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Abstra
t

This report provides the theoreti
al foundation to STAR program, a linear network redu
tion software kit. Y-�

transformation in s-domain is the essential part of the redu
tion engine of the program. We have extended it to

handle 
urrent/voltage sour
es and K elements[22℄. Coming with it are node ordering algorithm and some novel

numeri
al stability 
ontrol te
hniques. They play an important role in the overall redu
tion 
ow by providing the


onsistent a

ura
y in program outputs. [1℄ is dedi
ated to the appli
ations to the program.

Keyword: Wye-Delta Transformation, Inter
onne
t Model Redu
tion, Symboli
 Network Analysis.
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1 Introdu
tion

Due to the in
reasing 
omplexity of VLSI 
hips, a linear network su
h as a power/ground grid usually 
ontains

millions of RLC elements generated from extra
tion tools. Lower supply voltages make the voltage variation

a
ross the power grids very 
riti
al be
ause large voltage drop redu
es the supply voltage at some logi
 gates,

leading lower noise margins and resulting in a serious performan
e impa
t[2, 3℄. Stronger 
oupling e�e
ts a
ross

deep sub-mi
ron inter
onne
ts demand a

urate and eÆ
ient simulation as well. On the other hand, SPICE[4℄

as the standard of 
ir
uit-level simulation tools, takes hours and 
onsumes gigabytes of memory on a modern

workstation to simulate a moderate size RLC network[5℄. Simulating su
h 
ir
uits be
omes a 
hallenging task.

To work around the poor performan
e of SPICE, two strategies are 
ommonly used: (1) to in
rease the eÆ
ien
y

of solving the MNA(modi�ed nodal analysis) or NA(nodal analysis) formulated system equations; (2) to redu
e

the size of original networks via model redu
tion te
hniques.

MNA using LU fa
torization in SPICE was shown less eÆ
ient than NA using pre
onditioned Krylov-subspa
e

iterative methods[6℄. NA using SuperLU[7℄ fa
torization in [5℄ provided 
omparable performan
e to iterative

methods while the robustness of dire
t methods was kept. [8, 9℄ explored the regular grid stru
ture of power and

ground networks and used multigrid te
hnique to solve a 
oarse grid and map the solution ba
k to the original

�ne grid. These approa
hes fall into the �rst 
ategory.

The moment-mat
hing te
hnique, on the other hand, has been widely used to approximate waveforms of a

linear inter
onne
t network using its lower order moments[10, 11, 12℄. Sin
e the advent of the te
hnique, many

inter
onne
t delay evaluation models[13, 14, 15℄ were proposed. It was well known that the moment-mat
hing

te
hnique was equivalent to a Pad�e approximation, whi
h may generate positive poles for an originally passive


ir
uit. [16℄ partitioned RC inter
onne
t networks and redu
ed ea
h sub-network into a ma
romodel, reserving

lower orders of the port admittan
e matrix Y . The method guaranteed the realizability of the ma
romodels for

RC 
ir
uits.

MPVL (matrix Pad�e via Lan
zos)[17℄, blo
k Arnoldi[18℄ and PRIMA[19℄ are admittan
e matrix (Y (s)) based

model redu
tion methods so that they perform model order redu
tion on ea
h entry in Y (s) simultaneously. The

PACT algorithm[20℄ �rst introdu
ed 
ongruen
e transformations for order redu
tion of RC 
ir
uits. The same

authors proposed split 
ongruen
e transformations[21℄ for passive redu
tions of RLC 
ir
uits.

We have proposed a new RKC network redu
tion method. The prin
ipal idea is that we 
onsider a linear

network as a graph and perform Y-� transformation on ea
h node of no interest until all su
h kind of nodes

are eliminated. The generalized Y-� transformation formula is able to handle 
urrent/voltage sour
es and K

elements[22℄. Nodes eligible to be eliminated are 
alled internal nodes. and others are 
alled external nodes.

Di�erent from topologi
al formulas for network fun
tions [27℄, our approa
h keeps only low-order 
oeÆ
ients of

them. Fortunately, these 
oeÆ
ients are exa
tly the same as they were 
omputed without dis
arding any high-

order terms. A 
omplexity 
omparison of the two approa
hes is given in Se
tion 5 after we give the proposed

algorithm.

Generally speaking, the input admittan
e of an one-port N -th order RLC linear time invariant network in s-

domain is a N -th order rational fun
tion Y (s). Y-� transformation redu
es the network in term of the number of

nodes, a straightforward implementation of the approa
h, however, leads to a rational fun
tion Y

0

(s) whose order

is far beyond N (about N !). It is worthy noting that Y (s) = Y

0

(S) indeed. By exploiting the stru
ture of Y-�

transformation pro
ess, we have found out that a lot of 
ommon fa
tors are introdu
ed into the numerator and

denominator of Y

0

(s), whi
h a
tually should be 
an
eled out. This �nding and some other pra
ti
al numeri
al


onsiderations allow us to 
ontrol round-o� errors in high-order polynomial 
omputation. It is also 
ru
ial in

pole/residue analysis, as shown in [1℄.

Our main 
ontributions are:

� admittan
e is always kept in its rational form and all the 
oeÆ
ients are the same as they were 
omputed

using exa
t symboli
 approa
hes without dis
arding any high-order terms;

� With impedan
e realization method[1℄, in
remental simulation 
an be a
hieved by simply spe
ifying nodes

in tunable sub-
ir
uits as external nodes;

� Pole/Residue sensitivity analysis 
an be a
hieved inexpensively along the redu
tion pro
ess.
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The remaining of this report is organized as follows. In the next se
tion, we brie
y review the fundamentals

of Y-� transformation and the generalized formula. Multiple minimum degree (MMD) algorithm [25℄ is 
overed

in the Se
tion 4. And Se
tion 5 is dedi
ated to explaining the existen
e of 
ommon fa
tors in transformed

admittan
e. The overall redu
tion algorithm will be given in Se
tion 6. Se
tion 7 
on
ludes the proposed work.

2 Y-� Transformation

2.1 Example

Before we present the general form of Y-� transformation, we �rst illustrate a simple numeri
al example.

23

Y

(a)                                                       (b)

1n

3n

Y12 13

Y

3

s

2

1n

32 nn 2nn 0

Figure 1: A numeri
al example for Y-� transformation: (a)
ir
uit s
hemati
 before the transformation; (b)
ir
uit

s
hemati
 after the transformation.

As shown in Fig. 1(a), n

0

is adja
ent to n

1

, n

2

, and n

3

only. To simplify our explanation, we further assume

that there is no admittan
e between any two of n

1

, n

2

and n

3

. KCL (Kir
hho�'s Current Law) equations for

node n

0

, n

1

, n

2

, and n

3


an be established as follows:

(5 + s)V

0

� sV

1

� 2V

2

� 3V

3

= 0 (1)

�sV

0

+ (s+ Y

1

)V

1

� Y

1

V

x

= I

1

(2)

�2V

0

+ (2 + Y

2

)V

2

� Y

2

V

x

= I

2

(3)

�3V

0

+ (3 + Y

3

)V

3

� Y

3

V

x

= I

3

(4)

In the equations, we have denoted V

x

as node voltage of n

4

; : : : n

n

. Y

1

, Y

2

and Y

3

are admittan
e ve
tors with

the i-th entry equal to the admittan
e between n

1

, n

2

, n

3

and n

i

, i � 4, respe
tively. Y

1

, Y

2

and Y

3

are the total

admittan
e between n

1

, n

2

, n

3

and nodes ex
ept n

0

, respe
tively. Finally, I

1

, I

2

and I

3

are the total 
urrent

inje
ting into n

1

, n

2

and n

3

from 
urrent sour
es, respe
tively. From 1, we 
an denote V

0

in terms of V

1

, V

2

, and

V

3

as:

V

0

=

sV

1

+ 2V

2

+ 3V

3

5 + s

: (5)

Inserting (5) into (2){(4) gives

(

5s

5 + s

+ Y

1

)V

1

�

2s

5 + s

V

2

�

3s

5 + s

V

3

� Y 1V

x

= I

1

(6)

�

2s

5 + s

V

1

+ (

6 + 2s

5 + s

+ Y 2)V

2

�

6

5 + s

V

3

� Y 2V

x

= I

2

(7)

�

3s

5 + s

V

1

�

6

5 + s

V

2

+ (

6 + 3s

5 + s

+ Y 3)V

3

� Y 3V

x

= I

3

(8)

Comparing (6){(8) with Fig. 1(b), we 
an �nd out that

8

>

<

>

:

Y

12

= 2s=(5 + s)

Y

13

= 3s=(5 + s)

Y

23

= 6=(5 + s):
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From the example, you may have noti
ed that what we performed is equivalent to one 
olumn/row Gauss

elimination to the system equations. When a
tual Y-� transformations are 
arried out, we do not formulate a


ir
uit into simultaneous system equations. Instead we 
onsider it as a graph and operate on the graph dire
tly.

One advantage of our approa
h over SPICE is that on
e massive internal nodes are eliminated while external

nodes are preserved, then after impedan
e realization is applied to transformed impedan
e, the resultant passive


ir
uit would be mu
h smaller and has similar 
hara
teristi
s in the working frequen
y range. And be
ause any

node 
an be spe
i�ed as external node to be preserved, in
remental simulation be
omes easier. For example in a

datapath stru
ture with hundreds of bi-dire
tional divers exist in the same inter
onne
t network. We 
an 
ollapse

the internal stru
ture of the network. Then delays after tuning physi
al parameters of drivers 
an be simulated

very easily using SPICE as the overall 
ir
uit is mu
h smaller than the original one.

Simple 
ir
uit elements, i.e. resistors, 
apa
itors, and self partial indu
tors, have well-known admittan
e forms

in s-domain. But Y-� transformations involving 
urrent/voltage sour
es and mutual partial indu
tors are not

straightforward. Parti
ularly, even though the generalized Y-� transformation is able to handle mutual indu
tors,

in
luding them prevents us from giving a simple and uni�ed transformation formula.

K-based indu
tan
e extra
tion method[22℄ proposed a new 
ir
uit element | K element to 
apture the indu
-

tan
e e�e
ts of inter
onne
ts in integrated 
ir
uits. (14) of [23℄ gives the bran
h equation for element K:

Kv =

di

dt

; (9)

whi
h in s-domain 
an be written as:

K

s

V = I: (10)

Although V and I refer to di�erent bran
hes for 
apturing mutual indu
tan
e e�e
ts, a simple 
onversion will

integrate K elements into our transformation formula seamlessly.

2.2 Bran
h with Current/Voltage Sour
e

Bran
hes involved in Y-� transformation 
an not only in
lude resistors, 
apa
itors and self indu
tors, but also


urrent/voltage sour
es and mutual indu
tors. We will give the Y-� transformation formula for 
ir
uits with


urrent and voltage sour
es in this sub-se
tion, and K elements in the next sub-se
tion.

Following the similar pro
edure in Se
tion 3, we apply Y-� transformation to node n

0

in Fig. 2(a),

23

01Y
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Y

II

03Y

13

(a)                                                       (b)

3nn

n

3n
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12Y

12

0

13

Y02

I

2n

01

Yn2

Figure 2: Y-� transformation with 
urrent sour
e involved: (a)
ir
uit s
hemati
 before the transformation;

(b)
ir
uit s
hemati
 after the transformation.

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Y

12

= Y

01

Y

02

=(Y

01

+ Y

02

+ Y

03

)

Y

13

= Y

01

Y

03

=(Y

01

+ Y

02

+ Y

03

)

Y

23

= Y

02

Y

03

=(Y

01

+ Y

02

+ Y

03

)

I

12

= Y

02

=(Y

01

+ Y

02

+ Y

03

)I

01

I

13

= Y

03

=(Y

01

+ Y

02

+ Y

03

)I

01

:

(11)
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V
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Figure 3: Y-� transformation with voltage sour
e involved: (a)
ir
uit s
hemati
 before the transformation;

(b)
ir
uit s
hemati
 after the transformation.

And performing Y-� transformation to node n

0

in Fig. 3(a) gives

8

>

>

>

<

>

>

>

:

Y

12

= Y

02

Y

13

= Y

03

I

12

= Y

02

V

01

I

13

= Y

03

V

01

:

(12)

One 
an also derive (11) and (12) from Norton's theorem. A generalization of the two transformation formulas

will be given in Theorem 1.

2.3 Bran
h with K element

Self K elements are 
onsidered with no di�eren
e from others su
h as resistors and 
apa
itors in Y-� trans-

formation. But for mutual K, we have to do a 
onversion on it. For the example shown in Fig. 4(a), the 
ir
uit

K

s
K11

1an

1b n

n

22KK
s

mK

mK

mK m

2b

2a

n

(a)                                                       (b)

s

I1 I2

ss

1an

1b n

n

2b

2a

s
n

s

K 22K
2

1I

111 VV s
s
m

Figure 4: Conversion on mutual K in s-domain: (a)given mutual K; (b) 
onverted K.

bran
h equations are written as

8

<

:

K

11

s

V

1

+

K

m

s

V

2

= I

1

K

m

s

V

1

+

K

22

s

V

2

= I

2

;

(13)

whi
h 
an be rewritten as KCL equations for the four nodes in Fig. 4(a) as

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

K

11

s

V

1a

�

K

11

s

V

1b

+

K

m

s

V

2a

�

K

m

s

V

2b

= I

1

�

K

11

s

V

1a

+

K

11

s

V

1b

�

K

m

s

V

2a

+

K

m

s

V

2b

= �I

1

K

m

s

V

1a

�

K

m

s

V

1b

+

K

11

s

V

2a

�

K

11

s

V

2b

= I

2

�

K

m

s

V

1a

+

K

m

s

V

1b

�

K

11

s

V

2a

+

K

11

s

V

2b

= �I

2

:

(14)
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One 
an �nd out that the KCL equations for the four nodes in Fig. 4(b) are exa
tly the same as (14, so that the


ir
uit in Fig. 4(b) is equivalent to the 
ir
uit in Fig. 4(a). Although some values in (b) have negative signs,the

equivalent 
ir
uits are still passive be
ause K-based method guarantees the extra
ted K matrix to be positive

de�nite, the equivalent.

2.4 Generalization

Now we state a generalized Y-� transformation formula in
luding linear(ized) 
urrent/voltage sour
es, re-

sistors, 
apa
itors, and K elements. Although the theorem is stated based on the simple s
enario with a single


urrent/voltage sour
e, for 
ompli
ated 
ases, one 
an always use them in 
onjun
tion with superposition theorem.

Theorem 1. With no loss of generality, let n

0

be the node that we want to eliminate, let n

1

; n

2

; : : : ; n

k

be

the adja
ent nodes to n

0

. Y

ij

denotes the admittan
e between node n

i

and n

j

. Thus Y

01

, Y

02

, : : : , Y

0k

are the

admittan
e between n

1

; n

2

; : : : ; n

k

and n

0

, respe
tively. Parti
ularly, a 
urrent sour
e is 
onsidered to be open-


ir
uited and a voltage sour
e short-
ir
uited in terms of admittan
e. In s-domain, admittan
e is a fun
tion of

s.

After n

0

is eliminated, n

1

; n

2

; : : : ; n

k

be
ome pairwise adja
ent and form a 
lique. A set of admittan
e

�

Y

ij

j i; j 2 [1; k℄; i < j

	

are generated, and

Y

ij

(s) = Y

ij

(s) +

Y

0i

(s)� Y

0j

(s)

Y

01

(s) + Y

02

(s) + � � �+ Y

0k

(s)

: (15)

Suppose I

01

was a 
urrent sour
e between n

0

and n

1

before the elimination. Then after it, a set of 
urrent

sour
es

�

I

1j

j j 2 [2; k℄

	

have to be generated, and

I

1j

(s) =

Y

0j

(s)

Y

01

(s) + Y

02

(s) + � � �+ Y

0k

(s)

I

01

(s): (16)

Alternatively, suppose V

01

was a voltage sour
e between n

0

and n

1

before the elimination. Then after it, a set

of 
urrent sour
es

�

I

1j

j j 2 [2; k℄

	

have to be generated, and

I

1j

(s) = Y

0j

(s)V

01

(s): (17)

�

A useful observation from Theorem 1 is that di�erent from Pad�e approximation, using Y-� transformation,


oeÆ
ients of admittan
e are derived dire
tly from admittan
e in original 
ir
uits and are kept in its original

rational form. By mat
hing the lower-order 
oeÆ
ients, the method 
an 
apture 
omplex poles of original 
ir
uits

near imaginary axle a

urately.

Corollary 1. If all RLC elements in a given linear RLC system are of positive values, no matter how many

nodes are eliminated via Y-� transformation, the transformed admittan
e between any two nodes n

i

and n

j


an

be written as

a

0

+ a

1

s+ � � �+ a

m

s

m

b

0

+ b

1

s+ � � �+ b

n

s

n

; (18)

where b

0

> 0; and a

i

; b

j

� 0; i 2 [0;m℄ and j 2 [1; n℄. �

The above 
orollary holds immediately after the given theorems.
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3 Node Ordering

As elaborated after the example in Se
tion 3, eliminating nodes in an inter
onne
t network via Y-� transfor-

mation is equivalent to LU fa
torizing the 
orresponding MNA formulated system equations. Non-zero �ll-ins in

LU fa
torization 
orrespond to new bran
hes among nodes in the network. Hen
e given a linear network, the

order in whi
h nodes are eliminated is very important in that di�erent orders generally lead to di�erent numbers

of new bran
hes. And the 
omplexity of every Y-� transformation on a node n

i

is O(jn

i

j

2

), where jn

i

j is the


urrent degree of n

i

. Be
ause we do not perform Y-� transformation on every single node in a system as external

ones have to be preserved, We revised MMD algorithm to �t our needs.

3.1 MMD Algorithm

The most widely used general-purpose ordering s
heme is the minimum-degree algorithm [24℄. It is a heuristi


algorithm, but it is very su

essful in redu
ing non-zero �ll-ins in LU fa
torization. The s
heme attempts to

redu
e the �ll-ins of a given matrix by a lo
al minimization of non-zeros in the fa
tored matrix. It is used as a

pra
ti
al approximate solution to the NP-
omplete �ll-in minimization problem [26℄.

The 
on
ept of indistinguishable nodes [24℄ is developed to eliminate a subset of nodes all at the same time

(Step 3) instead of just one node of the minimum degree. In the elimination pro
ess, nodes n

i

and n

j

that satisfy

Adj(n

i

) [ fn

i

g = Adj(n

j

) [ fn

j

g

in a graph are said to be
ome indistinguishable. These nodes 
an be numbered 
onse
utively in the minimum-

degree ordering.

Step 1. (Initialization) Initialize the set of eliminated nodes S = ;, and the set of uneliminated nodes X in
ludes

all internal nodes.

Compute the degree of all the nodes in X .

Step 2. (Minimum Degree) Determine the new minimum degree among nodes in X and the set T of all nodes

in the set X � S of the minimum degree.

Step 3. (Mass Elimination) All nodes in X are un
agged.

For ea
h node n

i

in T :

If node n

i

is un
agged

�nd the set W of indistinguishable nodes of n

i

;


ag the adja
ent nodes of n

i

and the nodes of in the 
urrent graph;

S = S [W .

Step 4. (Degree update) Determine the representation of the new graph.

Update the degree of all the 
agged nodes in X � S that have not been outmat
hed.

Step 5. (Loop or Stop) Repeat steps 2 to 4 until T is empty.

Note that we ex
luded external nodes from the the set of uneliminated nodes. So that the resultant node

elimination sequen
e 
ontains internal nodes only.

Theorem 2. Let S

1

and S

2

denote any di�erent node elimination sequen
es of a given 
ir
uit. Suppose n

i

and n

j

are two external nodes of the 
ir
uit, Let Y

ij

and Y

0

ij

are the admittan
e between n

i

and n

j

after Y-�

Transformations following sequen
e S

1

and S

2

, respe
tively. The following equation holds:

Y

ij

= Y

0

ij

:

�

8



The theorem tells us that even although di�erent node elimination sequen
es 
ould have dramati
ally di�erent

impa
t on the performan
e of redu
tion via Y-� Transformation, the transformed admittan
e from these di�erent

redu
tion sequen
es are the same.

An observation from (15) is that without 
onsidering 
ommon fa
tor 
an
ellation between Y

ij

's numerator

and denominator, the order of Y

ij

is the summation of the order of Y

i0

and Y

j0

. Be
ause the redu
tion is to be

applied to ea
h internal nodes, Y

ij

may be appearing on the right-hand side of (15) so that order of transformed

admittan
e will be growing fast. When redu
ing inter
onne
t networks, on the other hand, we only need to keep


oeÆ
ients of Y

ij

's lower order terms, i.e., fa

0

; a

1

; : : : ; a

k

g and fb

0

; b

1

; : : : ; b

k

g of Y

ij

in (18). Most inter
onne
t

redu
tion models have k � 3. The following theorem ensures us that no matter transformed admittan
e Y

ij

is an

intermediate admittan
e or a �nal one to be realized, keeping its lower k order 
oeÆ
ients in its numerator and

denominator throughout the whole redu
tion pro
ess delivers 
orre
t lower k order 
oeÆ
ients of �nal transformed

admittan
e.

Theorem 3. With no loss of generality, let us refer to (15). Suppose we have two Y-� redu
tion pro
edures

A and B. In A, a newly transformed admittan
e is termed as Y

ij

and 
an be 
omputed as

Y

ij

(s) =

Y

i0

(s)� Y

j0

(s)

Y

10

(s) + Y

20

(s) + � � �+ Y

k0

(s)

:

While in B, a newly transformed admittan
e is termed as

~

Y

ij

and 
an be 
omputed as

~

Y

ij

(s) � Y

0

ij

(s) =

~

Y

i0

(s)�

~

Y

j0

(s)

~

Y

10

(s) +

~

Y

20

(s) + � � �+

~

Y

k0

(s)

:

Here Y

0

ij

is in the form

Y

0

ij

(s) =

a

0

+ a

1

s+ � � �+ a

m

s

m

b

0

+ b

1

s+ � � �+ b

n

s

n

:

And

~

Y

ij

is the k-th order approximate of Y

0

ij

~

Y

ij

(s) =

a

0

+ a

1

s+ � � �+ a

k

s

k

b

0

+ b

1

s+ � � �+ b

k

s

k

; 0 � k � min(m;n):

If

~

Y

i0

,

~

Y

j0

,

~

Y

10

,

~

Y

20

; : : : ;

~

Y

k0

are the k-th order approximate of Y

i0

, Y

j0

, Y

10

; Y

20

; : : : ; Y

k0

, respe
tively, then

~

Y

ij

is also the k-th order approximate of Y

ij

. �

The theorem 
an be proven using mathemati
al indu
tion.

4 Common Fa
tor in Y-� Transformation

Briefed in the introdu
tion, Y-� transformation pro
ess dis
ussed so far introdu
es 
ommon fa
tors into the

numerator and denominator of the right-hand side admittan
e in (15). This side e�e
t is harmful to our redu
tion

algorithm be
ause (1)they 
ause the magnitude of 
oeÆ
ients of the numerator and denominator unne
essarily

grow: basi
ally they in
rease exponentially along with the order of the 
orresponding terms; (2) 
ommon fa
tors

in numerators/denominators 
reate fake zeros/poles that hamper the pole/residue analysis [1℄.

In this se
tion, we treat linear networks as graphs, representing admittan
e of the i-th bran
h as a

i

=b

i

. Be
ause

the Y-� transformation is an 
ontinuous pro
ess, we denote admittan
e of original 
ir
uits as Y

(0)

i;j

, and Y

(1)

i;j

when

the �rst node is eliminated. In this way, we 
an rewrite (15)

Y

(t)

i;j

(s) = Y

(t�1)

i;j

(s) +

Y

(t�1)

t�1;i

(s)� Y

(t�1)

t�1;j

(s)

Y

(t�1)

t�1;1

(s) + Y

(t�1)

t�1;2

(s) + � � �+ Y

(t�1)

t�1;k

(s)

: (19)

for the t-th transformation.

Let us �rst go through an example to show you when these 
ommon fa
tors are generated and what they are


omposed of. Then we give a rigorous proof for their existen
e. Finally we talk about its appli
ations.

9



4.1 Example

(a)                                                                                        (b)

5

8 7

6Y Y

Y

2

(2)
5

9
(2)

(2)
6

(2)
7

(1)

(1)

(1)

Y

Y

Y Y

Y

Y

(1)

(1)

Y
(1)
1

10Y
(1)

Y3
(1)

8
(2)

Y

(2)

Y
(1)
4

Y9
(1)

Y10

Figure 5: An example showing 
ommon fa
tor existen
e|1st Y-� transformation: (a) original 
ir
uit s
hemati
;

(b) 
ir
uit s
hemati
 after the Y-� transformation.

In Fig. 5(a), we have �ve nodes as a portion of a 
ir
uit. We want to apply Y-� transformation on this portion.

Literally speaking, we are going to eliminate the 
entral solid node from the graph, and so as its four ar
s. The

graph after the transformation is shown in Fig. 5(b). The admittan
e in Fig. 5(a) is:

Y

(1)

1

=

a

1

b

1

; Y

(1)

2

=

a

2

b

2

; Y

(1)

3

=

a

3

b

3

; Y

(1)

4

=

a

4

b

4

; Y

(1)

5

=

a

5

b

5

;

Y

(1)

6

=

a

6

b

6

; Y

(1)

7

=

a

7

b

7

; Y

(1)

8

=

a

8

b

8

; Y

(1)

9

=

a

9

b

9

; Y

(1)

10

=

a

10

b

10

:

Let us 
he
k out how to evaluate admittan
e Y

(2)

5

in Fig. 5(b). As shown in Fig. 6, Y

(2)

5

is a 
ombination of

two parallel admittan
e: Y

(1)

5

, and Y

(2)

0

5

. Y

(1)

5


omes from Fig. 5(a) and Y

(2)

0

5

is newly generated by Y

(1)

1

, Y

(1)

2

,

Y

(1)

3

, and Y

(1)

4

:

Y

(2)

0

5

=

a

1

b

1

�

a

2

b

2

a

1

b

1

+

a

2

b

2

+

a

3

b

3

+

a

4

b

4

=

a

1

a

2

b

3

b

4

a

1

b

2

b

3

b

4

+ b

1

a

2

b

3

b

4

+ b

1

b

2

a

3

b

4

+ b

1

b

2

b

3

a

4

: (20)

We de�ne

! � a

1

b

2

b

3

b

4

+ b

1

a

2

b

3

b

4

+ b

1

b

2

a

3

b

4

+ b

1

b

2

b

3

a

4

: (21)

Then (20) 
an be rewritten as

Y

(2)

0

5

=

a

1

a

2

b

3

b

4

!

�

t

1;2

!

: (22)
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5

Y

Y
(1)

5
(2)’

(1)
1

(1)
2

Y

Y

Y
(1)
4

Y3
(1)

Figure 6: An example showing 
ommon fa
tor existen
e|1st Y-� transformation : intermediate

Similarly, we have

Y

(2)

0

6

=

a

1

a

3

b

2

b

4

!

�

t

1;3

!

; (23)

Y

(2)

0

7

=

a

1

a

4

b

2

b

3

!

�

t

1;4

!

; (24)

Y

(2)

0

8

=

a

2

a

3

b

1

b

4

!

�

t

2;3

!

; (25)

Y

(2)

0

9

=

a

2

a

4

b

1

b

3

!

�

t

2;4

!

; (26)

Y

(2)

0

10

=

a

3

a

4

b

1

b

2

!

�

t

3;4

!

: (27)

Therefore, Y

(2)

5


an be evaluated as

Y

(2)

5

= Y

(1)

5

+ Y

(2)

0

5

=

a

5

b

5

+

t

1;2

!

=

a

5

! + t

1;2

b

5

b

5

!

:

Similarly,

Y

(2)

6

=

a

6

! + t

1;3

b

6

b

6

!

; Y

(2)

7

=

a

7

! + t

3;4

b

7

b

7

!

; Y

(2)

8

=

a

8

! + t

2;4

b

8

b

8

!

;

Y

(2)

9

=

a

9

! + t

2;3

b

9

b

9

!

; Y

(2)

10

=

a

10

! + t

1;4

b

10

b

10

!

:

Now let us apply Y-� transformation on
e again, as shown in Fig. 7(a). Admittan
e X

0

=Y

0

denotes the

11



(a)                                                                                         (b)

(2)

5
(2)

6
(2)

7
(3)

9
(3)

(3)
8

9

(2)
8

Y

YY

10
(2)

YY

X’/Y’

Y

Y Y
(2)
7

Y

Figure 7: An example showing 
ommon fa
tor existen
e|2nd Y-� transformation: (a) before the transformation;

(b) after the transformation.

e�e
tive admittan
e. Let us see how to evaluate Y

(3)

9

in Fig. 7(b).

Y

(3)

9

= Y

(2)

9

+

Y

(2)

5

Y

(2)

6

Y

(2)

5

+ Y

(2)

6

+ Y

(2)

10

+

X

0

Y

0

=

a

9

! + t

2;3

b

9

b

9

!

+

a

5

!+t

1;2

b

5

b

5

!

a

6

!+t

1;3

b

6

b

6

!

a

5

!+t

1;2

b

5

b

5

!

+

a

6

!+t

1;3

b

6

b

6

!

+

a

10

!+t

1;4

b

10

b

10

!

+

X

0

Y

0

=

a

9

! + t

2;3

b

9

b

9

!

+

(a

5

! + t

1;2

b

5

)(a

6

! + t

1;3

b

6

)Y

0

b

10

!

�

(a

5

! + t

1;2

b

5

)b

6

b

10

Y

0

+ (a

6

! + t

1;3

b

6

)b

5

b

10

Y

0

+ (a

10

! + t

1;4

b

10

)b

5

b

6

Y

0

+ !b

5

b

6

b

10

X

0

�

�

Y

(3)

9

n

Y

(3)

9

d

;

where

Y

(3)

9

d

= b

9

!

�

(a

5

! + t

1;2

b

5

)b

6

b

10

Y

0

+ (a

6

! + t

1;3

b

6

)b

5

b

10

Y

0

+ (a

10

! + t

1;4

b

10

)b

5

b

6

Y

0

+ !b

5

b

6

b

10

X

0

�

;

and

Y

(3)

9

n

= (a

9

! + t

2;3

b

9

)

�

(a

5

! + t

1;2

b

5

)b

6

b

10

Y

0

+ (a

6

! + t

1;3

b

6

)b

5

b

10

Y

0

+ (a

10

! + t

1;4

b

10

)b

5

b

6

Y

0

+ !b

5

b

6

b

10

X

0

�

+ b

9

(a

5

! + t

1;2

b

5

)(a

6

! + t

1;3

b

6

)Y

0

b

10

: (28)

By extending the right-hand side of (28) and reordering it to separate the terms with ! and without !, we 
an

rewrite Y

(3)

9

n

as

Y

(3)

9

n

= b

9

(t

1;2

b

5

)(t

1;3

b

6

)Y

0

b

10

+ (t

2;3

b

9

)

�

(t

1;2

b

5

)b

6

b

10

Y

0

+ (t

1;3

b

6

)b

5

b

10

Y

0

+ (t

1;4

b

10

)b

5

b

6

Y

0

�

+ !(� � � )

=

n

t

1;2

t

1;3

+ t

2;3

�

t

1;2

+ t

1;3

+ t

1;4

�

o

b

5

b

6

b

9

b

10

Y

0

+ !(� � � ): (29)
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Repla
e t

i;j

in (29) a

ording to (22){(27),

Y

(3)

9

n

=

n

(a

1

a

2

b

3

b

4

)(a

1

a

3

b

2

b

4

) + (a

2

a

3

b

1

b

4

)

�

a

1

a

2

b

3

b

4

+ a

1

a

3

b

2

b

4

+ a

1

a

4

b

2

b

3

�

o

b

5

b

6

b

9

b

10

Y

0

+ !(� � � )

=

n

(a

1

a

2

a

3

b

4

)(a

1

b

2

b

3

b

4

) + (a

1

a

2

a

3

b

4

)

�

a

2

b

3

b

4

b

1

+ a

3

b

2

b

4

b

1

+ a

4

b

2

b

3

b

1

�

o

b

5

b

6

b

9

b

10

Y

0

+ !(� � � )

= a

1

a

2

a

3

b

4

!b

5

b

6

b

9

b

10

Y

0

+ !(� � � ): (30)

We have noti
ed that there is one ! in Y

(3)

9

d

. The point here is that there is also one ! in Y

(3)

9

n

, su
h that these

two ! 
an be 
an
eled. And this property is also held for the numerators of Y

(3)

7

and Y

(3)

8

. The underlined parts

in (31) and (32) are very similar to that in (29).

Y

(3)

7

n

=

n

t

1;3

t

1;4

+ t

3;4

�

t

1;2

+ t

1;3

+ t

1;4

�

o

b

5

b

6

b

7

b

10

Y

0

+ !(� � � ); (31)

and

Y

(3)

8

n

=

n

t

1;2

t

1;4

+ t

2;4

�

t

1;2

+ t

1;3

+ t

1;4

�

o

b

5

b

6

b

8

b

10

Y

0

+ !(� � � ): (32)

And a
tually both of them also have the same fa
tor !. This is not a 
oin
iden
e. We will give a rigorous proof

after Theorem 4.

! is 
omposed when the solid node in Fig. 5(a) is eliminated. And it appears in numerators of some Y

(3)

i

as

well when one of the node's four neighbors is eliminated.

4.2 ! Exists in General Graphs

In this sub-se
tion we will verify that our intuition from the example above is generally true. In other words,

although the solid node in Fig. 5(a) is of degree 4, we 
an prove that (30) have a fa
tor ! if the node were of

degree k. This ! is the general form of (21). It is worthy noting the general meaning of !.

Definition 1. Given a node n

0

in a multi-port RKC linear time-invariant network, suppose n

0

has k neighbors

and it is eligible for Y-� transformation. Denote admittan
e between n

0

and its neighbor n

i

as

a

i

b

i

; i 2 f1; kg.

Parti
ularly, we assume b

1

; : : : ; b

k

are ex
lusively prime to ea
h other. We de�ne

! =

k

X

i=1

0

�

a

i

k

Y

j=1;j 6=i

b

j

1

A

(33)

Lemma 1. Any multi-port RKC linear time-invariant network 
an be represented by G(V;E). 8n

i

2 V with

exa
tly four neighbors, there is an expression !

i

, whi
h is the denominator of admittan
e generated when one

applies Y-� transformation on n

i

. Suppose V

i

is the set of four neighbors of n

i

. When n

i

is eliminated and

any node n

j

2 V

i

is eliminated later, ea
h numerator of admittan
e a
ross any two nodes in V

i

� fn

j

g has a

multipli
ation fa
tor !

i

.

Proof: The proof is straightforward from the example in the last se
tion. Lemma 1. 
an be extended to nodes

with k neighbors, k � 3.

Theorem 4. Any multi-port RKC linear time-invariant network 
an be represented by G

0

(V

0

; E

0

). 8n

i

2 V

with three or more neighbors (k � 3), there is an expression !

i

, whi
h is the denominator of admittan
e generated

when one applies Y-� transformation on n

i

. Suppose L

i

is the set of neighbors of n

i

. When n

i

is eliminated and

any node n

j

2 L

i

is eliminated later, ea
h numerator of admittan
e among L

i

� fn

j

g has a multipli
ation fa
tor

!

i

.

Proof: For a given graph G(V;E) as depi
ted in the theorem, we 
hoose a node in V arbitrarily, and we denote

it as n

0

. Also we denote its k neighbors as n

1

; : : : ; n

k

, as shown in Fig. 8(a). We further denote admittan
e

13



(a)                                                               (b)
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Figure 8: Illustration for proof of Theorem 4: (a) n

0

to be eliminated; (b) n

1

to be eliminated.

between any node n

i

in fn

1

; : : : ; n

k

g and n

0

as Y

(1)

i

, and any two nodes n

i

; n

j

in fn

1

; : : : ; n

k

g as Y

(1)

i;j

,

Y

(1)

i

=

a

i

b

i

; and Y

(1)

i;j

=

a

i;j

b

i;j

:

Now let us perform Y-� transformation on node n

0

. This pro
ess will generate a new bran
h between any two

of n

0

's neighbors, so the total number of new bran
hes would be

k(k�1)

2

. The admittan
e of these new bran
hes


an be denoted as Y

(2)

0

i;j

. These bran
hes will be merged with Y

(1)

i;j

. At the moment when we are to eliminate one

of n

0

's neighbors, we denote the admittan
e between any two nodes n

i

; n

j

2 fn

1

; : : : ; n

k

g as Y

(2)

i;j

. A

ording to

(19), Y

(2)

0

i;j


an be derived as follows.

Y

(2)

0

i;j

=

a

i

b

i

a

j

b

j

P

k

�=1

a

�

b

�

; i; j 2 f1; : : : ; kg and i < j: (34)

Let us de�ne

!

0

�

k

X

i=1

0

�

a

i

k

Y

j=1;j 6=i

b

j

1

A

: (35)

Then (34) 
an be written as

Y

(2)

0

i;j

=

a

i

a

j

Q

k

�=1;� 6=i;j

b

�

!

0

; i; j 2 f1; : : : ; kg and i < j: (36)

We de�ne

t

i;j

= a

i

a

j

k

Y

�=1;� 6=i;j

b

�

; i; j 2 f1; : : : ; kg and i < j; (37)

and then we 
an rewrite (36) as

Y

(2)

0

i;j

=

t

i;j

!

0

; i; j 2 f1; : : : ; kg and i < j:

14



Without losing generality, let us assume that the next node to be eliminated among n

0

's neighbors is n

1

. To

make a rigorous proof, We 
an not take it for granted that

Y

(2)

i;j

= Y

(1)

i;j

+ Y

(2)

0

i;j

i; j 2 f1; : : : ; kg and i < j

be
ause after n

0

, the next node to be eliminated in the whole graph may or may not be n

1

. if it is not, then Y

(2)

i;j

has to be expressed as

Y

(2)

i;j

= Y

(1)

i;j

+

A

B

+ Y

(2)

0

i;j

; i; j 2 f1; : : : ; kg and i < j; (38)

where

A

B

is the e�e
tive admittan
e that has been merged onto the admittan
e between n

i

and n

j

when some

other nodes are eliminated before n

1

and after n

0

. Fortunately, we do not have to 
are about what Y

i;j

is, as long

as it is a rational fun
tion of s. So it is natural to 
onsider Y

i;j

and

A

B

as one e�e
tive admittan
e, and let us

denote it as

e

Y

(1)

i;j

= Y

(1)

i;j

+

A

B

�

~a

i;j

~

b

i;j

; i; j 2 f1; : : : ; kg and i < j: (39)

Combining (36) and (39), we 
an rewrite (38) as follows:

Y

(2)

i;j

=

~a

i;j

!

0

+

~

b

i;j

t

i;j

~

b

i;j

!

0

; i; j 2 f1; : : : ; kg and i < j: (40)

Now let us eliminate n

1

. After we eliminate n

0

, The topology of the graph in Fig. 8(a) has be 
hanged,

as shown in Fig. 8(b). Ex
ept for those belonging to the 
lique formed by n

0

, X

0

=Y

0

denotes the e�e
tive

admittan
e asso
iated with n

1

outside the 
lique. This time let us denote the admittan
e between any two nodes

n

i

; n

j

2 fn

2

; : : : ; n

k

g as Y

(3)

i;j

. A

ording to (19), the admittan
e of

(k�1)(k�2)

2

new bran
hes after being merged

with Y

(2)

i;j


an be written as

Y

(3)

i;j

= Y

(2)

i;j

+

Y

(2)

1;i

Y

(2)

1;j

�

P

k

�=2

Y

(2)

1;�

�

+

X

0

Y

0

(41)

�

Y

(3)

i;j

n

Y

(3)

i;j

d

; i; j 2 f2; : : : ; kg and i < j:

Inserting (40) into (41), we 
an write Y

(3)

i;j

n

as

Y

(3)

i;j

n

=

�

~a

i;j

!

0

+

~

b

i;j

t

i;j

�

2

4

k

X

�=2

�

~a

1;�

!

0

+

~

b

1;�

t

1;�

�

0

�

k

Y

p=2;p 6=�

b

1;p

1

A

Y

0

+ !

0

 

k

Y

�=2

b

1;�

!

X

0

3

5

+

~

b

i;j

�

~a

1;i

!

0

+

~

b

1;i

t

1;i

��

~a

1;j

!

0

+

~

b

1;j

t

1;j

�

0

�

k

Y

�=2;� 6=i;j

b

1;�

1

A

Y

0

: (42)

15



Expand the right-hand side of (42) and separate terms with !

0

and without !

0

,

Y

(3)

i;j

n

=

�

~

b

i;j

t

i;j

�

2

6

4

k

X

�=2

�

~

b

1;�

t

1;�

�

0

�

k

Y

p=2;p 6=�

b

1;p

1

A

Y

0

3

7

5

+

~

b

i;j

�

~

b

1;i

t

1;i

��

~

b

1;j

t

1;j

�

0

�

k

Y

p=2;p 6=i;j

b

1;p

1

A

Y

0

+ !

0

(� � � )

=

�

~

b

i;j

t

i;j

�

"

k

X

�=2

t

1;�

# 

k

Y

p=2

b

1;p

!

Y

0

+

~

b

i;j

t

1;i

t

1;j

 

k

Y

p=2

b

1;p

!

Y

0

+ !

0

(� � � )

=

 

t

i;j

k

X

�=2

t

1;�

+ t

1;i

t

1;j

!

~

b

i;j

k

Y

p=2

b

1;p

Y

0

+ !

0

(� � � ) (43)

� T

i;j

~

b

i;j

k

Y

p=2

b

1;p

Y

0

+ !

0

(� � � ) :

As we mentioned, (29), 31 and 32 are just spe
ial 
ases of (43). Repla
e t

i;j

in (43) a

ording to (37), the

underlined part 
an be rewritten as

T

i;j

=

0

�

a

i

a

j

k

Y

�=1;� 6=i;j

b

�

1

A

2

4

k

X

�=2

0

�

a

1

a

�

k

Y

p=1;p 6=1;�

b

p

1

A

3

5

+

0

�

a

1

a

i

k

Y

�=1;� 6=1;i

b

�

1

A

0

�

a

1

a

j

k

Y

�=1;� 6=1;j

b

�

1

A

= a

1

0

�

a

i

a

j

k

Y

�=1;� 6=i;j

b

�

1

A

2

4

k

X

�=2

0

�

a

�

k

Y

p=1;p 6=1;�

b

p

1

A

3

5

+ a

j

0

�

a

1

a

i

k

Y

�=1;� 6=1;i

b

�

1

A

0

�

a

1

k

Y

�=1;� 6=1;j

b

�

1

A

= a

1

0

�

a

i

a

j

k

Y

�=2;� 6=i;j

b

�

1

A

2

4

b

1

k

X

�=2

0

�

a

�

k

Y

p=1;p 6=1;�

b

p

1

A

3

5

+ a

j

0

�

a

1

a

i

k

Y

�=1;� 6=1;i;j

b

�

1

A

0

�

b

j

a

1

k

Y

�=1;� 6=1;j

b

�

1

A

=

0

�

a

1

a

i

a

j

k

Y

�=2;� 6=i;j

b

�

1

A

2

4

b

1

k

X

�=2

0

�

a

�

k

Y

p=1;p 6=1;�

b

p

1

A

+ b

j

a

1

k

Y

�=1;� 6=1;j

b

�

3

5

=

0

�

a

1

a

i

a

j

k

Y

�=2;� 6=i;j

b

�

1

A

!

0

: (44)

So overall speaking, Y

(3)

i;j

n

has a fa
tor !

0

.

Please note that when we were rewriting (34) into (36), we a
tually simpli�ed the s
enario be
ause we took

it for granted that ea
h b

�

in (34) is relatively prime to ea
h other. Unfortunately, to a
hieve the optimal result

for both eÆ
ien
y and a

ura
y, we 
an not assume so. For example if b

1

= t

0

t

1

and b

2

= t

0

t

2

, then we have to

rewrite the denominator in (34) as

a

1

t

0

t

1

+

a

2

t

0

t

2

+

k

X

�=3

a

�

b

�

=

a

1

t

2

+ a

2

t

1

t

0

t

1

t

2

+

k

X

�=3

a

�

b

�

: (45)

In our simpli�ed s
enario, we have rewritten it as

a

1

t

0

t

1

+

a

2

t

0

t

2

+

k

X

�=3

a

�

b

�

=

a

1

t

0

t

2

+ a

2

t

0

t

1

t

2

0

t

1

t

2

+

k

X

�=3

a

�

b

�

:

As you 
an imagine, in order to 
onsider this 
ommon t

0

, we will have to rewrite !

0

de�ned in (35). Let us


alled it !

0

0

. Without the additional t

0

, !

0

0

is simpler than !

0

. Although we have 
hanged !

0

to !

0

0

, Y

(3)

i;j

n

will
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have a fa
tor !

0

0

. Be
ause ea
h multipli
ation term in (35) has either b

1

or b

2

or both of them as fa
tors. So !

0

0

is a
tually a fa
tor of !

0

. In our example above, !

0

= t

0

!

0

0

.

In the theorem we only 
onsidered nodes with more than two neighbors, as for a node with exa
tly two

neighbors, there will be only one new bran
h and its admittan
e does not have redundant 
ommon fa
tor in its

numerator or denominator. Please note that we do not 
onsider 
ir
uit 
ases with dangling or isolated nodes

(with one neighbor or no neighbor at all).

In this theorem, we evaluated Y

(2)

from Y

(1)

and Y

(3)

from Y

(2)

. In the evaluation pro
ess, we did not 
hange

Y

(2)

. But if we go on the pro
ess and use Y

(3)

to evaluate Y

(4)

, then before doing this, we may need to simplify

some of Y

(3)

be
ause their numerator and denominator have one or more 
ommon fa
tors. The next theorem

Y

(1)

) Y

(2)

) Y

(3)

!

e

Y

(3)

) Y

(4)

Figure 9: General S
enario


laims that numerators of Y

(4)

would have the ! generated by Y

(2)

even with the simpli�
ation from Y

(3)

to

e

Y

(3)

in between(Fig. 9).

Theorem 5. Given a multi-port RKC linear time-invariant network represented by G

0

(V

0

; E

0

), we 
an use a

series of Y-� transformations to eliminate all its internal nodes. Suppose it has n internal nodes, then after

we apply Y-� transformation on one node in G

k

(V

k

; E

k

)(Fig. 10(a)), the graph will be updated and denoted as

G

k+1

(V

k+1

; E

k+1

), where 0 � k < n� 1.

n

n

n

n

n

n

n

n

n

n

n

n1

0

n

n

n

n

   (a)                                                                       (b)                                                                    (c)                                                              (d)

n

n

n

n

n

n

n n

n

n
n

3 5

6

7

3 5

6

7

3

2

7

4

5

6

Y

2

4

1

2

1 7

Y

26 n

3

4

5

12 .

  

. . .    . . .

4

..(k+p)

.
. .

12
(k+1)

.

. .

Figure 10: Illustration for Theorem 5: (a) k-th transformation; (b) (k + 1)-th transformation; (
) (k + p)-th

transformation; (d) (k + p+ 1)-th transformation.

Suppose n

0

is eliminated at the k-th step. Let L

0

represent the neighbors of n

0

in G

k

(V

k

; E

k

). Then we further

suppose that n

1

2 L

0

is the �rst one in L

0

being eliminated after n

0

. Let us say n

1

is eliminated in the k + p-

th step. Fig. 10 shows the s
enario. Y

(k)

represents the admittan
e between n

0

and its neighbors. Y

(k+p)

the

admittan
e between any two nodes in L

0

, and Y

(k+p+1)

the admittan
e between any two nodes in L

0

� fn

1

g.

numerators of Y

(k+p+1)

would have the !

0

generated at the k-th step, no matter how many other 
ommon

fa
tors are found and 
an
eled out during the (k + 1)-th step through the (k + p)-th step.

Proof: Firstly, we know that omega's asso
iated to ea
h internal node during the redu
tion pro
ess are prime

to ea
h other, as no any two nodes have exa
tly the same bran
hes at any redu
tion steps. Unless ultimately,

there remain only two nodes, when the redu
tion terminates.

Se
ondly, it is true that if we 
hoose to postpone all the 
ommon-fa
tor-
an
ellation operations during the

(k+1)-th step through the (k+p)-th step, these 
ommon fa
tors are still 
ommon fa
tors in all of the admittan
e

in Y

(k+p+1)

, If we suppose ! is a 
ommon fa
tor of Y

(k+1)

12

in Fig. 10(b), for instan
e, then it is still a 
ommon

fa
tor of Y

(k+p)

12

in Fig. 10(
), as only admittan
e-addition operations might be performed on bran
h between n

1

17



and n

2

during the (k + p + 2)-th step through the (k + p)-th step. A

ording to (15), admittan
e between any

two nodes in L

0

�fn

1

g in the (k+ p+1)-th step(Fig. 10(d)) has ! as its 
ommon fa
tor. And be
ause ! is prime

to !

0

, !

0

would still 
ome up as a 
ommon fa
tor to ea
h admittan
e in Y

(k+p+1)

if we had 
an
eled out ! in

earlier steps.

Similar to mathemati
al indu
tion, Theorem 4 assures the foundation of our redu
tion algorithm, and theorem 5

makes our redu
tion pro
ess work re
ursively. The two theorems together support our algorithm in the next

se
tion.

4.3 Common Fa
tors in Denominators Only

There is another kind of 
ommon fa
tors: for admittan
e of two bran
hes that were 
onne
ted to the same

node n

x

eliminated earlier, the denominators of the two admittan
e share the ! asso
iated to n

x

. Fig. 11 shows

an example s
enario of our explanation. After n

0

in (a) is eliminated, Y

(k+1)

12

and Y

(k+1)

13

in (b) share a 
ommon

(a)                                                (b)

Y

n 1

3nn 2
23

2 n 3n

Y

1

n

(k+1)
13

(k)
02 03Y

Y

(k)

n

Y (k+1)
12Y

(k)

0

01

(k+1)

Figure 11: An example shown 
ommon fa
tors in denominators: (a) n

0

to be eliminated; (b) n

1

to be eliminated.

fa
tor ! from n

0

. And when n

1

is to be eliminated using (15, the 
ommon fa
tor in the denominator of the

right-hand side has to be identi�ed. Please note that this ! is not ne
essarily equal to the whole denominator of

Y

(k+1)

12

or Y

(k+1)

13

, but generally serves as a 
ommon fa
tor of the two.

5 Overall Algorithm

Colle
ting all the rules that we have had so far for Y-� transformation, we give an algorithm in pseudo-


ode. Given a multi-port RKC linear time-invariant network, one 
an represent it as a graph G

0

(V

0

; E

0

), with

~

V

in
luding all external nodes.

Algorithm 1.

1. order nodes in V

0

�

~

V and generate a node elimination sequen
e S;

2. for ea
h node n

i

2 V

0

�

~

V , 
reate a set L

i

and initiates its value as its neighbors in G

0

;

3. for ea
h node n

i

2 V

0

� fn

p

; n

q

g, 
reate a set n

i

:prev and n

i

:prev = �;

4. for n

i

= S[i℄ do

4.1. �nd the node n

k

in L

i

that appears �rst in S;

4.2. n

k

:prev = n

k

:prev [ fn

i

g;

18



4.3. for n

j

2 n

i

:prev do:

4.3.1. t

j

= jL

i

\ L

j

j � 1;

4.4 perform Y-� transformation on node n

i

:

4.4.1. denominator: Y

(i)

i

d

=

P

n

j

2L

i

Y

(i�1)

i;j

;

4.4.2. remove redundan
y: divide the numerator and denominator of Y

(i)

i

d

with

Q

n

j

2n

i

:prev

!

t

j

j

, then

Y

(i)

i

d

�

!

i

A

;

4.4.3. for n

j

; n

k

2 L

i

; j 6= k do:

4.4.3.1. 
 = 1:0;

4.4.3.2. for n

�

2 n

i

:prev do:

4.4.3.2.1. if n

j

2 L

�

and n

k

2 L

�

, then 
 = 
 � !

�

;

4.4.3.3. numerator: Y

(i)

i

n

= Y

(i�1)

j;i

Y

(i�1)

i;k

�

B

C

;

4.4.3.4. new admittan
e: Y

(i)

0

j;k

=

Y

(i)

i

n

Y

(i)

i

d

=

B

C

A

!

i

;

4.4.3.5. remove redundan
y: Y

(i)

0

j;k

=

B

A


C


!

i

�

D

E

, where

A


C

is a division operation;

4.4.3.6. merging, if ne
essary: Y

(i)

j;k

= Y

(i)

0

j;k

+ Y

(i�1)

j;k

=

D

E

+

G

H

=

DH+GE

EH

, where Y

(i�1)

j;k

=

G

H

;

4.4.3.7. remove redundan
y: if 
 6= 1:0, then Y

(i)

j;k

=

(DH+GE)=


2

EH=


2

;

4.4.4. G

i�1

has been transformed to G

i

;

4.5. update L

j

of n

j

2 L

i

.

Topologi
al analysis method is another approa
h to obtaining the driving-point admittan
e fun
tions by eval-

uating determinants and 
ofa
tors of admittan
e matri
es. One advantage of topologi
al formulas over the


onventional methods for the evaluation of determinants and 
ofa
tors is that the former avoids the usual 
an-


ellations inherent in the expansion of determinants and 
ofa
tors in the latter. The determinant of the node

admittan
e matrix of a passive network without mutual indu
tan
es is equal to the sum of all the tree admittan
e

produ
ts of it. The enumeration of all the trees of a graph is very time-
onsuming[27℄. The approa
h is generally

an exponential algorithm in terms of time. In the worst 
ase when G

0

is a 
omplete graph, there are O(N

N�2

)

trees in the graph and evaluating all the admittan
e produ
ts takes an exponential amount of time, where N is

the number of nodes in G

0

.

For a given graph G

0

, we assume that N is the number of nodes in G

0

, d is the maximum degree of nodes in

G

0

, and

~

d is the overall maximum degree of nodes G

0

, G

1

, and so on. Of 
ourse

~

d > d. r is supposed to be the

number of orders reserved for ea
h admittan
e, and t the maximum size of n

i

:prev de�ned �rst in Step 3.

In our algorithm, Step 1 has O(N �

~

d) operations, even without mass elimination. Step 2 takes O(N � d) time,

and Step 3 O(N). Step 4 itself iterates about N times, assuming the number of external nodes is far less than

N . Inside ea
h iteration, 4.1 takes O(1) time be
ause we always maintain the list L of every node along with

new bran
h generation. 4.2 also takes O(1) time. As ea
h node 
an only be added into another node's prev

list on
e, 4.3 takes O(

~

d) time in average in every iteration of Step 4. Inside 4.4, 4.4.1 takes O(

~

d � r

2

), be
ause

ea
h polynomial produ
t operation takes O(r

2

) and it dominates any polynomial addition operation. Be
ause

the maximum value of t

j

from 4.3.1 would be

~

d. 4.4.2 takes O(

~

d � r

2

) time in average in every iteration of Step
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4, for the similar reason for 4.3. 4.4.3 iterates O(

~

d

2

) times in ea
h iteration of Step 4. Inside it, 4.4.3.1 takes


onstant time, and 4.4.3.4 takes no time, as it is only a statement. 4.4.3.2 takes O(r

2

� t) time. Note that the


ondition evaluation takes 
onstant time, be
ause neighbors of n

i

:prev was s
anned in 4.3 and stored for late use.

4.4.3.5{4.4.3.7 ea
h takes O(r

2

) time. Finally, 4.5 takes O(

~

d

2

). So overall speaking, 4.4 takes O(

~

d

2

� r

2

� t) and

hen
e Step 4 takes O(N �

~

d

2

� r

2

� t).

The worst 
ase happens when G

0

is a 
omplete graph.

~

d = N � 1 and t = 1. So the worst 
ase 
omplexity is

O(N

3

� r

2

).

Di�erent from LU de
omposition in SPICE, our algorithm enables dynami
almemory de-allo
ation, as bran
hes

of nodes eliminated are no longer useful and the memory thus 
an be freed. As a result, the memory requirement

grows up in the middle of the redu
tion pro
ess and goes down till the end of it. For graphs derived from VLSI


ir
uits, the proposed algorithm is proportional to the overall maximum number of bran
hes in G

0

, G

1

, et
. The

worst 
ase happens when G

0

is a 
omplete graph and the 
omplexity is O(N

2

).

6 Admittan
e in Its Simplest Form

If we apply Algorithm 1 on 
omplete graphs, the �nal solution is optimal, meaning it does not has any 
ommon

fa
tors and thus it has the same order as the original network. Let us �rst look at a 6-node 
omplete graph. Its

transformation pro
ess is shown in Fig. 12. Solid nodes in the �gure are to be eliminated at the snapshot. Y

i

denotes the form of admittan
e in ea
h step, where denominators are given and numerators are simply ignored

(*). Please keep in mind that these numerators have the same order as their 
orrespondent denominators.

(c)                                         (d)                                          (e)

4

5

5

4 3

2n

n

nn nn

5

4

n

n

n

3

5

4 3

n

n

nn

1n n1

n2

(a)                                                                           (b)

nn

n

1n

5

4 3

2

Figure 12: (a) Y

i

=

a

i

b

i

; j!

1

j = 5; (b) Y

i

=

�

b

i

!

1

; j!

2

j = 9; (
) Y

i

=

�

b

i

!

2

; j!

3

j = 12; (d) Y

i

=

�

b

i

!

3

; j!

4

j = 14;

(e) Y

i

=

�

b

i

!

4

In Fig. 12(a), �ve heavily weighted bran
hes are going to be eliminated along with the 
entral node. New

bran
hes are in the form of

a

i

b

i

a

j

b

j

a

1

b

1

+

a

2

b

2

+

a

3

b

3

+

a

4

b

4

+

a

5

b

5

=

�

a

1

b

2

b

3

b

4

b

5

+:::+b

1

b

2

b

3

b

4

a

5

b

1

b

2

b

3

b

4

b

5

�

�

!

1

b

1

b

2

b

3

b

4

b

5

=

�

!

1

(46)
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When these new bran
hes are to be 
ombined with those existing in parallel

�

!

1

+

a

i

b

i

=

�

b

i

!

1

; (47)

whi
h 
onstitute Y

i

s in Fig. 12(b).

Let us go one step further. When we are eliminating the se
ond node(Fig. 12(b)), new bran
hes are in the

form of

�

b

i

!

1

�

b

j

!

1

�

b

6

!

1

+

�

b

7

!

1

+

�

b

8

!

1

+

�

b

9

!

1

�

�

b

i

b

j

!

2

1

!

2

b

6

b

7

b

8

b

9

!

1

=

�

!

1

!

2

: (48)

After the similar step as 47, the �nal admittan
e Y

i

in Fig. 12(
) 
an be evaluated as

�

!

1

!

2

+

�

b

i

!

1

=

�

b

i

!

1

!

2

: (49)

Due to Theorem 4, !

1

in (49) 
an be 
an
eled. So in Fig. 12(
),

Y

i

=

�

b

i

!

2

(50)

So on and so forth, when the network is redu
ed into one port(Fig. 12(e)), the order of the admittan
e is

jb

i

!

4

j = 15, whi
h is equal to the number of bran
hes in Fig. 12(a). Note that j!

2

j � j!

1

j = 4; j!

3

j � j!

2

j =

3; j!

4

j � j!

3

j = 2.

Theorem 6. Given a linear RKC time-invariant network whi
h 
an be represented by a graph G(V;E), after

Algorithm 1 redu
es G into one bran
h whose admittan
e has the same order as the original network.

Proof: Let us look at an example along our proof. Fig. 13 illustrate a Y-� redu
tion series. Solid nodes shown in

ea
h graph are the ones to be eliminated at that step. As we know, ea
h time when we eliminate a node, there is

an ! asso
iated with it. And the denominator of the admittan
e asso
iated with every bran
h is a multipli
ation

of b and some of existing !'s from nodes we have eliminated so far. If the bran
h exists in the original graph

G

0

(V

0

; E

0

), then b is the denominator of its admittan
e; if the bran
h does not exist in G

0

(V

0

; E

0

), then b = 1. We

assume ea
h bran
h in E

0

has di�erent admittan
e and we assign a distin
t integer to ea
h of them (Fig. 13(a)).

Graphs (a){(b) in the elimination series are denoted as G

0

(V

0

; E

0

); G

1

(V

1

; E

1

); ; : : : ; G

n

(V

n

; E

n

), respe
tively,

where n = jV

0

j � 2. Along with ea
h bran
h in ea
h graph is a set S, where ea
h member W is a set of bran
hes.

Here W � f1; 2; : : : ; jE

0

jg.

Definition 2. We de�ne that a bran
h e is asso
iated with a bran
h e

0

if there exists a W su
h that W 2 S

of e

0

and e 2 W , where e 2 E

0

and e

0

2

S

E

i

(0 � i � jE

0

j).

For instan
e, bran
h a between n

1

and n

2

in Fig. 13(a) is asso
iated with the bran
h between n

2

and n

8

in (b), be
ause a 2 fa; bg in ffa; bgg. a is also asso
iated with the bran
h between n

8

and n

9

in (
), be
ause

a 2 fa; b; 
; d; ig in ffkg; fa; b; 
; d; ig; fd; e; f; g; jgg.

We now give four 
laims following Algorithm 1.

1. When a node is to be eliminated,

(a) W =

S

S

i

in
ident to the node

S

W

j

2S

i

W

j

;

(b) W needs to be inserted into S of bran
hes between any two of the node's neighbors. Parti
ularly, if

9W

i

2 S and W

i

�W before the insertion, then W

i

has to be removed from the set S after that.

2. For S of any bran
h, 8W

i

;W

j

2 S )W

i

\W

j

= �.

3. For S of any two di�erent bran
hes, S

1

and S

2

, 8W

i

2 S

1

and 8W

j

2 S

2

;)W

i

=W

j

or W

i

\W

j

= �.

4. For S of any bran
h,

P

W

i

2S

jW

i

j is equal to the number of bran
hes in E

0

that have asso
iated with the

bran
h.

21



If the four 
laims are true, then Theorem 6 is true automati
ally be
ause �nally all bran
hes in E

0

will be

asso
iated with the ultimate bran
h and the order of its admittan
e is the same as that of the original network

represented by G

0

(V

0

; E

0

).

Referring to 4.4 in Algorithm 1 on how a new admittan
e is evaluated, one 
an �nd the dire
t 
orresponden
e

of 4.4.1{4.4.2 to Claim 1(a), and 4.4.3.6{4.4.3.7 to Claim 1(b). So Claim 1 is true. Claim 2 and Claim 3 are

dire
tly derived from Claim 1(b), as long as ea
h bran
h in E

0

is initially assigned a unique index.

Claim 4 
an be proved using mathemati
al indu
tion. It is true when we apply Y-� transformation on some

node of the original graph G

0

(V

0

; E

0

). For instan
e, in Fig. 13(a), four nodes at the four 
orners are eliminated

and four new diagonal bran
hes are generated in Fig. 13(b). The order of denominators of these new admittan
e

(also the order of the admittan
e) are equal to 2, the number of bran
hes in E

0

(Fig. 13(a)) asso
iated with ea
h

of them. With assuming Claim 3 is true for the �rst k steps, then Claim 1 and Claim 2 together guaranteed that

it is also true for the the k + 1-th step.

{{k}}

{{a,h}}

{{j}}

{{b,c}}

{{l}}

{{d,e}}

{{i}}

{{f,g}}

{{f}}                    {{e}}

(c)                                                                                   (d)

{{k}}

               

{{a}}                     {{b}}

{{c}}

{{d}}{{g}}

{{h}} {{i}}

{{j}}

{{l}}
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n
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(a)                                                                                   (b)

n
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1 3
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n

n4
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n

Figure 13: Illustration for proof of Theorem 6: (a) the four 
orner nodes are to be eliminated; (b) the two upper

and lower nodes are to be eliminated; (
) the 
entral node is to be eliminated; (d)transformation �nished.

To understand this, we have to refer to Y-� elimination pro
ess in Algorithm 1. When generating a new

admittan
e, we fa
e only two 
ases: (1) S of ea
h bran
h in
ident to the eliminated node is disjoint with ea
h

other, i.e. jL

i

\ L

j

j < 2 in 4.3.1; (2) two or more S are not disjoint so that the 
orresponding denominators

have some 
ommon fa
tor(s), i.e. jL

i

\ L

j

j � 2. We have setup some me
hanism for this 
ase in 4.4.2 to remove

the redundan
y. When merging is ne
essary, we also fa
e two s
enarios: (1) the old bran
h is a member of the


lique generated when n

�

was eliminated. We have setup some me
hanism for this 
ase in 4.4.3.7 to remove the

redundan
y. Also this removal is guaranteed by Theorem 4. (2)the old bran
h is not a member of the 
lique

generated when n

�

was eliminated. . So overall, the order of e�e
ted bran
hes is still 
onsistent with the number

of bran
hes in E

0

asso
iated with them be
ause of the redundan
y eliminations.

This 
ompletes our proof.
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7 Con
lusion

We proposed a generalized Y-� transformation for inter
onne
t model redu
tion. This report 
overed the

theoreti
al foundation of our work. The proposed algorithm 
an handle linear(ized) independent sour
es, resistors,


apa
itors, self and mutual K elements. The algorithm integrated 
ommon-fa
tor-
an
ellation operations that

were not seen in the literature. Admittan
e in redu
ed 
ir
uits has the guaranteed simplest form. Further

appli
ations to the work 
an be found reported in [1℄.
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