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Abstrat

This report provides the theoretial foundation to STAR program, a linear network redution software kit. Y-�

transformation in s-domain is the essential part of the redution engine of the program. We have extended it to

handle urrent/voltage soures and K elements[22℄. Coming with it are node ordering algorithm and some novel

numerial stability ontrol tehniques. They play an important role in the overall redution ow by providing the

onsistent auray in program outputs. [1℄ is dediated to the appliations to the program.

Keyword: Wye-Delta Transformation, Interonnet Model Redution, Symboli Network Analysis.
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1 Introdution

Due to the inreasing omplexity of VLSI hips, a linear network suh as a power/ground grid usually ontains

millions of RLC elements generated from extration tools. Lower supply voltages make the voltage variation

aross the power grids very ritial beause large voltage drop redues the supply voltage at some logi gates,

leading lower noise margins and resulting in a serious performane impat[2, 3℄. Stronger oupling e�ets aross

deep sub-miron interonnets demand aurate and eÆient simulation as well. On the other hand, SPICE[4℄

as the standard of iruit-level simulation tools, takes hours and onsumes gigabytes of memory on a modern

workstation to simulate a moderate size RLC network[5℄. Simulating suh iruits beomes a hallenging task.

To work around the poor performane of SPICE, two strategies are ommonly used: (1) to inrease the eÆieny

of solving the MNA(modi�ed nodal analysis) or NA(nodal analysis) formulated system equations; (2) to redue

the size of original networks via model redution tehniques.

MNA using LU fatorization in SPICE was shown less eÆient than NA using preonditioned Krylov-subspae

iterative methods[6℄. NA using SuperLU[7℄ fatorization in [5℄ provided omparable performane to iterative

methods while the robustness of diret methods was kept. [8, 9℄ explored the regular grid struture of power and

ground networks and used multigrid tehnique to solve a oarse grid and map the solution bak to the original

�ne grid. These approahes fall into the �rst ategory.

The moment-mathing tehnique, on the other hand, has been widely used to approximate waveforms of a

linear interonnet network using its lower order moments[10, 11, 12℄. Sine the advent of the tehnique, many

interonnet delay evaluation models[13, 14, 15℄ were proposed. It was well known that the moment-mathing

tehnique was equivalent to a Pad�e approximation, whih may generate positive poles for an originally passive

iruit. [16℄ partitioned RC interonnet networks and redued eah sub-network into a maromodel, reserving

lower orders of the port admittane matrix Y . The method guaranteed the realizability of the maromodels for

RC iruits.

MPVL (matrix Pad�e via Lanzos)[17℄, blok Arnoldi[18℄ and PRIMA[19℄ are admittane matrix (Y (s)) based

model redution methods so that they perform model order redution on eah entry in Y (s) simultaneously. The

PACT algorithm[20℄ �rst introdued ongruene transformations for order redution of RC iruits. The same

authors proposed split ongruene transformations[21℄ for passive redutions of RLC iruits.

We have proposed a new RKC network redution method. The prinipal idea is that we onsider a linear

network as a graph and perform Y-� transformation on eah node of no interest until all suh kind of nodes

are eliminated. The generalized Y-� transformation formula is able to handle urrent/voltage soures and K

elements[22℄. Nodes eligible to be eliminated are alled internal nodes. and others are alled external nodes.

Di�erent from topologial formulas for network funtions [27℄, our approah keeps only low-order oeÆients of

them. Fortunately, these oeÆients are exatly the same as they were omputed without disarding any high-

order terms. A omplexity omparison of the two approahes is given in Setion 5 after we give the proposed

algorithm.

Generally speaking, the input admittane of an one-port N -th order RLC linear time invariant network in s-

domain is a N -th order rational funtion Y (s). Y-� transformation redues the network in term of the number of

nodes, a straightforward implementation of the approah, however, leads to a rational funtion Y

0

(s) whose order

is far beyond N (about N !). It is worthy noting that Y (s) = Y

0

(S) indeed. By exploiting the struture of Y-�

transformation proess, we have found out that a lot of ommon fators are introdued into the numerator and

denominator of Y

0

(s), whih atually should be aneled out. This �nding and some other pratial numerial

onsiderations allow us to ontrol round-o� errors in high-order polynomial omputation. It is also ruial in

pole/residue analysis, as shown in [1℄.

Our main ontributions are:

� admittane is always kept in its rational form and all the oeÆients are the same as they were omputed

using exat symboli approahes without disarding any high-order terms;

� With impedane realization method[1℄, inremental simulation an be ahieved by simply speifying nodes

in tunable sub-iruits as external nodes;

� Pole/Residue sensitivity analysis an be ahieved inexpensively along the redution proess.
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The remaining of this report is organized as follows. In the next setion, we briey review the fundamentals

of Y-� transformation and the generalized formula. Multiple minimum degree (MMD) algorithm [25℄ is overed

in the Setion 4. And Setion 5 is dediated to explaining the existene of ommon fators in transformed

admittane. The overall redution algorithm will be given in Setion 6. Setion 7 onludes the proposed work.

2 Y-� Transformation

2.1 Example

Before we present the general form of Y-� transformation, we �rst illustrate a simple numerial example.

23

Y

(a)                                                       (b)

1n

3n

Y12 13

Y

3

s

2

1n

32 nn 2nn 0

Figure 1: A numerial example for Y-� transformation: (a)iruit shemati before the transformation; (b)iruit

shemati after the transformation.

As shown in Fig. 1(a), n

0

is adjaent to n

1

, n

2

, and n

3

only. To simplify our explanation, we further assume

that there is no admittane between any two of n

1

, n

2

and n

3

. KCL (Kirhho�'s Current Law) equations for

node n

0

, n

1

, n

2

, and n

3

an be established as follows:

(5 + s)V

0

� sV

1

� 2V

2

� 3V

3

= 0 (1)

�sV

0

+ (s+ Y

1

)V

1

� Y

1

V

x

= I

1

(2)

�2V

0

+ (2 + Y

2

)V

2

� Y

2

V

x

= I

2

(3)

�3V

0

+ (3 + Y

3

)V

3

� Y

3

V

x

= I

3

(4)

In the equations, we have denoted V

x

as node voltage of n

4

; : : : n

n

. Y

1

, Y

2

and Y

3

are admittane vetors with

the i-th entry equal to the admittane between n

1

, n

2

, n

3

and n

i

, i � 4, respetively. Y

1

, Y

2

and Y

3

are the total

admittane between n

1

, n

2

, n

3

and nodes exept n

0

, respetively. Finally, I

1

, I

2

and I

3

are the total urrent

injeting into n

1

, n

2

and n

3

from urrent soures, respetively. From 1, we an denote V

0

in terms of V

1

, V

2

, and

V

3

as:

V

0

=

sV

1

+ 2V

2

+ 3V

3

5 + s

: (5)

Inserting (5) into (2){(4) gives

(

5s

5 + s

+ Y

1

)V

1

�

2s

5 + s

V

2

�

3s

5 + s

V

3

� Y 1V

x

= I

1

(6)

�

2s

5 + s

V

1

+ (

6 + 2s

5 + s

+ Y 2)V

2

�

6

5 + s

V

3

� Y 2V

x

= I

2

(7)

�

3s

5 + s

V

1

�

6

5 + s

V

2

+ (

6 + 3s

5 + s

+ Y 3)V

3

� Y 3V

x

= I

3

(8)

Comparing (6){(8) with Fig. 1(b), we an �nd out that

8

>

<

>

:

Y

12

= 2s=(5 + s)

Y

13

= 3s=(5 + s)

Y

23

= 6=(5 + s):
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From the example, you may have notied that what we performed is equivalent to one olumn/row Gauss

elimination to the system equations. When atual Y-� transformations are arried out, we do not formulate a

iruit into simultaneous system equations. Instead we onsider it as a graph and operate on the graph diretly.

One advantage of our approah over SPICE is that one massive internal nodes are eliminated while external

nodes are preserved, then after impedane realization is applied to transformed impedane, the resultant passive

iruit would be muh smaller and has similar harateristis in the working frequeny range. And beause any

node an be spei�ed as external node to be preserved, inremental simulation beomes easier. For example in a

datapath struture with hundreds of bi-diretional divers exist in the same interonnet network. We an ollapse

the internal struture of the network. Then delays after tuning physial parameters of drivers an be simulated

very easily using SPICE as the overall iruit is muh smaller than the original one.

Simple iruit elements, i.e. resistors, apaitors, and self partial indutors, have well-known admittane forms

in s-domain. But Y-� transformations involving urrent/voltage soures and mutual partial indutors are not

straightforward. Partiularly, even though the generalized Y-� transformation is able to handle mutual indutors,

inluding them prevents us from giving a simple and uni�ed transformation formula.

K-based indutane extration method[22℄ proposed a new iruit element | K element to apture the indu-

tane e�ets of interonnets in integrated iruits. (14) of [23℄ gives the branh equation for element K:

Kv =

di

dt

; (9)

whih in s-domain an be written as:

K

s

V = I: (10)

Although V and I refer to di�erent branhes for apturing mutual indutane e�ets, a simple onversion will

integrate K elements into our transformation formula seamlessly.

2.2 Branh with Current/Voltage Soure

Branhes involved in Y-� transformation an not only inlude resistors, apaitors and self indutors, but also

urrent/voltage soures and mutual indutors. We will give the Y-� transformation formula for iruits with

urrent and voltage soures in this sub-setion, and K elements in the next sub-setion.

Following the similar proedure in Setion 3, we apply Y-� transformation to node n

0

in Fig. 2(a),

23
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(a)                                                       (b)
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I
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Figure 2: Y-� transformation with urrent soure involved: (a)iruit shemati before the transformation;

(b)iruit shemati after the transformation.
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>

>

>

>

>

>

<

>

>

>

>

>

>

:

Y

12

= Y

01

Y

02

=(Y

01

+ Y

02

+ Y

03

)

Y

13

= Y

01

Y

03

=(Y

01

+ Y

02

+ Y

03

)

Y

23

= Y

02

Y

03

=(Y

01

+ Y

02

+ Y

03

)

I

12

= Y

02

=(Y

01

+ Y

02

+ Y

03

)I

01

I

13

= Y

03

=(Y

01

+ Y

02

+ Y

03

)I

01

:

(11)
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Figure 3: Y-� transformation with voltage soure involved: (a)iruit shemati before the transformation;

(b)iruit shemati after the transformation.

And performing Y-� transformation to node n

0

in Fig. 3(a) gives

8

>

>

>

<

>

>

>

:

Y

12

= Y

02

Y

13

= Y

03

I

12

= Y

02

V

01

I

13

= Y

03

V

01

:

(12)

One an also derive (11) and (12) from Norton's theorem. A generalization of the two transformation formulas

will be given in Theorem 1.

2.3 Branh with K element

Self K elements are onsidered with no di�erene from others suh as resistors and apaitors in Y-� trans-

formation. But for mutual K, we have to do a onversion on it. For the example shown in Fig. 4(a), the iruit

K

s
K11

1an

1b n

n

22KK
s

mK

mK

mK m

2b

2a

n

(a)                                                       (b)

s

I1 I2

ss
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1b n

n
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2a

s
n

s

K 22K
2

1I

111 VV s
s
m

Figure 4: Conversion on mutual K in s-domain: (a)given mutual K; (b) onverted K.

branh equations are written as

8

<

:

K

11

s

V

1

+

K

m

s

V

2

= I

1

K

m

s

V

1

+

K

22

s

V

2

= I

2

;

(13)

whih an be rewritten as KCL equations for the four nodes in Fig. 4(a) as

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

K

11

s

V

1a

�

K

11

s

V

1b

+

K

m

s

V

2a

�

K

m

s

V

2b

= I

1

�

K

11

s

V

1a

+

K

11

s

V

1b

�

K

m

s

V

2a

+

K

m

s

V

2b

= �I

1

K

m

s

V

1a

�

K

m

s

V

1b

+

K

11

s

V

2a

�

K

11

s

V

2b

= I

2

�

K

m

s

V

1a

+

K

m

s

V

1b

�

K

11

s

V

2a

+

K

11

s

V

2b

= �I

2

:

(14)
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One an �nd out that the KCL equations for the four nodes in Fig. 4(b) are exatly the same as (14, so that the

iruit in Fig. 4(b) is equivalent to the iruit in Fig. 4(a). Although some values in (b) have negative signs,the

equivalent iruits are still passive beause K-based method guarantees the extrated K matrix to be positive

de�nite, the equivalent.

2.4 Generalization

Now we state a generalized Y-� transformation formula inluding linear(ized) urrent/voltage soures, re-

sistors, apaitors, and K elements. Although the theorem is stated based on the simple senario with a single

urrent/voltage soure, for ompliated ases, one an always use them in onjuntion with superposition theorem.

Theorem 1. With no loss of generality, let n

0

be the node that we want to eliminate, let n

1

; n

2

; : : : ; n

k

be

the adjaent nodes to n

0

. Y

ij

denotes the admittane between node n

i

and n

j

. Thus Y

01

, Y

02

, : : : , Y

0k

are the

admittane between n

1

; n

2

; : : : ; n

k

and n

0

, respetively. Partiularly, a urrent soure is onsidered to be open-

iruited and a voltage soure short-iruited in terms of admittane. In s-domain, admittane is a funtion of

s.

After n

0

is eliminated, n

1

; n

2

; : : : ; n

k

beome pairwise adjaent and form a lique. A set of admittane

�

Y

ij

j i; j 2 [1; k℄; i < j

	

are generated, and

Y

ij

(s) = Y

ij

(s) +

Y

0i

(s)� Y

0j

(s)

Y

01

(s) + Y

02

(s) + � � �+ Y

0k

(s)

: (15)

Suppose I

01

was a urrent soure between n

0

and n

1

before the elimination. Then after it, a set of urrent

soures

�

I

1j

j j 2 [2; k℄

	

have to be generated, and

I

1j

(s) =

Y

0j

(s)

Y

01

(s) + Y

02

(s) + � � �+ Y

0k

(s)

I

01

(s): (16)

Alternatively, suppose V

01

was a voltage soure between n

0

and n

1

before the elimination. Then after it, a set

of urrent soures

�

I

1j

j j 2 [2; k℄

	

have to be generated, and

I

1j

(s) = Y

0j

(s)V

01

(s): (17)

�

A useful observation from Theorem 1 is that di�erent from Pad�e approximation, using Y-� transformation,

oeÆients of admittane are derived diretly from admittane in original iruits and are kept in its original

rational form. By mathing the lower-order oeÆients, the method an apture omplex poles of original iruits

near imaginary axle aurately.

Corollary 1. If all RLC elements in a given linear RLC system are of positive values, no matter how many

nodes are eliminated via Y-� transformation, the transformed admittane between any two nodes n

i

and n

j

an

be written as

a

0

+ a

1

s+ � � �+ a

m

s

m

b

0

+ b

1

s+ � � �+ b

n

s

n

; (18)

where b

0

> 0; and a

i

; b

j

� 0; i 2 [0;m℄ and j 2 [1; n℄. �

The above orollary holds immediately after the given theorems.
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3 Node Ordering

As elaborated after the example in Setion 3, eliminating nodes in an interonnet network via Y-� transfor-

mation is equivalent to LU fatorizing the orresponding MNA formulated system equations. Non-zero �ll-ins in

LU fatorization orrespond to new branhes among nodes in the network. Hene given a linear network, the

order in whih nodes are eliminated is very important in that di�erent orders generally lead to di�erent numbers

of new branhes. And the omplexity of every Y-� transformation on a node n

i

is O(jn

i

j

2

), where jn

i

j is the

urrent degree of n

i

. Beause we do not perform Y-� transformation on every single node in a system as external

ones have to be preserved, We revised MMD algorithm to �t our needs.

3.1 MMD Algorithm

The most widely used general-purpose ordering sheme is the minimum-degree algorithm [24℄. It is a heuristi

algorithm, but it is very suessful in reduing non-zero �ll-ins in LU fatorization. The sheme attempts to

redue the �ll-ins of a given matrix by a loal minimization of non-zeros in the fatored matrix. It is used as a

pratial approximate solution to the NP-omplete �ll-in minimization problem [26℄.

The onept of indistinguishable nodes [24℄ is developed to eliminate a subset of nodes all at the same time

(Step 3) instead of just one node of the minimum degree. In the elimination proess, nodes n

i

and n

j

that satisfy

Adj(n

i

) [ fn

i

g = Adj(n

j

) [ fn

j

g

in a graph are said to beome indistinguishable. These nodes an be numbered onseutively in the minimum-

degree ordering.

Step 1. (Initialization) Initialize the set of eliminated nodes S = ;, and the set of uneliminated nodes X inludes

all internal nodes.

Compute the degree of all the nodes in X .

Step 2. (Minimum Degree) Determine the new minimum degree among nodes in X and the set T of all nodes

in the set X � S of the minimum degree.

Step 3. (Mass Elimination) All nodes in X are unagged.

For eah node n

i

in T :

If node n

i

is unagged

�nd the set W of indistinguishable nodes of n

i

;

ag the adjaent nodes of n

i

and the nodes of in the urrent graph;

S = S [W .

Step 4. (Degree update) Determine the representation of the new graph.

Update the degree of all the agged nodes in X � S that have not been outmathed.

Step 5. (Loop or Stop) Repeat steps 2 to 4 until T is empty.

Note that we exluded external nodes from the the set of uneliminated nodes. So that the resultant node

elimination sequene ontains internal nodes only.

Theorem 2. Let S

1

and S

2

denote any di�erent node elimination sequenes of a given iruit. Suppose n

i

and n

j

are two external nodes of the iruit, Let Y

ij

and Y

0

ij

are the admittane between n

i

and n

j

after Y-�

Transformations following sequene S

1

and S

2

, respetively. The following equation holds:

Y

ij

= Y

0

ij

:

�
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The theorem tells us that even although di�erent node elimination sequenes ould have dramatially di�erent

impat on the performane of redution via Y-� Transformation, the transformed admittane from these di�erent

redution sequenes are the same.

An observation from (15) is that without onsidering ommon fator anellation between Y

ij

's numerator

and denominator, the order of Y

ij

is the summation of the order of Y

i0

and Y

j0

. Beause the redution is to be

applied to eah internal nodes, Y

ij

may be appearing on the right-hand side of (15) so that order of transformed

admittane will be growing fast. When reduing interonnet networks, on the other hand, we only need to keep

oeÆients of Y

ij

's lower order terms, i.e., fa

0

; a

1

; : : : ; a

k

g and fb

0

; b

1

; : : : ; b

k

g of Y

ij

in (18). Most interonnet

redution models have k � 3. The following theorem ensures us that no matter transformed admittane Y

ij

is an

intermediate admittane or a �nal one to be realized, keeping its lower k order oeÆients in its numerator and

denominator throughout the whole redution proess delivers orret lower k order oeÆients of �nal transformed

admittane.

Theorem 3. With no loss of generality, let us refer to (15). Suppose we have two Y-� redution proedures

A and B. In A, a newly transformed admittane is termed as Y

ij

and an be omputed as

Y

ij

(s) =

Y

i0

(s)� Y

j0

(s)

Y

10

(s) + Y

20

(s) + � � �+ Y

k0

(s)

:

While in B, a newly transformed admittane is termed as

~

Y

ij

and an be omputed as

~

Y

ij

(s) � Y

0

ij

(s) =

~

Y

i0

(s)�

~

Y

j0

(s)

~

Y

10

(s) +

~

Y

20

(s) + � � �+

~

Y

k0

(s)

:

Here Y

0

ij

is in the form

Y

0

ij

(s) =

a

0

+ a

1

s+ � � �+ a

m

s

m

b

0

+ b

1

s+ � � �+ b

n

s

n

:

And

~

Y

ij

is the k-th order approximate of Y

0

ij

~

Y

ij

(s) =

a

0

+ a

1

s+ � � �+ a

k

s

k

b

0

+ b

1

s+ � � �+ b

k

s

k

; 0 � k � min(m;n):

If

~

Y

i0

,

~

Y

j0

,

~

Y

10

,

~

Y

20

; : : : ;

~

Y

k0

are the k-th order approximate of Y

i0

, Y

j0

, Y

10

; Y

20

; : : : ; Y

k0

, respetively, then

~

Y

ij

is also the k-th order approximate of Y

ij

. �

The theorem an be proven using mathematial indution.

4 Common Fator in Y-� Transformation

Briefed in the introdution, Y-� transformation proess disussed so far introdues ommon fators into the

numerator and denominator of the right-hand side admittane in (15). This side e�et is harmful to our redution

algorithm beause (1)they ause the magnitude of oeÆients of the numerator and denominator unneessarily

grow: basially they inrease exponentially along with the order of the orresponding terms; (2) ommon fators

in numerators/denominators reate fake zeros/poles that hamper the pole/residue analysis [1℄.

In this setion, we treat linear networks as graphs, representing admittane of the i-th branh as a

i

=b

i

. Beause

the Y-� transformation is an ontinuous proess, we denote admittane of original iruits as Y

(0)

i;j

, and Y

(1)

i;j

when

the �rst node is eliminated. In this way, we an rewrite (15)

Y

(t)

i;j

(s) = Y

(t�1)

i;j

(s) +

Y

(t�1)

t�1;i

(s)� Y

(t�1)

t�1;j

(s)

Y

(t�1)

t�1;1

(s) + Y

(t�1)

t�1;2

(s) + � � �+ Y

(t�1)

t�1;k

(s)

: (19)

for the t-th transformation.

Let us �rst go through an example to show you when these ommon fators are generated and what they are

omposed of. Then we give a rigorous proof for their existene. Finally we talk about its appliations.

9



4.1 Example

(a)                                                                                        (b)

5

8 7

6Y Y

Y

2

(2)
5

9
(2)

(2)
6

(2)
7

(1)

(1)

(1)

Y

Y

Y Y

Y

Y

(1)

(1)

Y
(1)
1

10Y
(1)

Y3
(1)

8
(2)

Y

(2)

Y
(1)
4

Y9
(1)

Y10

Figure 5: An example showing ommon fator existene|1st Y-� transformation: (a) original iruit shemati;

(b) iruit shemati after the Y-� transformation.

In Fig. 5(a), we have �ve nodes as a portion of a iruit. We want to apply Y-� transformation on this portion.

Literally speaking, we are going to eliminate the entral solid node from the graph, and so as its four ars. The

graph after the transformation is shown in Fig. 5(b). The admittane in Fig. 5(a) is:

Y

(1)

1

=

a

1

b

1

; Y

(1)

2

=

a

2

b

2

; Y

(1)

3

=

a

3

b

3

; Y

(1)

4

=

a

4

b

4

; Y

(1)

5

=

a

5

b

5

;

Y

(1)

6

=

a

6

b

6

; Y

(1)

7

=

a

7

b

7

; Y

(1)

8

=

a

8

b

8

; Y

(1)

9

=

a

9

b

9

; Y

(1)

10

=

a

10

b

10

:

Let us hek out how to evaluate admittane Y

(2)

5

in Fig. 5(b). As shown in Fig. 6, Y

(2)

5

is a ombination of

two parallel admittane: Y

(1)

5

, and Y

(2)

0

5

. Y

(1)

5

omes from Fig. 5(a) and Y

(2)

0

5

is newly generated by Y

(1)

1

, Y

(1)

2

,

Y

(1)

3

, and Y

(1)

4

:

Y

(2)

0

5

=

a

1

b

1

�

a

2

b

2

a

1

b

1

+

a

2

b

2

+

a

3

b

3

+

a

4

b

4

=

a

1

a

2

b

3

b

4

a

1

b

2

b

3

b

4

+ b

1

a

2

b

3

b

4

+ b

1

b

2

a

3

b

4

+ b

1

b

2

b

3

a

4

: (20)

We de�ne

! � a

1

b

2

b

3

b

4

+ b

1

a

2

b

3

b

4

+ b

1

b

2

a

3

b

4

+ b

1

b

2

b

3

a

4

: (21)

Then (20) an be rewritten as

Y

(2)

0

5

=

a

1

a

2

b

3

b

4

!

�

t

1;2

!

: (22)
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5

Y

Y
(1)

5
(2)’

(1)
1

(1)
2

Y

Y

Y
(1)
4

Y3
(1)

Figure 6: An example showing ommon fator existene|1st Y-� transformation : intermediate

Similarly, we have

Y

(2)

0

6

=

a

1

a

3

b

2

b

4

!

�

t

1;3

!

; (23)

Y

(2)

0

7

=

a

1

a

4

b

2

b

3

!

�

t

1;4

!

; (24)

Y

(2)

0

8

=

a

2

a

3

b

1

b

4

!

�

t

2;3

!

; (25)

Y

(2)

0

9

=

a

2

a

4

b

1

b

3

!

�

t

2;4

!

; (26)

Y

(2)

0

10

=

a

3

a

4

b

1

b

2

!

�

t

3;4

!

: (27)

Therefore, Y

(2)

5

an be evaluated as

Y

(2)

5

= Y

(1)

5

+ Y

(2)

0

5

=

a

5

b

5

+

t

1;2

!

=

a

5

! + t

1;2

b

5

b

5

!

:

Similarly,

Y

(2)

6

=

a

6

! + t

1;3

b

6

b

6

!

; Y

(2)

7

=

a

7

! + t

3;4

b

7

b

7

!

; Y

(2)

8

=

a

8

! + t

2;4

b

8

b

8

!

;

Y

(2)

9

=

a

9

! + t

2;3

b

9

b

9

!

; Y

(2)

10

=

a

10

! + t

1;4

b

10

b

10

!

:

Now let us apply Y-� transformation one again, as shown in Fig. 7(a). Admittane X

0

=Y

0

denotes the

11



(a)                                                                                         (b)

(2)

5
(2)

6
(2)

7
(3)

9
(3)

(3)
8

9

(2)
8

Y

YY

10
(2)

YY

X’/Y’

Y

Y Y
(2)
7

Y

Figure 7: An example showing ommon fator existene|2nd Y-� transformation: (a) before the transformation;

(b) after the transformation.

e�etive admittane. Let us see how to evaluate Y

(3)

9

in Fig. 7(b).

Y

(3)

9

= Y

(2)

9

+

Y

(2)

5

Y

(2)

6

Y

(2)

5

+ Y

(2)

6

+ Y

(2)

10

+

X

0

Y

0

=

a

9

! + t

2;3

b

9

b

9

!

+

a

5

!+t

1;2

b

5

b

5

!

a

6

!+t

1;3

b

6

b

6

!

a

5

!+t

1;2

b

5

b

5

!

+

a

6

!+t

1;3

b

6

b

6

!

+

a

10

!+t

1;4

b

10

b

10

!

+

X

0

Y

0

=

a

9

! + t

2;3

b

9

b

9

!

+

(a

5

! + t

1;2

b

5

)(a

6

! + t

1;3

b

6

)Y

0

b

10

!

�

(a

5

! + t

1;2

b

5

)b

6

b

10

Y

0

+ (a

6

! + t

1;3

b

6

)b

5

b

10

Y

0

+ (a

10

! + t

1;4

b

10

)b

5

b

6

Y

0

+ !b

5

b

6

b

10

X

0

�

�

Y

(3)

9

n

Y

(3)

9

d

;

where

Y

(3)

9

d

= b

9

!

�

(a

5

! + t

1;2

b

5

)b

6

b

10

Y

0

+ (a

6

! + t

1;3

b

6

)b

5

b

10

Y

0

+ (a

10

! + t

1;4

b

10

)b

5

b

6

Y

0

+ !b

5

b

6

b

10

X

0

�

;

and

Y

(3)

9

n

= (a

9

! + t

2;3

b

9

)

�

(a

5

! + t

1;2

b

5

)b

6

b

10

Y

0

+ (a

6

! + t

1;3

b

6

)b

5

b

10

Y

0

+ (a

10

! + t

1;4

b

10

)b

5

b

6

Y

0

+ !b

5

b

6

b

10

X

0

�

+ b

9

(a

5

! + t

1;2

b

5

)(a

6

! + t

1;3

b

6

)Y

0

b

10

: (28)

By extending the right-hand side of (28) and reordering it to separate the terms with ! and without !, we an

rewrite Y

(3)

9

n

as

Y

(3)

9

n

= b

9

(t

1;2

b

5

)(t

1;3

b

6

)Y

0

b

10

+ (t

2;3

b

9

)

�

(t

1;2

b

5

)b

6

b

10

Y

0

+ (t

1;3

b

6

)b

5

b

10

Y

0

+ (t

1;4

b

10

)b

5

b

6

Y

0

�

+ !(� � � )

=

n

t

1;2

t

1;3

+ t

2;3

�

t

1;2

+ t

1;3

+ t

1;4

�

o

b

5

b

6

b

9

b

10

Y

0

+ !(� � � ): (29)
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Replae t

i;j

in (29) aording to (22){(27),

Y

(3)

9

n

=

n

(a

1

a

2

b

3

b

4

)(a

1

a

3

b

2

b

4

) + (a

2

a

3

b

1

b

4

)

�

a

1

a

2

b

3

b

4

+ a

1

a

3

b

2

b

4

+ a

1

a

4

b

2

b

3

�

o

b

5

b

6

b

9

b

10

Y

0

+ !(� � � )

=

n

(a

1

a

2

a

3

b

4

)(a

1

b

2

b

3

b

4

) + (a

1

a

2

a

3

b

4

)

�

a

2

b

3

b

4

b

1

+ a

3

b

2

b

4

b

1

+ a

4

b

2

b

3

b

1

�

o

b

5

b

6

b

9

b

10

Y

0

+ !(� � � )

= a

1

a

2

a

3

b

4

!b

5

b

6

b

9

b

10

Y

0

+ !(� � � ): (30)

We have notied that there is one ! in Y

(3)

9

d

. The point here is that there is also one ! in Y

(3)

9

n

, suh that these

two ! an be aneled. And this property is also held for the numerators of Y

(3)

7

and Y

(3)

8

. The underlined parts

in (31) and (32) are very similar to that in (29).

Y

(3)

7

n

=

n

t

1;3

t

1;4

+ t

3;4

�

t

1;2

+ t

1;3

+ t

1;4

�

o

b

5

b

6

b

7

b

10

Y

0

+ !(� � � ); (31)

and

Y

(3)

8

n

=

n

t

1;2

t

1;4

+ t

2;4

�

t

1;2

+ t

1;3

+ t

1;4

�

o

b

5

b

6

b

8

b

10

Y

0

+ !(� � � ): (32)

And atually both of them also have the same fator !. This is not a oinidene. We will give a rigorous proof

after Theorem 4.

! is omposed when the solid node in Fig. 5(a) is eliminated. And it appears in numerators of some Y

(3)

i

as

well when one of the node's four neighbors is eliminated.

4.2 ! Exists in General Graphs

In this sub-setion we will verify that our intuition from the example above is generally true. In other words,

although the solid node in Fig. 5(a) is of degree 4, we an prove that (30) have a fator ! if the node were of

degree k. This ! is the general form of (21). It is worthy noting the general meaning of !.

Definition 1. Given a node n

0

in a multi-port RKC linear time-invariant network, suppose n

0

has k neighbors

and it is eligible for Y-� transformation. Denote admittane between n

0

and its neighbor n

i

as

a

i

b

i

; i 2 f1; kg.

Partiularly, we assume b

1

; : : : ; b

k

are exlusively prime to eah other. We de�ne

! =

k

X

i=1

0

�

a

i

k

Y

j=1;j 6=i

b

j

1

A

(33)

Lemma 1. Any multi-port RKC linear time-invariant network an be represented by G(V;E). 8n

i

2 V with

exatly four neighbors, there is an expression !

i

, whih is the denominator of admittane generated when one

applies Y-� transformation on n

i

. Suppose V

i

is the set of four neighbors of n

i

. When n

i

is eliminated and

any node n

j

2 V

i

is eliminated later, eah numerator of admittane aross any two nodes in V

i

� fn

j

g has a

multipliation fator !

i

.

Proof: The proof is straightforward from the example in the last setion. Lemma 1. an be extended to nodes

with k neighbors, k � 3.

Theorem 4. Any multi-port RKC linear time-invariant network an be represented by G

0

(V

0

; E

0

). 8n

i

2 V

with three or more neighbors (k � 3), there is an expression !

i

, whih is the denominator of admittane generated

when one applies Y-� transformation on n

i

. Suppose L

i

is the set of neighbors of n

i

. When n

i

is eliminated and

any node n

j

2 L

i

is eliminated later, eah numerator of admittane among L

i

� fn

j

g has a multipliation fator

!

i

.

Proof: For a given graph G(V;E) as depited in the theorem, we hoose a node in V arbitrarily, and we denote

it as n

0

. Also we denote its k neighbors as n

1

; : : : ; n

k

, as shown in Fig. 8(a). We further denote admittane

13



(a)                                                               (b)
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Figure 8: Illustration for proof of Theorem 4: (a) n

0

to be eliminated; (b) n

1

to be eliminated.

between any node n

i

in fn

1

; : : : ; n

k

g and n

0

as Y

(1)

i

, and any two nodes n

i

; n

j

in fn

1

; : : : ; n

k

g as Y

(1)

i;j

,

Y

(1)

i

=

a

i

b

i

; and Y

(1)

i;j

=

a

i;j

b

i;j

:

Now let us perform Y-� transformation on node n

0

. This proess will generate a new branh between any two

of n

0

's neighbors, so the total number of new branhes would be

k(k�1)

2

. The admittane of these new branhes

an be denoted as Y

(2)

0

i;j

. These branhes will be merged with Y

(1)

i;j

. At the moment when we are to eliminate one

of n

0

's neighbors, we denote the admittane between any two nodes n

i

; n

j

2 fn

1

; : : : ; n

k

g as Y

(2)

i;j

. Aording to

(19), Y

(2)

0

i;j

an be derived as follows.

Y

(2)

0

i;j

=

a

i

b

i

a

j

b

j

P

k

�=1

a

�

b

�

; i; j 2 f1; : : : ; kg and i < j: (34)

Let us de�ne

!

0

�

k

X

i=1

0

�

a

i

k

Y

j=1;j 6=i

b

j

1

A

: (35)

Then (34) an be written as

Y

(2)

0

i;j

=

a

i

a

j

Q

k

�=1;� 6=i;j

b

�

!

0

; i; j 2 f1; : : : ; kg and i < j: (36)

We de�ne

t

i;j

= a

i

a

j

k

Y

�=1;� 6=i;j

b

�

; i; j 2 f1; : : : ; kg and i < j; (37)

and then we an rewrite (36) as

Y

(2)

0

i;j

=

t

i;j

!

0

; i; j 2 f1; : : : ; kg and i < j:
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Without losing generality, let us assume that the next node to be eliminated among n

0

's neighbors is n

1

. To

make a rigorous proof, We an not take it for granted that

Y

(2)

i;j

= Y

(1)

i;j

+ Y

(2)

0

i;j

i; j 2 f1; : : : ; kg and i < j

beause after n

0

, the next node to be eliminated in the whole graph may or may not be n

1

. if it is not, then Y

(2)

i;j

has to be expressed as

Y

(2)

i;j

= Y

(1)

i;j

+

A

B

+ Y

(2)

0

i;j

; i; j 2 f1; : : : ; kg and i < j; (38)

where

A

B

is the e�etive admittane that has been merged onto the admittane between n

i

and n

j

when some

other nodes are eliminated before n

1

and after n

0

. Fortunately, we do not have to are about what Y

i;j

is, as long

as it is a rational funtion of s. So it is natural to onsider Y

i;j

and

A

B

as one e�etive admittane, and let us

denote it as

e

Y

(1)

i;j

= Y

(1)

i;j

+

A

B

�

~a

i;j

~

b

i;j

; i; j 2 f1; : : : ; kg and i < j: (39)

Combining (36) and (39), we an rewrite (38) as follows:

Y

(2)

i;j

=

~a

i;j

!

0

+

~

b

i;j

t

i;j

~

b

i;j

!

0

; i; j 2 f1; : : : ; kg and i < j: (40)

Now let us eliminate n

1

. After we eliminate n

0

, The topology of the graph in Fig. 8(a) has be hanged,

as shown in Fig. 8(b). Exept for those belonging to the lique formed by n

0

, X

0

=Y

0

denotes the e�etive

admittane assoiated with n

1

outside the lique. This time let us denote the admittane between any two nodes

n

i

; n

j

2 fn

2

; : : : ; n

k

g as Y

(3)

i;j

. Aording to (19), the admittane of

(k�1)(k�2)

2

new branhes after being merged

with Y

(2)

i;j

an be written as

Y

(3)

i;j

= Y

(2)

i;j

+

Y

(2)

1;i

Y

(2)

1;j

�

P

k

�=2

Y

(2)

1;�

�

+

X

0

Y

0

(41)

�

Y

(3)

i;j

n

Y

(3)

i;j

d

; i; j 2 f2; : : : ; kg and i < j:

Inserting (40) into (41), we an write Y

(3)

i;j

n

as

Y

(3)

i;j

n

=

�

~a

i;j

!

0

+

~

b

i;j

t

i;j

�

2

4

k

X

�=2

�

~a

1;�

!

0

+

~

b

1;�

t

1;�

�

0

�

k

Y

p=2;p 6=�

b

1;p

1

A

Y

0

+ !

0

 

k

Y

�=2

b

1;�

!

X

0

3

5

+

~

b

i;j

�

~a

1;i

!

0

+

~

b

1;i

t

1;i

��

~a

1;j

!

0

+

~

b

1;j

t

1;j

�

0

�

k

Y

�=2;� 6=i;j

b

1;�

1

A

Y

0

: (42)
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Expand the right-hand side of (42) and separate terms with !

0

and without !

0

,

Y

(3)

i;j

n

=

�

~

b

i;j

t

i;j

�

2

6

4

k

X

�=2

�

~

b

1;�

t

1;�

�

0

�

k

Y

p=2;p 6=�

b

1;p

1

A

Y

0

3

7

5

+

~

b

i;j

�

~

b

1;i

t

1;i

��

~

b

1;j

t

1;j

�

0

�

k

Y

p=2;p 6=i;j

b

1;p

1

A

Y

0

+ !

0

(� � � )

=

�

~

b

i;j

t

i;j

�

"

k

X

�=2

t

1;�

# 

k

Y

p=2

b

1;p

!

Y

0

+

~

b

i;j

t

1;i

t

1;j

 

k

Y

p=2

b

1;p

!

Y

0

+ !

0

(� � � )

=

 

t

i;j

k

X

�=2

t

1;�

+ t

1;i

t

1;j

!

~

b

i;j

k

Y

p=2

b

1;p

Y

0

+ !

0

(� � � ) (43)

� T

i;j

~

b

i;j

k

Y

p=2

b

1;p

Y

0

+ !

0

(� � � ) :

As we mentioned, (29), 31 and 32 are just speial ases of (43). Replae t

i;j

in (43) aording to (37), the

underlined part an be rewritten as

T

i;j

=

0

�

a

i

a

j

k

Y

�=1;� 6=i;j

b

�

1

A

2

4

k

X

�=2

0

�

a

1

a

�

k

Y

p=1;p 6=1;�

b

p

1

A

3

5

+

0

�

a

1

a

i

k

Y

�=1;� 6=1;i

b

�

1

A

0

�

a

1

a

j

k

Y

�=1;� 6=1;j

b

�

1

A

= a

1

0

�

a

i

a

j

k

Y

�=1;� 6=i;j

b

�

1

A

2

4

k

X

�=2

0

�

a

�

k

Y

p=1;p 6=1;�

b

p

1

A

3

5

+ a

j

0

�

a

1

a

i

k

Y

�=1;� 6=1;i

b

�

1

A

0

�

a

1

k

Y

�=1;� 6=1;j

b

�

1

A

= a

1

0

�

a

i

a

j

k

Y

�=2;� 6=i;j

b

�

1

A

2

4

b

1

k

X

�=2

0

�

a

�

k

Y

p=1;p 6=1;�

b

p

1

A

3

5

+ a

j

0

�

a

1

a

i

k

Y

�=1;� 6=1;i;j

b

�

1

A

0

�

b

j

a

1

k

Y

�=1;� 6=1;j

b

�

1

A

=

0

�

a

1

a

i

a

j

k

Y

�=2;� 6=i;j

b

�

1

A

2

4

b

1

k

X

�=2

0

�

a

�

k

Y

p=1;p 6=1;�

b

p

1

A

+ b

j

a

1

k

Y

�=1;� 6=1;j

b

�

3

5

=

0

�

a

1

a

i

a

j

k

Y

�=2;� 6=i;j

b

�

1

A

!

0

: (44)

So overall speaking, Y

(3)

i;j

n

has a fator !

0

.

Please note that when we were rewriting (34) into (36), we atually simpli�ed the senario beause we took

it for granted that eah b

�

in (34) is relatively prime to eah other. Unfortunately, to ahieve the optimal result

for both eÆieny and auray, we an not assume so. For example if b

1

= t

0

t

1

and b

2

= t

0

t

2

, then we have to

rewrite the denominator in (34) as

a

1

t

0

t

1

+

a

2

t

0

t

2

+

k

X

�=3

a

�

b

�

=

a

1

t

2

+ a

2

t

1

t

0

t

1

t

2

+

k

X

�=3

a

�

b

�

: (45)

In our simpli�ed senario, we have rewritten it as

a

1

t

0

t

1

+

a

2

t

0

t

2

+

k

X

�=3

a

�

b

�

=

a

1

t

0

t

2

+ a

2

t

0

t

1

t

2

0

t

1

t

2

+

k

X

�=3

a

�

b

�

:

As you an imagine, in order to onsider this ommon t

0

, we will have to rewrite !

0

de�ned in (35). Let us

alled it !

0

0

. Without the additional t

0

, !

0

0

is simpler than !

0

. Although we have hanged !

0

to !

0

0

, Y

(3)

i;j

n

will
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have a fator !

0

0

. Beause eah multipliation term in (35) has either b

1

or b

2

or both of them as fators. So !

0

0

is atually a fator of !

0

. In our example above, !

0

= t

0

!

0

0

.

In the theorem we only onsidered nodes with more than two neighbors, as for a node with exatly two

neighbors, there will be only one new branh and its admittane does not have redundant ommon fator in its

numerator or denominator. Please note that we do not onsider iruit ases with dangling or isolated nodes

(with one neighbor or no neighbor at all).

In this theorem, we evaluated Y

(2)

from Y

(1)

and Y

(3)

from Y

(2)

. In the evaluation proess, we did not hange

Y

(2)

. But if we go on the proess and use Y

(3)

to evaluate Y

(4)

, then before doing this, we may need to simplify

some of Y

(3)

beause their numerator and denominator have one or more ommon fators. The next theorem

Y

(1)

) Y

(2)

) Y

(3)

!

e

Y

(3)

) Y

(4)

Figure 9: General Senario

laims that numerators of Y

(4)

would have the ! generated by Y

(2)

even with the simpli�ation from Y

(3)

to

e

Y

(3)

in between(Fig. 9).

Theorem 5. Given a multi-port RKC linear time-invariant network represented by G

0

(V

0

; E

0

), we an use a

series of Y-� transformations to eliminate all its internal nodes. Suppose it has n internal nodes, then after

we apply Y-� transformation on one node in G

k

(V

k

; E

k

)(Fig. 10(a)), the graph will be updated and denoted as

G

k+1

(V

k+1

; E

k+1

), where 0 � k < n� 1.

n

n

n

n

n

n

n

n

n

n

n

n1

0

n

n

n

n

   (a)                                                                       (b)                                                                    (c)                                                              (d)

n

n

n

n

n

n

n n

n

n
n

3 5

6

7

3 5

6

7

3

2

7

4

5

6

Y

2

4

1

2

1 7

Y

26 n

3

4

5

12 .

  

. . .    . . .

4

..(k+p)

.
. .

12
(k+1)

.

. .

Figure 10: Illustration for Theorem 5: (a) k-th transformation; (b) (k + 1)-th transformation; () (k + p)-th

transformation; (d) (k + p+ 1)-th transformation.

Suppose n

0

is eliminated at the k-th step. Let L

0

represent the neighbors of n

0

in G

k

(V

k

; E

k

). Then we further

suppose that n

1

2 L

0

is the �rst one in L

0

being eliminated after n

0

. Let us say n

1

is eliminated in the k + p-

th step. Fig. 10 shows the senario. Y

(k)

represents the admittane between n

0

and its neighbors. Y

(k+p)

the

admittane between any two nodes in L

0

, and Y

(k+p+1)

the admittane between any two nodes in L

0

� fn

1

g.

numerators of Y

(k+p+1)

would have the !

0

generated at the k-th step, no matter how many other ommon

fators are found and aneled out during the (k + 1)-th step through the (k + p)-th step.

Proof: Firstly, we know that omega's assoiated to eah internal node during the redution proess are prime

to eah other, as no any two nodes have exatly the same branhes at any redution steps. Unless ultimately,

there remain only two nodes, when the redution terminates.

Seondly, it is true that if we hoose to postpone all the ommon-fator-anellation operations during the

(k+1)-th step through the (k+p)-th step, these ommon fators are still ommon fators in all of the admittane

in Y

(k+p+1)

, If we suppose ! is a ommon fator of Y

(k+1)

12

in Fig. 10(b), for instane, then it is still a ommon

fator of Y

(k+p)

12

in Fig. 10(), as only admittane-addition operations might be performed on branh between n

1

17



and n

2

during the (k + p + 2)-th step through the (k + p)-th step. Aording to (15), admittane between any

two nodes in L

0

�fn

1

g in the (k+ p+1)-th step(Fig. 10(d)) has ! as its ommon fator. And beause ! is prime

to !

0

, !

0

would still ome up as a ommon fator to eah admittane in Y

(k+p+1)

if we had aneled out ! in

earlier steps.

Similar to mathematial indution, Theorem 4 assures the foundation of our redution algorithm, and theorem 5

makes our redution proess work reursively. The two theorems together support our algorithm in the next

setion.

4.3 Common Fators in Denominators Only

There is another kind of ommon fators: for admittane of two branhes that were onneted to the same

node n

x

eliminated earlier, the denominators of the two admittane share the ! assoiated to n

x

. Fig. 11 shows

an example senario of our explanation. After n

0

in (a) is eliminated, Y

(k+1)

12

and Y

(k+1)

13

in (b) share a ommon

(a)                                                (b)

Y

n 1

3nn 2
23

2 n 3n

Y

1

n

(k+1)
13

(k)
02 03Y

Y

(k)

n

Y (k+1)
12Y

(k)

0

01

(k+1)

Figure 11: An example shown ommon fators in denominators: (a) n

0

to be eliminated; (b) n

1

to be eliminated.

fator ! from n

0

. And when n

1

is to be eliminated using (15, the ommon fator in the denominator of the

right-hand side has to be identi�ed. Please note that this ! is not neessarily equal to the whole denominator of

Y

(k+1)

12

or Y

(k+1)

13

, but generally serves as a ommon fator of the two.

5 Overall Algorithm

Colleting all the rules that we have had so far for Y-� transformation, we give an algorithm in pseudo-

ode. Given a multi-port RKC linear time-invariant network, one an represent it as a graph G

0

(V

0

; E

0

), with

~

V

inluding all external nodes.

Algorithm 1.

1. order nodes in V

0

�

~

V and generate a node elimination sequene S;

2. for eah node n

i

2 V

0

�

~

V , reate a set L

i

and initiates its value as its neighbors in G

0

;

3. for eah node n

i

2 V

0

� fn

p

; n

q

g, reate a set n

i

:prev and n

i

:prev = �;

4. for n

i

= S[i℄ do

4.1. �nd the node n

k

in L

i

that appears �rst in S;

4.2. n

k

:prev = n

k

:prev [ fn

i

g;
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4.3. for n

j

2 n

i

:prev do:

4.3.1. t

j

= jL

i

\ L

j

j � 1;

4.4 perform Y-� transformation on node n

i

:

4.4.1. denominator: Y

(i)

i

d

=

P

n

j

2L

i

Y

(i�1)

i;j

;

4.4.2. remove redundany: divide the numerator and denominator of Y

(i)

i

d

with

Q

n

j

2n

i

:prev

!

t

j

j

, then

Y

(i)

i

d

�

!

i

A

;

4.4.3. for n

j

; n

k

2 L

i

; j 6= k do:

4.4.3.1. 
 = 1:0;

4.4.3.2. for n

�

2 n

i

:prev do:

4.4.3.2.1. if n

j

2 L

�

and n

k

2 L

�

, then 
 = 
 � !

�

;

4.4.3.3. numerator: Y

(i)

i

n

= Y

(i�1)

j;i

Y

(i�1)

i;k

�

B

C

;

4.4.3.4. new admittane: Y

(i)

0

j;k

=

Y

(i)

i

n

Y

(i)

i

d

=

B

C

A

!

i

;

4.4.3.5. remove redundany: Y

(i)

0

j;k

=

B

A


C


!

i

�

D

E

, where

A


C

is a division operation;

4.4.3.6. merging, if neessary: Y

(i)

j;k

= Y

(i)

0

j;k

+ Y

(i�1)

j;k

=

D

E

+

G

H

=

DH+GE

EH

, where Y

(i�1)

j;k

=

G

H

;

4.4.3.7. remove redundany: if 
 6= 1:0, then Y

(i)

j;k

=

(DH+GE)=


2

EH=


2

;

4.4.4. G

i�1

has been transformed to G

i

;

4.5. update L

j

of n

j

2 L

i

.

Topologial analysis method is another approah to obtaining the driving-point admittane funtions by eval-

uating determinants and ofators of admittane matries. One advantage of topologial formulas over the

onventional methods for the evaluation of determinants and ofators is that the former avoids the usual an-

ellations inherent in the expansion of determinants and ofators in the latter. The determinant of the node

admittane matrix of a passive network without mutual indutanes is equal to the sum of all the tree admittane

produts of it. The enumeration of all the trees of a graph is very time-onsuming[27℄. The approah is generally

an exponential algorithm in terms of time. In the worst ase when G

0

is a omplete graph, there are O(N

N�2

)

trees in the graph and evaluating all the admittane produts takes an exponential amount of time, where N is

the number of nodes in G

0

.

For a given graph G

0

, we assume that N is the number of nodes in G

0

, d is the maximum degree of nodes in

G

0

, and

~

d is the overall maximum degree of nodes G

0

, G

1

, and so on. Of ourse

~

d > d. r is supposed to be the

number of orders reserved for eah admittane, and t the maximum size of n

i

:prev de�ned �rst in Step 3.

In our algorithm, Step 1 has O(N �

~

d) operations, even without mass elimination. Step 2 takes O(N � d) time,

and Step 3 O(N). Step 4 itself iterates about N times, assuming the number of external nodes is far less than

N . Inside eah iteration, 4.1 takes O(1) time beause we always maintain the list L of every node along with

new branh generation. 4.2 also takes O(1) time. As eah node an only be added into another node's prev

list one, 4.3 takes O(

~

d) time in average in every iteration of Step 4. Inside 4.4, 4.4.1 takes O(

~

d � r

2

), beause

eah polynomial produt operation takes O(r

2

) and it dominates any polynomial addition operation. Beause

the maximum value of t

j

from 4.3.1 would be

~

d. 4.4.2 takes O(

~

d � r

2

) time in average in every iteration of Step

19



4, for the similar reason for 4.3. 4.4.3 iterates O(

~

d

2

) times in eah iteration of Step 4. Inside it, 4.4.3.1 takes

onstant time, and 4.4.3.4 takes no time, as it is only a statement. 4.4.3.2 takes O(r

2

� t) time. Note that the

ondition evaluation takes onstant time, beause neighbors of n

i

:prev was sanned in 4.3 and stored for late use.

4.4.3.5{4.4.3.7 eah takes O(r

2

) time. Finally, 4.5 takes O(

~

d

2

). So overall speaking, 4.4 takes O(

~

d

2

� r

2

� t) and

hene Step 4 takes O(N �

~

d

2

� r

2

� t).

The worst ase happens when G

0

is a omplete graph.

~

d = N � 1 and t = 1. So the worst ase omplexity is

O(N

3

� r

2

).

Di�erent from LU deomposition in SPICE, our algorithm enables dynamialmemory de-alloation, as branhes

of nodes eliminated are no longer useful and the memory thus an be freed. As a result, the memory requirement

grows up in the middle of the redution proess and goes down till the end of it. For graphs derived from VLSI

iruits, the proposed algorithm is proportional to the overall maximum number of branhes in G

0

, G

1

, et. The

worst ase happens when G

0

is a omplete graph and the omplexity is O(N

2

).

6 Admittane in Its Simplest Form

If we apply Algorithm 1 on omplete graphs, the �nal solution is optimal, meaning it does not has any ommon

fators and thus it has the same order as the original network. Let us �rst look at a 6-node omplete graph. Its

transformation proess is shown in Fig. 12. Solid nodes in the �gure are to be eliminated at the snapshot. Y

i

denotes the form of admittane in eah step, where denominators are given and numerators are simply ignored

(*). Please keep in mind that these numerators have the same order as their orrespondent denominators.

(c)                                         (d)                                          (e)
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Figure 12: (a) Y

i

=

a

i

b

i

; j!

1

j = 5; (b) Y

i

=

�

b

i

!

1

; j!

2

j = 9; () Y

i

=

�

b

i

!

2

; j!

3

j = 12; (d) Y

i

=

�

b

i

!

3

; j!

4

j = 14;

(e) Y

i

=

�

b

i

!

4

In Fig. 12(a), �ve heavily weighted branhes are going to be eliminated along with the entral node. New

branhes are in the form of

a

i

b

i

a

j

b

j

a

1

b

1

+

a

2

b

2

+

a

3

b

3

+

a

4

b

4

+

a

5

b

5

=

�

a

1

b

2

b

3

b

4

b

5

+:::+b

1

b

2

b

3

b

4

a

5

b

1

b

2

b

3

b

4

b

5

�

�

!

1

b

1

b

2

b

3

b

4

b

5

=

�

!

1

(46)

20



When these new branhes are to be ombined with those existing in parallel

�

!

1

+

a

i

b

i

=

�

b

i

!

1

; (47)

whih onstitute Y

i

s in Fig. 12(b).

Let us go one step further. When we are eliminating the seond node(Fig. 12(b)), new branhes are in the

form of

�

b

i

!

1

�

b

j

!

1

�

b

6

!

1

+

�

b

7

!

1

+

�

b

8

!

1

+

�

b

9

!

1

�

�

b

i

b

j

!

2

1

!

2

b

6

b

7

b

8

b

9

!

1

=

�

!

1

!

2

: (48)

After the similar step as 47, the �nal admittane Y

i

in Fig. 12() an be evaluated as

�

!

1

!

2

+

�

b

i

!

1

=

�

b

i

!

1

!

2

: (49)

Due to Theorem 4, !

1

in (49) an be aneled. So in Fig. 12(),

Y

i

=

�

b

i

!

2

(50)

So on and so forth, when the network is redued into one port(Fig. 12(e)), the order of the admittane is

jb

i

!

4

j = 15, whih is equal to the number of branhes in Fig. 12(a). Note that j!

2

j � j!

1

j = 4; j!

3

j � j!

2

j =

3; j!

4

j � j!

3

j = 2.

Theorem 6. Given a linear RKC time-invariant network whih an be represented by a graph G(V;E), after

Algorithm 1 redues G into one branh whose admittane has the same order as the original network.

Proof: Let us look at an example along our proof. Fig. 13 illustrate a Y-� redution series. Solid nodes shown in

eah graph are the ones to be eliminated at that step. As we know, eah time when we eliminate a node, there is

an ! assoiated with it. And the denominator of the admittane assoiated with every branh is a multipliation

of b and some of existing !'s from nodes we have eliminated so far. If the branh exists in the original graph

G

0

(V

0

; E

0

), then b is the denominator of its admittane; if the branh does not exist in G

0

(V

0

; E

0

), then b = 1. We

assume eah branh in E

0

has di�erent admittane and we assign a distint integer to eah of them (Fig. 13(a)).

Graphs (a){(b) in the elimination series are denoted as G

0

(V

0

; E

0

); G

1

(V

1

; E

1

); ; : : : ; G

n

(V

n

; E

n

), respetively,

where n = jV

0

j � 2. Along with eah branh in eah graph is a set S, where eah member W is a set of branhes.

Here W � f1; 2; : : : ; jE

0

jg.

Definition 2. We de�ne that a branh e is assoiated with a branh e

0

if there exists a W suh that W 2 S

of e

0

and e 2 W , where e 2 E

0

and e

0

2

S

E

i

(0 � i � jE

0

j).

For instane, branh a between n

1

and n

2

in Fig. 13(a) is assoiated with the branh between n

2

and n

8

in (b), beause a 2 fa; bg in ffa; bgg. a is also assoiated with the branh between n

8

and n

9

in (), beause

a 2 fa; b; ; d; ig in ffkg; fa; b; ; d; ig; fd; e; f; g; jgg.

We now give four laims following Algorithm 1.

1. When a node is to be eliminated,

(a) W =

S

S

i

inident to the node

S

W

j

2S

i

W

j

;

(b) W needs to be inserted into S of branhes between any two of the node's neighbors. Partiularly, if

9W

i

2 S and W

i

�W before the insertion, then W

i

has to be removed from the set S after that.

2. For S of any branh, 8W

i

;W

j

2 S )W

i

\W

j

= �.

3. For S of any two di�erent branhes, S

1

and S

2

, 8W

i

2 S

1

and 8W

j

2 S

2

;)W

i

=W

j

or W

i

\W

j

= �.

4. For S of any branh,

P

W

i

2S

jW

i

j is equal to the number of branhes in E

0

that have assoiated with the

branh.
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If the four laims are true, then Theorem 6 is true automatially beause �nally all branhes in E

0

will be

assoiated with the ultimate branh and the order of its admittane is the same as that of the original network

represented by G

0

(V

0

; E

0

).

Referring to 4.4 in Algorithm 1 on how a new admittane is evaluated, one an �nd the diret orrespondene

of 4.4.1{4.4.2 to Claim 1(a), and 4.4.3.6{4.4.3.7 to Claim 1(b). So Claim 1 is true. Claim 2 and Claim 3 are

diretly derived from Claim 1(b), as long as eah branh in E

0

is initially assigned a unique index.

Claim 4 an be proved using mathematial indution. It is true when we apply Y-� transformation on some

node of the original graph G

0

(V

0

; E

0

). For instane, in Fig. 13(a), four nodes at the four orners are eliminated

and four new diagonal branhes are generated in Fig. 13(b). The order of denominators of these new admittane

(also the order of the admittane) are equal to 2, the number of branhes in E

0

(Fig. 13(a)) assoiated with eah

of them. With assuming Claim 3 is true for the �rst k steps, then Claim 1 and Claim 2 together guaranteed that

it is also true for the the k + 1-th step.

{{k}}

{{a,h}}

{{j}}

{{b,c}}

{{l}}

{{d,e}}

{{i}}

{{f,g}}

{{f}}                    {{e}}

(c)                                                                                   (d)

{{k}}

               

{{a}}                     {{b}}

{{c}}

{{d}}{{g}}

{{h}} {{i}}

{{j}}

{{l}}

{{a,b,c,d,e,f,g,h,i,j,k,l}}

n

{{k},{a,b,c,d,i},{d,e,f,g,j}}

n

n9
8n

8n
n9

(a)                                                                                   (b)

n

2

6

{{d,e,f,g,j}}

{{a,b,c,d,i}}

{{k},{a,b,c,d,i},{d,e,f,g,j}}

n n

n
1 3

57

4n
9

8

6

4

n

n
n

n4

n2

n

Figure 13: Illustration for proof of Theorem 6: (a) the four orner nodes are to be eliminated; (b) the two upper

and lower nodes are to be eliminated; () the entral node is to be eliminated; (d)transformation �nished.

To understand this, we have to refer to Y-� elimination proess in Algorithm 1. When generating a new

admittane, we fae only two ases: (1) S of eah branh inident to the eliminated node is disjoint with eah

other, i.e. jL

i

\ L

j

j < 2 in 4.3.1; (2) two or more S are not disjoint so that the orresponding denominators

have some ommon fator(s), i.e. jL

i

\ L

j

j � 2. We have setup some mehanism for this ase in 4.4.2 to remove

the redundany. When merging is neessary, we also fae two senarios: (1) the old branh is a member of the

lique generated when n

�

was eliminated. We have setup some mehanism for this ase in 4.4.3.7 to remove the

redundany. Also this removal is guaranteed by Theorem 4. (2)the old branh is not a member of the lique

generated when n

�

was eliminated. . So overall, the order of e�eted branhes is still onsistent with the number

of branhes in E

0

assoiated with them beause of the redundany eliminations.

This ompletes our proof.
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7 Conlusion

We proposed a generalized Y-� transformation for interonnet model redution. This report overed the

theoretial foundation of our work. The proposed algorithm an handle linear(ized) independent soures, resistors,

apaitors, self and mutual K elements. The algorithm integrated ommon-fator-anellation operations that

were not seen in the literature. Admittane in redued iruits has the guaranteed simplest form. Further

appliations to the work an be found reported in [1℄.
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