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ABSTRACT: Magnetic fusion is a long-term solution for producing electrical
power for the world, and the large thermonuclear international device
(ITER) being constructed will produce net energy and a path to fusion
energy provided the computer modeling is accurate. To effectively address
the requirements of the high-end fusion simulation community, application
developers, algorithm designers, and hardware architects must have reliable
simulation data gathered at scale for scientifically valid configurations.
This paper presents detailed benchmarking results for a set of magnetic
fusion applications with a wide variety of underlying mathematical models
including both particle-in-cell and Eulerian codes using both implicit and
explicit numerical solvers. Our evaluation on a petascale Cray XE6 platform
focuses on profiling these simulations at scale identifying critical performance
characteristics, including scalability, memory/network bandwidth limitations,
and communication overhead. Overall results are a key in improving fusion
code design, and are a critical first step towards exascale hardware-software
co-design — a process that tightly couples applications, algorithms, imple-
mentation, and computer architecture.

KEYWORDS: Application benchmarking, profiling, performance character-
ization, magnetic fusion

I. INTRODUCTION

Fusion energy research is a complex, international
endeavor, with the next magnetic-fusion plasma
confinement device (ITER [1]) to cost in excess of
$10B. Prior to the construction of any such large
device, there is a need to understand performance as
it relates to device parameters in order to arrive at an
optimum for demonstrating the next step to fusion
energy. Consequently, no experimental campaign

will be approved without extensive computations in
advance. Thus, the high-fidelity modeling to come
from exascale computing will provide major guid-
ance for ITER and beyond. The dominant challenge
in fusion modeling is to accurately simulate the
wide range of temporal and spatial scales that are
coupled in an experimental device. To address this
challenge, the fusion community has developed sets
of equations to address these scales, which have in
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turn led to the development of numerous indepen-
dent computational applications covering different
physics, scales, and regions. Such a computational
component view will be crucial for extracting sci-
ence from computations, as the massive range of
physical scales cannot be modeled by brute force
even at the exascale.

Fusion computation is enormously difficult be-
cause of the wide range of scales in fusion devices.
In fusion plasmas the fastest physical time-scale is
set by electron gyro-motion, which, at the planned
6 T toroidal field, has a period of 6 × 10−12s,
while the discharge is expected to last more than
103s, resulting in a need to compute of order
1015 fundamental periods. Length scales also have
enormous variation, the plasma shielding length
being of order micrometers in the edge, while the
plasma is of order 5 m across. Thus, the spatial
scales span roughly 6-7 orders of magnitude. The
product of these scale variations (cubed for spatial)
is 1033 – an overwhelmingly large number. Direct
simulation of all scales using the most fundamental
equations is not possible on existing or any fore-
seeable computational platforms. Consequently, the
fusion community has, over decades, developed a
suite of models for tokamaks (and other confinement
devices).

This work presents the first study to evaluate and
analyze the behavior of several key fusion applica-
tion models at scale. Specifically we examine four
simulation codes on the Cray XE6 Hopper, a lead-
ing petascale supercomputing system: GTS [2], [3]
which solves the gyrokinetic equation by following
the guiding center orbits in flux coordinates, with
the associated Poisson-solve, discretized according
to an integral method; GYRO [4], [5], [6], [7], a
Eulerian gyrokinetic code used to compute turbulent
and collisional transport coefficients; BOUT++ [8],
a 3D finite-difference code for tokamak edge plasma
turbulence that is flexible in terms of the specific
moment equations that are implemented; and the
VORPAL [9] computational framework that com-
putes the dynamics of plasmas, accelerators, and
electromagnetic structures with wide usage across
multiple plasma physics and electromagnetics ap-
plication areas.

Detailed performance results are presented in
terms of performance, scalability, communication
behavior, and memory bandwidth sensitivity. The
performance analysis of these codes is critical

for application scientists, algorithm developers, and
computer architects to understand and improve the
behavior of next-generation fusion codes, while pro-
viding an important first step toward an integrated
hardware/software co-design of optimized fusion
simulations.

II. EXPERIMENTAL METHODOLOGY

A. Application Suite

For this work, we examine the performance and
scalability of four key apps for fusion simulation:
GTS, GYRO, BOUT++, and VORPAL. Each appli-
cation plays a different role in fusion simulation.

B. Cray XE6 “Hopper”

Hopper is the newest Cray XE6 built from dual-
socket, 12-core “Magny-cours” Opteron compute
nodes. In reality, each socket (multichip module)
has two dual hex-core chips, making each compute
node effectively a four-chip compute node with
strong NUMA properties. Each Opteron chip in-
stantiates six superscalar, out-of-order cores capable
of completing one (dual-slot) SIMD add and one
SIMD multiply per cycle. Without proper SIMD
code generation, instruction-level parallelism, or
high arithmetic intensity, it will be difficult to attain
10% of this throughput. Additionally each core has
private 64 KB L1 and 512 KB L2 caches. L2
latency is small and easily hidden via out-of-order
execution. The six cores on a chip share a 6 MB
L3 cache and dual DDR3-1333 memory controllers
capable of providing an average STREAM [10]
bandwidth of about 2.0 GB/s per core. Each pair of
compute nodes (8 chips) shares one Gemini network
chip. Like the XT series, the Gemini chips of the
XE6 form a 3D torus. The MPI pingpong latency
is typically 1.6 µs and, when using 4 or more MPI
tasks per node, the MPI bandwidth is 9.0 GB/s.

C. Programming Model

In this paper, we nominally use the flat MPI
programming model. In the case of Hopper, this
implies one MPI process on each core (24 processes
per node). We exploit the hybrid MPI+OpenMP
programming model on GTS as it is the only
application that supports it.
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D. Performance tools

In order to measure performance characteristics,
it is necessary to instrument the code with an
approriate performance tool to give pertiment in-
formation (such as HWC, MPI statistics, the role
played by synchronization calls, cache usage, etc.).
In our performance experiments, in addition to
recording the runtimes we also instrument them
using the Integrated Performance Monitoring (IPM)
framework [11], [12], or CrayPAT [13] for the four
different applications profiled.

IPM provides an easy to use, low overhead
mechanism for obtaining information about the MPI
performance characteristics of an application. It uses
the profiling interface of MPI (PMPI) to obtain
information about the time taken and type of MPI
calls, the size of the messages sent and the message
destination. Previous measurements have shown that
the overhead of using IPM is significantly less that
1%, which makes us confident we are not perturbing
the applications by instrumenting them. Instrument-
ing the code with IPM is a relatively simple matter
of adding a linker line for the IPM library. Three
of the four codes profiled (GTS, GYRO, VORPAL)
used IPM to obtain performance measurements.

CrayPAT is a high-level performance analysis
tool for profiling codes in Cray architectures. These
tools provide a simple interface to hardware counter
and other instrumentation data. After loading the
appropriate CrayPAT modules (available on NERSC
machines via the perftools module, which loads
associated modules and declares environment vari-
ables), users may rebuild their code, instrument the
executable with the pat build command, and receive
reports from their application runs. CrayPAT cap-
tures performance data without the need for source
code modifications. Event tracing was used to gather
data during these experiments. Tracing records
events at function entry and exit points, rather than
interrupting execution periodically to capture events.
Various function groups may be traced (e.g. MPI,
heap, PGAS) for performance. CrayPAT leverages
hardware-level performance counters, by means of
the Performance API (PAPI) library, which can
give such performance information as floating point
instructions and cache usage.

For the BOUT++ application we used the Cray-
PAT profiling infrastructure to obtain performance
information. Although CrayPAT overhead can be

significant if a large number of function groups
are monitored, in the current runs only MPI perfor-
mance was monitored, which resulted in negligible
overhead (< 1%). CrayPAT also has some support
for PGAS languages (so far, implemented only in
GTS). However, it was seen that the overhead asso-
ciated with monitoring them was considerable, and
we have therefore postponed PGAS performance
analysis to the future.

Both IPM and CrayPAT provide options to in-
strument code (invasively) so as to focus attention
to particular sections, where necessary. During the
runs, we ensured that the initialization region was
discarded from the performance measurements. This
is most important in the GTS code where it was
seen that initialization overhead is disproportion-
ately large for the PETSc library which the code
links to. However, for the other codes, the initial-
ization was not seen to consume much time.

E. DRAM Bandwidth Sensitivity

The memory wall is a well-known impediment
to application-performance. Nominally, it comes in
two forms: latency-limited and bandwidth-limited.
The former is an artifact of the latency to DRAM
(measured in cycles) far outstripping the ability for
a core to inject sufficient memory-level parallelism
to satisfy Little’s Law. For many codes, this has
been mitigated by hardware stream prefetchers, mul-
tiple cores, and good programming practices. The
latter, memory bandwidth, is a more fundamental
impediment arising from the fact that cores can
process data faster than the memory subsystem can
supply it. Recent history and technology trends
indicate that this imbalance is only going to get
worse. To that end, it is imperative we understand
how existing applications fare when confronted with
reduced memory bandwidth.

To proxy this phenomenon, we increase the num-
ber of cores contending for the finite DRAM band-
width. As Hopper is built from 6-core chips, by
increasing the number of active cores per chip from
1 to 6, we reduce the per-core bandwidth from
about 12GB/s to 2GB/s. By using aprun’s default
behavior, we fill all cores within a compute node’s
first NUMA node with processes before moving
to a compute node’s second (, third, or fourth)
NUMA node. Thus, by confining the number of
processes per node to between 1 and 6 for flat MPI
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codes, we can scale the number of processes per
chip and thereby test the application’s sensitivity
to reduced bandwidth. Similarly, by confining the
number of processes per node to 1 and varying
OMP_NUM_THREADS from 1 to 6, we can realize
the same effect on hybrid applications.

In general, if performance remains constant as
we reduce the bandwidth per core, then we may
conclude that the application is relatively insensi-
tive to memory bandwidth. Conversely, if run time
increases linearly with reduced bandwidth, we may
conclude the application’s performance is domi-
nated by memory bandwidth [14]. In practice appli-
cations are built from multiple kernels, some will be
memory-intensive, others will be compute-intensive.
When plotted, time should be a linear function with
an offset. The relationship between offset and slope
is indicative of the room for additional cores or
performance optimization. If there is little, it is
imperative that application designers develop and
integrate new methods lest future performance be
limited by the lethargic trends in memory band-
width. In these experiments, concurrency is kept low
to ensure MPI communication does not skew our
analysis.

III. GTS
GTS solves the gyrokinetic equations by follow-

ing the guiding centers of particle orbits using the
particle-in-cell (PIC) method. In PIC codes, rather
than directly modeling the pairwise interactions
between particles, particles interpolate charge onto
a grid, one solves Poisson’s equation to determine
the electrostatic potential, and uses the potential to
accelerate and move particles. To account for gyrat-
ing particles, GTS models particles with a charged
ring and interpolates this ring onto the charge grid
using a 4-point averaging scheme. The Poisson
solve is implemented using PETSc. GTS has 3
levels of parallelism: a one-dimensional domain
decomposition in the toroidal direction, a particle
decomposition within each poloidal domain, and
finally loop-level multi-threading. The domain and
particle distributions are implemented with MPI,
while the loop-level multi-threading is implemented
using OpenMP directives.

A. Simulation Parameters
In GTS, weak scaling experiments were con-

ducted on the NERSC Hopper machine by keeping

the number of particles per process constant while
maintaining a constant overall grid resolution for
all concurrencies. Thus the time spent operating on
particles is expected to be roughly constant, while
the overhead of reducing each copy of the poloidal
plane is expected to scale with the number of
processes. The Poisson solve’s overhead is expected
to decrease with increased concurrency as the size
of the grid remains constant.

As each Hopper compute node is effectively 4
NUMA nodes each of 6 cores, we limit OpenMP
parallelism to 6-way to avoid NUMA issues. Ex-
periments scale up to 8,192 processes (each using
6 threads) for a total of 49,152 cores.

B. Scalability and Analysis
Performance for the GTS weak scaling experi-

ments is shown in Figures 1(a) and 1(b). Figure 1(a)
presents the time (measured in seconds) spent in
computation and communication running GTS with
increasing levels of concurrency. Figure 1(b) reveals
the GTS runtime behavior for a similar range of
concurrencies (x-axis) as depicted in Figure 1(a),
but highlights the GTS overall performance (“Per-
formance (experiment)”) in flop/s (normalized to a
per core basis, vertical values correspond to the
left y-axis). Figure 1(b) also gives the ratio of
communication time (“%Communication”) to the
GTS wall-clock time (vertical values correspond
to the right y-axis). Results show the increasing
communication overhead in GTS with higher levels
of concurrency. In addition, we can see that the
runtime first decreases at higher scale, but then
begins to rise at 6,144 processing cores.

GTS consists of both particle based (PIC) kernels
and a grid-based Poisson kernel. However, weak-
scaling is only applied in the context of the PIC
kernels, while the grid-based Poisson solver exhibits
strong-scaling behavior that reaches a performance
plateau at 6,144 processors. Beyond a concurrency
of 6,144, the influence of the Poisson step be-
comes mostly insignificant, and subsequent scaling
is dominated by the PIC kernels. Unfortunately,
the 1D grid decomposition strategy necessitates a
“replicate-and-reduce” approach to PIC. Thus, the
reduction of per-process copies of poloidal planes
into one plane results in a increase in commu-
nication time. These two scaling trends (Poisson
solve and reductions) result in the decreasing com-
putation trend and the increasing communication
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Fig. 1. GTS Performance Characteristics on the Cray XE6. Figures 1(a), 1(b) show weak scaling performance degradation at higher
concurrency from increased communication overhead. Figure 1(a) shows overall walltime, time spent in communication and time spent in
computation. Figure 1(b) presents the flops performance (Y-axis on left) and the communication as percentage of runtime (Y-axis on right).
Figure 1(c) shows the role of collectives in the breakdown of MPI functions at high concurrency (49,152). Figure 1(d) shows degradation
of performance due to increased DRAM bandwidth contention.

trend shown in Figure 1(a). The sum of these two
scaling trends results in a minimum at around 6K
cores. To verify this, we inspect the time spent in
the reduction collective (MPI_Allreduce) and
show that at extreme scales, it is the dominant
communication routine (Figure 1(c)). The net result
is that communication time eventually reaches more
than 70% of the run time. This depresses the average
flop rate considerably.

An examination of MPI communication for the
highest concurrency experiment running at 49,152
processing cores (Figure 1(c)) reveals the most
time consuming MPI functions - MPI Allreduce,
MPI Sendrecv and MPI Reduce. MPI functions
with lower impact on overall communication time
(< 5%) are exempt from this analysis. The
above mentioned reduction of per-process copies

of poloidal planes requires communication intense
MPI reduction operations at each GTS iteration
step. Besides an increasing memory footprint due to
the “replicate-and-reduce” approach, the increasing
communication overhead of grid reduction opera-
tions makes a 2D domain decomposition necessary
in GTS towards scaling to higher concurrencies. The
Sendrecv communication originates from shifting
particles between adjacent toroidal domains due to
the one-dimensional domain decomposition in the
toroidal direction. Advanced communication tech-
niques such as one-sided messaging (Partitioned
Global Address Space languages or the MPI-2 ex-
tensions) or non-blocking MPI send and receive
functions might reduce the costs of this phase in
GTS.
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C. DRAM Bandwidth Sensitivity

The sensitivity to DRAM memory bandwidth
contention is tested by running the codes for a
given concurrency (the number of MPI processes
is constant in this experiments) but by spreading
these MPI processes over different nodes. Using
this approach, the contention for memory bandwidth
in a given node can be varied. Where applicable
(only GTS has OpenMP implemented) OpenMP
threading is turned off, so that only pure MPI is
used. The number of cores used per node are thus
varied from 1 to 6. A notable aspect here is that one
must pack the MPI processes within an individual
NUMA node containing 6 cores, thereby ensuring
that the experiment adequately measures bandwidth
contention. In that respect, it would be inaccurate
to distribute the MPI processes in different nodes
since they would then not compete for bandwidth.
And hence, although a hopper node consists of 24
processing cores, the most straight forward config-
uration for a memory bandwidth contention experi-
ment is the foregoing. Distributing MPI processes
in different NUMA nodes might bring in other
aspects into play, such as the inter-node commu-
nication, which are not particularly germane to the
task of measuring sensitivity to bandwidth. Memory
bandwidth contention experiments in GTS indicate
that the code is affected by bandwidth contention,
as seen from figure1(d). The runtime increases (or
equivalently, the flops would decrease) as as more
cores per NUMA node are used, implying increased
bandwidth contention by the MPI processes in the
NUMA node. We see run time increase by about
66% when all 6 cores in the NUMA node contend
for bandwidth. Moreover, as contention is increased
we see the application spends progressively more of
its run time in bandwidth-intensive routines (from
about 14% up to 50%). Such a strong corelation to
bandwidth will impede its ability to exploit more
cores or optimization.

IV. GYRO

GYRO [4], [5], [6], [7] is an Eulerian gyroki-
netic code used to model turbulence and collisional
transport using either an explicit or semi-implicit
time disrectization and a 5D phase-space (2D grid,
spectral, 2D velocity) discretization using a mix-
ture of finite-difference, finite-element, spectral, and
pseudo-spectral methods. Dense and sparse linear

solvers are hand-coded using LAPACK and UMF-
PACK/MUMPS, respectively. Depending on scale,
either an hand-coded convolution or FFTW is used
to evaluate the nonlinear Poisson bracket.

A. Simulation Parameters
We conducted weak scaling experiments ranging

from 128 to 8,192 processes. This is accomplished
through the job-manager TGYRO, which can exe-
cute multiple instances of GYRO and run them to-
gether. Because of a nonlinear convolution operation
in toroidal harmonics, the total work performed in
this scan is a weakly nonlinear function of problem
size.

B. Scalability and Analysis
Performance figures for the GYRO weak scal-

ing experiments are presented in Figures 2(a) and
2(b). We observe a marked degradation in overall
performance beyond 2K processes (less than 60%
parallel efficiency at 8K cores). We observe that
although the computation time remained roughly
constant across this range, the communication time
grew quickly and ultimately begins to impede scala-
bility. Application-level performance degradation is
observed when this increase becomes a critical bot-
tleneck (over 50% of the runtime). Despite a slight
increase due to the convolutions, the computation
time remained relatively flat.

The breakdown of MPI calls in Figure 2(c)
at highest concurrency of 8,192 processes indi-
cates that MPI collective communication, especially
MPI Allreduce and MPI Alltoall, constitutes a ma-
jor overhead. The large number of MPI Alltoall
calls are likely to be latency limited due to their
small message sizes ( 2KB).

C. DRAM Bandwidth Sensitivity
Figure 2(d) shows that as the number of processes

per NUMA node increases, contention for DRAM
bandwidth results in an increase in runtime. A
linear extrapolation suggests that with 1 process per
NUMA node, bandwidth plays a relatively small
(less than 8%) part in performance. However, as the
number of processes per NUMA node grows to 6,
we see more than a 60% increase in runtime. At that
point, perhaps half the runtime is due to the a lack of
scaling on a bandwidth-instensive component of the
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Fig. 2. GYRO Performance Characteristics. Figures 2(a), 2(b) show weak scaling performance degradation at higher concurrency from
increased communication overhead. Figure 2(a) shows overall walltime, time spent in communication and time spent in computation.
Figure 2(b) presents the flops performance (Y-axis on left) and the communication as percentage of runtime (Y-axis on right). Figure 2(c)
shows the role of collectives in the breakdown of MPI functions at the highest concurrency run (8,192).. Figure 2(d) shows degradation of
performance due to increased bandwidth contention.

application. Thus, with 6× the active cores, we see
only 3.5× the aggregate performance per NUMA
node.

V. BOUT++ RESULTS

BOUT++ [8] is a 3D finite-difference structured
grid code used to model collisional edge plasmas in
a toroidal/poloidal geometry. Time evolution is pri-
marily through the implicit Newton Krylov method.
A range of finite difference schemes are used, in-
cluding 2nd and 4th order central difference, 2nd and
4th order upwinding and 3rd order WENO. Several
different algorithms are implemented for Lapla-
cian inversion of vorticity to get potential, such as
a tridiagonal solver (Thomas algorithm), a band-
solver (allowing 4th order differencing), and the
Parallel Diagonal Dominant (PDD) algorithm. The

code uses a 2D parallelization in the x, y directions.
There is no parallelization in the z direction. This is
transformed into the tokamak coordinate framework
ψ, θ, ζ by means of a “ballooning” transformation
[15], [16].

A. Simulation Parameters
In BOUT++, strong scaling experiments runs are

carried out by keeping the total number of grid
points in the radial, poloidal and toroidal directions
constant. Unlike other applications discussed in this
paper, BOUT++ is evaluated in the strong scaling
regime as that is how the developers typically use
it. The experiments are conducted on up to 65,536
processor cores. Since the domain decomposition
is in the toroidal and poloidal directions (2D), the
size of each MPI subdomain becomes smaller with
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Fig. 3. BOUT++ Performance Characteristics on the Cray XE6. Figures 3(a), 3(b) show strong scaling performance degradation at higher
concurrency. Figure 3(a) shows overall walltime, time spent in communication and time spent in computation. Figure 3(b) presents the flops
performance (Y-axis on left) and the communication as percentage of runtime (Y-axis on right). MPI communication time and percentage
do not grow at high concurrency demonstrating that performance degradation at high concurrency is related to the increasing time spent in
computation. Figure 3(c) shows the role of MPI collectives at high concurrency (65,536). Figure 3(d) illustrates that BOUT++ is relatively
insensitive to bandwidth contention.

increased concurrency, resulting in more boxes with
a fewer number of grid points per MPI box. This
results in an increase of the surface to volume
ratio (at the highest concurrency of 65,536 there
are only two grid points in the poloidal direction).
Clearly it may be inefficient to run at this regime,
but nonetheless provides an interesting insight into
performance trends at high concurrency.

B. Scalability and Analysis
Performance for the strong scaling experiments

are presented in Figures 3(a) and 3(b). Note, Fig-
ure 3(a) is plotted on a log-log scale. We ob-
serve good scaling behavior to about 8,192 cores
and slight performance degradation at higher levels
of concurrency. More detailed analysis shows that

BOUT++ performs more calculations than expected
for a perfectly strong-scaled experiment. This will
be a subject of future investigations.

Examining BOUT++ communication overhead in
Figures 3(a) and 3(b) shows that computation time
scales well to about 16K cores, while communica-
tion time begins to plateau at around 4K cores. In
fact, the fraction of time spent in communication
rapidly increases beyond 2K cores. Interestingly,
it saturates at about 20% of the runtime at 16K
cores and beyond. As the parallelization scheme
reaches its limits, we believe the communication
overhead is likely an artifact of the asymptotic limits
to the surface to volume ratio. 3D decompositions
or threaded implimentations may mitigate the im-
pact of communication. Future work will explore
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optimization opportunities within the computational
and communication components.

C. DRAM Bandwidth Sensitivity

Figure 3(d) shows the run time as we increase
the number of active cores per chip, or in other
words, increase contention for the limited per-chip
DRAM bandwidth. Although we observe a linear
relationship, a breakdown into bandwidth- and non-
bandwidth-intensive components suggests the ap-
plication initially spends 99% of its time in the
non-bandwidth-intensive component. As the number
of active cores increases, performance per chip
increases quickly, and this faction drops to perhaps
96%. Clearly, DRAM bandwidth plays a small role
in BOUT++ performance.

VI. VORPAL RESULTS

The VORPAL computational framework [9] mod-
els the dynamics of plasmas, accelerators, and elec-
tromagnetic structures including RF heating [17]
in fusion plasmas. Like GTS, VORPAL uses the
particle-in-cell (PIC) method to track individual par-
ticles. However, unlike GTS, VORPAL does not use
the 4-point charge ring averaging scheme. VORPAL
uses a 3D cartesian domain decomposition using
MPI, such that one may construct the domain as a
collection of rectangular slabs in three dimensions.
Each domain is described by two slabs, one which
is referred to as the physical region, which contains
all the local cells of each MPI process. The other
domain, which is referred to as the extended region,
is the physical region plus one layer of guard cells in
each direction. The cells which are communicated
between neighboring processor is simply the slab
that is the intersection of the sending processor’s
physical region with the receiving processors ex-
tended region.

A. Simulation Parameters

In VORPAL, weak scaling experiments were run
on the NERSC Hopper machine. The physics being
done in these experiments is the wave propagation
in vacuum. For this particular case, it allows to
compute the resonant modes of a rectangular cavity,
but when combined with embedded boundaries, we
can also compute the modes and frequencies of
metallic and dielectric structures to high precision,

up to parts in 105 when combined with Richardson
extrapolation.

We conducted weak scaling experiments, with a
fixed domain size of 403 cells per MPI-subdomain.
There are no particles, only fields, and those fields
are updated using the Yee scheme. The update is
explicit with communication overlapped by inde-
pendent computation. There is no global communi-
cation. The only communication is of surface field
values (10088 cells and 30264 field values per field),
and this compares with the volume computation of
64000 cells or 192000 field values per field. Thus,
the ratio of communication to computation remains
constant as we scale the number of processing cores.
The underlying experiments were conducted on up
to 65,536 cores on Hopper.

B. Scalability and Analysis

Performance figures for the weak scaling experi-
ments are presented in Figures 4(a) (wall clock time
per time step) and 4(b). We observe linear scaling on
up to 16K cores, then a marked decrease in compute
performance. The result depresses parallel efficiency
to about 71%.

The communication overhead, as seen from Fig-
ures 4(a) remains roughly constant with increasing
concurrency and represents a small fraction of the
overall time (less than 13%). The decrease in the
time spent in communication is primarily due to an
increase in computational overhead. This increase
in runtime at the two highest levels of concurren-
cies seems anomalous and will be the subject of
future investigations. Nevertheless, there is a small
decrease in communication time at extreme scales.

The MPI overhead breakdown chart in Figure 4(c)
shows that communication time is dominated by
the MPI Waitany and MPI Wait routines. This indi-
cates a heavy use of non-blocking send and receive
operations with time being tabulated in the waits.

C. DRAM Bandwidth Sensitivity

Figure 4(d) visualizes the impact of DRAM band-
width contention on performance. We observe a
linear increase in time with respect to concurrency.
When studying the application breakdown into
compute-intensive and bandwidth-intensive compo-
nents, we observe that for 6 MPI processes per
NUMA node, roughly two-thirds of the run time is
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Fig. 4. VORPAL Performance Characteristics. Figures 4(a), 4(b) show weak scaling performance degradation at higher concurrency.
Figure 4(a) shows overall walltime, time spent in communication and time spent in computation. Figure 4(b) presents the flops performance
(Y-axis on left) and the communication as percentage of runtime (Y-axis on right). MPI communication time and percentage do not grow at
high concurrency demonstrating that performance degradation at the two highest concurrencies (32,768, 65,536) is owing to increase in time
spent in computation. Figure 4(c) shows the role of collectives in the breakdown of MPI functions at high concurrency (65,536). Figure 2(d)
shows degradation of performance due to increased bandwidth contention.

spent in compute-intensive components. Neverthe-
less, we observe a 50% increase in runtime coupled
with a 300% increase in work, which results in a
2× increase in aggregate performance per NUMA
node.

VII. CONCLUSIONS

In this paper, we examined four key fusion ap-
plications at high levels of concurrencies on the
NERSC Hopper Cray XE6 machine. We observe
that each code has its own fundamental impediments
to scalability arising from various communication
bottlenecks. For example, GTS’s multinode scal-
ability is impeded by the charge grid reductions
(a collective operation) and the effectively strong
scaled grid component. Such bottlenecks can be

remedied by higher particle densities or by moving
to a 2D or 3D spatial decomposition. Similarly,
the collective impediments on GYRO might be
mitigated by migrating to a hybrid programming
model. Conversely, VORPAL shows good scala-
bility up to 16K processes, but scaling seems to
be limited by increasing computation beyond there.
Studying BOUT++ reveals similar challenges with
performance degradation beyond 32K processes for
both communication and computation. Even if the
future holds that weak scaling is only applied at
the node-level and multicore is applied in a strong
scaling regime, it is imperative we explore remedies
for these scalability impediments as future exascale
machines will likely have 100K-1M nodes (pro-
cesses).
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As future manycore architectures will likely see
a 10-100× increase in on-chip parallelism, we must
investigate the viability for these codes to effec-
tively exploit such parallelism. History has shown
that memory bandwidth is and will be a major
impediment to effective exploitation of multicore.
To that end, we constructed an experiment that
allowed us to explore each application’s sensitivity
to reduced memory bandwidth. We observe that
GTS is particularly sensitive to memory bandwidth
(time increased quickly with increasing contention)
while BOUT++ showed very little sensitivity (time
was nearly constant). From these data points, we
can extrapolate the factor by which we can in-
crease performance without increasing bandwidth.
We believe that performance cannot be enhanced
(via either optimization, wide SIMD, or many more
cores) by more than a factor 2×, 3×, 20×, and
3× on GTS, GYRO, BOUT++, and VORPAL re-
spectively without substantial increases in memory
bandwidth or fundamental changes to data structure
or algorithm. Moreover, such performance gains
are only attainable with a vast increase in memory
capacity per FPU ratio — an unlikely scenario given
exascale trends. This, in conjunction with the the
meager increases expected in memory bandwidth
necessitate co-design of applications (algorithms,
parallelization, optimization, and architecture) to
ensure we can extract larger performance enhance-
ments.
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