UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

A mouse-tracking study of how exceptions to a probabilistic generalization are learned

Permalink

https://escholarship.org/uc/item/4n49q2d6

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 40(0)

Authors

Tachihara, Karina Norman, Kenneth Turk-Browne, Nicholas et al.

Publication Date

2018

A mouse-tracking study of how exceptions to a probabilistic generalization are learned

Karina Tachihara

Princeton University, Princeton, New Jersey, United States

Kenneth Norman

Princeton University, Princeton, New Jersey, United States

Nicholas Turk-Browne

Yale, New Haven, Connecticut, United States

Adele Goldberg

Princeton University, Princeton, New Jersey, United States

Abstract

How are exceptions to a probabilistic generalization learned? The present results suggest exceptions are learned in part by selectively suppressing the competing category, as opposed to only increasing knowledge of exceptions. Participants were exposed to a mini-artificial language with a probabilistic generalization (80-20%) that mapped labels to categories of images (faces and scenes). Mouse-tracking trajectories determined the degree to which the generalization served as a lure to exceptions, compared to a separate baseline condition. Over time, the generalization became suppressed in a context-sensitive way: for exception items only. This extends retrieval induced forgetting, in which a particular item is suppressed due to competition from partial retrieval, to include the entire conceptual category. Post-test revealed high item-specific accuracy, even though category recognition was sufficient for the task.