dissipation

– either native to the algorithm or employed with the sole intention of maintaining

solution stability – is considered (Drikakis et al., 2007). For example, DeBonis

(2013) studies effects of the convective discretization and the grid resolution on

the evolution of the Taylor-Green vortex; yet, this is done while administering

solution filtering with a scaling coefficient that is chosen to sustain the compu-

tation’s stability with minimal damping. As such, in the context of relaxation

filtering, many have looked at the effect of the filter order and filter strength

on the ability to properly predict the TGV (Aubard et al., 2013; Fauconnier,

2013). Alternatively, particularly in the realm of Discontinuous Galerkin (DG)

and Flux Reconstruction (FR) methods, authors have also considered the utility

of energy-stable schemes (Bull and Jameson, 2014) and polynomial de-aliasing

(e.g., over-integration) (Gassner and Beck, 2013).
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In most instances, the performance of these algorithms is judged relative to the

kinetic energy dissipation rate as calculated by differentiating energy with respect

to time,

ε(Ek) = −dEk
dt

, with Ek =
1

ρoΩ

∫
Ω

ρ
uiui

2
dΩ . (6.2)

Such a metric – as previously explained in Section 5.1.1 – is biased towards large-

scale depletion of kinetic energy and is less sensitive to enforcement of the LES field

at high-wavenumbers. Although most of the TGV studies assume grid-filtering

with FTGR = 1 (i.e., ∆̄ = 2∆x), the choice of this particular metric makes it

particularly limited in assessing LES formulations based on filter-to-grid ratios

above unity. In addition, ε(Ek) as calculated by Equation 6.2 can be said to

represent the net dissipation of the algorithm, which may be suitable for implicit-

modeling but is less telling of explicit modeling efforts. As a direct analogue to

the 1D Burgers investigation of Chapter 5, one may judge the kinetic dissipation

rate by inspecting source terms of the corresponding conservation equation. In

the case of compressible flow, this amounts to calculating,

1

2

∂ρuiui
∂t

= ui
∂ρui
∂t
− 1

2
(uiui)

∂ρ

∂t
(6.3)

= −1

2

∂ρuiuiuj
∂xj

− ∂ujP

∂xj
+ P

∂uj
∂xj

+
∂uiτ

d
ij

∂xj
− τ dij

∂ui
∂xj

(6.4)

Assuming zero net flux on the boundaries, the non-conservative terms thus cor-

respond to body source/sink contributions to the change in kinetic energy. These

contributions stem from the deviatoric stress tensor, as well as from pressure ef-
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fects, their average global quantities being defined as,

ε1 = 2
µ

ρo

1

Ω

∫
Ω

τ dijτ
d
ijdΩ ,

ε2 =
µv
ρ

1

Ω

∫
Ω

(∂xiui)
2dΩ ,

ε3 = − 1

ρoΩ

∫
Ω

P · (∂xiui) dΩ .

(6.5)

Assuming low compressibility and zero bulk viscosity (i.e., µν = 0), the dissi-

pation to the kinetic energy equation is thus contained within ε1 in Equation 6.5

above. In LES studies of the TGV, however, this quantity is seldom analyzed. And

if it is, it is judged relative to the strain-rate-based dissipation of the fully-resolved

DNS field, rather than a consistently filtered reference solution. This, however,

presents a biased perspective as the metric measures small-scale activity, which

cannot be equivalent to that of the full field for the case of under-resolved flows.

Keeping with the task of evaluating explicit LES formulations with filter-to-

grid ratios above unity, the following analysis will thus utilize both metrics (ε(Ek)

and ε1) in assessment of the overall algorithm. Looking to the previous Burgers

example as an antecedent to the current TGV test case with the Navier-Stokes

equations, the effects of numerical discretization, modeling, and the filter formu-

lation on the overall LES accuracy are studied.

6.1.1 Compressible Explicit LES Formulation

As the following investigation considers the explicitly-filtered LES formulation

(e.g., ¯̃φ), it is important to define the specific form of the filtered compressible

163



equations, along with the implied closure contributions:

∂t ¯̃ρ+ ∂xj ¯̃ρ
[
ũ?j

]
= 0 ,

∂t ¯̃ρ
[
ũ?i

]
+ ∂xj ¯̃ρ

[
ũ?i

] [
ũ?j

]
= −∂xi

[
P̃ ′
]

+ ∂xj

[
τ̃ d,′ij

]
− ∂xj

(
T ρuuij − T τdij

)
,

∂t ¯̃ρ
[
ẽ?o

]
+ ∂xj ¯̃ρ

[
ẽ?o

] [
ũ?j

]
= −∂xj

[
ũ?j

] [
P̃ ′
]

+ ∂xj

[
ũ?k

] [
τ̃ d,′kj

]
+∂xj

[
q̃′
]

−∂xj
(
T ρeouj + T uPj − T uτdj − T qj

)
.

(6.6)

As summarized by Garnier et al. (2009), the choice of the filtered compressible

equations can vary based on how one chooses to handle the thermodynamic re-

lations, notably the definitions of the filtered pressure and temperature. By re-

defining these to be,[
P̃ ′
]

= (γ − 1)

{
¯̃ρ
[
ẽ?o

]
− 1

2
¯̃ρ
[
ũ?i

] [
ũ?i

]
− T

ρuu
ii

2

}
, (6.7)[

T̃ ′
]

=
(γ − 1)

R

{[
ẽ?o

]
− 1

2

[
ũ?i

] [
ũ?i

]
− T

ρuu
ii

2¯̃ρ

}
. (6.8)

The above then imply that Equation 6.6 solves for the filtered total energy quantity

(rather than the resolved total energy),

¯̃ρ
[
ẽ?o

]
=

[
P̃ ′
]

γ − 1
+

1

2
¯̃ρ
[
ũ?i

] [
ũ?i

]
+
T ρuuii

2
. (6.9)

This choice, however, does not affect the equation of state
[
P̃ ′
]

= ¯̃ρR
[
T̃ ′
]
. As

the following LES investigations of the Taylor-Green vortex will mainly consider

the kinetic energy dissipation rate, one can form the associated resolved-scale
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equation in an analogous manner to the unfiltered case of Equation 6.4:

∂ ¯̃ρ
[
ũ?i

] [
ũ?i

]
∂t

= −1

2

∂ ¯̃ρ
[
ũ?i

] [
ũ?i

] [
ũ?j

]
∂xj

−
∂
[
ũ?j

] [
P̃ ′
]

∂xj
+
[
P̃ ′
] ∂ [ ũ?j ]

∂xj

+

∂
[
ũ?i

] [
τ̃ d,′kj

]
∂xj

−
[
τ̃ d,′kj

] ∂ [ ũ?i ]
∂xj

+
∂
[
ũ?i

]
T momij

∂xj
− T momij

∂
[
ũ?i

]
∂xj

.

(6.10)

New source/sink terms thus appear due to the closure terms, with T momij =

T ρuuij + T τdij ; these contributions correspond to the transfer of energy relative to

the resolved scales. The equation further emphasizes the deviation between ε(Ek)

and ε1 as the effects of filtering – and thus the closure contributions – become

increasingly important.

The above equations are largely identical to traditional compressible LES equa-

tions; however, additional care is made in expressing the LES and grid-filter op-

erators, G∆̄ and G∆̃ respectively. The choice of density-weighted quantities (Favre

averaging) is invoked (e.g.,
[
ũ?i

]
= ρ̃ui/ ¯̃ρ, while

[
ũ?i

]
= G∆̄{ρ̃ui/ρ̃}) in order to

avoid model contributions in the density equations and render closure treatment

more akin to an incompressible system (i.e., quadratic non-linearities with respect

to the convective terms). Furthermore, quantities denoted by a prime (e.g., P ′)

are assumed to be calculated with the corresponding Favre-averaged quantities.
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The related closures are thus defined as,

T ρuuij = ρ̃uiuj − ¯̃ρ
[
ũ?i

] [
ũ?j

]
= ¯̃ρ

(
ũiuj −

[
ũ?i

] [
ũ?j

])
T ρeoui = ¯̃ρ

(
ẽoui −

[
ẽ?o

] [
ũ?i

])
T τdij = τ̃ dij −

[
τ̃ d,′kj

]
T uPi = ũiP −

[
ũ?i

] [
P̃ ′
]

T uτdi = ũkτ dkj − [̃u?k]

[
τ̃ d,′kj

]
T qi = ¯̃q −

[
q̃′
]

(6.11)

The model contributions are thus seen to account for both density-weighting as

well as the non-linearities, which may place additional burdens on the model

treatment1. Velocity-filtered LES formulations that explicitly take density closure

effects into considerations have recently been proposed (GS et al., June 2016) as

a possible alternative for representing compressibility effects in LES.

T ρuu,RSFSij = ρ̃
[
ũ?i

] [
ũ?j

]
− ¯̃ρ

[
ũ?i

] [
ũ?j

]
(6.12)

T ρuu,SSMij = Css

{
α̂− ˆ̃̄ρ

[ ̂̃
u?i

] [ ̂̃
u?j

]}
, (6.13)

where α = ¯̃ρ
[
ũ?i

] [
ũ?j

]
.

The diverse set of physical mechanism that need to be represented can pose a

great challenge in terms of model selection. However, employing a scale-similarity

perspective provides great generality in the representation of the respective clo-

sures. The Approximate Deconvolution Method (ADM) and the Bardina-type

Scale-Similarity Model (SSM) (where Css = 1 and G∆̂=∆̄ in Equation 6.13) are

thus considered. Examples of their respective implementation as relating to T ρuuij

1Note that the pressure work closure T uPi is composed of T ρeoui and will also require modeling

of a quadruple correlation term ˜ρuiuiuj . These complexities may be avoided by considering the
Vreman System 1 that is based on the resolved total energy (Vreman et al., 1995; Garnier et al.,
2009), although this then requires modeling of additional non-conservative terms that may cause
issues in the case of flow discontinuities.
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is given in Equations 6.12-6.13 and provide a general guideline for extension to the

other model terms2. As previously elaborated in Chapter 5, the ADM procedure

is believed to provide non-linear stabilization through filtering of the non-linear

terms (akin to residual filtering) (Layton and Neda, 2007a), while the SSM im-

plementation is suspected to suffer from high-wavenumber instability due to an

implicit velocity increment contribution (see Equation 5.14).

In the case of ADM, two levels of deconvolution fidelity are considered based on

inverting a re-scaled or preconditioned version of the original discrete filter stencil

(see Appendix A). Written in one-dimension, this corresponds to the following:[
εIF,0 +

L∑
`=1

εIF,2`(∆x)2`δ2`
x

]
{ ¯̃φ} = εEF,0φ̃+ µ

R∑
r=1

εEF,2r(∆x)2rδ2r
x {φ̃}

+(1− µ)
L∑
`=1

εIF,2`(∆x)2`δ2`
x {φ̃} ,

where µ = (1− 1/κcond) ∈ [0, 1] .

(6.14)

Multi-dimensional deconvolution is then achieved by successive application of the

procedure in each direction. The accuracy of the deconvolution is controlled by

the condition number κcond with higher values yielding more faithful retrieval of

the original signal. On the other hand, the case of κcond = 1 corresponds to a

zeroth-order estimate, where φ̃ ≈ ¯̃φ.

6.1.2 Numerical Set-up

The initialization of the compressible Taylor-Green vortex consists of a low-wavenumber

perturbation to an otherwise uniform flow on a triply periodic domain −πL ≤
x, y, z ≤ πL:

2Recall that estimating the closure term with its resolve sub-filter stress (RSFS) component
is algorithmically equivalent to the ADM method.
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)
cos
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z
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)
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v = −Vo cos
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)
sin
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L

)
cos
(
z
L

)
,

w = 0 ,

P = Po + ρoV 2
o

16

[
cos
(

2x
L

)
+ cos

(
2y
L

)] [
cos
(

2z
L

)
+ 2
]

(6.15)

The problem is then characterized by the following non-dimensional parameters:

Mo = (Vo/co) = 0.1, Re = (ρoVoL)/µ = 1600, Pr = (µcp)/κ = 0.71, and the

specific heat ratio, γ = cp/cv = 1.4. The speed of sound co corresponds to the

temperature To = Po/Rρo, the initial temperature taken to be uniform T = To

and the density taken as ρ = P/RTo. The span of the computation is measured

relative to the characteristic convective time tc = L/Vo and is considered to end at

tfinal = 20tc. As previously mentioned, assessment of the flow evolution is made

relative to the kinetic energy dissipation parameters (Equations 6.2 and 6.5).

However, here the compressibility effects are minimal and the bulk viscosity µν is

taken to be zero; thus ones has ε2 = 0 and ε3 ≈ 0. Instead, we turn primarily to

ε(Ek) and ε1 in order to characterize the flow. As was the case for the Burgers test

case, these two metrics are equivalent in the case of fully-resolved computations,

in correspondence with the Equation 6.4.

While results are most commonly compared to spectral computations based

on the incompressible equations (Brachet et al., 1983), recent evidence suggests

that the compressible equations converge to a a slightly different solution (Atkins,

June 2016). As a result, a full-resolution DNS compressible computation is carried

out in order to get a baseline for the flow characteristics. In each case, a fourth-

order standard central finite difference discretization is employed for the inviscid

terms, while a second-order narrow-stencil is utilized for the diffusive terms. A

third-order Runge-Kutta temporal scheme serves as the integration method.

Typically, three phases of the problem are identified as shown in Figure 6.1:

vortical roll-up (t ∼ 5tc), coherent breakdown of the vortices (t ∼ 9tc), and tur-
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Figure 6.1: Demarcation of vortical structure relative to Q criterion (level =

8 × 10−4 [1/s2]) colored by vorticity magnitude [1/s] through different stages of

the Taylor-Green vortex evolution cycle: (a) initial condition (tc = 0), (b) vortical

roll-up (tc = 5), (c) coherent breakdown (tc = 9) and (d) turbulent decay (tc = 15).
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Figure 6.2: Kinetic energy dissipation rate for DNS (i.e., non-model) simulations

as a function of grid resolutions.
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bulent decay (t > 9tc). Figure 6.2 plots the −dEk/dt for different resolutions of

the DNS (i.e., no modeling). The dissipation rate is seen to increase and peak

at t ∼ 9tc, after which the rate decreases, signaling the turbulent decay-like pro-

cess. It is apparent that the DOF = 5123 grid is in good agreement with the

DOF = 10243 grid, thus suggesting that the former is sufficiently converged.

There is some minor discrepancy during t > 10tc; however, this may be linked

to the second-order diffusive terms under-performing during the decay process.

At the DOF = 2563 resolution, the viscous effects are not sufficiently resolved

and numerical errors cause the simulation to go unstable3. At sufficiently low

resolutions, one can assume that proper computation of the solution requires the

inclusion of proper LES closures. Other studies have considered the computa-

tion of under-resolved Taylor-Green vortex simulations from the standpoint of

employing additional scheme stabilization (e.g., artificial dissipation); these es-

sentially correspond to implicit LES (ILES) implementation. Instead, the current

study considers explicit modeling, relating to the scale-similarity type closures

introduced in Section 5.3 (ADM and SSM). In addition, the filter-based artificial

dissipation is also considered; and while its use might be categorized as implicit

modeling, the conscious choice of having the dissipation be consistent with the

LES filter G∆̄ makes the approach more similar to a hyper-viscosity type approach

(i.e., higher diffusive-type derivatives). The computations henceforth consider an

LES grid of DOF = 1283 with ∆̄ = [4∆xLES, 8∆xLES], which correspond to

DOF = 643 and 323, respectively4. A Tangent discrete filter introduced in Sec-

tion 2.4.2 is considered for the explicit LES filter G∆̄.

3The current computations employ a divergence form of the convective terms. Using a skew-
symmetric or other splittings (Kennedy and Gruber, 2008; Morinishi, 2010; Pirozzoli, 2010) can
extend the stability of the simulation for lower resolutions such as DOF = 2563, although the
dissipation rates become erroneous.

4Note, 2 DOF are required per ∆x for finite difference methods. Here, ∆ is taken to be a
full wavelength, rather than a half wavelength.
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6.2 A Priori Assessments

As the LES filter is explicitly defined, it is possible to tractably derive reference

solutions by which subsequent evaluations of the methods can be judged. This

is presented here as part of an a priori analysis of both the LES field and the

anticipated model contributions. Consequences of the filter operator (e.g., the

filter order, the filter-to-grid ratio, etc ...) are inspected.

Reference solutions for the LES computations are derived by filtering the DNS

solution in a three-step process:

1. The DNS field (DOFDNS = 5123) is filtered to the LES resolution (DOFLES =

1283), φ̃∗DNS = G∆̃{φDNS}, by using a tenth-order Tangent filter with |Ĝ(kc)| =
0.01, such that (kc∆x) = 0.25π.

2. The intermediate variable φ̃∗ is then projected onto the LES grid via comb

filtering in physical space (which presumes the LES grids to be collocated),

wherein φ̃LES(xi) = φ̃∗DNS(xi).

3. The final LES solution is then derived by employing the explicit filter on

the LES grid variable, ¯̃φ = G∆̄{φ̃LES}, based on a |Ĝ(k1/2)| = 0.5 character-

ization.

As previously suggested, higher-order LES filter formulations are able to pre-

serve more of the large-scale features above the prescribed cut-off. Such attenu-

ation not only affects the range of scales present in the LES solution, but is also

expected to affect the perceived kinetic energy dissipation rate curves. Figures 6.3

and 6.4 include both ε(Ek) = −d(Ek)/dt and ε1 metrics for the different discrete

filters tuned to the filter-to-grid ratios (FTGR) of 2 and 4 (∆̄ = 4∆xLES and

8∆xLES, respectively).

In general, one notices that the −dEk/dt metric of the LES is quite similar

to that of the DNS curve. This measurement, typically employed in assessments
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of the Taylor-Green vortex, tends to focus on large-scale energy depletion5. Sim-

ilarities with the DNS curve are supportive of the fact that the LES solution can

replicate global characteristics of the fully-resolved field. Employing filter-to-grid

ratios above unity is seen to shift the peak dissipation rate to an earlier time.

The peak rate coincides with the time at which the energy spectrum is fullest;

therefore, lower wavenumber cut-offs reach this point earlier on. Also, it is seen

that sharper (i.e., higher-order) filter formulations have an increased peak owing

to a more sudden transition of the dynamics past the LES cut-off; by contrast, the

smoother filter (i.e., low-order) has a more gradual transfer of flow dynamics into

the sub-filter range of scales, which causes the dissipation rate to appear more

spread out and subdued.

Unlike the ε(Ek) assessment, the strain-rate-based dissipation component ε1

for the LES solutions in Figure 6.4 is shown to be quite different from the cor-

responding DNS curve. Because this metric essentially focuses on the amount of

small-scale activity, it is understandable that higher levels of attenuation – either

with respect to smoother filter responses or with respect to higher filter-to-grid

ratios – would yield lower ε1 values. In the case of fully-resolved flow, however,

ε(Ek) = ε1 (assuming compressibility effects are negligible) which is evidenced by

comparison of the DNS curves. Because ε1 highlights high wavenumber activity,

it is useful to look at in order to assess whether the LES computation is faithfully

enforcing the expected LES field or whether an implementation may be suscep-

tible to small-scale errors. As can be shown, it is possible for LES computations

to yield decent ε(Ek) agreement while being grossly inaccurate with respect to ε1.

Consequently both metrics will be considered henceforth in the characterization

of the LES performance.

As alluded to by the resolved kinetic energy equation in 6.10, the discrepancy

5Here, ε(Ek) is calculated by differentiating Ek with a standard central second-order dis-
cretization. Higher-order renditions are possible, but this second-order approximation uses a
resolution of ∆T = 0.1tc and is believed to be sufficient.
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between ε(Ek) and ε1 is encapsulated by the closure-induced dissipative effects

which may be estimated by looking at εT = ε(Ek) − ε1. The curve plotted in

Figure 6.5 represents this contribution as assumed from an exact closure. As

expected, effects on the dissipation rate due to the closures is negligible for the

DNS calculation. As more of the scales are removed from the continuous field,

however, these effects increase. In this way, the case of the larger filter-to-grid

ratio results in high values of εT ; furthermore, non-sharp filter formulations such

as the second-order Tangent stencil also suggest increased model activity, likely

to be tied to the implied notion of increased model input towards the large scales.

Also interesting to note is the increased activity of the models towards the peak

dissipation rate, wherein the energy spectrum is expected to be at its fullest.

Comparing the εT and ε1 curves, it furthermore becomes evident that most of the

variability in ε(Ek) results from the model contribution. This may be due to the

way in which the a priori reference solution is calculated: the DNS field is filtered

before computing ε1, which may remove oscillations. Alternatively, this observed

result may point to real intermittencies of the flow that get manifested through

the model terms. The ability to identify interesting characteristics of the flow,

such as these intermittencies, supports the need to analyze different metrics and

the attempt to reconstruct the underlying mechanisms associated with the LES

methodology.

Figure 6.6 shows the evolution of the actual kinetic energy Ek(t). It is apparent

that for the high-order filters tuned to FTGR = 2, a majority of the energy

content is still resolved on the LES support. However, as more of the spectrum is

removed – by employing less sharp filter formulations or considering higher filter-

to-grid ratios – less of the energetic content is accounted for and one’s reliance on

proper modeling is expected to increase.

Before proceeding to incorporate the respective effects of the numerical dis-

cretization on the LES computation, a preliminary assessment of the ADM and
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Figure 6.3: Kinetic energy dissipation rate as measured by ε(Ek) for DNS and

reference LES solutions (i.e., filtered DNS) as a function of the explicit LES filter

(discrete Tangent stencils): a) FTGR = 2 and b) FTGR = 4.
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Figure 6.4: Kinetic energy dissipation rate as measured by ε1 for DNS and ref-

erence LES solutions (i.e., filtered DNS) as a function of the explicit LES filter

(discrete Tangent stencils): a) FTGR = 2 and b) FTGR = 4.
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Figure 6.5: Kinetic energy dissipation rate as accounted for by the closure model

εT for DNS and reference LES solutions (i.e., filtered DNS) as a function of the

explicit LES filter (discrete Tangent stencils): a) FTGR = 2 and b) FTGR = 4.
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Figure 6.6: Kinetic energy Ek in domain for DNS and reference LES solutions (i.e.,

filtered DNS) as a function of the explicit LES filter (discrete Tangent stencils):

a) FTGR = 2 and b) FTGR = 4.
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SSM models can be carried out by filtering the DNS data and forming the dif-

ferent closure terms (see Equations 6.11). Access to the “exact” DNS solution

then also allows the formation of “perfect” closure terms (Stefano and Vasilyev,

2002; DeStefano and Vasilyev), which can be used as a baseline for evaluating the

accuracy of the different closures. This corresponds to an a priori evaluation of

the model terms as applied to the different non-linear physical processes.

Table 6.1 estimates the model closure contributions to the resolved kinetic

energy dissipation rate at t = 9tc, comparing the ADM and SSM models to the

exact model (εT model/εT exact). Referring to Equation 6.10, the ADM and SSM

dissipation is constructed as

εT model ∼ T ρuu,modelij ∂xj

[
ũ?i

]
, (6.16)

owing to the fact that dilation and viscous closure effects are known to be minimal

for the current test case. As before, the exact model is calculated from the filtered

reference solution and is formed by εT exact = (ε(Ek)− ε1). The table reveals ten-

dencies of the models as corresponding to the different filter-to-grid ratios as well

as to the explicit LES filter. This information is supplemented by correlation infor-

mation ρcorr{εT model , εT exact} in Table 6.3. In combining these two perspectives, it

may be possible to judge whether the models adhere to the general physical trends

and whether they are sufficiently active or not. In viewing this information, one

notices that for a given filter-to-grid ratio, increasing the order of the filter (i.e., its

sharpness), results in an increase of both correlation and magnitude of the model’s

dissipation εT model relative to the exact closure. Also, it is apparent that the ADM

consistently outperforms the current SSM interpretation. The same trends hold

for the higher filter-to-grid ratio, although overall performance is seen to diminish

somewhat. This is surprising as it conflicts with the a priori analysis of Section

5.2 which predicts higher correlations with increased filter-to-grid ratios, at least

with respect to the ADM procedure (see Figures 5.14(a)-5.16(a)).
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FTGR = 2 FTGR = 4

Tan02 Tan06 Tan10 Tan02 Tan06 Tan10

ε′T ρuu
ADM 0.34 0.65 0.72 0.30 0.62 0.70

SSM 0.25 0.56 0.65 0.20 0.53 0.64

Table 6.1: Normalized kinetic energy closure contributions, ε′T = (εT model/εT exact),

at t = 9tc as calculated via the filtered DNS solution.

FTGR = 2 FTGR = 4

Tan02 Tan06 Tan10 Tan02 Tan06 Tan10

[∂xjT ρuu1j ]′
ADM 0.31 0.63 0.69 0.23 0.63 0.70

SSM 0.20 0.53 0.62 0.13 0.52 0.62

Table 6.2: Normalized coefficient of model contribution, [∂xjT modelj ]′ =

(|∂xjT modelj |2/|∂xjT exactj |2), for the ADM and SSM closure models at t = 9tc as

calculated via the filtered DNS solution.

And while the current efforts are focused on properly representing the dissipa-

tion rate characteristics of the TGV, it is also perhaps illuminating to briefly con-

sider the individual closure performances for the different physical non-linearities.

Focusing on the dissipation rate characteristics of the TGV, performance of

the convective momentum closure force ∂xjT ρuu1 is considered in Tables 6.2 and

6.4, which show correlation coefficient and magnitude information at t = 9tc. The

momentum closure force is seen to abide by the same trends as the dissipation

rate contribution: 1) the ADM treatment outperforms the SSM implementation,

2) increasing the filter order improves results, and 3) the same trends hold for

higher filter-to-grid ratios but with a slight overall decrease in accuracy6.

6Inspecting the actual closure (T ) rather than its force or divergence (∂xT ), would provide a
more structural rather than functional assessment of the model performance. Such correlations
are provided in Table 1 of Edoh and Karagozian (June 2017b) for the scalar T ρuuij T ρuuij , revealing

slightly higher correlations and improved performance with a larger filter-to-grid ratio.
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FTGR = 2 FTGR = 4

Tan02 Tan06 Tan10 Tan02 Tan06 Tan10

ρcorr{εT ρuu}
ADM 0.62 0.79 0.81 0.65 0.70 0.77

SSM 0.57 0.74 0.78 0.56 0.64 0.73

Table 6.3: Correlation coefficient, ρcorr{εT model , εT exact}, of kinetic energy dissipa-

tion rate due to modeling at t = 9tc as calculated via the filtered DNS solution.

FTGR = 2 FTGR = 4

Tan02 Tan06 Tan10 Tan02 Tan06 Tan10

ρcorr{∂xjT ρuu1j }
ADM 0.45 0.77 0.80 0.46 0.72 0.79

SSM 0.37 0.72 0.76 0.37 0.68 0.76

Table 6.4: Correlation coefficient, ρcorr{T model, T exact}, for the ADM and SSM

closure models at t = 9tc as calculated via the filtered DNS solution.

6.3 A Posteriori Assessments: ADM

Having established a baseline for the behaviors associated with the choice of model

and the LES formulation (e.g., filter-to-grid ratio, filter stencil), it is now desir-

able to take into account the discretization effects. Here, focus is kept on the

tenth-order Tangent stencil as the explicit filter because of its scale-discriminant

characteristics. Employing it as the explicit LES filter thus allows one to resolve

more of the spectral content that is representable by the grid; this makes the LES

computation more efficient in terms of the prescribed filter-to-grid ratio and is

also expected to make the benefits of high-order discretizations more evident, at

least based on the perfectly-modeled Burgers equation exercises of Section 5.2. In

addition the ADM procedure is chosen henceforth since the emphasis of the cur-

rent study is on understanding the overall LES formulation – rather than specific

model performance. Nevertheless, of interest to note is the fact that all SSM com-
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putations, regardless of filter order, cut-off of discretization order, were observed

to go unstable near t ∼ 5tc – likely a result of the velocity increment contributions

stated in Equation 5.14. Similarly, all ADM procedures utilizing the high-accuracy

deconvolution (κcond = 1.e3) were seen to go unstable for the second-order Tan-

gent filter formulation – again near t ∼ 5tc, which corresponds to vortical roll-up

and a rise in non-linear effects; this in turn suggests that the residual filtering

implied by ADM must be sufficient to quell the significant re-animation of small-

scale content when using high-order deconvolution procedures. In consequence to

these parameters, the following analysis for the tenth-order Tangent filter is rele-

gated to the ADM procedures with zeroth-order (kcond = 1.e0) and a high-order

deconvolution( kcond = 1.e3). In addition, the impact of filter-based artificial dis-

sipation is assessed, where the stabilization coefficients are chosen to be consistent

with the explicit LES formulation.

Figures 6.7(a) and 6.7(b) plot ε(Ek) and compare performances of the differ-

ent discretizations for both deconvolution procedures at filter-to-grid ratios of 2

and 4, respectively. Meanwhile Figures 6.8(a) and 6.8(b) show ε1, while Figures

6.9(a) and 6.9(b) show the effective model dissipation ε(Ek)− ε1. Inspecting the

strain-rate-based metric (ε1), one notices a stark difference between the low- and

high-order deconvolution. The former, specifically, is seen to be overestimating,

which suggests the presence of more small-scale activity than anticipated. This

is also observed in the previous Burgers exercise. While inspecting the overall

dissipation ε(Ek) does not reveal any particular trends, looking at the model dis-

sipation ε(Ek)− ε1 reveals that the low-order deconvolution can sporadically feed

energy into the system (negative values of the metric). This again confirms the

notion that high-wavenumber content is likely present. Interestingly, the occur-

rence is only associated with the high-order schemes. In general, the high-order

deconvolution is seen to perform best in terms of ε1, which speaks to the ADM

model’s ability to properly enforce explicit LES resolution. Mainly as a conse-
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quence to this, the ADM also does a better job at representing the effective model

dissipation (ε(Ek)−ε1). In terms of discretization effects, its results further benefit

from the use of high-order schemes (at least for FTGR = 2).

ADM (κcond = 1.e0) ADM (κcond = 1.e3)

CD02 CD06 CD10 CD04-11pt CD02 CD06 CD10 CD04-11pt

ρcorr{ρ} 0.79 0.87 0.87 0.87 0.75 0.93 0.92 0.92

ρcorr{ρu} 0.86 0.90 0.90 0.90 0.85 0.95 0.95 0.95

ρcorr{ρv} 0.86 0.90 0.90 0.90 0.85 0.95 0.95 0.95

ρcorr{ρw} 0.72 0.86 0.86 0.86 0.74 0.92 0.91 0.92

ρcorr{ρeo} 0.79 0.85 0.86 0.85 0.77 0.93 0.92 0.92

Table 6.5: Correlation coefficients ρcorr{ ¯̃φLES,
¯̃φfDNS} of the working variables

at t = 9tc as calculated by ADM model closures and compared relative to the

reference LES solution (i.e., filtered DNS). The LES filter is a tenth-order discrete

Tangent stencil tuned according to ∆̄1/2 for FTGR = 2.

ADM (κcond = 1.e0) ADM (κcond = 1.e3)

CD02 CD06 CD10 CD04-11pt CD02 CD06 CD10 CD04-11pt

ρcorr{ρ} 0.60 0.60 0.60 0.60 0.85 0.93 0.92 0.92

ρcorr{ρu} 0.78 0.75 0.74 0.74 0.91 0.95 0.95 0.95

ρcorr{ρv} 0.78 0.75 0.74 0.74 0.91 0.95 0.95 0.95

ρcorr{ρw} 0.68 0.63 0.63 0.63 0.83 0.92 0.91 0.91

ρcorr{ρeo} 0.67 0.63 0.63 0.63 0.87 0.93 0.93 0.92

Table 6.6: Correlation coefficients ρcorr{ ¯̃φLES,
¯̃φfDNS} of the working variables

at t = 9tc as calculated by ADM model closures and compared relative to the

reference LES solution (i.e., filtered DNS). The LES filter is a tenth-order discrete

Tangent stencil tuned according to ∆̄1/2 for FTGR = 4.
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Figure 6.7: Kinetic energy dissipation rate as measured by ε(Ek) for a posteriori

LES solutions as a function of the inviscid discretization scheme. The explicit LES

filter is assumed to be a tenth-order Tangent stencil tuned according to ∆̄1/2 to a

filter-to-grid ratio FTGR = 2: a) ADM method with zeroth-order deconvolution

(κcond = 1.e0) and b) ADM method with high-order deconvolution (κcond = 1.e3).
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Figure 6.8: Kinetic energy dissipation rate as measured by ε(Ek) for a posteriori

LES solutions as a function of the inviscid discretization scheme. The explicit LES

filter is assumed to be a tenth-order Tangent stencil tuned according to ∆̄1/2 to a

filter-to-grid ratio FTGR = 4: a) ADM method with zeroth-order deconvolution

(κcond = 1.e0) and b) ADM method with high-order deconvolution (κcond = 1.e3).
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Figure 6.9: Kinetic energy dissipation rate as measured by ε1 for a posteriori LES

solutions as a function of the inviscid discretization scheme. The explicit LES

filter is assumed to be a tenth-order Tangent stencil tuned according to ∆̄1/2 to a

filter-to-grid ratio FTGR = 2: a) ADM method with zeroth-order deconvolution

(κcond = 1.e0) and b) ADM method with high-order deconvolution (κcond = 1.e3).
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Figure 6.10: Kinetic energy dissipation rate as measured by ε1 for a posteriori

LES solutions as a function of the inviscid discretization scheme. The explicit LES

filter is assumed to be a tenth-order Tangent stencil tuned according to ∆̄1/2 to a

filter-to-grid ratio FTGR = 4: a) ADM method with zeroth-order deconvolution

(κcond = 1.e0) and b) ADM method with high-order deconvolution (κcond = 1.e3).
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Figure 6.11: Kinetic energy dissipation rate as measured by the closure model εT

for a posteriori LES solutions as a function of the inviscid discretization scheme.

The explicit LES filter is assumed to be a tenth-order Tangent stencil tuned

according to ∆̄1/2 to a filter-to-grid ratio FTGR = 2: a) ADM method with

zeroth-order deconvolution (κcond = 1.e0) and b) ADM method with high-order

deconvolution (κcond = 1.e3).
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Figure 6.12: Kinetic energy dissipation rate as measured by the closure model εT

for a posteriori LES solutions as a function of the inviscid discretization scheme.

The explicit LES filter is assumed to be a tenth-order Tangent stencil tuned

according to ∆̄1/2 to a filter-to-grid ratio FTGR = 4: a) ADM method with

zeroth-order deconvolution (κcond = 1.e0) and b) ADM method with high-order

deconvolution (κcond = 1.e3).
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While the dissipation rate information focuses on energy within the flow, it

is also useful to consider dispersion. This may be gathered from looking at cor-

relation coefficients of the solution variables relative to the filtered DNS results

as shown in Tables 6.5 and 6.6. In general, one would expect that increasing the

discretization scheme would improve correlations by decreasing phase error, which

is generally the case for FTGR = 2. In the case of FTGR = 4, however, only the

high-order deconvolution is seen to maintain the anticipated trend. Once again, at

the higher filter-to-grid ratio, employing high-oder discretization is seen to yield

worse results with the low-order deconvolution. Employing a large filter-to-grid

ratio is expected to reduce the effects of numerical error, which is only noticeable

in the instance of the high-order deconvolution. These observations suggest that

special precautions in the implementation of ADM are needed in order to take

advantage of high-accuracy numerical schemes.

6.3.1 Impact of Stabilization

As the issue with ADM using low-order deconvolution can mainly be traced to

excess high-wavenumber energy relative to the desired explicit LES resolution, it

is then interesting to consider the addition of a stabilization term. Such an ap-

proach may be viewed as a type of mixed modeling. In this rendition, however,

the stabilization is not employed in order to recover proper flow dynamics as is

intended by the use of ADM, a structure-type model. Instead, the stabilization

– which utilizes the coefficients of the explicit LES stencil in a filter-based arti-

ficial dissipation form – plays more of a phenomenological role (i.e., functional

modeling) as typically done with eddy-viscosity type techniques (Sagaut, 2006).

Yet, rather than necessarily seeking to represent the dissipative-like effect of the

unresolved scales on the field (which, in the current explicitly-filtered case is in

part handled by the ADM model) the artificial dissipation satisfies a more ba-

sic role of enforcing the intended LES spectra. Simultaneous stabilization of the

184



overall algorithm is presumed based on the notion that the LES filter is designed

to mitigate the impact of numerical error (e.g., by use of a sufficient filter-to-grid

ratio and spectral sharpness relative to the chosen discretization scheme etc).

The resulting system utilizing ADM and the filter-based stabilization is then

written as the following:

∂t ¯̃ρ+ ∂xj ρ̃
[
ũ?j

]
= (Cρ/Co) · DAD∆̄ { ¯̃ρ} ,

∂t ¯̃ρ
[
ũ?i

]
+ ∂xj ρ̃

[
ũ?i

] [
ũ?j

]
= −∂xi

[
P̃ ′
]

+ ∂xj

[
τ̃ d,′ij

]
+(Cρu/Co) · DAD∆̄

{
¯̃ρ
[
ũ?
]}

∂t ¯̃ρ
[
ẽ?o

]
+ ∂xj ρ̃

[
ẽ?o
] [
ũ?j

]
= −∂xj

[
ũ?j

] [
P̃ ′
]

+ ∂xj

[
ũ?k

] [
τ̃ d,′kj

]
+∂xj

[
q̃′
]

+(Cρeo/Co) · DAD∆̄

{
¯̃ρ
[
ẽ?o

]}
.

(6.17)

In this way, we see that the non-linear terms are filtered (i.e., residual filtering) due

to ADM, which mitigates the accumulation of high-wavenumber content past the

desired cut-off; meanwhile, the added stabilizations DAD
∆̄

(the dissipative portion

to the explicit LES filter, G∆̄) are all assumed to be scaled by the spectral-radius of

the inviscid flux Jacobian (i.e., scalar dissipation) and are responsible for damping

content that has transgressed past the ∆̄ resolution. As in Section 5.3.2, this

damping needs to be scaled such that it is active only when necessary. In the

following, the normalizing coefficient Co is determined similarly to Equation 5.17,

assuming a spectrum that scales as β = −5/3:

Co =

∫ (k∆x∆x)/π

(k∆̄∆x)/π
k−5/3 d(k∆x/π)∫ (k∆̄∆x)/π

(k∆̂∆x)/π
k−5/3 d(k∆x/π)

. (6.18)

Note, this also assumes that the LES formulation is based on a spectral sharp

filter, as opposed to Equation 5.17 which is more general. Meanwhile the scaling
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coefficient Cφ is determined by,

Cφ =
| ¯̃φ− G∆̄{ ¯̃φ}|2

|G∆̄{ ¯̃φ} − G∆̂{
¯̃φ}|2

such that ∆̂ > ∆̄. (6.19)

In the case of momentum, all components are based on evaluating kinetic energy

(φ = [̃u?i ] [̃u?i ]) in the testing procedure, as proposed in Stolz et al. (2001). This

procedure, which is also similar to the dynamic procedure employed by Liu et al.

(1995) for scaling of their Scale-Similarity model, essentially compares the amount

of content in the resolved sub-filter scales (RSFS) to the content located in the

band of neighboring scales defined by mid-pass range G∆̄{ ¯̃φ} − G∆̂{
¯̃φ}. The nor-

malization Co is then used to tune the point at which the dissipation should be

considered fully “on” (e.g, Cφ/Co ∼ 1). While these adaptations may be labeled

as dynamic, they are static in the sense that the Co coefficient is held constant.

As an example, even for a static eddy-viscosity model (e.g., T ρu,νe = νeτ
d,′
ij ), the

dissipative influence on the solution changes in time according to an eddy-viscosity

νe = (Cνe∆̄)2(2|τ d,′ij
2

|)1/2 that is scaled by the inner-product of strain; this is es-

sentially responsible for gauging high-wavenumber content in similar fashion to ε1,

and is thus adjusted according to the flow. When the dynamic procedure of Ger-

mano is employed, wherein Cνe is determined on the fly (Germano et al., 1991), one

is essentially re-adjusting the normalization coefficient Co in order to recalibrate

how strong the damping should be based on physical grounds of scale-similarity.

The Figures 6.13-6.15 demonstrate the effect of the stabilization on the ADM

modeling based on low-order deconvolution. As little difference is seen amongst

the high-order schemes, only the CD02 and CD06 discretizations are provided for

comparison here. For both filter-to-grid ratios, the dissipation scheme is under-

stood to have reduced high-wavenumber frequency relative to the non-stabilized

case. One sees this by interpreting the ε1 metric (see Figure 6.14(a) as compared

to Figure 6.10(a)). In the case of FTGR = 2, almost perfect evolution is achieved

for t < 9tc, although the proceeding decay process is inaccurate. The adapting
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procedure, however, does not seem to perform adequately for FTGR = 4; the

stabilization becomes active prematurely, likely owing to issues with the choice

of tuning parameters (Cφ/Co). For instance, the normalization coefficient Co of

Equation 6.18 implicitly assumes a spectral sharp LES filter rather than the Tan-

gent stencil, which would decrease the value of Co and would thus make the dissi-

pation overly aggressive. Also, as in all other instances, the second-order scheme

CD02 is seen to reduce much of the activity – again mainly evident through in-

spection of ε1. This is obviously an instance of the numerical scheme adding to

the effective LES filter (Geurts and van der Bos, 2005a); the sub-optimal modified

wavenumber characteristics of the discretization acts as an additional attenuation

of the solution. As a result, the filter-like influence of the numerics effectively en-

hances the global attenuation properties, which then results in a larger perceived

closure dissipation ε(Ek)− ε1 relative to the higher-order schemes, as depicted in

Figure 6.15(a).

Looking at the dissipation rate plots gives an idea of the energy and solution

magnitude in the domain, however a second element of accuracy is the disper-

sion. To get an idea of these performances, one again can look at correlations

as provided in Table 6.7. Here, there is a noticeable improvement due to the

employment of the higher-order scheme. This is explained based on the modified

wavenumber. However, once again unexpected is a general reduction in correla-

tions when increasing the filter-to-grid ratio. This is contrary to the theory which

predicts an overall reduction in numerical error through increased decoupling of

the LES resolution and the computational grid.

Finally, it is helpful to observe the solution in order to query the field dis-

tribution relative to the reference LES, making discrepancies in magnitude and

phase further evident. Figure 6.16 plots the kinetic energy evolution Ek(t) for

the different ADM implementations at FTGR = 2. In this particularly case, the

stabilized ADM model performs the best. The high-order deconvolution is also
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FTGR = 2 FTGR = 4

CD02 CD06 CD02 CD06

ρcorr{ρ} 0.83 0.90 0.73 0.81

ρcorr{ρu} 0.89 0.93 0.87 0.90

ρcorr{ρv} 0.89 0.93 0.87 0.90

ρcorr{ρw} 0.82 0.91 0.76 0.82

ρcorr{ρeo} 0.83 0.89 0.74 0.83

Table 6.7: Correlation coefficients ρcorr(φLES, φfDNS) of the working variables at

t = 9tc as calculated by ADM model closures with adaptive filter-based artifi-

cial dissipation and compared relative to the reference LES solution (i.e., filtered

DNS). The LES filter is a tenth-order discrete Tangent stencil tuned according to

∆̄1/2.

shown to do decently well, in terms of properly locating high energy clusters,

when employing high-order discretizations. Although, interestingly, when paired

with dissipation, this scheme was seen to go unstable7. Finally, the non-stabilized

ADM with zero-order deconvolution is shown to deplete kinetic energy the fastest.

Figures 6.17-6.20 offer volumetric plots of the kinetic energy at t = 9tc and

help bring further context to the previous line plots. In general: 1) the use of a

high-order scheme allows the features to be properly located (thus the large cor-

relation between the LES and fDNS variables in Table 6.7); 2) the non-stabilized

cases have much more noise, although this is reduced somewhat by the high-order

deconvolution; and 3) the filter-based artificial dissipate removes the noise and

7Similar observations are reported in previous work (Edoh and Karagozian, June 2017a),
noting an increase in mid-wavenumber content when combining the ADM procedure and filter-
based artificial dissipation. This is a non-linear effect likely owing to an induced bottleneck
and subsequent pile-up of energy when the two methods are combined. Reducing the order of
the deconvolution procedure ameliorates this issues –as does reducing the artificial dissipation,
whose effects on the spectrum and model performance should be further studied (Layton and
Neda, 2007a,b).
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thus can improve the overall performance8.

8It should perhaps also be noted that very similar performance was achieved in the case of
FTGR = 2 when coupling the adaptive dissipation method with the SSM model or even with
a no-model implementation. This indifference to the model likely highlights that the current
problem would be in fact well-handled by a properly-formulated ILES approach. While not
always the case, the fact that the kinetic energy curve of the filtered solution in Figure 6.6
(in the case of a tenth-order filter and FTGR = 2) matches that of the DNS means that the
corresponding LES resolution (DOFLES = 643) is sufficiently resolved relative to the physics
and that the issue of instability actually lies in the numerics rather than a particular need for a
modeling. Considering higher Reynolds numbers at the current resolution, however, may indeed
put more emphasis on the closure model despite the addition of stabilization and show more
impact with respect to a particular closure choice.
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Figure 6.13: Kinetic energy dissipation rate as measured by ε(Ek) for a posteriori

LES solutions as a function of the inviscid discretization scheme. The explicit LES

filter is assumed to be a tenth-order Tangent stencil tuned according to ∆̄1/2. LES

closure is ADM (kcond = 1.e0) with consistent filter-based artificial dissipation: a)

FTGR = 2 and b) FTGR = 4.
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Figure 6.14: Kinetic energy dissipation rate as measured by ε1 for a posteriori

LES solutions as a function of the inviscid discretization scheme. The explicit

LES filter is assumed to be a tenth-order Tangent stencil tuned according to

∆̄1/2. LES closure is ADM (kcond = 1.e0) with consistent filter-based artificial

dissipation: a) FTGR = 2 and b) FTGR = 4.
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Figure 6.15: Kinetic energy dissipation rate as measured by the closure model εT

for a posteriori LES solutions as a function of the inviscid discretization scheme.

The explicit LES filter is assumed to be a tenth-order Tangent stencil tuned ac-

cording to ∆̄1/2. LES closure is ADM (kcond = 1.e0) with consistent filter-based

artificial dissipation: a) FTGR = 2 and b) FTGR = 4.
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Figure 6.16: Kinetic energy Ek in domain for a posteriori LES solutions as a

function of the inviscid discretization scheme. The explicit LES filter is assumed

to be a tenth-order Tangent stencil tuned according to FTGR = 2: a) ADM

(kcond = 1.e3), b) ADM (kcond = 1.e0), and c) ADM (kcond = 1.e0) with LES-

consistent adaptive filter-based artificial dissipation.
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Figure 6.17: Kinetic energy Ek of reference LES solution (i.e., filtered DNS, fDNS)

at t = 9tc for FTGR = 2, with the LES filter being a tenth-order discrete Tangent

stencil tuned according to ∆̄1/2.
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Figure 6.18: Kinetic energy Ek at t = 9tc for FTGR = 2, with the LES filter being

a tenth-order discrete Tangent stencil tuned according to ∆̄1/2. Closure model is

ADM with high-order deconvolution (κcond = 1.e3): a) CD02 and b) CD06.
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Figure 6.19: Kinetic energy Ek at t = 9tc for FTGR = 2, with the LES filter being

a tenth-order discrete Tangent stencil tuned according to ∆̄1/2. Closure model is

ADM with zeroth-order deconvolution (κcond = 1.e0): a) CD02 and b) CD06.
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Figure 6.20: Kinetic energy Ek at t = 9tc for FTGR = 2, with the LES filter

being a tenth-order discrete Tangent stencil tuned according to ∆̄1/2. Closure

model is ADM with zeroth-order deconvolution (κcond = 1.e0) combined with

LES-consistent and adaptive filter-based artificial dissipation: a) CD02 and b)

CD06.
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CHAPTER 7

Conclusions and Future Directions

7.1 Summary of Results

The call for Large-Eddy Simulations for the design of engineering systems derives

from a need to capture time-accurate physical phenomena within a computation-

ally feasible framework. The ability to achieve such a goal, however, can be seen

as a balance between two parts. On one end are theoretical implications that

include such aspects as the filter formulation (e.g., the type of spectral attenu-

ation presumed) and its relation to the intended dynamics of interest. In this

vein, one is thus required to consider proper modeling procedures responsible

for expressing the underlying assumptions of the LES formulation at hand. The

complement to this are the practical considerations regarding how the resulting

equations should be solved, and matters such as the numerical treatment (e.g.,

discretization schemes) thus need to be considered. Achieving successful pre-

dictability via LES would thus deserve a holistic understanding of these different

aspects of the methodology.

The present work has chosen to investigate these factors by tuning the LES fil-

ter formulation relative to the resolvability of the numerics. In such an effort, the

spectral characterization of different spatial finite difference schemes is presented,

and their respective impacts on time-accurate solutions have been studied. This

is done in a basic non-LES context first. To this end, the benefits of incorporating

tunable dissipation has also been explored with respect to the proposed filter-
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based artificial dissipation method. Having established how one may construct

a highly-accurate and stable base scheme, application to the LES problem is re-

viewed for the under-resolved calculation of test cases exhibiting turbulence. In

the instance where exact and consistent modeling is provided using the so-called

quasi a priori analysis, one observes theorized trends anticipating a reduction in

the solution error by means of increasing the filter-to-grid ratio. In addition, em-

ploying discrete filtering stencils with enhanced spectral sharpness has been shown

to highlight the benefits of high-order discretizations and thus provide added effi-

ciency to the explicit-LES approach by reducing the extent to which the LES scale

needs to be resolved (e.g., the ability to support lower filter-to-grid ratios). These

clear trends, however, are obfuscated when employing practical models in an a

posteriori evaluation. The particular choice of models considered – here, the Ap-

proximate Deconvolution Method (ADM) and the Bardina-type Scale-Similarity

Model (SSM) – is shown to couple with the numerics and affect overall accuracy

of the computation. And while the merit of employing lower-order (e.g., second-

order) versus higher-order methods is evident, there is less discrimination amongst

the latter schemes (e.g., sixth-, tenth-, and optimized fourth-order stencils). This

is largely explained by considering their resolvability with respect to the spectral

attenuation of the LES filters considered; further differentiation is expected when

using sharper or lower filter-to-grid ratios. Nevertheless, benefits of the high-

accuracy numerical methods become more evident once model error is reduced

– demonstrated herein in terms of high-order deconvolution or the addition of a

stabilization term that is consistent with the explicit-LES filter formulation. To

this end, the notion that decoupling numerical error (e.g., by means of high-order

discretizations and suitable filter-to-grid ratios) will lead to enhanced results is

dependent on the assumption that modeling error is sufficiently low. But while

this may support claims for implicitly-filtered LES implementations – or at least

low filter-to-grid ratios, as all work herein has considered FTGR ≥ 2 – the previ-
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ous conclusion is balanced by the fact that the performance of respective models

may not be properly scrutinized without the decoupling of numerical error effects.

In this vein, one might be advised to select a particular implementation based

on the intended purpose – for example, model development versus more practical

computations.

The contributions of the current work may therefore be summarized as follows:

1. Establishment of spectral specification for discrete filtering methods with a

focus on scale-discriminant (i.e., sharpness) and tunable properties for scale

separation.

2. The formulation of a filter-based artificial dissipation schemes that naturally

maintain consistent accuracy for small time-step sizes, unlike traditional

solution-filtering procedures which are temporally inconsistent.

3. Combination of the above ideas towards tailoring numerical stabilization

with respect to the discretization fidelity of different methods, where ambi-

guities in the design of dissipation characteristics are mitigated by consider-

ing the discretization method’s resolvability, thus yielding robustness while

preserving scheme accuracy.

4. Employment of such a stabilization approaches to LES and recognizing rela-

tion to hyper-viscosity closures that can be made consistent with the explicit

LES formulation, thus aiding in closure efforts as well as reducing numerical

error effects.

5. Use of the discrete filtering methods to explore different structural models

(e.g., scale-similarity type closures) and provide enhanced closure procedures

(e.g., high-accuracy deconvolution via stencil re-scaling). In this way, placing

additional care in the definition of the filter yields a deliberate assembly

of the explicitly-filtered LES formulations that can be used to inherently
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consider both numerical and modeling contributions for improved solution

accuracy.

6. The adoption of a three-level investigative procedure that includes: the

characterization of reference LES solutions and closure behaviors by means

of filtering exact data (a priori analysis); the assessment of discretization

and filter choice on LES performance in the absence of model coupling effects

(quasi a priori analysis); the quantification of overall accuracy of the LES

algorithm with respect to modeling, filtering formulation, and discretization

(a posteriori analysis).

7. Observations highlighting the need to employ numerical schemes with suffi-

cient resolvability relative to the explicit LES filter, as well as the benefits

of providing filter-consistent stabilization for reduction of modeling and/or

numerical error.

7.2 Future Work

The current efforts in understanding the interplay of numerical methods and LES

formulations are intended for the eventual study of turbulent reactive flow. Such

physics are still not well understood, yet are required for predicting important

phenomena such as ignition and blow-out as well as shock- or acoustic-related in-

stabilities found in many propulsion applications. RANS, unfortunately, does not

provide a viable way of capturing such time-sensitive phenomena. The inclusion of

combustion dynamics introduces a new set of time and length scales that need to

be considered relative to the LES resolution. For example, insufficiently resolving

a flame front would require the LES formulation to effectively consider disconti-

nuities, which would need to be reflected in the modeling methodology (Sagaut

and Germano, 2005). As another aspect, the anticipation of backscatter effects

(Towery et al., 2016; O’Brien et al., 2016) would also require suitable closures.
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But while much knowledge still needs to be developed in terms of modeling,

there is a concomitant call for understanding the role of the numerical treat-

ment. The study of Cocks et al. (2015), for example, has demonstrated increased

sensitivities to the characteristics of the base scheme under reacting conditions.

Therefore, employing a quasi a priori type analysis as done in Chapter 5 may be

enlightening. While this may be useful for understanding the relative effects of the

filter-to-grid ratio, the filter shape, and the discretization, it can also be leveraged

in order to assess model performance. In the case of the Navier-Stokes system, one

can look to isolate the effects of the different closures – including the important

combustion source term (Vreman et al., 2009) – through the sequential substi-

tution of a posteriori and a priori -derived models. Considerations of geometry

complexity can furthermore be postponed by studying simplified in-flow/out-flow

premixed flame configurations (Poludnenko and Oran, 2010).

As reactive flow presents a more complex challenge both numerically and dy-

namically, it is also important for the schemes to be sufficiently robust while

maintaining physical relevance. As a consequence, the incorporation of secondary-

conservations schemes such as Kinetic Energy Preservation (Morinishi, 2010; Rozema

et al., 2014) or Entropy-Conserving methods (Honein and Moin, 2004; Jameson,

2008) may be important and reduce the need to explicit add numerical dissi-

pation for stabilization. The construction of these schemes corresponds to the

proper reformulation of flux terms in order to satisfy auxiliary physical equations

(Gassner et al., 2016). In doing this, one may force the system to behave in a

more physically-relevant manner – this not only suggests improved accuracy, but

in special cases, also implies robustness in the non-linear sense. While the current

investigation has focused on spatial schemes, proper adherence to such physical

symmetries will also require the use of proper temporal integration methods with

[pseudo]-symplectic characteristics (Sanderse, 2013; Brouwer et al., 2014; Capuano

et al., 2017), as well as the incorporation of provably-stable boundary conditions
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such as summation-by-parts operators (Fernandez et al., 2014). Furthermore, ad-

herence to secondary conservation anticipates implications with regards to the

class of permissible filters, such as an adjoint property responsible for preserving

global energy conservation (Vreman, 2004).
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APPENDIX A

Deconvolution Procedures

A.1 Background

The ability to filter and attenuate modal content is often balanced by the need

to undo alterations to the original signal. By retrieving the unaltered solution,

one has the opportunity to apply alternative manipulations and potentially ex-

tract new information. As Section 2.2 highlights the association between filtering

and convolution, the act of de-filtering may therefore be referred to as deconvo-

lution. In the context of LES, inversion of an explicitly-defined filter gives one

the opportunity to extrapolate the small-scales beyond the principal LES field

(e.g, ũ = G−1
∆̄
{¯̃u}). Although the available numerical resolution puts limits on

the ability to retrieve the full unfiltered-field, the resolvable un-filtered variable

ũ(x) may serve as a surrogate to the true continuous field u(x) and may be used

to build new closure model approximations. This, for example, is the case for

the Approximate Deconvolution method (ADM) introduced in Section 5.3. As a

result, the ability to accurately and efficiently perform deconvolution is central to

explicitly-filtered LES.

In the case of a defined filter function, one may seek to solve an inverse problem

in order to recover the original signal. With respect to the difference operator

forms of Equation 2.18 and 2.36, this involves solving the stencils “backwards”. In

this way, an explicit stencil would require one to solve an implicit system in order

to recover the signal. In certain cases, however, the inversion procedure is not well-
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defined and the true un-filtered solution cannot be fully retrieved. Such is the case

for filtering operators that completely remove certain modes (i.e.: |Ĝ(k)| = 0) since

typically G−1{0} = 0 without additional information. Because of such limitations,

iterative procedures meant to estimate the true inversion procedure are adopted.

The following sections revisit the well-used van Cittert iteration procedure (van

Cittert, 1931) and provide useful generalizations. Additionally, a new re-scaling

approach based on the re-conditioning of the original filter operator is presented

as an alternative for the task of direct or iterative deconvolution.

A.2 Van Cittert Iteration

The van Cittert procedure is a useful iterative procedure often used for approx-

imating the deconvolution of a filtered solution. Its derivation is motivated by

considering the decomposition of discrete filter operator into preserving and differ-

encing components: G = I+D. The inverse operator G−1 may then be estimated

by a Neumann series,

G−1
N ≈

N∑
ν=0

(1− G)ν =
N∑
ν=0

(−D)ν , (A.1)

where N relates the level or accuracy of the deconvolution. This relation can then

be reformulated as a fixed-point iterative method,

u∗0 = ū ,

u∗N = ū−D{u∗N−1} ,

→ u∗N = u∗N−1 + (ū− G{u∗N−1}) = G−1
N {ū} . (A.2)

By recognizing this iterative procedure to be in a residual form, one can further

generalize by employing acceleration techniques such as over-relaxation (Maulik
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and San, 2016), which seeks to enhance the intermediate approximations:

u∗N = u∗N−1 + ωN · (ū− G{u∗N−1}) , (A.3)

→ G−1
N ≈

N∏
ν=1

(I − ωN · G) +
N−1∑
ν=1

[
ωN ·

N∏
µ=ν+1

(I − ωµ · G)

]
+ ωN · I .

(A.4)

As written above the relaxation parameter, ωN , may be varied according to the

iteration stage N as explored in Layton and Stanculescu (2009) for optimal iter-

ations. Furthermore, the fact that Equation A.2 takes on a residual form allows

one to abstract the procedure as a temporal smoothing scheme, with the relax-

ation parameter relating to a pseudo-stage time-step size. As a result, optimal

smoothing schemes such as van Leer’s predictor-corrector methods (Leer et al.)

can be applied in order to enhance convergence. Furthermore, such methods can

be combined with residual-smoothing and multi-grid techniques for additional

acceleration (Edoh et al., June 2016; Haelterman et al., 2011).

Depending on the filter response function G, higher deconvolution levels may

be necessary in order to rebuild the original signal. This is particularly the case

for sharp filters that strongly attenuate high-wavenumber content. Therefore, the

efficiency of the deconvolution is essential for practicality. In the case of general

implicit filter stencils that include evaluations of both the filtered and unfiltered

variable, the procedure above suggests multiplied evaluations of [I − G]{u∗N−1}
which implies repeated costly stencil inversion at each iteration. One remedy,

proposed in a previous work (Edoh et al., June 2016), is to re-write ū = G{u} as

B{ū} = T {u} and to modify the procedure of Equation A.2 to now read,

u∗0 = ū ,

u∗N = u∗N−1 + ωN · (B{ū} − T {u∗N−1}) . (A.5)

then gives the benefit of solely evaluating explicit stencils relative to the iterated

variable u∗N−1.
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In the instances where the original filter is non-invertible, the iteration process

is not expected to converge, thus relating to the inability to fully recover the

removed mode |Ĝ|(k′) = 0. As a consequence, one is required to terminate the

approximation after N iterations. Therefore, one would like the best answer in

a given number of steps. Over-relaxation is often utilized in order to accelerate

or enhance the quality of the estimates. However, as will be shown, special care

should be employed.

Figure A.1 plots the estimate to the spectral response |Ĝ| · |Ĝ−1
N | ∼ I for a

sixth-order Tangent filter tuned to ∆1/2 = (4∆x) using the over-relaxation form

of the van Cittert deconvolution procedure shown in Equation A.4 with uniform

relaxation parameters ωN = ω. It is evident that the estimate improves relative to

the number of iterations. When the relaxation parameter is less than or equal to

unity, the estimates approach identity from below. However, when the relaxation

parameter is greater than unity, insufficient iterations produce an estimate that

shows growths or depletions in certain lower modes. This can be concerning with

respect to realizability constraints for simulations or could otherwise unintention-

ally affect the non-linear behavior by depleting or surging the energy in the low

modes. Consequently, the observation suggests that over-relaxation techniques

should be sufficiently converged in order to avoid such artificial issues. Under-

standing that the current scheme may be abstracted as a forward Euler temporal

smoothing scheme for the iteration (with time-step, ∆τ , corresponding to the

relaxation-parameter ω), it can be shown that stable iterative convergence occurs

for ω ≤ 2 (assuming a stable filter with |Ĝ| ≤ 1). The occurrence of over- and

under-shoots in the intermediate estimates can be understood as uneven removal

of error amongst the different modes in the iterative deconvolution estimate. In

order to avoid such overshoots, the growth factor of the iterative scheme should

match the monotonicity traits – or lack thereof – of the original filter response in

question. In this exercise, the challenge of balancing efficiency and accuracy of
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the procedure is introduced, where enhanced recovery of high-wavenumbers for a

given a set iteration count is possible with over-relaxation but may result in less

accuracy, particularly in the lower modes when the procedure is not sufficiently

converged.
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Figure A.1: Effect of relaxation-parameter ω and iteration count N on the growth

factor {|Ĝ| · |Ĝ−1
N |} ∼ I of an approximate deconvolution by the van Cittert proce-

dure of Equation A.2 for the sixth-order discrete Tangent filter, tuned to a filter

width ∆1/2 = (4∆x): a) ω = 0.5, b) ω = 1.0, c) ω = 1.5, and d) ω = 2.0.
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A.3 An Operator Re-scaling Approach

In the case where the iteration procedure does not converge due to the lack of the

G operator’s invertibility, it becomes interesting to formulate a new operator that

is solvable (i.e.: will have a convergent iterative procedure) and that approximates

the original inverse problem, G ′ ≈ G. As most filtering stencils inherit their lack of

invertibility from the fact that they eliminate odd-even modes (i.e.: |Ĝ(k∆x)| = 0),

an intuitive form of G ′ appears from re-scaling the stencil such that the Nyquist

frequency is not completely removed. The new approximate operator can be

defined implicitly as B{ū} = T ′{u} with,[
εIF,0 +

L∑
`=1

εIF,2`(∆x)2`δ2`

]
{ū} =

[
εEF,0 + µ

R∑
r=1

εEF,2r(∆x)2rδ2r

]
{u}

+

[
(1− µ)

L∑
`=1

εIF,2`(∆x)2`δ2`

]
{u} ,

(A.6)

where the scaling factor µ = (1 − 1/κcond) ∈ [0, 1] is related to the conditioning

and accuracy of the new approximate operator. This new operator can then be

used to solve the inverse problem with a direct method or as part of an iterative

procedure that will now be expected to converge.

Figure A.2 considers a direct solve of the inverse problem and plots |Ĝ|·|Ĝ ′−1
N | ∼

I for a sixth-order Tangent filter tuned to ∆1/2 = (4∆x) as a function of different

re-conditionings. Manipulating the condition number of the original non-invertible

stencil is seen to tremendously improve estimates of the deconvolution, with higher

conditioning numbers yielding more accurate results. As a point of comparison,

the modest κcond = 10 re-scaling performs as well as N = [10, 5, 5] van Cittert

iterations with relaxation parameters ω = [0.5, 1, 1.5], respectively. In considering

the original van Cittert procedure of Equation A.2, which suggests the need for

matrix inversions of implicit stencils for each iteration, solution of the approximate

problem via the current re-scaling approach is seen to be strongly preferable in

206



terms of both accuracy and efficiency. Previous issues relating to under- and over-

shoots in low-modal content of the reconstructed signal can still occur, however,

when the approximate operator is solved iteratively and not permitted to converge

sufficiently.
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Figure A.2: Effect of conditioning number κcond on the growth factor {|Ĝ|·|Ĝ−1
N |} ∼

I of an approximate deconvolution by the direct procedure of Equation A.6 for

the sixth-order discrete Tangent filter, tuned to a filter width ∆1/2 = (4∆x).
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