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Abstract

This report provides the theoretical foundation to STAR program, a linear network reduction software kit. Y-A
transformation in s-domain is the essential part of the reduction engine of the program. We have extended it to
handle current/voltage sources and K elements[22]. Coming with it are node ordering algorithm and some novel
numerical stability control techniques. They play an important role in the overall reduction flow by providing the
consistent accuracy in program outputs. [1] is dedicated to the applications to the program.
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1 Introduction

Due to the increasing complexity of VLSI chips, a linear network such as a power/ground grid usually contains
millions of RLC elements generated from extraction tools. Lower supply voltages make the voltage variation
across the power grids very critical because large voltage drop reduces the supply voltage at some logic gates,
leading lower noise margins and resulting in a serious performance impact[2, 3]. Stronger coupling effects across
deep sub-micron interconnects demand accurate and efficient simulation as well. On the other hand, SPICE[4]
as the standard of circuit-level simulation tools, takes hours and consumes gigabytes of memory on a modern
workstation to simulate a moderate size RLC network[5]. Simulating such circuits becomes a challenging task.

To work around the poor performance of SPICE, two strategies are commonly used: (1) to increase the efficiency
of solving the MNA (modified nodal analysis) or NA(nodal analysis) formulated system equations; (2) to reduce
the size of original networks via model reduction techniques.

MNA using LU factorization in SPICE was shown less efficient than NA using preconditioned Krylov-subspace
iterative methods[6]. NA using SuperLU[7] factorization in [5] provided comparable performance to iterative
methods while the robustness of direct methods was kept. [8, 9] explored the regular grid structure of power and
ground networks and used multigrid technique to solve a coarse grid and map the solution back to the original
fine grid. These approaches fall into the first category.

The moment-matching technique, on the other hand, has been widely used to approximate waveforms of a
linear interconnect network using its lower order moments[10, 11, 12]. Since the advent of the technique, many
interconnect delay evaluation models[13, 14, 15] were proposed. It was well known that the moment-matching
technique was equivalent to a Padé approximation, which may generate positive poles for an originally passive
circuit. [16] partitioned RC interconnect networks and reduced each sub-network into a macromodel, reserving
lower orders of the port admittance matrix Y. The method guaranteed the realizability of the macromodels for
RC circuits.

MPVL (matrix Padé via Lanczos)[17], block Arnoldi[18] and PRIMA[19] are admittance matrix (Y (s)) based
model reduction methods so that they perform model order reduction on each entry in Y (s) simultaneously. The
PACT algorithm[20] first introduced congruence transformations for order reduction of RC circuits. The same
authors proposed split congruence transformations[21] for passive reductions of RLC circuits.

We have proposed a new RKC network reduction method. The principal idea is that we consider a linear
network as a graph and perform Y-A transformation on each node of no interest until all such kind of nodes
are eliminated. The generalized Y-A transformation formula is able to handle current/voltage sources and K
elements[22]. Nodes eligible to be eliminated are called internal nodes. and others are called external nodes.
Different from topological formulas for network functions [27], our approach keeps only low-order coefficients of
them. Fortunately, these coefficients are exactly the same as they were computed without discarding any high-
order terms. A complexity comparison of the two approaches is given in Section 5 after we give the proposed
algorithm.

Generally speaking, the input admittance of an one-port N-th order RLC linear time invariant network in s-
domain is a N-th order rational function Y (s). Y-A transformation reduces the network in term of the number of
nodes, a straightforward implementation of the approach, however, leads to a rational function Y'(s) whose order
is far beyond N (about N!). It is worthy noting that Y (s) = Y'(S) indeed. By exploiting the structure of Y-A
transformation process, we have found out that a lot of common factors are introduced into the numerator and
denominator of Y”'(s), which actually should be canceled out. This finding and some other practical numerical
considerations allow us to control round-off errors in high-order polynomial computation. It is also crucial in
pole/residue analysis, as shown in [1].

Our main contributions are:

e admittance is always kept in its rational form and all the coefficients are the same as they were computed
using exact symbolic approaches without discarding any high-order terms;

e With impedance realization method[1], incremental simulation can be achieved by simply specifying nodes
in tunable sub-circuits as external nodes;

e Pole/Residue sensitivity analysis can be achieved inexpensively along the reduction process.



The remaining of this report is organized as follows. In the next section, we briefly review the fundamentals
of Y-A transformation and the generalized formula. Multiple minimum degree (MMD) algorithm [25] is covered
in the Section 4. And Section 5 is dedicated to explaining the existence of common factors in transformed
admittance. The overall reduction algorithm will be given in Section 6. Section 7 concludes the proposed work.

2 Y-A Transformation

2.1 Example

Before we present the general form of Y-A transformation, we first illustrate a simple numerical example.

no no ns3 n2 Y23
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Figure 1: A numerical example for Y-A transformation: (a)circuit schematic before the transformation; (b)circuit

schematic after the transformation.

As shown in Fig. 1(a), ng is adjacent to ni, ns, and ng only. To simplify our explanation, we further assume
that there is no admittance between any two of ny, ne and n3. KCL (Kirchhoff’s Current Law) equations for

node ng, n1, na, and ng can be established as follows:
(5+s)Vop—sVi —2V5 —3V3=0
s+ s+ -Y V,=1
2+ 2+Y)Va =YV, =1
3N+ B+Y;) Vs —Y3V, =1

In the equations, we have denoted V', as node voltage of n4,...n,. Y1, Y5 and Y5 are admittance vectors with
the i-th entry equal to the admittance between ni, n2, n3 and n;, ¢ > 4, respectively. Y7, Y> and Y3 are the total
admittance between ni, ne, ng and nodes except ng, respectively. Finally, I;, I, and I3 are the total current
injecting into n1, ng and ng from current sources, respectively. From 1, we can denote Vj in terms of Vp, V2, and

V3 as:
81/1+2V2+3V3
Vo= AT 22T
5+s
Inserting (5) into (2)—(4) gives
58 2s 3s
— 4+ Y - - -Y1v, =1
(5+s+ Vi 5+5V2 5-I-$V3 !
2s 6+ 2s
— V; Y2)Vo — Vs —-Y2V, =1
5-|-31+(5—|—s+ )Va 5rs’? e =12
3s 6 6+ 3s
- i— Vs Y3)V; -Y3V, =1
515t 5+82+(5+8+ Vs 3
Comparing (6)—(8) with Fig. 1(b), we can find out that
Yio = 2s/(5+5)
Yis = 3s/(5+5)
Yos = 6/(5+s).



From the example, you may have noticed that what we performed is equivalent to one column/row Gauss
elimination to the system equations. When actual Y-A transformations are carried out, we do not formulate a
circuit into simultaneous system equations. Instead we consider it as a graph and operate on the graph directly.

One advantage of our approach over SPICE is that once massive internal nodes are eliminated while external
nodes are preserved, then after impedance realization is applied to transformed impedance, the resultant passive
circuit would be much smaller and has similar characteristics in the working frequency range. And because any
node can be specified as external node to be preserved, incremental simulation becomes easier. For example in a
datapath structure with hundreds of bi-directional divers exist in the same interconnect network. We can collapse
the internal structure of the network. Then delays after tuning physical parameters of drivers can be simulated
very easily using SPICE as the overall circuit is much smaller than the original one.

Simple circuit elements, i.e. resistors, capacitors, and self partial inductors, have well-known admittance forms
in s-domain. But Y-A transformations involving current/voltage sources and mutual partial inductors are not
straightforward. Particularly, even though the generalized Y-A transformation is able to handle mutual inductors,
including them prevents us from giving a simple and unified transformation formula.

K-based inductance extraction method[22] proposed a new circuit element — K element to capture the induc-
tance effects of interconnects in integrated circuits. (14) of [23] gives the branch equation for element K:

di
Kv=— 9
b=, )
which in s-domain can be written as: K

Although V and I refer to different branches for capturing mutual inductance effects, a simple conversion will
integrate K elements into our transformation formula seamlessly.

2.2 Branch with Current/Voltage Source

Branches involved in Y-A transformation can not only include resistors, capacitors and self inductors, but also
current/voltage sources and mutual inductors. We will give the Y-A transformation formula for circuits with
current and voltage sources in this sub-section, and K elements in the next sub-section.

Following the similar procedure in Section 3, we apply Y-A transformation to node ng in Fig. 2(a),

no Yo2 no Yo3 n3a no Yo3 n3
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Figure 2: Y-A transformation with current source involved: (a)circuit schematic before the transformation;
(b)circuit schematic after the transformation.

Yi2 = Yo1Yo2/(Yor + Yoz + Yo3)
Yiz = Yo1Yo3/(Yor + Yoz + Yo3)
Yoz = Yo02Yo3/(Yor + Yoz + Yo3) (11)
Li; = Yo2/(Yor + Yoz + Yos3)lo1
Liz = Yo3/(Yo1 + Yoz + Yo3)lo1-
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Figure 3: Y-A transformation with voltage source involved: (a)circuit schematic before the transformation;
(b)circuit schematic after the transformation.

And performing Y-A transformation to node ng in Fig. 3(a) gives

Yio = Yoo

Yis = Yos (12)
Ly, = YoVn

Lz = Yo3Vor.

One can also derive (11) and (12) from Norton’s theorem. A generalization of the two transformation formulas
will be given in Theorem 1.

2.3 Branch with K element

Self K elements are considered with no difference from others such as resistors and capacitors in Y-A trans-
formation. But for mutual K, we have to do a conversion on it. For the example shown in Fig. 4(a), the circuit

Na N2a
+ +
I I2

Km
v Kul| 7% N K2 v,
S

Mp Moy
I
(a (b

Figure 4: Conversion on mutual K in s-domain: (a)given mutual K; (b) converted K.

branch equations are written as

K K _
o+ SEV: = L
(13)
Euy, + K2y, = L,
which can be rewritten as KCL equations for the four nodes in Fig. 4(a) as
Toyy, — Koy + B2y, - Emyy =g
“EEV o+ PRV - Ve, + eV = ok (14)
BaVie - favy + f2w, - fnv,, = L
—Euyy, + K2y, - Huy, + Euy, = b



One can find out that the KCL equations for the four nodes in Fig. 4(b) are exactly the same as (14, so that the
circuit in Fig. 4(b) is equivalent to the circuit in Fig. 4(a). Although some values in (b) have negative signs,the
equivalent circuits are still passive because K-based method guarantees the extracted K matrix to be positive
definite, the equivalent.

2.4 Generalization
Now we state a generalized Y-A transformation formula including linear(ized) current/voltage sources, re-

sistors, capacitors, and K elements. Although the theorem is stated based on the simple scenario with a single
current/voltage source, for complicated cases, one can always use them in conjunction with superposition theorem.

THEOREM 1. With no loss of generality, let ny be the node that we want to eliminate, let ni,ns,...,n; be
the adjacent nodes to ng. Y;; denotes the admittance between node n; and nj. Thus Yp1, Yoz, ..., Yor are the
admittance between ni,ns,...,ng and ng, respectively. Particularly, a current source is considered to be open-

circuited and a voltage source short-circuited in terms of admittance. In s-domain, admittance is a function of
S.
After ng is eliminated, ni,ns,...,ny become pairwise adjacent and form a clique. A set of admittance

{sz] | Zvj € [].,k],’L <]}
are generated, and
+ YOi(S) X Yoj (8)
Yo1(s) + Yoa(s) + -+ + Yor(s)”

Suppose Iy1 was a current source between ng and ni before the elimination. Then after it, a set of current
sources

Yij(s) = Yij(s) (15)

{Ly | j €2k}
have to be generated, and
Yo, (s)
= Io1(s). 16
Yor(s) + Yoo (s) + - + You(s) =) (16)
Alternatively, suppose Vo1 was a voltage source between ng and ny before the elimination. Then after it, a set
of current sources

L (s)

{1 |j €K}
have to be generated, and
11j(s) = Yo;(s)Vor(s)- (17)
[ |

A useful observation from Theorem 1 is that different from Padé approximation, using Y-A transformation,
coefficients of admittance are derived directly from admittance in original circuits and are kept in its original
rational form. By matching the lower-order coefficients, the method can capture complex poles of original circuits
near imaginary axle accurately.

COROLLARY 1. If all RLC elements in a given linear RLC system are of positive values, no matter how many
nodes are eliminated via Y-A transformation, the transformed admittance between any two nodes n; and n; can

be written as
ap +ais+---+aps™

by + bys+ -+ bysn’
where by > 0, and a;,b; > 0,7 € [0,m] and j € [1,n]. [ |

(18)

The above corollary holds immediately after the given theorems.



3 Node Ordering

As elaborated after the example in Section 3, eliminating nodes in an interconnect network via Y-A transfor-
mation is equivalent to LU factorizing the corresponding MNA formulated system equations. Non-zero fill-ins in
LU factorization correspond to new branches among nodes in the network. Hence given a linear network, the
order in which nodes are eliminated is very important in that different orders generally lead to different numbers
of new branches. And the complexity of every Y-A transformation on a node n; is O(|n;|*), where |n;| is the
current degree of n;. Because we do not perform Y-A transformation on every single node in a system as external
ones have to be preserved, We revised MMD algorithm to fit our needs.

3.1 MMD Algorithm

The most widely used general-purpose ordering scheme is the minimum-degree algorithm [24]. It is a heuristic
algorithm, but it is very successful in reducing non-zero fill-ins in LU factorization. The scheme attempts to
reduce the fill-ins of a given matrix by a local minimization of non-zeros in the factored matrix. It is used as a
practical approximate solution to the NP-complete fili-in minimization problem [26].

The concept of indistinguishable nodes [24] is developed to eliminate a subset of nodes all at the same time
(Step 3) instead of just one node of the minimum degree. In the elimination process, nodes n; and n; that satisfy

Adj(n;) U {n;} = Adj(n;) U {n;}

in a graph are said to become indistinguishable. These nodes can be numbered consecutively in the minimum-
degree ordering.

Step 1. (Initialization) Initialize the set of eliminated nodes S = ), and the set of uneliminated nodes X includes
all internal nodes.
Compute the degree of all the nodes in X.

Step 2. (Minimum Degree) Determine the new minimum degree among nodes in X and the set 7" of all nodes
in the set X — S of the minimum degree.

Step 3. (Mass Elimination) All nodes in X are unflagged.
For each node n; in T
If node n; is unflagged
find the set W of indistinguishable nodes of n;;
flag the adjacent nodes of n; and the nodes of in the current graph;
S=SUW.

Step 4. (Degree update) Determine the representation of the new graph.
Update the degree of all the flagged nodes in X — S that have not been outmatched.

Step 5. (Loop or Stop) Repeat steps 2 to 4 until T' is empty.

Note that we excluded external nodes from the the set of uneliminated nodes. So that the resultant node
elimination sequence contains internal nodes only.

THEOREM 2. Let S; and Sz denote any different node elimination sequences of a given circuit. Suppose n;
and n; are two external nodes of the circuit, Let Y;; and Y, are the admittance between n; and n; after Y-A
Transformations following sequence S1 and Sa, respectively. The following equation holds:

Yij =Y.



The theorem tells us that even although different node elimination sequences could have dramatically different
impact on the performance of reduction via Y-A Transformation, the transformed admittance from these different
reduction sequences are the same.

An observation from (15) is that without considering common factor cancellation between Y;;’s numerator
and denominator, the order of Y;; is the summation of the order of Y;p and Yjy. Because the reduction is to be
applied to each internal nodes, Y;; may be appearing on the right-hand side of (15) so that order of transformed
admittance will be growing fast. When reducing interconnect networks, on the other hand, we only need to keep
coefficients of Y;;’s lower order terms, i.e., {ag,a1,...,ar} and {bo,b1,...,b;} of ¥;; in (18). Most interconnect
reduction models have £ < 3. The following theorem ensures us that no matter transformed admittance Y;; is an
intermediate admittance or a final one to be realized, keeping its lower k order coefficients in its numerator and
denominator throughout the whole reduction process delivers correct lower k order coefficients of final transformed
admittance.

THEOREM 3. With no loss of generality, let us refer to (15). Suppose we have two Y-A reduction procedures
A and B. In A, a newly transformed admittance is termed as Y;; and can be computed as

Yio(s) x Yjo(s)

Yils) = Yio(s) + Yao(s) + -+ - + Yio(s)

While in B, a newly transformed admittance is termed as )71']' and can be computed as

Yii(s) = Y/ (s) = Yio(s) x Yjo(s)
! N Vio(s) + Yao(s) + -+ + Yio(s)

Here Y}; is in the form
ag+ ais+ -+ a,s™

bo +bis+ -+ bps™

Y}j(s) =
And )71']' 1s the k-th order approximate of Yz’]

~ ao—f—als—}—---—}—aksk .
Yii(s) = 0 <k < min(m,n).
(%) bo + bys+ -+ bysk’ < k < min(m, n)

If Yio, f’jg, )710, )720, .. -,Yko are the k-th order approzimate of Yio, Yo, Y10, Y20, .., Yro, respectively, then f’ij
is also the k-th order approximate of Y;;. ]

The theorem can be proven using mathematical induction.

4 Common Factor in Y-A Transformation

Briefed in the introduction, Y-A transformation process discussed so far introduces common factors into the
numerator and denominator of the right-hand side admittance in (15). This side effect is harmful to our reduction
algorithm because (1)they cause the magnitude of coefficients of the numerator and denominator unnecessarily
grow: basically they increase exponentially along with the order of the corresponding terms; (2) common factors
in numerators/denominators create fake zeros/poles that hamper the pole/residue analysis [1].

In this section, we treat linear networks as graphs, representing admittance of the i-th branch as a;/b;. Because
the Y-A transformation is an continuous process, we denote admittance of original circuits as Yifg), and Yl(]l) when
the first node is eliminated. In this way, we can rewrite (15)

Y6 x ¥ )
VD) + YD)+ + Y G)

Y\ 9(s) = vV (s) + (19)

for the ¢-th transformation.
Let us first go through an example to show you when these common factors are generated and what they are
composed of. Then we give a rigorous proof for their existence. Finally we talk about its applications.



4.1 Example

(a (b)

Figure 5: An example showing common factor existence—1st Y-A transformation: (a) original circuit schematic;
(b) circuit schematic after the Y-A transformation.

In Fig. 5(a), we have five nodes as a portion of a circuit. We want to apply Y-A transformation on this portion.
Literally speaking, we are going to eliminate the central solid node from the graph, and so as its four arcs. The
graph after the transformation is shown in Fig. 5(b). The admittance in Fig. 5(a) is:

yO _@ ) _ % ) _% y) _ % 1) _ 09
1 bl, 2 b27 3 b37 4 b4’ 5 bs,
Yy Z 8y _ 07 y() _ 8y _ 9y _ G
6 b6 7 b7 8 b8 9 bg 10 blO

Let us check out how to evaluate admittance Y5(2) in Fig. 5(b). As shown in Fig. 6, Ys(z) is a combination of
two parallel admittance: Ys(l)7 and Y5(2) . Ys(l) comes from Fig. 5(a) and Y5(2) is newly generated by Yl(l)7 Y2(1)7
v and v,

3 4 ¢

a1 az
2)’ b1 b
Y5( ) = a1 + ‘l_zl + é + a4
b1 bo bs ba
_ a1a2b3b4 (20)
a1b263b4 + b1a2b364 + b1b2a3b4 + b1b2b3a4 ’
We define
w = a1b2b3b4 + b1a2b3b4 + b1b2a3b4 + b1b2b3a4. (21)
Then (20) can be rewritten as
' bsb t
v = Gdedshe o Mz 22
5 200 2 L (22

10



Figure 6: An example showing common factor existence—1st Y-A transformation : intermediate

Similarly, we have

' arazbeby _ t13
Y6(2) = 7&) = 7, (23)
' arasbebs _ t14
Y7(2) _ = = = (24)
' azazbiby _ t23
Y8(2) = 7&) = 7, (25)
' azasbibs _ 124
Y9(2) = 7&) = 7, (26)
' azasbibs _ 134
Therefore, Y5(2) can be evaluated as
2 1 2)’
Ys( ) Ys( ) 4 Ys( )
_as | tig
h b5 + w
o asw + t172b5
b5w ’
Similarly,
+ 11 3b6 (2) arw + t3 4b7 (2) agw + ta 4b8
v = LTSy ST T ISAT y () O80T T2dT8
6 bgw P brw » 8 bsw ’
+it23by _(2)  aiow + t1,4b10
v _ 0w ttasby o)  aiow +tisbio
o bgw $ 1o blow

Now let us apply Y-A transformation once again, as shown in Fig. 7(a). Admittance X'/Y’ denotes the

11
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Figure 7: An example showing common factor existence—2nd Y-A transformation: (a) before the transformation;
(b) after the transformation.

effective admittance. Let us see how to evaluate YQ(B) in Fig. 7(b).

Y5(2)Y6(2)

asw+ty 2bs5 agw+ty 3be

Y9(3) — Y9(2) +

agw + t273b9

_ + bsw bew
- bow asw;;t;,zbs aew;&;t;],sbs + awwazulfbw + %
_ Ggw + t2 3bg N (asw + t1,2b5)(asw + t1,3b6)Y 'b1o
bow w [(a5w + t17zb5)bﬁbloyl + (agw + t173b6)b5bloyl + (alow + t174b10)b5beyl + wb5beb10X']
_ Y
= 3 9
YQ(d)
where
Yg(f) = bgg[(%w + t17zb5)bebloyl + (agw + t173b6)b5bloyl + (alow + t174b10)b5beyl + wb5bebloXl],
and
Yg(f) = (agw + t273b9) [(a5w + t172b5)b6b10Y’ + (agw + t173b6)b5b10Y’ + (amw + t174b10)b5b6Y’ + (Ub5b6b10X,]

+ by (asw + t1 2b5) (agw + t1,3b6)Y 'bio- (28)

By extending the right-hand side of (28) and reordering it to separate the terms with w and without w, we can
rewrite Yg(f) as

Yg(f) = bg(t172b5)(t173b6)ylb10 + (t2’3b9) [(t172b5)b6bloyl + (t173b6)b5bloyl + (t174b10)b5b6YI] + w(- . )
= {t1,2t1,3 +it23 [t1,2 +t13+ t1,4] }bsbﬁbs)bloyl +w(---). (29)

12



Replace t; ; in (29) according to (22)—(27),

VAES {(alazbsb4)(a1asbzb4) + (azasbibs) [a1a2b3bs + a1asbabs + a1asbobs] }bsbﬁbgbloY’ Fw(--)
= {(a1a2a3b4)(albgbgb4) + (a1a2a364) [a2b364bl + a362b4bl + a4b21)3b1] }b5bﬁbgb]_0YI + w(. . )

= a1a2a364gb5bgbgbloY' + g(- R ) (30)

We have noticed that there is one w in Yg(f). The point here is that there is also one w in Yg(f), such that these

two w can be canceled. And this property is also held for the numerators of Y7(3) and YS(B). The underlined parts
in (31) and (32) are very similar to that in (29).

Y7(n3) = {t1,3t1,4 + i34t + b1z + b4 }bSbﬁb’?blOYI +w(--), (31)

and
Ys(f) = {t1,2t1,4 +t2alte + b1 + b4 }bsbﬁbSbIOY’ +w(---). (32)

And actually both of them also have the same factor w. This is not a coincidence. We will give a rigorous proof
after Theorem 4.

w is composed when the solid node in Fig. 5(a) is eliminated. And it appears in numerators of some Yi(g) as
well when one of the node’s four neighbors is eliminated.

4.2 w Exists in General Graphs

In this sub-section we will verify that our intuition from the example above is generally true. In other words,
although the solid node in Fig. 5(a) is of degree 4, we can prove that (30) have a factor w if the node were of
degree k. This w is the general form of (21). It is worthy noting the general meaning of w.

DEFINITION 1. Given a node ng in a multi-port RKC linear time-invariant network, suppose ng has k neighbors

and it is eligible for Y-A transformation. Denote admittance between ng and its neighbor n; as g—:,i € {1,k}.

Particularly, we assume by, ...,by are exclusively prime to each other. We define
k k
w = Z a; H bj (33)
i=1 j=1,j#i

LEMMA 1. Any multi-port RKC linear time-invariant network can be represented by G(V, E). Vn; € V with
exactly four neighbors, there is an expression w;, which is the denominator of admittance generated when one
applies Y-A transformation on n;. Suppose V; is the set of four neighbors of n;. When n; is eliminated and
any node n; € V; is eliminated later, each numerator of admittance across any two nodes in V; — {n;} has a
multiplication factor w;.

Proof: The proof is straightforward from the example in the last section. Lemma 1. can be extended to nodes
with k£ neighbors, & > 3.

THEOREM 4. Any multi-port RKC linear time-invariant network can be represented by Go(Vo, Fo). Yn; € V
with three or more neighbors (k > 3), there is an expression w;, which is the denominator of admittance generated
when one applies Y-A transformation on n;. Suppose L; is the set of neighbors of n;. When n; is eliminated and
any node nj € L; is eliminated later, each numerator of admittance among L; — {n;} has a multiplication factor
Wi .

Proof: For a given graph G(V, E) as depicted in the theorem, we choose a node in V arbitrarily, and we denote
it as ng. Also we denote its k neighbors as ni,...,ng, as shown in Fig. 8(a). We further denote admittance
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(a) (b)

Figure 8: Illustration for proof of Theorem 4: (a) ng to be eliminated; (b) n; to be eliminated.

between any node n; in {ni,...,n;} and ng as Yi(l), and any two nodes n;,n; in {n,...,n;} as Yl(;),
(1) _ % (1) _ Giy
Y;- = F, and ifl,j = b_
[ 2,

Now let us perform Y-A transformation on node ngy. This process will generate a new branch between any two
of ny’s neighbors, so the total number of new branches would be @ The admittance of these new branches

can be denoted as Yl(]z)’ These branches will be merged with Yl(]l) At the moment when we are to eliminate one
of ng’s neighbors, we denote the admittance between any two nodes n;,n; € {ni,...,n;} as Yz(jz) According to
(19), YiE?)’ can be derived as follows.

ai &5
' bi by . L

)/;Ef) :W, Z,jE{l,...,k}andZ<]. (34)

v=1 b,
Let us define
k
wo = Z a; H bj (35)
i=1 j=1,j7i

Then (34) can be written as

k
O | L

i = m , ,j€{l,...,k}andi < j. (36)

We define .
tij=aa; [[ bs, 4j€{l,....,k}andi<j, (37)

v=1,v#i,j
and then we can rewrite (36) as
I t .
Y@ =2 e {l,...,k} andi < j.
; wo
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Without losing generality, let us assume that the next node to be eliminated among n¢’s neighbors is n;. To
make a rigorous proof, We can not take it for granted that
2 1 2) .. . .
Yifj) :Yifj) +Yifj) i,7€{1,...,k}andi<j
because after ng, the next node to be eliminated in the whole graph may or may not be n;. if it is not, then YZ(?)
has to be expressed as
DA L y® ek andi<j 38
i vty i,j€{l,...,k}andi < j, (38)
where 4 is the effective admittance that has been merged onto the admittance between n; and n; when some
other nodes are eliminated before n; and after ng. Fortunately, we do not have to care about what Y; ; is, as long
as it is a rational function of s. So it is natural to consider Y; ; and 4 as one effective admittance, and let us
denote it as _
A (2%

zgysz;ugs,, i,j€{l,....k}and i < j. (39)
25

A v

1,5

=

Combining (36) and (39), we can rewrite (38) as follows:

y@ _ ijwo+ bijtij

ird , t,7€{l,...,k}andi < j. (40)

bm-wo

Now let us eliminate n;. After we eliminate ng, The topology of the graph in Fig. 8(a) has be changed,
as shown in Fig. 8(b). Except for those belonging to the clique formed by ng, X'/Y’ denotes the effective
admittance associated with n; outside the clique. This time let us denote the admittance between any two nodes

ni,n; € {na,...,ni} as Yz(j) According to (19), the admittance of W new branches after being merged

with Yz(jz) can be written as

(2)y(2)
v = y@ 4 il (41)
] %] k (2) X!
(le:2 }/171/ ) + YT
y.®
= ’é;, i,j €{2,...,k}and i < j.
4Ja
Inserting (40) into (41), we can write Yl(j) as
B k B k k
Y;Eji = (di7jw0 + bi7]’ti7]’) Z (6,17,,(4)0 + b17,,t17,,) H bl:P Y' + wo <H b17,,> X'
v=2 p=2,pF#v v=2
_ _ B k
+bi7j (6,171‘(4)0 + b17it17i) (6,17]'(4)0 + bthl,]’) H blﬂf Y’ (42)
v=2,v#%,j
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Expand the right-hand side of (42) and separate terms with wy and without wy,

k k k
Y;Eji = (Ethi,j) Z (51_7,,t17,,) H bip Y'| + EiJ (@tlﬂ') (htl’j) H bip Y' + wo (-++)
v=2 p=2,p#V P=2,pF#1,j
[k k k
= (Bi,jti,j) Z t17V] (H b17p> Y' + Bi7jt17it17j (H b17p> Y' 4+ wp (--+)
Lvy=2 p=2 p=2
k _ k
= <ti7j Z t1,0 + t17¢t17j> b@j H bl,PY, + wo ( . ) (43)
v=2 p=2
_ k
= Ti7jbi7j H b17PY, + wop ( .. ) .
p=2

As we mentioned, (29), 31 and 32 are just special cases of (43). Replace ¢;; in (43) according to (37), the
underlined part can be rewritten as

k k k k k
T;; = a;a; H b, E aia, H by + | a1q; H b, aa; H b,
v=1,v#i,j v=2 p=1,p#l,v v=1,v#1,i v=1,v#1,j
k [k k k k
= a1 | a;a; H b, E a, H by +a; | a1a; H b, a1 H b,
v=1v#i,j v=2 p=1,p£1,v v=1p#1,i v=1p#l,j
k [k k k k
= a1 | a;a; H b, b1E a, H by +a; | ara; H b, bja; H b,
v=2,v#i,j v=2 p=1,p£1,v v=1,v#L,i,j v=1p#1,j
k k k k
= a10;a; H b, b1E a, H by | +bja; H b,
v=2,v#i,j v=2 p=1,p£1,v v=1,v#L1,j
k
= a10;a; H b, | wo. (44)
v=2,v#%,j

So overall speaking, Yz(jsl has a factor wy.

Please note that when we were rewriting (34) into (36), we actually simplified the scenario because we took
it for granted that each b, in (34) is relatively prime to each other. Unfortunately, to achieve the optimal result
for both efficiency and accuracy, we can not assume so. For example if by = tpt; and bs = tpt2, then we have to
rewrite the denominator in (34) as

k k
a as Gy _ aits + asty ay (45)
totr  totz =4 by tot1ta

In our simplified scenario, we have rewritten it as

k k
a a a aitote + astot a
1 I 2 I v _ ailo 22 2lol1 _I_Z v
tot1 tots ! b, tgtits = b,

As you can imagine, in order to consider this common ¢y, we will have to rewrite wy defined in (35). Let us

called it wj. Without the additional ¢y, wj is simpler than wy. Although we have changed wy to wy, )/z(?) will
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have a factor w(. Because each multiplication term in (35) has either b, or by or both of them as factors. So wy
is actually a factor of wy. In our example above, wy = towy.

In the theorem we only considered nodes with more than two neighbors, as for a node with exactly two
neighbors, there will be only one new branch and its admittance does not have redundant common factor in its
numerator or denominator. Please note that we do not consider circuit cases with dangling or isolated nodes
(with one neighbor or no neighbor at all). L]

In this theorem, we evaluated Y?) from Y1) and Y®) from Y. In the evaluation process, we did not change
Y (), But if we go on the process and use Y (®) to evaluate Y (), then before doing this, we may need to simplify
some of Y (3) because their numerator and denominator have one or more common factors. The next theorem

vy o y® 5 yB 570 o y@)

Figure 9: General Scenario

claims that numerators of Y (4) would have the w generated by Y () even with the simplification from Y3 to Y3
in between(Fig. 9).

THEOREM 5. Given a multi-port RKC linear time-invariant network represented by Go(Vo, Ep), we can use a
series of Y-A transformations to eliminate all its internal nodes. Suppose it has n internal nodes, then after
we apply Y-A transformation on one node in Gy (Vy, Ex) (Fig. 10(a)), the graph will be updated and denoted as
Gr+1(Vi+1, Ery1), where 0 <k <n —1.

ng Ny ny Ny
n n n
3 ns 3 ng 3 ns
nzo Ng nzo Ng Ny
(k+1 (k+p,
Y12 Y12
ny . ny n . n7 n7
@ (b) © (d)

Figure 10: Illustration for Theorem 5: (a) k-th transformation; (b) (k + 1)-th transformation; (c) (k + p)-th
transformation; (d) (k + p + 1)-th transformation.

Suppose ng is eliminated at the k-th step. Let Lo represent the neighbors of ng in Gy (Vy, Ey). Then we further
suppose that ny € Lg is the first one in Ly being eliminated after ng. Let us say ni is eliminated in the k + p-
th step. Fig. 10 shows the scenario. Y'¥) represents the admittance between ng and its neighbors. Y *+P) the
admittance between any two nodes in Ly, and Y ¥+P+Y) the admittance between any two nodes in Ly — {ni}.

numerators of Y *tPT1) would have the wy generated at the k-th step, no matter how many other common
factors are found and canceled out during the (k 4+ 1)-th step through the (k + p)-th step.

Proof: Firstly, we know that omega’s associated to each internal node during the reduction process are prime
to each other, as no any two nodes have exactly the same branches at any reduction steps. Unless ultimately,
there remain only two nodes, when the reduction terminates.

Secondly, it is true that if we choose to postpone all the common-factor-cancellation operations during the
(k4 1)-th step through the (k + p)-th step, these common factors are still common factors in all of the admittance
in Y(k+P+1) If we suppose w is a common factor of Y1(2k+1) in Fig. 10(b), for instance, then it is still a common

factor of Yl(2]c ) in Fig. 10(c), as only admittance-addition operations might be performed on branch between n;
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and ng during the (k + p + 2)-th step through the (k + p)-th step. According to (15), admittance between any
two nodes in Lo — {n1} in the (k + p+ 1)-th step(Fig. 10(d)) has w as its common factor. And because w is prime
to wp, wo would still come up as a common factor to each admittance in Y *tP+1) if we had canceled out w in
earlier steps. u

Similar to mathematical induction, Theorem 4 assures the foundation of our reduction algorithm, and theorem 5
makes our reduction process work recursively. The two theorems together support our algorithm in the next
section.

4.3 Common Factors in Denominators Only

There is another kind of common factors: for admittance of two branches that were connected to the same
node n, eliminated earlier, the denominators of the two admittance share the w associated to n,. Fig. 11 shows
an example scenario of our explanation. After ng in (a) is eliminated, Yl(zk ) and Yl(f ) in (b) share a common

ni ni

n k+1 n
2 Y(2 < ) 3
(a (b)
Figure 11: An example shown common factors in denominators: (a) ng to be eliminated; (b) n; to be eliminated.

factor w from ng. And when n; is to be eliminated using (15, the common factor in the denominator of the
right-hand side has to be identified. Please note that this w is not necessarily equal to the whole denominator of

Y1(2k ) or Yl(;c +1), but generally serves as a common factor of the two.

5 Overall Algorithm
Collecting all the rules that we have had so far for Y-A transformation, we give an algorithm in pseudo-

code. Given a multi-port RKC linear time-invariant network, one can represent it as a graph Go(Vp, Ep), with 174
including all external nodes.

ALGORITHM 1.

1. order nodes in Vy — V and generate a node elimination sequence S;
2. for each node n; € V5 — f/, create a set L; and initiates its value as its neighbors in Go;
3. for each node n; € Vo — {ny,ny}, create a set n;.prev and n;.prev = ¢;
4. for n; = S[i] do
4.1. find the node ny in L; that appears first in S;

4.2. ny.prev = ny.prev U {n;};
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4.3. for n; € n;.prev do:
4.4 perform Y-A transformation on node n;:

4.4.1. denominator: Y?) = > Yv(i-_l);

id n;EL; “1,j
4.4.2. remove redundancy: divide the numerator and denominator of Yi?) with []

Y(i)

id

t;
njEn;.prev wj ’ then

G

4.4.3. for nj,ny € L;, 7 # k do:
4.4.3.1. Q =1.0;
4.4.3.2. for n, € n;.prev do:

4.4321. ifn; € L, and ny € L, then Q =Q - w,;

4.4.3.3. numerator: Yzil) = Yj(é*l)Yif;*l) = g;
. 7 y () B
4.4.3.4. new admittance: Y.(Q =& = Cf‘l;
J» Y. wi
iq
N AQ
4.4.3.5. remove redundancy: YJ(Q = %wcl_— = %, where % is a division operation;

4.4.3.6. merging, if necessary: YJ(Q = YJ(QI + Yj(};l) = % + % = %, where Yj(jcfl) = %;

4.4.3.7. remove redundancy: if Q # 1.0, then Y](zk) = %;

4.4.4. G;_1 has been transformed to G;;

4.5. update L; of n; € L;.

Topological analysis method is another approach to obtaining the driving-point admittance functions by eval-
uating determinants and cofactors of admittance matrices. One advantage of topological formulas over the
conventional methods for the evaluation of determinants and cofactors is that the former avoids the usual can-
cellations inherent in the expansion of determinants and cofactors in the latter. The determinant of the node
admittance matrix of a passive network without mutual inductances is equal to the sum of all the tree admittance
products of it. The enumeration of all the trees of a graph is very time-consuming[27]. The approach is generally
an exponential algorithm in terms of time. In the worst case when Gy is a complete graph, there are O(NY~2)
trees in the graph and evaluating all the admittance products takes an exponential amount of time, where IV is
the number of nodes in Gg.

For a given graph Gy, we assume that NNV is the number of nodes in Gy, d is the maximum degree of nodes in
Gy, and d is the overall maximum degree of nodes Gy, G1, and so on. Of course d > d. r is supposed to be the
number of orders reserved for each admittance, and ¢ the maximum size of n;.prev defined first in Step 3.

In our algorithm, Step 1 has O(NV - d) operations, even without mass elimination. Step 2 takes O(N - d) time,
and Step 3 O(N). Step 4 itself iterates about N times, assuming the number of external nodes is far less than
N. Inside each iteration, 4.1 takes O(1) time because we always maintain the list L of every node along with
new branch generation. 4.2 also takes O(1) time. As each node can only be added into another node’s prev
list once, 4.3 takes O(d~) time in average in every iteration of Step 4. Inside 4.4, 4.4.1 takes O(d~ r?), because
each polynomial product operation takes O(r?) and it dominates any polynomial addition operation. Because
the maximum value of t; from 4.3.1 would be d. 4.4.2 takes O(d - r?) time in average in every iteration of Step
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4, for the similar reason for 4.3. 4.4.3 iterates O(ciz) times in each iteration of Step 4. Inside it, 4.4.3.1 takes
constant time, and 4.4.3.4 takes no time, as it is only a statement. 4.4.3.2 takes O(r? - t) time. Note that the
condition evaluation takes constant time, because neighbors of n;.prev was scanned in 4.3 and stored for late use.
4.4.3.5-4.4.3.7 each takes O(r?) time. Finally, 4.5 takes O(d?). So overall speaking, 4.4 takes O(d? - r2 - t) and
hence Step 4 takes O(N - d? - r? - t).

The worst case happens when Gy is a complete graph. d=N—1andt=1. So the worst case complexity is
O(N3 - r?).

Different from LU decomposition in SPICE, our algorithm enables dynamical memory de-allocation, as branches
of nodes eliminated are no longer useful and the memory thus can be freed. As a result, the memory requirement
grows up in the middle of the reduction process and goes down till the end of it. For graphs derived from VLSI
circuits, the proposed algorithm is proportional to the overall maximum number of branches in Gy, G1, etc. The
worst case happens when G is a complete graph and the complexity is O(N?).

6 Admittance in Its Simplest Form

If we apply Algorithm 1 on complete graphs, the final solution is optimal, meaning it does not has any common
factors and thus it has the same order as the original network. Let us first look at a 6-node complete graph. Its
transformation process is shown in Fig. 12. Solid nodes in the figure are to be eliminated at the snapshot. Y;
denotes the form of admittance in each step, where denominators are given and numerators are simply ignored
(*). Please keep in mind that these numerators have the same order as their correspondent denominators.

ny ny

N Ny N Ny

@ (b)

Ns P Ny Ns Ns
Ny N3 Ny [1%) Ny
(c) (d (e
Figure 12: (a) Vi = 35, || =5; (b) Yi = 557, w2l =95 () Yi= 55, |ws| =125 (d) Vi = 557, |wa| = 14;
(6) ¥i = 15

In Fig. 12(a), five heavily weighted branches are going to be eliminated along with the central node. New
branches are in the form of

b: by * * *
i Uj = = — 4:6
- (46)

G2 | O3 | Oa | G5  a1babsbabst..tbibabgbaas . _ w1
+ ba + + bs + 5 b1b2bsbabs b1b2b3babs

w-|Q
g
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When these new branches are to be combined with those existing in parallel

* Qa; _ * : (47)

wr by biwr

which constitute Y;s in Fig. 12(b).
Let us go one step further. When we are eliminating the second node(Fig. 12(b)), new branches are in the
form of

* * *
biUJ1 b]-w1 _ bibjw% _ * 48
* * * * Wa - . ( )
bswl b7w1 bgwl bgw1 bs b7bgb9w1 w1w2

After the similar step as 47, the final admittance Y; in Fig. 12(c) can be evaluated as

* * *

= . 49
wWiws2 + biwl biw1w2 ( )
Due to Theorem 4, w; in (49) can be canceled. So in Fig. 12(c),
*
Y: = 50
2 biwz ( )

So on and so forth, when the network is reduced into one port(Fig. 12(e)), the order of the admittance is
|biws| = 15, which is equal to the number of branches in Fig. 12(a). Note that |wz| — |w1| = 4, |ws| — |wa| =
3, ] — Jws] = 2.

THEOREM 6. Given a linear RKC time-invariant network which can be represented by a graph G(V, E), after
Algorithm 1 reduces G into one branch whose admittance has the same order as the original network.

Proof: Let us look at an example along our proof. Fig. 13 illustrate a Y-A reduction series. Solid nodes shown in
each graph are the ones to be eliminated at that step. As we know, each time when we eliminate a node, there is
an w associated with it. And the denominator of the admittance associated with every branch is a multiplication
of b and some of existing w’s from nodes we have eliminated so far. If the branch exists in the original graph
Go(Vo, Eo), then b is the denominator of its admittance; if the branch does not exist in Go(Vp, Ep), then b = 1. We
assume each branch in Ey has different admittance and we assign a distinct integer to each of them (Fig. 13(a)).
Graphs (a)—(b) in the elimination series are denoted as Go(Vy, Eo),G1(V1, Ev),,...,Gn(Vy, Ey), respectively,
where n = |Vy| — 2. Along with each branch in each graph is a set S, where each member W is a set of branches.
Here W C{1,2,...,|Ep|}-

DEFINITION 2. We define that a branch e is associated with a branch €' if there exists a W such that W € S
of e’ and e € W, where e € Ey and e’ € |JE; (0 <i < |Ep]).

For instance, branch a between n; and ny in Fig. 13(a) is associated with the branch between n, and ng
in (b), because a € {a,b} in {{a,b}}. a is also associated with the branch between ng and ng in (c), because

a € {a,b,c,d,i} in {{k},{a,b,c,d,i},{d,e, f,9,7}}
We now give four claims following Algorithm 1.

1. When a node is to be eliminated,

(a) W= USi incident to the node UWJ- es; Wis

(b) W needs to be inserted into S of branches between any two of the node’s neighbors. Particularly, if
dW; € S and W; C W before the insertion, then W; has to be removed from the set S after that.

2. For S of any branch, VW;,W; € S = W; N W; = ¢.
3. For S of any two different branches, S; and So, VW; € S; and VW; € Sz, = W; = W or W; N W, = ¢.
4. For S of any branch, )y, s [W;] is equal to the number of branches in Ey that have associated with the

branch.

21



If the four claims are true, then Theorem 6 is true automatically because finally all branches in Ej will be
associated with the ultimate branch and the order of its admittance is the same as that of the original network
represented by Go(Vo, Ep).

Referring to 4.4 in Algorithm 1 on how a new admittance is evaluated, one can find the direct correspondence
of 4.4.1-4.4.2 to Claim 1(a), and 4.4.3.6-4.4.3.7 to Claim 1(b). So Claim 1 is true. Claim 2 and Claim 3 are
directly derived from Claim 1(b), as long as each branch in Ej is initially assigned a unique index.

Claim 4 can be proved using mathematical induction. It is true when we apply Y-A transformation on some
node of the original graph Go(Vjy, Ep). For instance, in Fig. 13(a), four nodes at the four corners are eliminated
and four new diagonal branches are generated in Fig. 13(b). The order of denominators of these new admittance
(also the order of the admittance) are equal to 2, the number of branches in Ey(Fig. 13(a)) associated with each
of them. With assuming Claim 3 is true for the first k£ steps, then Claim 1 and Claim 2 together guaranteed that
it is also true for the the k& + 1-th step.

Ny {a}}y ™ {b}} n3 np
@ L ]
{{bc}}
{{h}} {in {{ch
(G : {n " s .
9
Hah {tin {a} {den
[ 9
no UM g U} g ne

(a (b)

{{ab,c.d,i}}

{{k}{abcdi}{def.gj}}

{{ab,c,d,ef,gh,ijkl}}
Ng

{{k}{abcdi}{def.gj}}

{{defgi}}

(c) (d)

Figure 13: Illustration for proof of Theorem 6: (a) the four corner nodes are to be eliminated; (b) the two upper
and lower nodes are to be eliminated; (c) the central node is to be eliminated; (d)transformation finished.

To understand this, we have to refer to Y-A elimination process in Algorithm 1. When generating a new
admittance, we face only two cases: (1) S of each branch incident to the eliminated node is disjoint with each
other, i.e. |L; N L;| < 2 in 4.3.1; (2) two or more S are not disjoint so that the corresponding denominators
have some common factor(s), i.e. |L; N L;| > 2. We have setup some mechanism for this case in 4.4.2 to remove
the redundancy. When merging is necessary, we also face two scenarios: (1) the old branch is a member of the
clique generated when n, was eliminated. We have setup some mechanism for this case in 4.4.3.7 to remove the
redundancy. Also this removal is guaranteed by Theorem 4. (2)the old branch is not a member of the clique
generated when n, was eliminated. . So overall, the order of effected branches is still consistent with the number
of branches in Ej associated with them because of the redundancy eliminations.

This completes our proof. u
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7

Conclusion

We proposed a generalized Y-A transformation for interconnect model reduction. This report covered the
theoretical foundation of our work. The proposed algorithm can handle linear(ized) independent sources, resistors,
capacitors, self and mutual K elements. The algorithm integrated common-factor-cancellation operations that
were not seen in the literature. Admittance in reduced circuits has the guaranteed simplest form. Further
applications to the work can be found reported in [1].
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