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ABSTRACT OF THE DISSERTATION

Multiplexed microfluidics utilizing genome-scale dynamics for biosensing and
fermentation monitoring

by

Elizabeth Maria Stasiowski

Doctor of Philosophy in Bioengineering

University of California San Diego, 2019

Professor Jeff Hasty, Chair

The rapid growth of synthetic and systems biology has resulted in engineered microbes

with impactful applications in industries such as environmental biosensing and fermentation.

The coupling of these fields with microfluidic technology has enabled the imaging of micro-

bial colonies under continuous growth conditions with precise environmental control to better

understand the dynamics involved in complex molecular networks. The emergence of genome-

scale microfluidic devices has bridged the gap between the multiplexing of -omics technology

and the dynamics of microfluidics; however, existing high-throughput microfluidic devices are

cumbersome and often unable to be applied outside of a laboratory. Towards this end, we have

xv



developed an elegantly simple microfluidic platform capable of monitoring the temporal gene

expression of 2,176 unique microbes with both research and industrial application. In Chapter 1,

I introduce the role of microfluidics in synthetic and systems biology. In Chapter 2, I describe the

high-throughput microfluidic platform we have engineered and the protocol for building these

devices. In Chapter 3, I show the platform’s application as an environmental biosensor where the

dynamics of 1,807 E. coli GFP-promoter strains coupled with machine learning algorithms are

used to detect the presence of six heavy metals in real-time in both laboratory and real-world set-

tings. Finally in Chapter 4, I show the device’s application as a fermentation process monitoring

system where the dynamics of 4,156 S. cerevisiae strains of a GFP-fusion library show the gene

expression profile of a batch culture undergoing a diauxic shift, in real-time, depicting when the

batch culture enters different growth states and changes its metabolic profile.
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Chapter 1

Introduction

1.1 Understanding biology: Top-down vs. bottom-up

1.1.1 Systems biology: The top-down approach

Over the past two decades, systems biology has emerged as a field to study the complexity

of networks in biology and their interactions. This interdisciplinary field has combined cellular

biology, computational modeling, proteomics, genomics, and many other fields to begin to

understand how many intricate components interact together to form even the simplest biological

systems. The emergence of whole-genome sequencing and the decrease in cost of these techniques

has led to a large database of DNA with unknown function. High-throughput technologies in

systems biology including RNA sequencing [1, 2], ribosome profiling [3], mass spectrometry [4],

and microarray-based expression profiling [5] coupled with quantitative modeling, have begun to

untangle the web of interactions hidden in the databases of genetic code, leading to discoveries in

gene function, cellular behavior, drug response, and more. However, these types of approaches are

limiting due to discrete temporal resolution only offering a snapshot of a cell’s state. Technologies

that acquire single time point data do not capture the information encoded in the dynamics of

biomolecular networks, [6] which are complex, time-dependent signals [7–9].
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1.1.2 Synthetic biology: The bottom-up approach

Synthetic biology has emerged in parallel to systems biology as an interdisciplinary

field with many overlapping disciplines, but with an alternative angle. Instead of striving to

understand a biological system as a whole, synthetic biology builds systems from the bottom-up

with simpler components, aiming to recreate the complex functions seen at the systems biology

level. Incorporating reporters such as fluorescent proteins into simple genetic circuitry allows

scientists to study dynamic changes and interactions in gene expression in model organisms such

as E. coli and S. cerevisiae through in vivo imaging.

Synthetic biologists and engineers took the field to the next step by building genetic

circuits and applying them to real-world problems. This machinery includes, but is not limited

to, bacteria engineered to deliver therapeutics to tumor sites [10], bacteria that fluoresce in the

presence of heavy metals for water quality monitoring [11, 12], yeast that have been engineered

to produce an antimalarial drug [13], greatly improving its commercial availability, and yeast that

produce sustainable chemicals used in the fabrication of plastics [14].

1.2 Microfluidics: Technology to advance the understanding

of biology

Microfluidics emerged almost forty years ago and has spread across many disciplines

as a technology that manipulates and precisely controls fluids at the micro to picoliter scale.

Microfluidics integrated with electronics, microscopy, and other systems has allowed many

industries to increase multiplexing of processes, decrease the amount of reagents used, have

precise control over reactions, and measure small changes. Common microfluidics applications

include inkjet printers, genetic sequencers, point-of-care diagnostics, and multiplexed drug-

screens.

2



Coupled with quantitative, time-lapse, fluorescence microscopy, microfluidic platforms

have become increasingly common in synthetic biology, providing precise imaging and envi-

ronmental control to better understand the underlying dynamic biology of microorganisms [15].

Microfluidic platforms have facilitated the evolution of synthetic biology in the Hasty Laboratory,

from the development of genetic oscillators [16], to clinically relevant cancer therapies [10],

setting the stage for real-world microfluidic applications in synthetic biology. Microfluidic devices

have been designed to monitor cells at different scales, ranging from tracking a single yeast cell

through its entire lifespan to study their death types [17], to tracking 2.5 million cells and their

quorum sensing across a 5 mm device [18].

Conventional microfluidic devices consist of an elastomer polydimethylsiloxane (PDMS)

monolith bonded to glass. The PDMS is cast from a photoresist patterned silicon wafer made using

standard photolithography. After surface treatment, the PDMS and glass are bonded together

and cured at high temperatures (80◦C) for several hours. Cells are then loaded into devices.

The process of loading cells post-bonding requires each unique strain to have its own loading

or waste ports to avoid cross-contamination [15]. Due to space limitations and experimental

complications, conventional microfluidic devices are generally low-throughput, allowing users to

track the behavior of a few nodes to answer narrow biological questions [19–21].

A handful of studies have demonstrated how microfluidic parallelization and automation

allows for the simultaneous tracking of hundreds to thousands of strains from available fluorescent

libraries for S. cerevisiae [22–24] and E. coli [25, 26]. Combining microfluidics with large-scale

mutant or fusion libraries allows for high-throughput capture and probing of large-scale gene

expression dynamics. These high-throughput devices also allow for multiplexed screening of

strains or chemicals in a precisely controlled environment.

Current high-throughput microfludic devices for culturing cells are two-layer devices

with pneumatic connections allowing valves to control media flow, cell loading, and chemical

delivery [22, 27, 28]. While these devices are impressively engineered for precise single-cell

3



tracking, they have complex experimental protocols that are cumbersome to set-up and require

hardware that limits the devices’ usability both in an industrial setting and in expanding their use

to other academic labs.

To this end, I devoted my time in the Biodynamics Lab to developing a simple, one-layer

microfluidic device to continuously monitor thousands of strains of E. coli or S. cerevisiae at a

temporal resolution of three minutes. My goal was to create a device with many applications,

beneficial to both research and industry, and a device simple enough that others could readily use

it and benefit from this research. The following chapters describe the devices created and their

initial applications as a heavy metal biosensor and fermentation monitoring system.
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Chapter 2

High-throughput microfluidics for

continuous culturing and monitoring of E.

coli and S. cerevisiae

2.1 Introduction

Genome-scale technologies have transformed our understanding of the biomolecular

signaling networks that underpin gene function, cellular behavior and drug responses. Omics-level

analysis has cemented the view that biological signal processing is not the result of linear pathways,

but an emergent property of complex networks whose functions and dynamics we now seek to

understand [18, 29–33]. In model organisms, signaling networks are often elucidated by studying

the changing patterns of gene expression in reaction to experimentally-induced environmental

perturbations [29, 30, 34, 35]. However, the high-throughput, genome-wide techniques (including

RNA-seq [1, 2], ribosome profiling [3], mass spectrometry [4], and microarray-based expression

profiling [5, 36]) that have successfully been applied to this problem are destructive in nature and

only offer snapshots of a cell’s state [37]. Technologies that acquire single time point data do
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not capture the information encoded in the dynamics of biomolecular networks [6], which are

complex, time-dependent signals [7–9].

Over the past two decades, high-throughput multiplexed microfluidic devices coupled

to time-lapse fluorescence microscopy have evolved to bridge the gap of Omics-level data and

precisely controlled dynamic environments, resulting in high-quality time series data for thousands

of signaling network constituents in live cells [38, 39] for a variety of model organisms and cell

lines [22–26].

2.1.1 Current high-throughput microfluidic devices for culturing cells

One of the first high-throughput microfluidic devices for cellular analysis was published

by Thorsen et. al [40] and consists of 256 chambers controlled by 2,056 microvalves where

two separate substrates can be loaded into a compartmentalized chamber, mixed pairwise, and

independently retrieved. This device was used as a microfluidic comparator to successfully screen

and retrieve E. coli cells expressing a cytochrome c peroxidase enzyme from a heterogeneous

population. Though this device can only load a maximum of two unique strains, it introduced

multiplexed valve systems to microfluidics and paved the way for many valve-based devices.

The Maerkl lab at EPFL further evolved valve-based microfluidic technology to develop a

1,152-chamber microfluidic device for monitoring S. cerevisiae at the single cell level [22]. Cells

are first arrayed onto an epoxysilane-coated coverslip using a DNA array spotter. The multi-layer

PDMS device is then aligned and bonded to the coverslip. The device has four valves that are

opened and closed in a specific sequence, controlling the direction of flow to prime the chip with

media, prevent cross-contamination, and allow the cells to continuously grow as a monolayer in

each chamber. This device is arrayed into 3, 384-chamber sections that are fluidically isolated

from each other and allow a medium switch between two sources. The temporal resolution

for imaging this device is twenty minutes. The Maerkl group measured gene expression over

six hours of growth and seven hours of DNA damage exposure. While this device is the most
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high-throughput device currently available for S. cerevisiae monitoring, the temporal resolution is

not sufficient for measuring dynamics in all signaling networks in S. cerevisiae. For example, in

the oxidative response network, the time scale of protein expression change is on the order of

minutes [41]. Additionally, this device only monitors strains for less than a day, preventing the

monitoring of longer dynamics such as fermentation and shifts in metabolism and growth phases.

Finally, this platform only allows for one medium shift and does not allow for a dynamic input,

despite such control being one of the most salient advantages of microfluidics [15].

The Maerkl lab additionally developed a valve-based microfluidic device with 768 cham-

bers for monitoring E. coli [27]. The same spotting technique is used as their S. cerevisiae device,

where cells are arrayed onto a coverslip using a DNA array spotter and a multi-layer PDMS device

is aligned and bonded to the coverslip. While this device can culture and monitor strains for up to

one week, it requires a complex sampling process where a series of valves are opened and closed

in order control the flow of medium, sample, and lysis buffer every hour throughout the duration

of the experiment. During this sampling process, the sample is flowed onto the device for 10

minutes, the cells are then exposed to the sample and media via diffusion for 45 minutes, and

then lysis buffer is flown on to clear the channels for ten minutes. This discontinuous exposure to

a fresh sample could lead to a change in the microenvironment in each biopixel over time due to

nutrient metabolism and waste secretion by the cells. Additionally, this sampling step inhibits a

dynamic input of the sample. This device was used to characterize strains and as a biosensor to

detect varying levels of arsenic using a custom optical system.

The most complex and multiplexed microfluidic device currently published was devel-

oped by the Tay Lab and is a 1,500 chamber microfluidic device built to culture single cells,

two-dimensional populations, or 3D neurospheres of stem cells [28]. Each chamber can have

independent culture conditions including cell type and density, and can also have a unique set of

signaling molecules, growth factors, or drugs delivered to the chamber. The device has an on-chip

chemical formulator, peristaltic pump, and valve system to mix various chemicals and deliver
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them to individual chambers with sub-minute temporal resolution. Contrary to the previous

valve-based devices where cells are spotted prior to bonding the PDMS device to the glass slide,

this device is first bonded and then cells are loaded onto the PDMS-glass device through a

semi-automatic loading program through the channels and on-chip valve system. A typical week

long experiment results in the tracking of 30,000 individual cells with 1,500 dynamic individual

conditions. While this device is capable of 1,500 dynamic inputs of chemicals, it is not used in

the study to look at many different cell types in one experiment. This is potentially due to the

requirement of loading each strain individually using the valve system.

While all three of the devices described above have many strengths with respect to

monitoring the gene expression of their organism of interest, all share the disadvantage that

these multi-layer, valve-based microfluidic devices have complex experimental protocols that

are cumbersome to set-up and require hardware that limits the devices’ usability in an industrial

setting. These shortcomings and those listed above prevent the democratization of a potentially

transformative technology and its application towards signaling pathway dynamics and associated

biomedical applications [23]. To this end, we have developed a novel, simpler, high-throughput

microfluidic device that can continuously culture and monitor E. coli or S. cerevisiae. This chapter

describes the optimization performed to fabricate, load, and bond these devices and concludes

with a full detailed protocol for their manufacturing.

2.2 Microfluidic device design

2.2.1 Design requirements

Contrary to traditional microfluidic loading methods where a single strain is loaded onto

a device, it was necessary to develop a method to automatically load strains onto a device when

loading more than about 15 strains. To make this device more available to other academic labs

and more compatible for industry, it was necessary to keep the device as simple as possible.
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Contrary to existing high-throughput devices, the device needed to be a single layer with minimal

fluidic connections to the outside and contain no valves or pneumatic connections. To accomplish

this, it would be necessary to develop a method to spot or array cells onto either the PDMS half

or glass half of the device prior to bonding the two halves together.

There is no off-the-shelf equipment that can load tens to thousands of strains onto a

microfluidic device. To meet this need, we adapted the Singer ROTOR spotting robot from its

original purpose as a tool to transfer cells between liquid well-plates or agar plates using contact

(agar) and surface tension (liquid), to a tool that could transfer cells from agar to a microfluidic

device. The microfluidic design requirements were constrained to the capabilities of this robot.

The requirements included the following: a cell trap region at least 400 µm in diameter where

each initial cell spot would be placed, 1.125 mm spacing between each cell trap in both the x and

the y dimension due to SBS-format limitations, and a region for exponential cells to grow and

have sufficient diffusion of nutrients where the measurements would be taken.

2.2.2 Cell trap design

The design requirements mentioned above led to the 32-strain device design seen in Figure

2.1. This mid-scale device consists of a 4x8 array of strain banks each containing a cell spotting

region connected to an array of 10 cell traps (Figure 2.1c). The strain banks are spaced 1.125 mm

apart for compliance with standard SBS-format 6144-spacing. Each strain bank has an equal path

length to the main media channel to guarantee even flow to every chamber. A single inlet and

single outlet feed media onto the device, resulting in a simple experimental set-up.

A detailed strain bank can be seen in Figure 1a. Each cell spotting reservoir (a1) allows

for cell growth down feeder channels (a2) into the cell traps (a3). The cell traps are connected

by a linker channel (a5) to allow for the cross-seeding of traps. The media channel (a4) delivers

fresh nutrients to cells in the traps and washes away excess cells.

Individual cell traps are seen in Figure 2.1b. Each cell trap is 10 µm wide in order to
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Figure 2.1: Geometry of the mid-scale 32-strain microfluidic device. a) Schematic of single
strain bank, with a cell spotting region (1), feeder channels (2), cell traps (3), media channel
(4), and linker channel (5). b) Detailed dimensions (µm) of the cell traps, optimized for cell
growth, retention, and optical signal. c) Overview of the mid-scale device with 32-strain banks
connected in parallel. d) Microscope image of E. coli growing exponentially in one strain bank.

decrease convective flow into the trap, improving cell retention. The traps are 30 µms apart for

fabrication purposes, and 50 µms tall in order to maximize fluorescence signal. Figure 2.1d shows

a strain bank with exponentially growing E. coli.

This design was then scaled-up to include 2,176 strains as seen in Figure 2.2. The strain

banks are arranged into two halves of 17x64 strain banks. A single inlet splits to feed media to

each half of the device, with one outlet combining the flow to remove excess cells and media

waste.

2.2.3 Channel system design

Traditionally in microfluidics, a binary splitting channel system is used, where each cell

trap has an equal channel path length in order to have identical flow rates and fresh nutrients.

However, as the number of desired cell traps increases, this channel system requires large amounts

of space (Figure 2.3a). Three additional channel systems were tested in order to decrease
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Figure 2.2: Image of the large-scale 2,176-strain device loaded with E. coli. The inset shows a
single reservoir before and after cell spotting and revival.

the channel footprint between traps, while maintaining sufficient nutrient delivery, preventing

excessive build up of cell mass, and preventing cross contamination (Figure 2.3b-d).

The shared channel system (Figure 2.3b) consists of a single inlet channel splitting into

multiple channels of equal length. Each channel has many traps in series, with media from

upstream traps flowing directly to downstream traps. This design allows for an even flow rate

across all traps and with a large enough flow rate, still allows for sufficient nutrient delivery to

each cell trap. However, we found that downstream cell traps are cross-contaminated with waste

cells from upstream traps. The shared channel system is only successful if replicates of strains

are loaded in a single channel, reducing the throughput of the device.

The channel-free system (Figure 2.3c) consists of an inlet channel feeding media into one
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Figure 2.3: Channel systems tested for increasing the throughput microfluidic devices con-
strained to 1.125 mm spacing between traps. a) Binary splitting channel system traditionally
used in microfluidics. b) Shared channel system. c) Channel-free system. d) Manifold channel
system which is used in the 2,176-strain device. Black arrows denote flow direction.

large open area with media flowing around the top of cell traps. The traps were rotated 15◦ so that

the laminar flow paths from the mouth of one cell trap would not directly feed another, reducing

cross contamination, and maximizing nutrient diffusion. While the channel-free system has the

smallest channel footprint, analysis using fluorescent microbeads showed that flow direction

unexpectedly changes near some traps, resulting in cross-contamination. The unpredicted changes

in direction of flow were likely due to small differences in the height of the open area due to

imperfections in the silicon wafer fabrication process.

The manifold channel system (Figure 2.3d) consists of an inlet channel that splits into

several vertical major media channels with a height of 230 µms. Major channels split into

minor channels in parallel that are 50 µms tall. Each minor channel feeds one cell trap. The

minor channels then combine again into shared outlet media channels. The manifold channel

system meets the design requirements best, as cells see fresh media at each trap eliminating cross

contamination, and the channel footprint is small enough to fit between the required 1.125 mm

spacing between cell traps. The manifold channel system results in about a 20% difference in
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flow rate down a column of cell traps; however that did not affect the response of the E. coli

strains tested during channel optimization. The manifold channel system was implemented in the

large-scale device.

2.3 Device loading

To prepare strains of E. coli or S. cerevisiae for loading onto a microfluidic device, they

are rearranged from their original 96-well density format. The strains are handled using the Singer

ROTOR (Figure 2.4a). Bulk strain movement uses Singer 96-, 384-, 1536-, or 6144-density

RePads (Figure 2.4b) whereas single colonies can be rearranged using the Singer Stinger (Figure

2.4c). The workflow for rearranging cells is shown in Figure 2.4d. First, 96-well liquid plates are

spotted to 96-colony-density agar plates using the ROTOR. Next, the Stinger re-arrays strains

onto four fresh agar plates at a 1536-density based on the desired arrangement on the microfluidic

device. The four 1536-density agar plates are then combined to form a single 6144-density plate.

6144-density RePads are used to transfer cells from the 6144-density agar plate to the microfluidic

device(s).

Initial device loading testing involved spotting cells from agar plates onto glass slides

using the mid-scale device. PDMS and glass slides were cleaned and then exposed to oxygen

plasma. After plasma exposure, glass slides were placed on a 3D printed insert compatible with

the Singer ROTOR. Cells were spotted from the 6144-density agar plate onto the glass slides.

Finally, PDMS was aligned to the cell array on the glass slides using a photolithography mask

aligner, pressed together, and bonded at 37◦C for two hours.

Spotting to glass resulted in poor bonding between the glass and PDMS. Regions surround-

ing spotted cells often unbonded, causing clogging and cross-contamination (Figure 2.5a). We

hypothesized that the increased hydrophilicity of the glass slides after oxygen plasma treatment

was causing a thin layer of liquid to spread around the cells and prevent bonding. To test this
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Microfluidic Device

Figure 2.4: Cell arraying equipment and workflow. a) Singer ROTOR HDA. 3) A 384-density
long-pin RePad, used for bulk movement of strains. c) Singer Stinger, an attachment used for
single colony movement. d) The workflow for loading strains onto a large-scale microfluidic
device. Cells are re-arrayed from 96-density to 1536-density using the Singer Stinger. 1536-
density plates are scaled up to a 6144-density and then spotted to the microfluidic device.

hypothesis, cells were grown on agar plates containing 10 µM fluorescein and spotted to both

plasma treated and untreated glass slides. Fluorescence imaging of glass slides showed that

significantly more liquid spreading occurred on plasma treated glass slides. Adding a five second

delay between picking up cells and spotting them resulted in less liquid spreading, but also led to

inconsistent spotting due to cells drying on the RePad (Figure 2.5b).

Spotting to PDMS was explored next. Cells were first transferred from a 6144-density

plate to an acrylic insert compatible with the Singer ROTOR to establish alignment markers. The

PDMS devices were then aligned to the cell spots on the acrylic using a photolithography mask

aligner. After alignment, the aligned PDMS and glass slides were exposed to oxygen plasma.

Cells were then spotted from a 6144-density agar plate onto the aligned PDMS. PDMS was

pressed together with the glass slides and bonded at 37◦C for two hours.

Experiments where cells were spotted to PDMS resulted in better bonding than those

spotted to glass slides, but the hydrophilicity of the PDMS caused moisture to wick to the edges of
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the reservoirs, resulting in some unbonding. This was solved by adding features to the reservoirs

to increase surface area (Figure 2.5c). Additionally, spotting parameters on the Singer ROTOR

including pin pressure, speed, offset, and overshoot were fine-tuned for spotting the optimal

number of cells. Due to decreased process time and higher bonding efficiency, we chose spotting

cells to PDMS as our primary loading method.
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Figure 2.5: Cell revival after loading onto microfluidic devices. a) Experiments with cells
spotted to glass slides resulted in significant unbonding. b) Cells grown on 10 µM fluorescein
agar plates that were either treated or untreated with oxygen plasma. Spreading of fluorescent
fluid was largest for treated slides. Adding a 5-second delay prevented spreading but resulted in
few cells. c) Cells spotted to PDMS patterned reservoirs resulted in well bonded devices.

2.4 Cell viability optimization

Cell health during experiments is essential; therefore, we optimized growth conditions

before and after spotting cells to the microfluidic device to ensure that cells survived the spotting

process and recovered during the experiment.

During early S. cerevisiae experiments, anywhere from 25-97% of spotted reservoirs

per chip did not grow up. We hypothesized that this was due to cells drying out between being

loaded onto the device and being wetted with media. We verified this using a yeast viability

kit [42]. Cells growing on agar plates were spotted onto glass slides and then allowed to dry for
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variable periods of time. After drying, cells were stained with green- and red-fluorescent dyes, in

which the red dye selectively stained nonviable cells. Using flow cytometry, we found fresh cells

growing on agar plates to be 98% viable, whereas cells spotted to glass slides and immediately

stained for viability were only 6% viable.

To improve S. cerevisiae viability, we increased trehalose production in the cells, which

has been shown to increase the tolerance of S. cerevisiae to the osmotic stress associated with

freezing and drying [43, 44]. During the cell preparation pipeline seen in Figure 3d, cells at the

1536-density were grown at 37◦C under heat shock conditions. In microfluidic runs loaded from

cells grown at these conditions, we observed complete cell growth.

Early E. coli experiments had complete revival on microfluidic devices when grown on

LB+Kan agar plates. However, both E. coli and S. cerevisiae viability decreased after replicating

the same set of strains for several months. Consequently, we thaw fresh overnight cells stored at

-80◦C every six months and repeat the preparation pipeline.

2.5 Complete loading protocol

Below is the step by step loading and bonding protocol for mid-scale and large-scale

devices, for both E. coli and S. cerevisiae.

2.5.1 Wafer fabrication

Our group has previously described the steps to design and build a silicon wafer patterned

with the features of the microfluidic device [15]. Briefly, the device is designed using AutoCAD

or similar software, with each set of features of one desired height designed on an individual mask.

Masks are printed by CAD/Art Services, Bandon, OR. A silicon wafer is built using standard soft

photolithography techniques with SU-8 negative photoresist, layering each set of features with a

unique height. The wafer is then coated with silane to prevent SU-8 features from tearing off the
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wafer with successive PDMS pours.

2.5.2 PDMS device fabrication

Timing: 3 hours

1. In a clean weighing dish, mix 70 grams of the Dow Corning Sylgard 184 elastomer base

with 7 grams of the Dow Corning Sylgard 184 curing agent. Mix vigorously with a clean

stir rod for 5-10 minutes until the PDMS solution is well mixed.

2. Place the PDMS mixture in a vacuum desiccator to remove bubbles. Vent the vacuum

desiccator as needed so that the bubbles do not spill over the weighing dish.

3. Place a 5” x 5” x 0.125” glass plate in the center of a two-layer 8” x 8” piece of aluminum

foil. Carefully fold up the aluminum to create a dish around the glass plate. Overlap the

aluminum foil over the edges of the glass to minimize PDMS leaking underneath the glass

dish.

4. Place the patterned silicon wafer on the center of the glass plate and pour the PDMS mixture

onto the center of the wafer, using a spatula if necessary to get the viscous mixture onto the

wafer.

5. Place the wafer stack into a leveled vacuum desiccator and degas until all bubbles are

removed.

6. Once the bubbles are removed, use the blunt ends of two pipette tips to center the wafer if

it slid to one side, and gently push down on opposite sides of the wafer to push out PDMS

that seeped under the wafer.

7. Place the wafer stack into a level oven and bake at 95◦C for 1 hour.
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8. Remove the wafer stack from the oven. Use a razor blade to cut off the foil from the wafer

stack and cut off the excess PDMS around the wafer.

9. Gently slide a razor blade horizontally between the wafer and glass plate and then remove

it. Repeat this around the circumference of the wafer until the wafer separates from the

glass plate. Note: The razor blade must slide horizontally between the glass and the wafer.

Wafers are extremely fragile and if the razor blade is angled then the wafer will break.

10. Using a razor blade, remove any excess PDMS from the bottom of the wafer. Peel the

PDMS off of the feature side of the wafer in the direction of the major channels.

11. Place the PDMS on a cutting mat with the feature-side up to keep the PDMS clean. Using

a razor blade, cut out each PDMS device. Punch out the inlet and outlet channels using a

stainless-steel puncher.

12. Rinse each device with 70% ethanol and blow it dry with compressed air or pressurized

nitrogen gas.

13. Remove debris from each device using Scotch tape, cleaning the feature side four times

and the non-feature side twice. Use forceps to gently press the tape into the features to

remove all debris. Leave tape on each side to keep the devices clean.

2.5.3 Glass slide preparation

Timing: 1 hour

1. Sonicate glass slides in a 2% Helmanex III solution for 30 minutes at 40◦C.

2. Rinse glass slides with deionized water, rubbing them with a clean latex glove.

3. Completely dry the glass slides with pressurized nitrogen gas and ensure that no streaks are

visible.
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4. Store glass slides in a clean, dust-free environment until used.

2.5.4 Cell Preparation

Timing: 48-72 hours

1. Using Singer Plus Plates, pour agar plates with the appropriate cell culture media on a

level surface, pouring 42 mL of media + agar into each plate. Allow plates to dry on the

benchtop with the lids covered for 48 hours before parafilming and storing at 4◦C.

2. Fill 96-well or 384-well liquid plates with overnight cultures of the strains of interest, or

thaw glycerol stocks of strains of interest in a 96-well of 384-well density format.

3. Using the Singer ROTOR, spot the liquid plate onto an agar Plus Plate. Use the default

pinning settings for both the source and target plates.

• If spotting E. coli, grow the cells at 37◦C overnight.

• If spotting S. cerevisiae, grow the cells at 30◦C for 2 days.

4. Using the Singer Stinger single colony arrayer, rearray the 96-agar or 384-density agar plate

onto a set of 4, 1536-density plates that matches the array of the microfluidic device(s).

These plates will later be combined into one, 6144-density plate that will be spotted to the

microfluidic devices. Note: if spotting devices with fewer strains, multiple devices can be

arrayed onto one set of 1536-plates.

5. Grow the cells overnight.

• If spotting E. coli, grow the cells at 30◦C overnight.

• If spotting S. cerevisiae, grow the cells on the benchtop overnight.

Note: 1536-density plates can be stored in the fridge and continually used as source plates

for up to 6 months.
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2.5.5 6144-density plate and acrylic tool preparation

Timing: 1 hour for E. coli, 25 hours for S. cerevisiae

A: If spotting E.coli:

1. Using the Singer ROTOR, combine the 4x 1536-density agar source plates onto one 6144-

density agar plate using the ”1:4 Array” program and the pinning settings listed in Table 2.1.

Repeat this for two target plates.

2. Grow one of the target plates for one hour at 37◦C if the source plates have been used less

than three times, or for 90 minutes at 37◦C if the plates have been used more than three

times.

3. Using the other 6144-denstiy target plate, the ”Replicate” program on the Singer ROTOR,

and the pinning settings listed in Table 2.1, spot cells from 6144-density target plate onto

the clean acrylic alignment tool. These cells will be used as alignment markers for the

PDMS device.

B. If spotting S. cerevisiae:

1. Using the Singer ROTOR, replicate the 4x 1536-density agar source plates onto 4x 1536-

density agar source plates using the ”Replicate” program. Grow the plates at 37◦C

overnight.

2. Using the Singer ROTOR, combine the 4x 1536-density agar source plates onto one

6144-density agar plate using the ”1:4 Array” program and the pinning settings listed in

Table 2.1.

3. Using the ”Replicate” program on the Singer ROTOR and the pinning setting listed in

Table 2.1, spot cells from 6144-density target plate onto the clean acrylic alignment tool.

These cells will be used as alignment markers for the PDMS device.

20



Table 2.1: Singer ROTOR pinning settings for each step of the microfluidic device loading
process.

Source to target description
Pinning

pressure (%)
Pinning speed

(mm/sec)
Pinning

overshoot (mm)
Source Target Source Target Source Target

1536 agar to 6144 agar 58 64 19 10 2 1
6144 agar to acrylic 50 100 10 10 0.6 0.6
6144 agar to microfluidic
device for E. coli 55 70 10 10 0.6 0.6

6144 agar to microfluidic
device for S. cerevisiae 50 64 10 10 0.6 0.6

2.5.6 Aligning the PDMS to the acrylic tool

Timing: 30 minutes

A. If spotting multiple devices with fewer strains:

1. Using a photolithography mask aligner or similar system, set the acrylic tool on top of the

mask holder with the alignment cells facing up. Bring the cells of one device into focus.

2. Remove the Scotch tape from one PDMS device, avoiding touching the feature side of the

device.

3. Gently place the PDMS device on top of the alignment cells, feature-side up, such that the

center of the spotting regions is centered over the cells.

4. Place tape on top of the PDMS, pressing the PDMS down to ensure adhesion of the PDMS

onto the acrylic tool.

5. Repeat this for each device on the acrylic tool.

B. If spotting one large device with many strains:

1. Using a photolithography mask aligner or similar system, place the PDMS device feature-

side-down on top of the wafer chuck. Remove the tape from the non-feature side of the

PDMS.
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2. Place the acrylic tool on top of the mask holder, with the alignment cells facing down,

above the PDMS.

3. Using the micrometers on the mask aligner, align the center of the spotting regions with the

center of the alignment cells.

4. Bring the PDMS and acrylic tool into contact using the wafer chuck.

5. Remove the tape from the feature-side of the PDMS and check the alignment, ensuring that

the PDMS did not shift when it came into contact with the acrylic tool. If necessary, adjust

the alignment.

6. Re-tape the feature side of the PDMS until ready to expose the PDMS to oxygen plasma.

2.5.7 Oxygen plasma exposure

Timing: 10 minutes

1. Expose the clean 4x3” glass slide and the PDMS acrylic stack to 30W of oxygen plasma

for 30 seconds.

2. Blow any dust off the glass slide and PDMS acrylic stack with compressed nitrogen.

2.5.8 Cell preparation for S. cerevisiae spotting

Timing: 10 minutes

1. If spotting S. cerevisiae, using the Singer ROTOR, combine the heat shocked 4x 1536-

density agar source plates onto one 6144-density agar plate using the ”1:4 Array” program

and the pinning settings listed in Table 2.1.

Note: This plate should be used immediately to spot cells onto the oxygen plasma exposed

PDMS device.
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2.5.9 Loading and bonding the device

Timing: 10 minutes

1. Using the Singer ROTOR and the parameters listed in Table 2.1, spot the cells from the

6144-density agar plate to the oxygen plasma exposed PDMS acrylic stack.

2. Peel the spotted PDMS off the acrylic piece and gently place it face down on the center of

the oxygen-plasma-exposed glass slide.

3. Gently tap the top of the PDMS, ensuring that the device bonds to the glass.

4. Incubate the device at 37◦C for at least two hours.

2.5.10 Experimental set-up

Timing: 40 minutes

1. Place the bonded PMDS device in a vacuum desiccator for at least twenty minutes.

2. Prepare an inlet syringe using methods previously described by our group [15].

3. Prepare and outlet syringe (mid-scale) using methods previously described by our group [15]

or prepare an outlet tube and metal connector feeding into a waste bottle.

4. Mount the bonded PDMS device on the desired imaging platform, plugging in the inlet

syringe first and then the outlet tube when a bead of liquid has formed on the outlet port.

5. Image the device at the desired temporal resolution.
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Chapter 3

Dynomics: A microfluidic and machine

learning platform for genome-scale

transcriptional dynamics and

environmental biosensing

3.1 Introduction

At the juncture of synthetic biology and the study of genome-scale dynamics has been

the development of whole-cell biosensors [11, 45]. Previously, whole-cell sensors have been

developed towards applications including the detection heavy metals for environmental safety

[11,18,46], sensing metabolites relevant to bioproduction [47–50], or operating in vivo towards di-

agnostic applications [51–53]. These sensors often harness transcriptional machinery, using either

native or engineered pathways in E. coli, to tie specific environmental inputs to the expression of

a reporter gene from a transcriptional promoter. Here, we demonstrate the utility of Dynomics, a

2,176-strain microfluidic and imaging platform, in the discovery of these transcriptional elements,
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namely, in the case of heavy metals, where E. coli have already evolved native sense and response

mechanisms [54, 55].

3.1.1 Heavy metal pollution in drinking water

Heavy metal contamination in water sources is a global threat that continues to grow due to

industrialization, mining, and aging water supply infrastructures [56]. Heavy metal contamination

is detrimental in both drinking and agricultural water supplies.

The contamination of US water supplies has affected hundreds of thousands of Americans

in cases such as Flint, Michigan where an estimated 140,000 people were exposed to dangerously

high levels of lead in their drinking water for over a year, with thousands of children testing

positive for elevated blood levels for years to come [57, 58]. While Flint, MI received much of

the media’s attention, there are almost 3,000 small counties in the United States with a prevalence

of lead poisoning twice that of Flint’s [59].

Heavy metal contamination also arises from large-scale spills when dams collapse at

mines, dumping toxins into nearby rivers. One recent spill was the Gold King Mine Disaster near

Silverton, CO on August 5, 2015 [60]. The Gold King Mine, which was abandoned in 1923, had

accumulated a large amount of contaminated groundwater inside of it, a consequence of acid

mine drainage [60]. The 2015 spill occurred when the Environmental Protection Agency (EPA)

went to clean the site, but accidentally caused a dam plugging the mine’s entrance to fail. All of

the mine’s waste water, including metals such as cadmium, copper, zinc, iron, cadmium, and lead,

poured into Cement Creek, and then into the Animas River, followed by the San Juan River. The

thousands of members of the Navajo Nation, through which the San Juan flows, had to shut off

irrigation from the river to their crops and livestock in the days after the spill, causing widespread

damage in the hot summer temperatures and lasting effects on food supply [61].

Heavy metals have long posed a threat to both drinking and agricultural water supplies;

however, sufficient equipment for measuring levels of heavy metals is not readily available.
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Currently, water analysis requires periodic sampling that is sent to an off-site laboratory for

analysis, eliminating the ability to detect early signs of pollution or when pollution has reached

safe levels [62]. Not only is such sampling inefficient for large mine spills causing water to be

shut off from agriculture for days longer than it needs to be, but such sampling occurs infrequently

in municipal areas and rarely in people’s homes. With the increasing concern of heavy metal

pollution, a real-time, cheap, and portable solution is necessary.

3.1.2 Biosensors for heavy metal detection

With the growth of synthetic biology, biosensors have become a highly researched area for

detecting heavy metals. Biosensors can be broadly classified into cell-free systems and whole-cell

systems. Protein based biosensors include using aptamers, nucleic acids, peptides, enzymes,

antibodies, or proteins as probes for sensing heavy metals. While these systems are able to detect

low concentrations of analytes quickly and specifically, they can be expensive and often require

immobilization, purifications, and involved analysis [11].

The evolution of genetic engineering has made it possible for creating whole-cell biosen-

sors that can detect samples faster, cheaper, and with less operational expertise required than

traditional analytical chemistry techniques. They offer similar detection limits as cell-free biosen-

sors but are cheaper and easier to cultivate. Genetic engineers can also harvest the systems

microbes have already evolved for processing heavy metals.

Combining microfluidic technologies with whole-cell biosensors has lead to a massive

reduction in size and cost for in-line heavy metal detection systems. Many microfluidic biosensors

to date have been single-strain, single-toxin devices or devices that require a complex system

with multiple external connections, constraining these devices to a lab setting [11, 27]. Instead

of single-strain devices, genome-scale microfluidic instruments that can culture, monitor, and

measure thousands of strains could leverage biology’s natural ability to sense and respond to

environmental stimuli, resulting in a non-specific sensor that could sense any substance that
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perturbs a microbe. Coupling artificial intelligence (AI) algorithms with the fluorescence outputs

of such a device would allow for a robust, simple, field-deployable device to sense toxins of

interest in real-time that would output if that toxin is present.

3.1.3 Dynomics platform overview

Using the device developed in Chapter 2, we have developed a high-throughput microflu-

idic biosensor and associated software platform, Dynomics, that can simultaneously co-culture

and monitor 1,807 strains of a promoter-GFP E. coli library [24] under time-varying environmen-

tal conditions, successfully detecting the presence of Cu(II), Zn(II), Fe(III), Pb(II), Cd(II), and

Cr(VI). Initially, time series and fold-change data are used to identify and quantify responsive

strains. The data is further leveraged via both deep learning classifiers, for real-time detection of

inducers, and XAI algorithms, to quantify each strain’s impact on the classifier’s predictions and

understand which strains are responding to each metal (Figure 3.1).
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Figure 3.1: The Dynomics platform. Fluorescent strain libraries are loaded onto large-scale
microfluidic devices that can be fully captured in a single image using custom optics. Parallel
cultures of E. coli are subjected to multiple exposures of different stimuli with time series and
fold-changes used to quantify responsive strains. Machine learning algorithms are trained on
preprocessed data to enable real-time stimulus detection.
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3.1.4 Microfluidic device optimization

Based on the initial design in section 2.2.2 the Dynomics microfluidic device was opti-

mized for straightforward experimental setup, reliable trap filling and cell retention, and optimal

fluorescence signal from each spotted microcolony (Figure 3.2a-c). The single media inlet-outlet

device requires only two fluidic connections after cell spotting and chip bonding. The media

inlet channel feeds a total of 2,176 4-µm-tall cell traps. Trap shape and spacing allows a 6,144

SBS-density pin pad to deposit cells into the back of the trap, where they grow towards the tapered

opening interfacing with 50 µm-tall minor media-channels. These minor channels branch off of

a larger 230 µm-tall major media-channel manifold system, as designed in section 2.2.2. Once

spotted cells have reached confluence, inducer compounds can be pulsed in at user-specified

frequencies with the dynamic response of each strain measured down to a 3 minute temporal

resolution (Figure 3.2d).

3.1.5 Dynomics Optical Enclosure

The Dynomics optical enclosure is a stand-alone microscope for imaging the microfluidic

device with a 70 mm x 70 mm field-of-view (Figure 3.3a). The enclosure includes an SBIG

STX-16803 CCD camera (a1), a custom lens stack assembly (a2), two blue excitation LEDs

(a3) and associated drivers (a7) for GFP imaging, a green LED (a5), associated driver (a7), and

diffuser stack assembly (a4) for transmitted light imaging, a temperature-controlled enclosure

where the microfluidic device is mounted (a4), all necessary power supplies and wiring (a8), and

a Tegra computer with custom software (a7) to control the LEDs, imaging, temperature, and

to sync the images onto servers via WiFi. The enclosure costs about $15,000, compared to an

off-the-shelf microscope that can cost an order of magnitude more. The optical enclosure images

in both transmitted light and fluorescence channels with a 36 µm optical resolution, comparable

to a lab-grade microscope at 4x magnification (Fig. 3.3c-e). With a nominal imaging frequency
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Figure 3.2: The Dynomics microfluidc device. a) Design of the Dynomics 2,176-strain microflu-
idic device with cell traps in red and media channels in blue and yellow. b) Detailed schematic
of four strain banks with arrows showing direction of media flow. c) Mean fluorescence (solid
blue) and standard deviation (shaded blue) of the E. coli zntA promoter driving GFP to repeated
cadmium inductions (gray bars) with periods increasing from left to right (30 min., 2 hrs., 4 hrs.,
and 8 hrs.)

of 3 minutes, Dynomics allows us to adjust environmental conditions and measure the resulting

changes in gene expression at a high temporal resolution.

3.1.6 Screening for responsive promoters to heavy metals

Using the Dynomics platform with a previously developed GFP E. coli promoter library

[25], 1,807 unique E. coli promoters were screened against nine heavy metals (Cu(II), Zn(II),
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Figure 3.3: The Dynomics custom optical enclosure. a) Components include (1) a SBIG
STX-16803 CCD camera, (2) a custom lens stack assembly, (3) blue excitation LEDs for GFP
fluorescence imaging, (4) a temperature-controlled enclosure where the microfluidic device is
mounted, (5) a green LED and associated diffusers and lenses for transmitted light imaging, (6)
a Tegra computer and software for controlling imaging and transferring images to a server, (7)
LED drivers, and (8) all associated power supplies and wiring. b) An image of a large-scale
microfluidic device mounted in (a4). c-e) The Dynomics microfluidic device imaged on a
standard research grade scope with 4x magnification, and on the Dynomics enclosure for both
transmitted light (d) and fluorescence (c,e) channels. The Dynomics enclosure has 36 µm
resolution.

Fe(III), Pb(II), Cd(II), Cr(VI), Hg(II), As(III), Sb(III)) at environmentally relevant concentrations

(Table metal). Screening experiments lasted 7-14 days, with cells exposed to a different heavy

metal every 24 hours (Figure 3.4).

Promoters responsive to each metal can be identified through a combination of clustering

and fold-change analysis. A high-level view of the 1,807 promoter time traces (Figure 3.5a)

and subsequent clustering (Figure 3.5b) reveal distinct classes of transcriptional responses to

a single four hour zinc exposure. In (Figure 3.5b), clusters 1 and 2 include promoters that are

up- and down-regulated, respectively, in the presence of zinc, but return to baseline expression

levels within 15 hours of zinc removal. Clusters 3 and 4 include promoters that are up- and

down-regulated, respectively, with slower dynamics. Gene ontology (GO) enrichment analysis
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Figure 3.4: Responsive strains over the duration of a Dynomics experiment. Normalized
fluorescence for two strains is plotted over the duration of one experiment, with four-hour heavy
metal inductions (gray bars) occurring once daily.

suggests that from these four clusters, genes associated with cellular stress are up-regulated

(cellular detoxification and antibiotic metabolic process) while genes involved in metabolism

and biosynthesis are down-regulated (nitrogen metabolism and glutamine family amino acid

biosynthesis). The full list of GO terms and there associated p-values are listed in Table 3.1.

Individual responsive strains for each metal were identified, based on their fold-change

response (Figure 3.6a) to four-hour metal exposures, which were repeated in random order

once every 24 hours. Fold-change detection highlights the promoters displaying the strongest

response to each metal. Subsequent investigation of the most responsive strains (Figure 3.6b)

quantitatively elucidates dynamics, such as amplitude, relaxation time, and response rate, all of

which important factors for their use in the study of gene expression regulation and continuous

biosensing applications. While many of the Dynomics-identified sensing strains such as zntA [63]

or cueO [64] have well documented metal interactions, others are less studied or poorly annotated,

particularly members of E. coli ‘y-ome’ [65]. Overall, the methods of data analysis reveal each

metal to have responsive promoters with a unique signature of up- and down-regulation. However,

in view of the ultimate task of a biosensor, which is to distinguish the presence of a metal based
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Figure 3.5: Dynomics as a screening tool for heavy metal responsive promoters in E. coli. a)
Fluorescence response of an E. coli promoter library during a four hour 50 ppb Zn induction
(dotted window). Each row represents the promoter activity, normalized between 0 and 1, of a
single strain, with 1,995 total strains represented. Four clusters from agglomerative clustering
are labeled on the right. b) Four clusters of strains calculated from agglomerative clustering
from the data in panel a. The mean (dark blue line) and standard deviation (dark blue shading)
of all strains in each cluster is plotted. The dotted window denotes when zinc was present.

on a real-time transcriptional data, fold-change alone is difficult due to promoter non-specificity,

cross-talk, noise, and low amplitude responses.

3.1.7 Machine learning

To better discriminate between E. coli’s response to the heavy metals used in our screening,

we trained and tested two types of machine learning models on the Dynomics data. The first

model, known as extreme gradient boosted trees (XGBoost), is a popular decision tree ensemble-
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Table 3.1: Gene ontology enrichment analysis of the clusters obtained by agglomerative cluster-
ing of Figure 3.5.

Cluster GO	biological	process	complete Fold	Enrichment P-value
localization	(GO:0051179) 0.74 4.11E-02
transport	(GO:0006810) 0.71 3.30E-02
transmembrane	transport	(GO:0055085) 0.62 4.47E-02
protein	autoprocessing	(GO:0016540) 9.7 4.59E-02
transcription	antitermination	(GO:0031564) 9.7 4.59E-02
carbon	utilization	(GO:0015976) 9.7 4.59E-02
cellular	response	to	light	stimulus	(GO:0071482) 9.7 4.59E-02
cellular	response	to	radiation	(GO:0071478) 9.7 4.59E-02
regulation	of	single-species	biofilm	formation	(GO:1900190) 9.7 4.59E-02
cellular	response	to	UV	(GO:0034644) 9.7 4.59E-02
bacterial	transcription	(GO:0001121) 9.7 1.29E-02
one-carbon	metabolic	process	(GO:0006730) 7.28 2.11E-02
tetrahydrofolate	metabolic	process	(GO:0046653) 5.54 1.43E-02
folic	acid-containing	compound	metabolic	process	(GO:0006760) 4.31 2.68E-02
pteridine-containing	compound	metabolic	process	(GO:0042558) 3.88 3.48E-02
positive	regulation	of	nitrogen	compound	metabolic	process	(GO:0051173) 2.11 3.44E-02
macromolecule	metabolic	process	(GO:0043170) 0.66 4.19E-02
transmembrane	transport	(GO:0055085) 0.33 4.02E-02
thiamine-containing	compound	biosynthetic	process	(GO:0042724) 5.29 2.57E-02
cellular	detoxification	(GO:1990748) 5.29 2.57E-02
thiamine	biosynthetic	process	(GO:0009228) 5.29 2.57E-02
thiamine-containing	compound	metabolic	process	(GO:0042723) 4.23 4.07E-02
thiamine	metabolic	process	(GO:0006772) 4.23 4.07E-02
antibiotic	catabolic	process	(GO:0017001) 3.53 2.15E-02
detoxification	(GO:0098754) 3.53 2.15E-02
cellular	response	to	toxic	substance	(GO:0097237) 3.53 2.15E-02
reactive	oxygen	species	metabolic	process	(GO:0072593) 3.31 4.21E-02
tetrapyrrole	biosynthetic	process	(GO:0033014) 3.17 2.99E-02
tetrapyrrole	metabolic	process	(GO:0033013) 3.17 2.99E-02
response	to	toxic	substance	(GO:0009636) 2.91 5.74E-03
antibiotic	metabolic	process	(GO:0016999) 2.8 1.46E-02
vitamin	biosynthetic	process	(GO:0009110) 2.65 1.29E-02
water-soluble	vitamin	biosynthetic	process	(GO:0042364) 2.65 1.29E-02
water-soluble	vitamin	metabolic	process	(GO:0006767) 2.43 1.78E-02
vitamin	metabolic	process	(GO:0006766) 2.43 1.78E-02
drug	catabolic	process	(GO:0042737) 2.41 2.54E-02
drug	metabolic	process	(GO:0017144) 2.17 1.33E-03
positive	regulation	of	biological	process	(GO:0048518) 0.38 4.72E-02
arginine	biosynthetic	process	(GO:0006526) 2.79 4.34E-02
arginine	metabolic	process	(GO:0006525) 2.54 4.22E-02
glutamine	family	amino	acid	biosynthetic	process	(GO:0009084) 2.36 3.63E-02
drug	transport	(GO:0015893) 1.77 4.98E-02
transmembrane	transport	(GO:0055085) 1.48 2.65E-02
localization	(GO:0051179) 1.28 4.48E-02
drug	metabolic	process	(GO:0017144) 0.5 2.90E-02
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Figure 3.6: a) Fold change for top responding strains to all metals. Log2 of the average fold
change is shown for the top responding strains to each heavy metal. *, **, *** indicate p-values
of 0.05, 0.01, 0.001, respectively. b) Significant single strain normalized fluorescence response
(blue line) and standard deviation (blue shading) across all inductions for a given metal (dotted
window).

based classifier known for its ability to learn nonlinear models [66]. The second, known as a long

short-term memory recurrent neural network (LSTM-RNN), is a DNN [67] selected because of

its ability to effectively utilize sample sequence history to classify time series data, a property not

shared by XGBoost.

Both classification algorithms outperformed random guessing of the majority class (no

toxin) on the standardized experiments’ feature set, with the LSTM-RNN performing the best

overall (Figures 3.7,3.8). The LSTM-RNN was able distinguish both biotic and xenobiotic

metal-spiked water from pure water with a high level of reliability. We believe this is the first
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instance of a multi-class classifier successfully leveraging genome-wide transcriptional dynamics

to predict exposure of a biological organism to an environmental stressor.

The LSTM-RNN found iron and copper to be easily-detectable biotic metals, which is

not surprising given their importance to E. coli cellular function [64, 68]. Cadmium was the

most readily detected xenobiotic metal with the LSTM-RNN classifier, though it was sometimes

confused with zinc. E. coli are known to use the same sensing and transport systems to capture

and export excess amounts of these two metals, which possess the same number of valence

electrons [63, 69]. Most classification errors occurred at the beginning and the end of the

experiments’ induction periods, when the LSTM-RNN occasionally had difficulty determining

the exact time that each metal was added or removed from the media (Figure 3.9).

3.1.8 Explainable artificial intelligence

At present, a major obstacle in making scientific conclusions from machine learning

results is the ”black box problem”: as an algorithm’s ability to model complex phenomena grows,

its decision-making processes become more and more obscured from its operators. Recently,

XAI techniques in the life sciences have begun to shed light on the decision making processes

of machine learning algorithms [70–72]. Further contributions from coalitional game theory

have lead to the development of a mathematically-consistent method for understanding the

decision-making process of any AI classifier [73, 74].

Taking advantage of these recent XAI advances, we trained a Shapley additive explanations

(SHAP) XAI on both our XGBoost and LSTM learners [73, 75]. Viewing both SHAP values

(impact on classifier output) and feature values (data fed to the classifier) with respect to time offers

insight into how the classifier operates in real-time (Figure 3.10). The cause of misclassification

is made clearer, as SHAP dynamics reveal that the predictive impact of a strain often varies

within an induction window, particularly at its start and end. Furthermore, we see how some

promoters, such as zntA, positively contribute to the detection of multiple metals, which causes
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No Toxin

Cd(II)

Pb(II)

Cr(VI)

Zn(II)

Cu(II)

Fe(III)

0.853 0.004 0.004 0.002 0.008 0.003 0.007

0.002 0.022 0.000 0.000 0.003 0.000 0.000

0.009 0.001 0.006 0.000 0.001 0.001 0.000

0.003 0.002 0.000 0.007 0.001 0.001 0.000
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0.036 0.258 0.001 0.006 0.666 0.001 0.031
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Figure 3.7: Confusion matrices showing the frequency, recall, precision, and F1 score of the
LSTM-RNN classifier in predicting six metals across all experimental data (14,332 time points).
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No Toxin

Cd(II)

Pb(II)

Cr(VI)

Zn(II)

Cu(II)

Fe(III)

0.883 0.002 0.000 0.000 0.002 0.001 0.001

0.009 0.019 0.000 0.000 0.002 0.000 0.000

0.017 0.000 0.000 0.000 0.001 0.000 0.000

0.009 0.002 0.000 0.001 0.000 0.000 0.000

0.007 0.003 0.000 0.000 0.010 0.000 0.000
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Figure 3.8: Confusion matrices showing the frequency, recall, precision, and F1 score of the
XGBoost classifier in predicting six metals across all experimental data (14,332 time points).
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Figure 3.9: LSTM-RNN classifier applied to time series data for all six detectable metals in
two different experiments. Misclassified time points are shown in red.

the classifier to rely on promoters with less-pronounced responses to distinguish the exposed

metal. As a result of the combination of experimental noise and weaker responses, the SHAP

values of these differentiating strains are often smaller and vary more with time, explaining the

misclassification of the metals. Finally, promoters that may not have been identified as responsive

using fold-change analysis because of subtle, low-amplitude, and noisy responses can be identified

via XAI. While these subtle responders may not serve as stand-alone biosensor strains, they

provide promising targets for future sensor engineering efforts. These insights highlight the ability

of the LSTM-RNN classifier to compile the influence of many strains, prominent and subtle, to

make a more often than not accurate prediction of the present metal exposure.

The SHAP-XAI highlights the similarities and differences between how the LSTM-RNN

and XGBoost make decisions. Figure 3.11 shows the 15 promoters with the highest mean impact

on the model and the promoterless strain U139. Both methods rely heavily on the metal-sensing

promoter zntA for the detection and discrimination of multiple metals, especially cadmium and
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Figure 3.10: Dynamic SHAP and feature values during metal exposures. Feature (blue)
and SHAP (orange) time trajectories for individual promoters during metal exposures. Solid
lines show the mean value over all inductions for that metal and shaded regions around lines
represents standard deviation. Dashed black lines represent the metal exposure window. While
some promoters are responsive to many different metals, additional information from other
promoters helps the classifier to differentiate each metal. Many promoters with noisy and subtle
metal responses also contribute to classifier performance.

zinc. Beyond zntA, XGBoost relies heavily on single strains to detect single metals, in a manner

comparable to human attention patterns. While XGBoost is not as proficient as the LSTM-

RNN classifier at predicting metals, coupled with SHAP-XAI, XGBoost is able to identify top

responding strains for each metal. The LSTM-RNN, on the other hand, utilizes many strains of

moderate influence in a combinatorial fashion; this tendency to find a different representation

than that of the human visual system has been noted in other works [76].

The ability of the XAI-coupled classifiers to identify promoters involved in metal response

serves as a valuable scientific tool, suggesting potential pathways for further investigation. This is

highlighted by looking at a subset of the ten most-impactful promoters individually for cadmium
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Figure 3.11: Explainable machine learning reveals E. coli transcriptional dynamics contributing
to metal classification. The bar plots show the cumulative contribution based on the Shapley
Additive Explanations (SHAP) values of 15 top promoters and a negative control (promoterless
strain U139) to the prediction of each metal for both XGBoost (a) and LSTM-RNN (b) classifiers.
Colored bars for each metal represent the mean absolute SHAP value over all experimental time
points.

and iron inductions (Figure 3.12). These summary plots illustrate how the two classifiers make

similar decisions through different methods. In the case of cadmium, zntA plays a significant

role for both classifiers, while different sets of genes involved in ion transport or amino acid

synthesis are identified for each. Most notably, the metE and metB promoters which are involved

in methionine synthesis, an amino acid known to chelate cadmium, are identified by XGBoost,

while the LSTM-RNN only uses the metE regulator, metR, for detection. Similarly with iron, we

see XGBoost rely on members of the argenine synthesis, argA and argC, while the LSTM-RNN

relies on different promoters that are involved in other metabolic or biosynthetic processes.

3.1.9 Biosensor validation

Given the severe impact of heavy metals on human health [77] and the persistence of

water quality issues in the US [78] we sought to deploy the Dynomics platform as a real-time

water quality biosensor. To validate this device for heavy metal sensing outside of a laboratory

setting, we conducted experiments with media made from municipal water samples from San

Diego, Seattle, Chicago, Miami-Dade, and New York City with added cadmium. Figure 3.13a
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shows the LSTM-RNN classifier predictions for cadmium exposures on each city’s water supply.

While there is some misclassification of cadmium for zinc, there are few instances of incorrectly

predicting the presence of a toxin versus water, even with largely different water compositions

between each city.

The Dynomics device was also exposed to samples collected from the Gold King Mine

Spill in August 2015. Figure 3.13b shows the predictions of the LSTM-RNN classifier on

samples from the spill, collected from the San Juan River. The classifier predictions are output as

multi-class, multi-label probability vectors. As the sample was introduced onto the device, the
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probability of water decreased significantly while the probabilities of the other metals increased.

The metal with the highest probability, iron, was also the most abundant metal in the samples

as measured by ICP-MS (Table 3.2). Despite the classifier not being trained on combinations

of metals, nor at the concentrations present in these samples, the ability to reliably report the

presence of the most prominent metal, and, to a lesser degree, the less abundant metals, suggests

the broad applicability of this platform for heavy metal detection.
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Figure 3.13: Dynomics and machine learning on environmental samples. a) LSTM-RNN
classification of cadmium contamination added to five different urban water sources. The colors
correspond to the metals in the inset in (b). b) Multi-class, multi-label classification of water
samples from the San Juan River during the 2015 Gold King Mine waste water spill. Independent
probabilities of each class are determined by the sigmoid activation function. The plot shows
the sum of the classifier probabilities, averaged across triplicate sample exposures (addition and
removal at vertical black lines). Inset bar chart shows the concentration of detectable metals in
San Juan River samples as determined by ICP-MS. The colors of predicted toxins correspond to
the metals plotted in the inset.

3.2 Conclusion

Adaptation to rapidly changing environments and external stressors is a hallmark of

bacterial life and requires critical dynamic properties, many of which can be traced down to rapid
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Table 3.2: Concentration of metals in HM9 media made with San Juan River samples as
measured by ICP-MS at the Environmental Complex Analysis Lab at UC San Diego.

Metal Concentration

Aluminum 100.9 ppm
Vanadium 1.263 ppm
Chromium 88.83 ppb
Manganese 828.3 ppm
Iron 151.8 ppm
Cobalt 1.289 ppm
Nickel 1.634 ppm
Copper 1.215 ppm
Zinc 2.947 ppm
Gallium 63.73 ppb
Arsenic 64.94 ppb
Silver 22.45 ppb
Cadmium 48.16 ppb
Thallium 33.52 ppb
Lead 209.3 ppb

and specific control of gene expression [?]. Transcriptomic technologies [79–81] have identified

genes involved in environmental stress response and, more recently, furthered understanding of

their mode of regulation. In this work we developed a high-throughput microfluidic platform

to track the transcriptional dynamics of thousands of E. coli genes in parallel. Our Dynomics

platform provides a temporal resolution and degree of experimental control that alternative

experimental techniques do not possess [27]. In a high-throughput screen using Dynomics, we

simultaneously exposed the 1,807 strains of the promoter-based E. coli GFP library to nine

different heavy metal stressors. The fine-grained temporal gene-expression data it produced

highlighted the unique dynamics of stimuli-specific genes previously identified as heavy-metal

responsive [80], and allowed for the identification of gene clusters based on temporal response.

Our platform possesses the genome-scale coverage and high sampling frequency needed to probe

bacterial gene regulatory networks and screen large strain libraries for motifs difficult to discern

using static gene expression data, yet ubiquitous in biology such as nonlinear interaction patterns
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and feedback loops [37].

We further illustrate our platform’s capacity for exploring the dynamics of transcriptional

networks by applying machine learning techniques to detect stimuli-specific features of heavy

metal stress response. Here we demonstrate that supervised machine learning can leverage the

dynamic change in gene expression to infer the presence of environmental stressors in real-time.

Algorithms derived from two formally distinct machine learning frameworks were trained on the

time traces of the 1,807 promoter strains and successfully differentiated between metals belonging

to biotic (Cu(II), Zn(II), Fe(III)) and xenobiotic classes (Pb(II), Cd(II), Cr(VI)). Deep-learning

based methods, known for their ability to leverage time-series data, were more successful. In

addition, we exploit recent progress in XAI to gain insight into the biological mechanisms that

characterize transcriptomic adaptation to stress.

Finally, we demonstrate the real-world applicability of our platform by testing it on

cadmium-spiked water from five municipal areas around the US with varying water composition,

as well as water from the Colorado Gold King Mine Spill, possessing multiple metals at con-

centrations vastly different from those in the training sets. In both cases the machine learning

algorithms successfully predicted the presence of the appropriate heavy metals. Approaches such

as these involving the combination of high throughput microfluidics and machine learning may

outperform single purpose biosensors in accuracy and robustness, and be adaptable to more varied

sensing tasks.

3.3 Materials and methods

3.3.1 Microfluidic device cell trap optimization

Several trap designs were tested in order to maximize E. coli cell retention, homogeneous

growth states, and fluorescence signal while minimizing excess cell mass that would lead to

clogging and therefore a shorter device lifetime (Figure 3.14). Figure 3.14a shows the cell traps
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initially designed and described in section 2.2.2 known as ”gills”. Gill traps had a high aspect

ratio which resulted in maximized fluorescence signal, however cell retention was poor, due to

convective flow into the first gill and flowing out of the tenth gill. The Gill-Shunt design (Figure

3.14b) was designed to reduce convective flow in the gill traps by providing a path of lesser

resistance for flow to follow before cells filled. Although this design helped redirect flow, cell

retention was still variable. The cell traps in Figure 3.14c were designed to have a dead volume

region in order to better retain cells. While cell retention improved, cell growth states were

variable, and resulted in variable fluorescence responses. Figure 3.14d shows the simplest trap

possible, a single open side trap in which cells are directly spotted. Cells in this 50 µm tall trap

accumulated too much biomass and clogged the device quickly. Figure 3.14e shows a design

similar to 3.14d with an added spotting post to constrict some biomass while also providing a

support pillar for the spotting process. This design also resulted in excessive biomass. Figure

3.14f shows a funneled cone design also 50 µm in height that restricted cell mass. This design

was iterated for use in the channel-free design (Figure 3.14g-j). Figure 3.14g has a 4 µm spotting

region and 50 µm funneled cone. Figure 3.14h shows a teardrop wall in order to prevent upstream

cells from gathering on downstream trap walls. It has a 4 µm spotting region and 50 µm funneled

cone similar to Figure 3.14g. The narrow funneled cone prevented clogging and large biomass,

but the 50 µm height still resulted in variability in the growth state. Similarly, Figure 3.14i also has

a teardrop shape and 4 µm spotting region. Instead of a 50 µm cone, this design has 50 µm gills as

the cell trap. The gills reduced cell mass and clogging, but still showed variability in growth state.

Figure 3.14j has a 4 µm spotting region and 4 µm cone. This design limited biofilm formation,

decreased growth state variability, and had sufficient fluorescence signal; however, this design

was not compatible with the manifold channel design. This trap design was adapted to work with

the manifold channel design (Figure 3.14k), successfully retaining cells in a homogeneous growth

state with detectable fluorescence signal.
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Figure 3.14: Cell trap designs tested to maximize E. coli cell retention, homogeneous growth
states, and fluorescence signal. Gill traps with (a) and without (b) shunts inconsistently filled
traps. Dead end gills (c) and side traps (d,e) lead to heterogeneous growth states. Channel-free
traps (f-j) were tested with 4 µm (f,j) and 50 µm (g-i) openings with various opening sizes for
cell retention. k) The final trap design used with the manifold channel system for Dynomics
data collection.

3.3.2 Wafer Fabrication

The silicon wafer was fabricated using standard photolithography techniques previously

described by our group [15]. The cell trap layer was fabricated using 2005 SU-8 photoresist with

a spin speed of 5000 rpm and had a resulting height of 3.85-4.05 µms, the minor channel layer

was fabricated using 2075 SU-8 photoresist with a spin speed of 4250 rpm and had a resulting

height of 45-50 µms, and the major channel layer was fabricated using 2075 SU-8 photoresist

with a spin speed of 1200 on top of an undeveloped major channel layer, resulting in a final height
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of 200-260 µms.

3.3.3 Microfluidic device fabrication

The microfluidic devices were fabricated, loaded, and bonded with the E. coli promoter

library [25] using the protocol in section 2.5.

3.3.4 Experimental protocol

Microfludic experiments were performed on the Dynomics custom optical enclosure.

Continuous imaging occurred every ten minutes, imaging both the transmitted light and GFP

fluorescence channels. The inlet port was connected to a 140 mL syringe (Covidien Monoject

Syringe) and PTFE tubing (Cole Palmer PTFE24 AWG tubing) with LB media with Kanamycin,

0.075% Tween-20, and 50 mM Methyl α-D-mannopyranoside. The waste port was connected

to PTFE tubing and a 1L waste bottle. The height difference between the inlet and outlet was

39” corresponding to a flow rate of 11 mL/hr. Tween-20 and Methyl α-D-mannopyranoside

were used in the media to prevent biofilming and therefore increase the longevity of microfluidic

experiments. Tween-20 has been used by our group in many experiments without an adverse

effect on E. coli [15, 18]. Methyl α-D-mannopyranoside inhibits normal surface attachment of

type I pili but cannot be metabolized by E. coli [82]. After 16-24 hours of growth on LB media

for cells to fill the traps, the media was switched to an HM9 minimal media described in Table

3.3, which was based on a previous study [83] and optimized for microfluidic E. coli growth with

minimal traces of metals. Cells were grown on HM9 for 48 hours before inducing with heavy

metals.

Heavy metal inductions occurred once a day for four hours. To induce, the HM9 in the inlet

syringe was slowly pipetted out of the syringe and the HM9 + metal media was slowly pipetted in.

To remove the heavy metal media after the 4 hour induction, the HM9 + metal media was pipetted
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out, and the remaining dead volume was washed with 2, 5 mL HM9 wash steps. Then the HM9

media was pipetted in to fill the syringe. The order of daily metal inductions were randomized for

each experiment. Inductions of each metal were performed across multiple experiments, with

each experiment lasting 7-14 days. The number of inductions and concentrations for each metal

is listed in Table 3.4.

Table 3.3: HM9 minimal media recipe.

Chemical Concentration (mM)

Potassium Chloride 49.6
MOPS pH 7.2 40
β-Glycerol phosphate disodium salt pentahydrate 4
Dextrose 22.2
Ammonium chloride 18.70
Magnesium Sulfate, 7-Hydrate 0.2
Calcium Chloride Dihydrate 0.01
Iron(III) Chloride hexahydrate 0.001
Kanamycin sulfate from Streptomyces kanamyceticus 0.086
Tween 20 0.611
Methyl α-D-mannopyranoside 50

3.3.5 Live-cell imaging and data

Microfluidic devices were imaged using the Dynomics custom optical enclosure contin-

uously every ten minutes in both the transmitted light and GFP fluorescence channels with a 1

second and 60 second exposure respectively.

Images were synced from the enclosure to a server via WiFi for further data processing.

Custom software produced flat-field-corrected images in both channels in real-time to remove
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Table 3.4: Metal induction count by concentration for fold change analysis and machine learning
analysis

Metal EPA MCL
(ppb)

Concentration
Tested (ppb)

Fold Change
Induction Count

Machine Learning
Induction Count

Arsenic 10 30 7 7
Antimony 6 1000 7 7

Cadmium 5
4.50 12 12
8.99 0 1

Chromium 100 260 6 6
Copper 1300 127 8 8

Iron 300
279 6 6
558 0 1

5580 0 1

Lead 15
14.92 0 3
29.84 6 6
298.4 0 1

Mercury 2 2 6 6

Zinc 5000
50 5 5

500 0 3
1310 0 1

optical vignetting using the following equation:

C = m∗ R−D
F ′−D′

(3.1)

where R is the raw image to be flat-field corrected (Figure 3.15a), D is the dark-current image for

that device, taken at the same exposure settings as R, F ′ is a raw image taken by the camera with

no device present, D′ is the dark-current image taken at same exposure as F ′, m is the mean value

for all values in the array (F ′−D′), and C is the resulting corrected image (Figure 3.15b).

Flat-field corrected images were then registered to an extraction mask to account for

the device drifting from thermal expansion, with mean transmitted light and green fluorescence

channels from masked bulb and background regions extracted (Figure 3.16).
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Raw Image Flat-field Corrected ImageRaw Imagea b

Figure 3.15: A full Dynomics image taken on custom optics before (a) and after (b) flat-field
correction.

Raw data was initially processed as:

GFPRaw =
GFPBulb−GFPBackground

GFPBackground
(3.2)

For fold change analysis, fluorescence values were passed through a median filter

(scipy.signal.medfilt, kernel size=11) and normalized by promoterless strains (Figure 3.17).

Promoterless strains U139 and U66 from the GFP promoter library [25] were spotted at various

locations across each device, with 20 device positions of each, for 40 in total. Normalized

fluorescence for Figure 3.6 was thus determined as:

GFPnormalized =
scipy.signal.med f ilt(GFPRaw)−mean(scipy.signal.med f ilt(GFPPromoterless))

mean(scipy.signal.med f ilt(GFPPromoterless))

(3.3)

Fold change in Figure 3.6 was calculated as the quotient of the normalized fluorescence at the

first and last time point of each metal exposure. P-values were determined by a dependent
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Full Dynomics image Extraction regions
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10 μm 0.5 μm

Figure 3.16: Data extraction from a Dynomics image. 2,176 device positions are simultaneously
imaged in both transmitted light (gray) and green fluorescence (16 color) channels. At each time
point for each device position, the mean fluorescence of the boxed bulb and background (BG)
regions are extracted.

two-sided t-test on the the log2 fluorescent values at the start and end of each metal exposure

(scipy.stats.ttest rel).

3.3.6 Microfluidic device validation

In order to ensure that measured gene expression was independent of spatial position

and to ensure responses weren’t affected by previous inductions within a given experiment, a

Dynomics chip was spotted with 2,176 replicates of the zntA promoter strain from the E. coli

GFP-promoter library [25] and subjected to multiple replicate cadmium inductions. This strain is

a reporter for the zinc and cadmium-responsive gene zntA and was chosen for its relevance in E.

coli heavy metal metabolism and ability to be selectively activated via the heavy metal inducers

used in the context of this work. As seen in Figure 3.18, strains across the device maintained

statistically similar response parameters (amplitude of response and relaxation time) regardless of

day of induction or spatial positioning on the device.
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Figure 3.17: Normalization process for data presented in Figure 3.6. Raw data was median
filtered, then divided by the mean traces of promoterless strains U139 and U66. Dark lines show
the mean of all time series while shaded regions represent the standard deviation.

3.3.7 Gene ontology results for Figure 3.5

We performed enrichment analysis [84] on gene clusters obtained via agglomerative

clustering of promoter activity, normalized between 0 and 1, of 1,995 strains responding to a 50

ppb Zn induction (Figure 3.5). Table 3.1 lists the enriched GO terms obtained for each cluster

via http://pantherdb.org/. The statistical method used was Fisher’s exact test with no correction

for multiple testing. No correction was selected as we chose to minimize the number of false

negatives over the number of false positives. We note that this increases the likelihood of finding

enrichment terms by chance only. The reference list for the GO enrichment analysis was the

1,807 unique genes of the GFP-promoter library [25].

3.3.8 Machine learning

We transformed our eighteen standardized experiments’ time points into a first derivative-

based feature for the training and testing feature sets. All data used for machine learning results

were pre-processed into first derivative-based features. Intuitively, a first derivative-based feature
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a

b

Figure 3.18: Device validation with a Dynomics chip with 2,176 replicates of the zntA strain
from the E. coli GFP-promoter library [25]. a) Mean (dark blue) plus/minus one standard
deviation (light blue) for the 2,176 strain responding to three consecutive four-hour 0.04 µM
Cadmium inductions. b) Histograms of the decay half-life of post-induction response (i.e the
time taken for a strain’s fluorescence levels to decay back down to their half-peak value) are
overlaid for the three inductions plotted in a).

is an excellent candidate for any sort of machine learning model because it is what the human brain

instinctively monitors when looking for changes in strain-promoter behavior. Any significant

modification in the mean or variance of the first derivative of a given promoter while induced or

uninduced could signify that the promoter is sensitive to that particular environmental perturbation.

The engineering of a first derivative-approximation feature essentially amounts to distilling out

the pure changes in the original feature’s behavior, while effectively filtering out any changes that

could be due to extraneous local or global environmental influences. Figure 3.19 illustrates the

results of the feature engineering process.
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Figure 3.19: Raw and processed fluorescent signals: Our feature engineering eliminates a signif-
icant amount of intra-experiment variability by rendering the raw signal into a first derivative-like
feature. This variability is due to differing hardware between Dynomics devices, among other
sources.

In order to optimize the classifiers, extensive Bayesian Optimization searches were used

to find optimal hyperparameter combinations [85]. Throughout our hyperparameter searches,

we used leave-one-out cross-validation on a per-experiment basis and appropriate overfitting-

prevention strategies to ensure that any resultant classifier would generalize to future data sets.

All classifiers were evaluated using the F1-macro scoring metric. The F1-macro score, which is

the per-class average of the harmonic mean of precision and recall, was especially well-suited

because of our data set’s large multi-class imbalances, with water making up approximately 86%

of the final feature set [86]. Finally, all generalization evaluations were performed by recording

the results of using leave-one-out cross-validation with early stopping and then taking the mean

prediction across the cross-validation’s output.

Additional feature preprocessing

In addition to the data preprocessing and feature engineering that were explicitly enumer-

ate in the previous subsection, other steps were often taken when training and testing any machine

learning algorithms. These additional steps each dropped some portion of the final feature set, but
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only after the features had been calculated using the entire original experiments. Dropping these

time points before calculating the features would have introduced potential discontinuities to any

features approximating the first-derivative. All features were processed and cached in permanent

memory. Only the cached features were used for any further analysis.

All experiments included transient periods over the first several days of the experiment.

These transients were caused by the colonies’ recoveries post-spotting shock, their growth-to-

effluence within their individual traps, and their second recovering following the switch to minimal

HM9 growth media. In addition, since most experiments were run until the microfluidic chips

were deemed unusable due to clogging by biofilms, the final hours of most experiments did not

yield high-quality water data. Since the beginnings and the ends of the experiments represented

non-steady state local and global growth conditions, the features from these periods were dropped

prior to analysis and machine learning. This trimming was done by removing features more than

eighteen hours before the first induction and more than four hours after the final metal induction.

In addition, inductions using undetectable metals, such as arsenic, mercury, and antimony,

and special inductions that introduced any non-standard inducers were dropped from the feature

set post-processing.

Mercury, arsenic, and antimony exposures were also fed into the classifiers, but despite

extensive feature-engineering efforts, no classifier was able to successfully detect these metals.

This negative result was most likely a consequence of the absence of the E. coli ars and mer

operons from the Alon promoter library [87]. These operons are known to be highly efficient at

sensing and exporting arsenic and mercury, respectively, from their cells [88, 89]. In addition,

upon further review, we found that the tested concentrations of both metals were over an order of

magnitude lower than the known in-batch minimum inhibitory concentrations for E. coli [90]. To

focus classification on detectable metals, features during these metal inductions were relabeled as

No Toxin.
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3.3.9 Municipal water experimental set-up

Water samples were obtained from the Department of Water Management at the City of

Chicago, in Chicago, IL, the Alex Orr Water Treatment Plant in Miami, FL, the New York City

Department of Environmental Protection and Bureau of Water Supply in Corona, NY, the Seattle

Public Utilities Water Quality Lab in Seattle WA, and the Alvarado Water Treatment Plant in

San Diego, CA. HM9 media for each city water experiment was prepared by diluting 5x HM9

concentrate made from milliQ water with the water obtained from each city. The microfluidic

device was initially grown on LB media with Kanamycin, 0.075% Tween-20, and 50 mM Methyl

α-D-mannopyranoside until traps were filled to confluence and then switched to HM9 made with

city water for the remainder of the experiment. Cadmium diluted in the HM9 city water media

was used to perform inductions as described in Section 3.3.4.

3.3.10 Gold King Mine spill experimental set-up

Water was collected from Mexican Hat, Utah in August, 2015 when the Gold King

Mine Spill plume reached the collection point in the San Animas River. Samples were stored in

0.5% HCl Acid until tested. HM9 media was prepared by diluting 5x HM9 concentrate made

from milliQ water with filtered San Animas samples. The pH was adjusted to 7.05. The metal

concentrations of the HM9 San Animas samples were tested by ICP-MS at the Environmental and

Complex Analysis Laboratory (ECAL) at UC San Diego. Four hour inductions were performed

as described in Section 3.3.4.
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Chapter 4

Real-time monitoring of fermentation

processes through genome-scale

microfluidics

4.1 Introduction

Synthetic and systems biology have been improving the global fermentation market for

decades by engineering microbes to produce compounds in energy, plastics, pharmaceuticals, and

food and beverage. The global fermentation chemicals market was valued at $58.68 billion in

2018 and is expected to grow to $85.77 billion by 2025 [91]. The ability to engineer organisms

has led to unique products not natively produced in fermentation such as the antimalarial drug

artemisinin [13]. One organism, S. cerevisiae, has been prominent in the industry due to it’s

ability to rapidly convert sugars into ethanol.
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4.1.1 Process monitoring in the fermentation industry

Although fermentation has been utilized by humans for centuries, and even with the

industry growing rapidly with the emergence of synthetic and systems biology, there still remains

a lack of continuous process monitoring for many substrates. Although reactors can measure

oxygen levels, carbon dioxide levels, overall sugar content, and many other parameters, there

is limited technology that can determine the concentration and rate of consumption of different

metabolites such as glucose, sucrose, diacetyl, and acetalaldehyde in real time. The gold standard

of the industry is to use highly-specialized and expensive pieces of equipment such as a YSI

Biochemistry Analyzer. While this equipment is accurate, it requires an operator to sample the

batch culture and manually insert the sample into the equipment. Because of this grab-sample

stationary measurement, parameters such as the rate of feed can only be adjusted as often as

metabolite concentrations are measured. Additionally, many smaller facilities do not have the

funds to purchase this equipment. The industry would greatly benefit from a technology that

allows for continuous measurement of a variety of metabolites in order to more accurately adjust

input parameters for the fermentation process, to understand why a fermentation fails, and to be

able to react to unpredicted changes in fermentation to save time, money, and product.

4.1.2 Fermentation in S. cerevisiae

In S. cervisiae, glucose is the preferred carbon source and the metabolism of other sugars

is suppressed until glucose is depleted, at which point other carbon sources are metabolized in a

sequential fashion. Typically, under aerboic conditions organisms metabolize glucose through

respiration as this pathway results in a higher energy output. In S. cerevisiae, however, this

is only true in the presence of oxygen under glucose-limited conditions. When glucose levels

are normal or rich, S. cerevisiae undergo the Crabtree effect. In this phenomenon, regardless

of oxygen content, glucose goes through glycolysis and is converted into pyruvate. However
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instead of continuing to the tricarboxylic acid (TCA) cycle, the pyruvate is converted into ethanol.

This continues until all of the glucose has been depleted. At this point, the cells undergo a

diauxic shift, adjusting their metabolism to be able to metabolize the ethanol back into pyruvate

and then through the TCA cycle and oxidative phosphorylation. While S. cerevisiae has been

widely studied to understand the pathways involved in glucose repression and the Crabtree effect,

other yeast strains are much less understood, though still used in the fermentation industry [92].

Because of this, it is ideal to measure the glucose and ethanol production and consumption rates

in real time during a fermentation process.

To this end, we have developed a high-throughput 2,176-strain microfluidic device spotted

with a 4,156-strain GFP-fusion library of S. cerevisiae [24], that coupled with fluorescence

imaging can monitor the metabolism of a batch culture in real time. By growing the library strains

on the microfluidic device on the same supernatant from the batch culture in real-time we are

able to observe the dynamic changes in gene expression from the exponential growth, through the

diauxic shift, and all the way into stationary phase. Not only can this device be used to monitor

fermentation processes, but it simultaneously provides a deeper insight into the genetic pathways

involved.

4.2 Experimental results

4.2.1 Microfluidic device cell trap optimization

Based on the microfluidic design described in section 2.2.2, a 2,176-strain microfluidic

device was optimized for healthy growth, retention, and fluorescence signal from each spotted

microcolony of S. cerevisiae (Figure 4.1). The device has the same cell trap spotting region and

manifold channel layout as the device designed for E. coli in section 3.1.4; however, fluorescence

is measured in downstream traps instead of at the mouth of the spotting region. These downstream

traps, known as hydrodynamic biopixels (HD biopixels) consist of four 70 µm by 70 µm biopixels
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that are 13 µms tall. A 2 µm tall conduit region at the back of the trap fluidically connects the

biopixels with the minor media channel, resulting in convective flow through empty biopixels.

The convective flow of media also pushes S. cerevisiae cells into the trap. Because of the 2 µm

tall conduits, the 4 µm tall cells get trapped against the back wall and are able to divide and fill

the traps to confluence (Figure 4.2). This concept is known as hydrodynamic trapping [93]. The

HD biopixels are angled to increase cell retention in the traps.

0.5 mm

Conduits (2 µm)
Spotting regions (5 µm)
HD biopixels (13 µm)
Minor channels (50 µm)
Major channels (160 µm)

10 mmMedia inlet Waste

a b

Figure 4.1: Overview of the 2,176-strain microfluidic device for S. cerevisiae a) Design of the
device with spotting regions in red, conduits in green, HD biopixels for trapping cells in purple,
and media channels in blue and yellow. b) Detailed schematic of four strain banks with arrows
showing direction of media flow.

The biopixels foster healthier cells than those in the mouth of the spotting region, which

are affected by nutrient-limited cells in the back of the spotting region pushing the healthy cells

out of the mouth of the trap. The height of the biopixels also results in a larger fluorescence

signal, imaged by the Dynomics optical enclosure described in section 3.1.5.
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a b

Figure 4.2: Hydrodynamic trapping in HD biopixels. a) A strain bank immediately after media
is introduced onto the chip before the initial spotted cells revive. b) A strain bank with cells
growing out of the cell spotting region and filling the downstream HD biopixels. Red arrows
denote direction of media flow. HD biopixels filled with more cells have an increased resistance
and therefore less media flow through them, causing subsequent traps to fill.

4.2.2 Microfluidic device validation

In order to ensure that the measured gene expression is independent of each device

position, a single strain, a high-affinity glucose transporter, HXT2, was spotted in every position.

Once traps filled to confluence on CSM-His+2% glucose+ 0.04% tween media, the cells were

switched to CSM-His + 2% glucose + 2% galactose + 0.04% tween. After 12 hours, the glucose

level was dropped serially every two hours. Once steady state was reached on 2% galactose,

the media was switched back to 2% glucose. Gene expression levels were extracted for each

biopixel, background normalized, and averaged across all 8,704 HD biopixels on the device. As

seen in Figure 4.3, replicates across the device maintained statistically similar response patterns

through the duration of the experiment. HXT2 expression increased between 0.2-0.02% glucose,

but decreased when glucose levels dropped below 0.02%, consistent with the literature [94].
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Different baselines of expression are also apparent when cells were grown on 2% glucose versus

2% galactose.
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Figure 4.3: HXT2 expression in response to glucose depletion in the presence of galactose.
2,176 strain banks were spotted with HXT2 for a total of 8,704 replicate biopixels across one
microfluidic device. The concentrations of glucose (blue shading) and galactose (gray shading)
varied throughout the experiment. The green line denotes the average expression of all replicates
while the shaded region denotes the standard deviation.

4.2.3 Fermentation monitoring of a diauxic shift

The diauxic shift is one of the most well studied pathways in S. cerevisiae and encompasses

glucose metabolism, ethanol production, and a shift in machinery and metabolism for ethanol

consumption. As a proof-of-concept, two 2,176-strain HD biopixel devices loaded with a 4,156-

strain GFP-fusion library [24] were used to monitor the diauxic shift of a batch culture in real

time.

Briefly, the two devices with 4,156 strains were grown to confluence on YPD media and

imaged on the Dynomics optical enclosure described in Section 3.1.5. Separately, a batch culture

of an S288C derived strain, DBY12020, was grown on YPD media. Every hour, supernatant from

the batch culture was pipetted onto the microfluidic devices, and the gene expression of the GFP-

fusion library was measured. As the supernatant composition changed due to the metabolism of
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the batch culture, the library gene expression also changed and reflected that media composition.

The OD of the batch culture and measured ethanol and glucose concentrations are shown

in Figure 4.4. As expected, the glucose concentration remains around 2% while cells are in lag

before exponential growth. As exponential growth begins, the Crabtree effect is observed as the

glucose concentration drops to 0% while the ethanol concentration rises to about 1.5%. Cells

enter lag phase while adjusting machinery and metabolism for ethanol consumption in the diauxic

shift phase. Post diauxic growth is then observed with cells using ethanol as their carbon source

until the ethanol is consumed and cells enter stationary phase.
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Figure 4.4: Batch culture OD (blue line) and measured glucose (blue shading) and ethanol (gray
shading) concentrations over time.

The supernatant from the batch culture with the glucose and ethanol concentrations shown

in Figure 4.4 was pipetted hourly onto the two microfluidic devices with 4,156 GFP-fusion strains.

After excluding clogged strains and strains with gene expression below the detection limit, 3,761

strains were analyzed. Measured gene expression is reported as relative intensity, where the value

at each time point is calculated as the percentage of total expression for each strain.

The relative intensity profile of the 3,761 strains grown on the supernatant of the batch

culture in real-time is seen in Figure 4.5. While some strains have drastic changes in relative
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intensity, a large bulk of the strains have much more subtle changes. To further characterize these

changes, agglomerative clustering with Gene Ontology (GO) enrichment was performed on this

dataset and can be seen in Figure 4.6.

0 20 40
Time (hours)

YPD Diauxic Shift

1.5 3.0 4.5 6.0 7.5
Relative Intensity (x10− 3)

Figure 4.5: Relative intensity of 3,761 strains grown on the supernatant from a batch culture
undergoing a diauxic shift. The microfluidic device was induced with the first batch culture
sample at time = 0 hours. The dotted black line shows where the glucose concentration drops to
0%.

Six unique clusters of gene expression dynamics were observed in this dataset. Clusters

1 and 2 both include up-regulated genes with similar GO terms that are significant. Though

the dynamics are similar in the two clusters, the fold change is higher in cluster 1 and cluster

two has quicker response time upon the depletion of glucose. Both clusters include genes that
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have been previously reported [95, 96] as genes that are upregulated during a diauxic shift such

as ACS1, an acetyl-coA synthetase, ALD4, an aldehyde dehydrogenase required for growth

on ethanol, and ADH2, a glucose repressible alcohol dehydrogenase that converts ethanol into

acetylaldehyde. Similar GO terms were enriched between clusters 1 and 2, including the TCA

cycle, the oxidation-reduction process, oxidative phosphorylation, cellular response to oxidative

stress, and negative regulation of ATPase activity. These results are not surprising because

glucose is converted to ethanol during glucose metabolism and the TCA cycle and oxidative

phosphorylation does not occur until ethanol is metabolized and converted into acetyl-coA. A

full list of significantly enriched GO terms for each cluster can be found in Tables 4.1-4.3. These

clusters alone depict that the cells indeed convert glucose to ethanol and then metabolize the

ethanol.

Clusters 3 and 4 both include down-regulated strains, but with different dynamics. Cluster

3 only includes 36 strains. Expression is relatively stable during growth on glucose and growth

on ethanol, but has a very sharp decrease when glucose is depleted. Genes in this cluster include

HXT2, HXT3, and HXT6, all of which are high-affinity glucose transporters that are not needed

by the cell when glucose is depleted. Ribsomal proteins are also in this category, which too have

been reported as down-regulated during a diauxic shift [95, 96]. Cluster 4 also includes several

ribosomal proteins, with translation and ribosome being two of the significantly enriched GO

terms. This cluster has a more subtle fold change and has decreasing expression during growth

on glucose and growth on ethanol, but stable expression during the diauxic lag. Other genes

in this cluster include TAT1, an amino acid transporter, NOG1, a GTPase that associates with

ribosomes, and LYP1, a lysine permease that uptakes amino acids. As nutrients are depleted and

cells enter stationary phase, it is expected that translation and ribsomal proteins would decrease

in expression.

Clusters 5 and 6 include the bulk of the strains with 2,140 strains and 838 strains, respec-

tively. The dynamics for both clusters are similar, with a decrease in expression during growth on

67



0 20 40
Time (hours)

Cluster 2: 162 strains

1.5 3.0 4.5 6.0 7.5
Relative Intensity (x10− 3)

0 20 40
Time (hours)

Cluster 4: 521 strains

1.5 3.0 4.5 6.0 7.5
Relative Intensity (x10− 3)

0 20 40
Time (hours)

Cluster 6: 838 strains

1.5 3.0 4.5 6.0 7.5
Relative Intensity (x10− 3)

0 20 40
Time (hours)

Cluster 1: 64 strains

1.5 3.0 4.5 6.0 7.5
Relative Intensity (x10− 3)

0 20 40
Time (hr)

3

4

R
el

at
iv

e 
in

te
ns

ity
 (x

10
−

3 )

0

1

2

C
on

ce
nt

ra
tio

n 
(%

)

0 20 40
Time (hours)

Cluster 3: 36 strains

1.5 3.0 4.5 6.0 7.5
Relative Intensity (x10− 3)

0 20 40
Time (hours)

Cluster 5: 2140 strains

1.5 3.0 4.5 6.0 7.5
Relative Intensity (x10− 3)

0 20 40
Time (hr)

2.75

3.00

3.25

R
el

at
iv

e 
in

te
ns

ity
 (x

10
−

3 )

0

1

2

C
on

ce
nt

ra
tio

n 
(%

)

0 20 40
Time (hr)

2.75

3.00

3.25

R
el

at
iv

e 
in

te
ns

ity
 (x

10
−

3 )

0

1

2

C
on

ce
nt

ra
tio

n 
(%

)

0 20 40
Time (hr)

2

4

6

R
el

at
iv

e 
in

te
ns

ity
 (x

10
−

3 )

0

1

2

C
on

ce
nt

ra
tio

n 
(%

)

0 20 40
Time (hr)

2.8

3.0

3.2

R
el

at
iv

e 
in

te
ns

ity
 (x

10
−

3 )

0

1

2

C
on

ce
nt

ra
tio

n 
(%

)

GO TermsGenes

Ox-Red process
Negative reg.

of ATPase

TCA cycle
GO Terms

Ox-Red process
Cellular 

response to 
oxidative stress

Mitochondrion

GO Terms

DNA repair
Mitochondrion

Ox-Red process
GO Terms

Ribosome
Membrane

Translation

No significant 
GO terms

ACH1
ENO1

MDH1
ALD4 SDH2

ATP4
COX6
MDH2
LSC1

Genes
HXK1
COX15
HSP42
PGK1
QCR10

ATP7
SOL4
QCR2
ADH2
WHI2

HXT2
HXT3
HXT6

RPL4A
RPL8B
ADL6

Genes
RPA12
TAT1
LYP1

GDA1

ERG1
SNQ2

NOG1

Genes
ALD5
ADH5

PDC6
PFK2

GPM2
ENO2

Genes
GAL3
CUP5

ALD2

BUD16
CIT2
SNO1

0 20 40
Time (hr)

2

3

4

R
el

at
iv

e 
in

te
ns

ity
 (x

10
−

3 )

0

1

2

C
on

ce
nt

ra
tio

n 
(%

)

ACS1 COX4

CIT1

GO Terms

Ribosome
Hexose

transmembrane
transport

Translation
Genes

ADH3

Glucose
Ethanol

Figure 4.6: Agglomerative clustering and GO enrichment of the relative intensity of 3,761
strains grown on the supernatant from a batch culture undergoing a diauxic shift. The relative
intensity of each gene in a cluster is plotted as a row on the heatmaps. The microfluidic device
was induced with the first batch culture sample at time = 0 hours. The dotted black line shows
where the glucose concentration drops to 0%. The average relative intensity (solid line) and
standard deviation (shaded region) for all strains in a cluster is plotted on the line graph. Glucose
(blue shading) and ethanol (gray shading) concentrations are also plotted. Representative genes
and three significant GO terms from each cluster are listed. The heat map color bar and legend
for all plots is shown.
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glucose, an increase in expression during the diauxic shift and post-diauxic growth, and stabilized

or decreasing expression when entering stationary phase. Overall the fold change is much smaller

than the other clusters and there is little change in expression. While cluster 5 has significant GO

terms, it encompasses 2,140 strains, so many of these GO terms are likely significant because of

the large amount of strains in the cluster. Cluster 6 does not have any significant GO terms. Both

clusters 5 and 6 include genes that should have little to no change in expression such as ALD5,

an aldehyde dehydrogenase that is constitutive, CUP5, a proteolipid subunit important for copper

binding, and GAL3, a galactose transcriptional regulator. However, both clusters also include

strains that are expected to be up or down regulated such as ADH3, an aldeyhyde dehydrogenase

that should be up-regulated, and CIT2, a citrate synthase that should be up-regulated. It is possible

that the expression of these genes was too low to be detected by the fluorescence optics or that

the fluorescence was lower than that of the YPD media or auto-fluorescence of the cells. To more

accurately determine which of these 3,000 strains do not respond to the shift or are below the

detection limit, further testing would need to be done such as determining the linear range of the

optics and testing expression of these strains on lower fluorescent media.

By observing all six clusters together, one can determine not only that the batch culture

underwent a diauxic shift, but also when the shift occurred based on the change in slope of

expression. Several of the clusters depict exactly when glucose was depleted. Cluster 4 shows

when growth resumes on ethanol, and clusters 5 and 6 show when cells enter stationary phase.

While the diauxic shift is relatively simple and the phases of the shift can be determined simply

by measuring the OD of the batch culture, this device could likely monitor more complex

fermentation processes with multiple sugars, showing the time and rate of consumption of each

sugar in real-time.

In addition to looking at global response dynamics and characteristics, individual traces

can also inform about the fermentation process. Figure 4.7 shows several individual traces from

the diauxic shift. The high-affinity glucose transporters (Figure 4.7a) have similar dynamics to one
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another, but a decrease in gene expression starts at different glucose concentrations. With further

characterization, the gene expression of these strains could be used to determine the concentration

of glucose during fermentation processes. These proteins are also expressed higher at low levels

of glucose and the rate of glucose depletion affects the slope of that increase in gene expression.

At the rate of depletion in this batch culture experiment, HXT3 expression increases slightly when

glucose is low, however HXT2 does not. At slower rates of depletion such as the experiment

in Figure 4.3, HXT2 has a much greater increase in expression. This information could lead

to the calculation of teh rate of glucose depletion. The aldehyde dehydrogenases (Figure 4.7b)

also offer additional information and can better pinpoint the start of ethanol metabolism after

the diauxic shift lag. Understanding when cells halt metabolism or start growth again is key to

troubleshooting fermentation batches, especially when testing new strains with unpredicted shifts

in growth.
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Figure 4.7: Relative intensity of high-affinity glucose transporters (a) and aldehyde dehydroge-
nases (b) grown on supernatant from a batch culture undergoing a diauxic shift. The microfluidic
device was induced with the first batch culture sample at time = 0 hours.
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4.3 Conclusion

The fermentation industry lacks real-time monitoring that would greatly decrease cost and

tedious sampling, and increase understanding of real-time metabolism to improve the product,

yield, and overall performance of the process. Here we have developed a 2,176-strain microfluidic

device spotted with a GFP-fusion library of S. cerevisiae, that coupled with fluorescence imaging

can monitor the metabolism of a batch culture. In this work we performed a proof-of-concept

experiment where we manually took supernatant off of a batch culture of S. cerevisiae, and

pipetted the supernatant onto two microfluidic devices with a 4,156-strain GFP-fusion library. We

measured gene expression across all strains and used agglomerative clustering and gene ontology

enrichment to accurately depict what carbon source the batch culture was utilizing and when the

batch culture went through the different phases of a diauxic shift.

Although a diauxic shift is a simple fermentation process, many fermentation processes

involve multiple carbon sources with sequential metabolism. This genome-scale device could be

characterized to inform what carbon sources are being metabolized, in what order, and at what

rate. The immense amount of information in over 4,000 dynamic S. cerevisiae responses also

likely means that the concentration of different metabolites could be determined at different time

points. For simpler fermentation processes, this device could be decreased in size to have on the

order of tens of strains, greatly decreasing the flow rate and amount of supernatant consumed off

of a batch culture, ultimately increasing yield of the product.

While this device provides far more information for understanding a fermentation process

than existing technologies, the device would benefit from being continuous. This version of the

device requires an operator to sample the batch culture and add it to the device, however, a simple

peristaltic pump could be included with a microfluidic cell filter [97] in order to continuously

sample from a batch culture without operator input. Another limitation of the device is that the

fluorescence of the sample can mask the fluorescence of the proteins produced by the cells. There
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Table 4.1: Significant GO terms from up-regulated genes in Clusters 1 and 2 from Figure 4.5
with a p-value less than 0.05.

Cluster Term Term Name P-Value

1 GO:0006099 tricarboxylic acid cycle 7.681185e-11
1 GO:0005739 mitochondrion 7.681185e-11
1 GO:0055114 oxidation-reduction process 1.042798e-09
1 GO:0016491 oxidoreductase activity 8.751906e-07
1 GO:0006103 2-oxoglutarate metabolic process 3.135549e-03
1 GO:0032780 negative regulation of ATPase activity 3.135549e-03
1 GO:0009353 mitochondrial oxoglutarate dehydrogenase complex 3.135549e-03
1 GO:0004591 oxoglutarate dehydrogenase (succinyl-transferr... 3.135549e-03
1 GO:0042645 mitochondrial nucleoid 3.849536e-03
1 GO:0005759 mitochondrial matrix 5.223755e-03
1 GO:0046872 metal ion binding 6.496136e-03
1 GO:0006119 oxidative phosphorylation 6.607367e-03
1 GO:0006546 glycine catabolic process 6.607367e-03
1 GO:0005960 glycine cleavage complex 6.607367e-03
1 GO:0004375 glycine dehydrogenase (decarboxylating) activity 6.607367e-03
1 GO:0006090 pyruvate metabolic process 1.074172e-02
1 GO:0003824 catalytic activity 1.074172e-02
1 GO:0015986 ATP synthesis coupled proton transport 1.370487e-02
1 GO:0046933 proton-transporting ATP synthase activity, rot... 1.370487e-02
1 GO:0005743 mitochondrial inner membrane 1.686306e-02
1 GO:0006094 gluconeogenesis 1.713736e-02

2 GO:0005739 mitochondrion 1.726741e-08
2 GO:0055114 oxidation-reduction process 2.804730e-08
2 GO:0016491 oxidoreductase activity 1.939967e-05
2 GO:0006096 glycolytic process 1.719811e-04
2 GO:0005758 mitochondrial intermembrane space 1.911379e-04
2 GO:0005737 cytoplasm 4.148816e-04
2 GO:0003779 actin binding 1.148191e-03
2 GO:0003824 catalytic activity 1.148191e-03
2 GO:0051015 actin filament binding 4.852143e-03
2 GO:0006094 gluconeogenesis 7.088189e-03
2 GO:0034599 cellular response to oxidative stress 1.901500e-02
2 GO:0046323 glucose import 3.221135e-02
2 GO:0000340 RNA 7-methylguanosine cap binding 3.221135e-02
2 GO:0051016 barbed-end actin filament capping 4.013873e-02
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Table 4.2: Significant GO terms from down-regulated genes in Clusters 3 and 4 from Figure 4.5
with a p-value less than 0.05.

Cluster Term Term Name P-Value

3 GO:0002181 cytoplasmic translation 2.328590e-06
3 GO:0005840 ribosome 1.649079e-05
3 GO:0003735 structural constituent of ribosome 4.736327e-05
3 GO:0022625 cytosolic large ribosomal subunit 1.838265e-04
3 GO:0006412 translation 2.055458e-04
3 GO:1904659 glucose transmembrane transport 3.070526e-04
3 GO:0015761 mannose transmembrane transport 3.070526e-04
3 GO:0015755 fructose transmembrane transport 3.070526e-04
3 GO:0098704 carbohydrate import across plasma membrane 3.070526e-04
3 GO:0005351 carbohydrate:proton symporter activity 3.070526e-04
3 GO:0005353 fructose transmembrane transporter activity 3.070526e-04
3 GO:0015149 hexose transmembrane transporter activity 3.070526e-04
3 GO:0015578 mannose transmembrane transporter activity 3.070526e-04
3 GO:0005355 glucose transmembrane transporter activity 3.070526e-04
3 GO:0055085 transmembrane transport 5.564942e-04
3 GO:0005886 plasma membrane 8.872409e-04
3 GO:0008643 carbohydrate transport 2.495324e-03
3 GO:0022857 transmembrane transporter activity 3.810879e-03
3 GO:0071944 cell periphery 4.946921e-03
3 GO:0005215 transporter activity 5.270063e-03
3 GO:0005634 nucleus 1.365578e-02
3 GO:0008645 hexose transmembrane transport 2.150518e-02
3 GO:0003746 translation elongation factor activity 2.924513e-02
3 GO:1902600 proton transmembrane transport 3.622409e-02

4 GO:0016021 integral component of membrane 5.195558e-10
4 GO:0016020 membrane 7.699885e-07
4 GO:0002181 cytoplasmic translation 3.090864e-06
4 GO:0022625 cytosolic large ribosomal subunit 1.547123e-05
4 GO:0003735 structural constituent of ribosome 1.683960e-04
4 GO:0005840 ribosome 9.070519e-04
4 GO:0005737 cytoplasm 9.185954e-04
4 GO:0000139 Golgi membrane 1.646644e-03
4 GO:0005783 endoplasmic reticulum 2.175216e-03
4 GO:0005524 ATP binding 3.952228e-03
4 GO:0055085 transmembrane transport 7.190739e-03
4 GO:0006412 translation 4.189781e-02
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Table 4.3: Significant GO terms from genes in Cluster 5 from Figure 4.5 with a p-value less
than 0.05.

Cluster Term Term Name P-Value

5 GO:0005739 mitochondrion 1.784191e-07
5 GO:0055114 oxidation-reduction process 2.820886e-05
5 GO:0003735 structural constituent of ribosome 3.471530e-04
5 GO:0005840 ribosome 3.807108e-04
5 GO:0005634 nucleus 1.005850e-03
5 GO:0016491 oxidoreductase activity 1.760415e-03
5 GO:0006281 DNA repair 4.826727e-03
5 GO:0006412 translation 5.203735e-03
5 GO:0006974 cellular response to DNA damage stimulus 7.110102e-03
5 GO:0002181 cytoplasmic translation 7.110102e-03
5 GO:0003677 DNA binding 7.110102e-03
5 GO:0007049 cell cycle 1.354622e-02
5 GO:0003824 catalytic activity 1.423408e-02
5 GO:0051301 cell division 4.409527e-02

is likely an upper limit to a sample’s fluorescence for proper monitoring, though strains of S.

cerevisiae could be engineering to have a greater fluorescence.

Finally, not only does this device serve as a tool for fermentation monitoring, this device

can also be used to monitor gene expression of S. cerevisiae in response to any environmental

perturbations. This high-throughput device can house twice as many strains as the other high-

throughput S. cerevisiae device and is simpler to operate. This device can be used to better

understand genetic pathways in yeast and advance research in aging, cancer, drug discovery and

other related fields.

4.4 Materials and methods

4.4.1 Wafer Fabrication

The silicon wafer was fabricated using standard photolithography techniques previously

described by our group [15]. The conduit layer was fabricated using 2002 SU-8 photoresist with
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a spin speed of 1000 rpm and had a resulting height of 2.3 µms, the spotting region layer was

fabricated using 2005 SU-8 photoresist with a spin speed of 2600 rpm and had a resulting height

of 5.3 µms, the HD biopixel layer was fabricated using 2007 SU-8 photoresist with a spin speed

of 1000 rpm and had a resulting height of 13.1 µms, the minor channel layer was fabricated using

2075 SU-8 photoresist with a spin speed of 4000 rpm and had a resulting height of 55-65 µms,

and the major channel layer was fabricated using 2075 SU-8 photoresist with a spin speed of

2400 on top of an undeveloped major channel layer, resulting in a final height of 145-170 µms.

4.4.2 Microfluidic device fabrication

The microfluidic devices were fabricated, loaded, and bonded using the protocol in section

2.5.

4.4.3 Batch culture diauxic shift experimental methods

The Yeast GFP Clone Collection [24] library was spotted across two microfluidic devices

per the protocol in section 2.5. Cells were grown on YPD + 0.04% tween media with a flow rate

of 5 mL/hr for about 24 hours until traps were filled to confluence.

Simultaneously, 4 x 400 mL of YPD + 0.04% tween in 2L flasks were inoculated with

DBY12020 at an OD of 0.02. The flasks were shaken at 270 RPM at 30◦C.

Each hour, 5 mL from each of the four 2L flasks was pipetted off and mixed. The OD

was measured, cells were filtered out, and the supernatant was introduced on each microfluidic

device. 2 mL of each supernatant sample was frozen for glucose and ethanol concentration

measurements. The microfluidic devices were imaged using the Dynomics optical enclosure

described in Section 3.1.5 with a temporal resolution of ten minutes at a 1 second and 60 second

exposure for transmitted light and fluorescence channels, respectively. Glucose concentrations

were measured using a YSI 2950 metabolite analyzer at the Cancer Metabolism group at the
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Sanford Burnham Prebys Medical Discovery Institute. Ethanol concentrations were measured

using an Ethanol Assay Kit (Millipore Sigma MAK076-1KT).

4.4.4 Data processing

Images were flat-field corrected and registered to an extraction mask to account for drifting

and thermal expansion as described in section 3.3.5.

The mean pixel value for each biopixel was extracted and normalized by the local back-

ground as seen in Figure 4.8 using the following equation:

GFPRawn =
GFPHDBPn−GFPBackground

GFPBackground
(4.1)

Figure 4.8: In the strain bank shown, data is extracted from each of the colored regions for
both transmitted light and fluorescence images. The data for each biopixel is normalized by the
background as in equation 4.1 and then the four biopixels are averaged together. 2,176 sets of
this data are extracted from every image.

To account for change in cellular autofluorescence and media fluorescence over the
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duration of an experiment, several copies of a BY4741 control strain were spotted onto the

device with the GFP-Fusion library [24]. For the construction of the control strain, SpHIS5 from

Addgene plasmid 44836 was inserted into the his3 region of the BY4741 parent strain, BY4741

his3::SpHIS5. The mean fluorescence of control strain biopixel replicates was subtracted from

each strain on the device. Replicate biopixels were then averaged for each strain and the average

trace was smoothed.

Due to imperfections in local background correction, some traces resulted in negative

values post-control-strain correction. To eliminate negative values and values close to zero, the

minimum value across all strains plus 0.1 was added to each strain. Relative intensity at each

time point was calculated as the percentage of total expression for each strain.

Excluded Data

All experiments included transient periods over the first several days of the experiment.

These transients were caused by the colonies’ recoveries post-spotting shock and their growth-to-

effluence within their individual traps. Therefore, time traces more than eight hours before the

first induction were excluded from analysis. Clogged or empty biopixels were also excluded from

analysis.

Strains below the detection limit of the device were also excluded. The detection limit

was calculated using raw fluorescence traces that were extracted from flat-field corrected images.

The total area under the curve was calculated for each strain. Strains with areas below that of the

lowest control strain were deemed not detectable and excluded from analysis.

4.4.5 Data analysis

Data was clustered using agglomerative clustering in the scikit-learn python clustering

package. Gene ontology enrichment was done using GOATOOLS in Python [98]. The p-value

used for significance was 0.05 and the False Discovery Rate test used was the Benjamini/Hochberg
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test.

4.5 Acknowledgements

This chapter contains material being prepared for submission with the following individu-

als: Stasiowski, Elizabeth*, O’Laughlin, Richard*, and Hasty, Jeff. (*equal contribution) The

dissertation author was one of the primary authors and researchers of this material.

78



Chapter 5

Summary

Systems and synthetic biology have evolved over the past several decades and have led

to a deeper understanding of biological networks, an emergence of multiplexed genome-scale

technology, and an application of this information and technology in various industries. While

microfluidic technology offers many advantages to studying networks in systems and synthetic

biology, current technologies are either low-throughput or multi-layered complex devices that

limit them to lab-based applications. In this work, we engineered a simpler, one-layer, microfluidic

device that can continuously monitor 2,176 strains of E. coli or S. cerevisiae for up to 14 days at

a time.

We have provided a detailed protocol in Chapter 2 for the manufacturing of these devices

so that they can be replicated and used in other laboratories. In Chapter 3 we optimize this device

for measuring E. coli gene expression and coupled with XAI and LSTM-RNN algorithms, are

able to detect copper, lead, chromium, cadmium, iron, and zinc in a laboratory setting, as well as

in municipal water from around the United States and in the Gold King Mine Spill that occurred

in August 2015. The ability to detect multiple heavy metals in real-time fills a need in an industry

where metal presence is discontinuously tested in laboratory settings on specialized equipment.

In Chapter 4 we optimize this device for measuring gene expression in S. cerevisiae and use a
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GFP-fusion library to monitor the gene expression and metabolic profile of a diauxic shift in

batch in real-time through agglomerative clustering and GO enrichment. Current fermentation

technology is limited in what analytes can be measured such as overall sugar content but not the

specific carbohydrate profile, and requires specialized equipment that many smaller companies

cannot afford. This technology would not only increase information gathered such as specifically

which carbohydrates are being metabolized and at what rate, but would also be more accessible

to smaller companies. In both of these applications, the large number of strains allows for the

device to be versatile and likely able to detect much more than the analytes tested in this work.

These devices can be used for a variety of applications, including but not limited to, studying

libraries of strains to understand dynamic gene expression in response to external perturbations,

multiplexed drug screens, monitoring the fermentation process of a batch culture, screening

preliminary strains to understand their metabolic profile through a fermentation process before

production, and sensing of various analytes.

Microfluidics is a powerful technology that currently has little application in the biotech-

nology industry due to its complicated protocols and non-robust nature. The work in this disserta-

tion reduces these complications and will benefit both the industrial and academic communities,

making multiplexed microfluidics more accessible.
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