
UC Irvine
ICS Technical Reports

Title
Supporting separations of concerns and concurrency in the Chiron-1 user interface
system

Permalink
https://escholarship.org/uc/item/4n27w62x

Authors
Taylor, Richard N.
Nies, Kari A.
Bolcer, Gregory Alan
et al.

Publication Date
1994-03-11

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4n27w62x
https://escholarship.org/uc/item/4n27w62x#author
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.G.)

Supporting Separations of Concerns and
Concurrency in the Chiron-1

User Interface System*

Richard N. Taylor
Karl A. Nies

Gregory Alan Bolcer
Craig A. MacFarlane

Gregory F. Johnson**
Kenneth M. Anderson

UCI Technical Report 94-12

Department of Information and Computer Science
University of California

Irvine, California 92717-3425^

**Northrop Corporation
Pico Rivera, California

{taylor, kari, gbolcer, craigm, greg, kanderso}®ics.uci.edu

March 11, 1994

This paper is a major revision and expansion of "Separations of Concerns in the Chiron-1 User Interface
Development and Management System" which appeared in the Proceedings of InterCHI'93 [TJ93].

^This material is based upon work sponsored by the Advanced Research Projects Agency under Grant
Number MDA972-91-J-1010. The content of the information does not necessarily reflect the position or the
policy of the Government and no official endorsement should be inferred.

DSJOjt'/iD 00 Vo'O
^vfij jilpnygoO .g
(.O.c U Yj" uifjT]

Abstract

The Chiron-1 user interface system demonstrates key techniques which enable a
strict separation of an application from its user interface. These techniques include
separating the control flow aspects of the application and user interface: they are con
current and may contain many threads. Chiron also separates windowing and look-and-
feel issues from dialog and abstract presentation decisions via mechanisms employing a
client-server architecture.

To separate application code from user interface code, user interface agents called
artists are attached to instances of application abstract data types (ADTs). Operations
on ADTs within the application implicitly trigger user interface activities within the
artists. Multiple artists can be attached ADTs. providing multiple viewsand alternative
forms of access and manipulation by either a single user or by multiple users. Each
artist and the application run in separate threads of control.

Artists maintain the user interface by making remote calls to an abstract depiction
hierarchy in the Chiron server, insulating the UI code from the specifics of particular
windowing systems and toolkits. The Chiron server and clients execute in separate pro
cesses. The client-server architecture also supports multi-lingual systems: mechanisms
are demonstrated which support clients written in languages other than that of the
server, while nevertheless supporting object-oriented server concepts. The system has
been used in several universities and research and development projects. It is available
by anonymous ftp.

Keywords: User interface systems, concurrency, separations of concerns, software ar
chitectures, GUI development, multi-lingual systems.

Contents

1 Overview 4

1.1 Architecture overview 4

1.2 Goals 5

1.3 Specific objectives 6
1.4 Example client 6
1.5 Organization of the paper 8

2 Chiron architecture 9

2.1 Client architecture 10

2.2 Server architecture 19

2.2.1 The abstract depiction hierarchy 20
2.2.2 Server drawing models 21

3 User interface development under Chiron 23
3.1 Specifying a client configuration 23
3.2 Generating an initial client architecture 23
3.3 Writing artists 25

4 Multi-lingual support 29
4.1 LoCAL 29

4.2 Language prototype examples 31
4.3 Extended language support 32

5 Performance 33

5.1 Space 33
5.2 Speed 34

6 Summary comparison to other work 36

7 Example uses of Chiron 38
7.1 The Anna debugger 38
7.2 ProDAG/TAGS 39
7.3 Multi-player Tetris game 40

8 Summeu:y and conclusions 42

A Throttle artist example

1 Overview

The development of user interfaces for large applications is subject to a series of well-
known problems including cost, maintainability, and sensitivity to changes in the operating
environment. The objective of the Chiron project is to address these software engineering
concerns by creating a user interface technology with the following properties:

• architectural flexibility and extensibility
• robustness in the presence of change
• facilitation of software reuse

The Chiron project has focused its research in the area of user interface and applications
architectures. We believe that current, widely-accepted user interface architectures are too
constraining for many applications. They often do not exploit or even support concurrency,
and they tend to view the user interface as the center of the imiverse. Current user interface
architectures are also generally tied to a single programming language or even a single
development environment. They are often not easily reconfigiurable and focus little or no
attention on issues of software reuse. Our objective has been to develop user interface and
applications architectures that address software engineering concerns - to take the best in
user interface technology and offer an environment in which it is relatively easy to develop
and maintain user interfaces for new and pre-existing applications. We believe that our
focus on software engineering concerns in the user interface domain is distinctive.

In this section we discuss the objectives for the Chiron project and briefly indicate key
constituents Of the Chiron system. The domain of discourse is user interface development
and run-time management architectures and how they relate to application software archi
tectures. Our perspective is that of researchers and developers of user interface systems;
our intended audience is other researchers and developers, as well as system architects.

1.1 Architecture overview

To be clear in our brief description of the Chiron architecture, we provide a few definitions.
An application is the software for which Chiron is being used to provide an interface to the
user. A user interface consists of presentations (abstract graphics) plus dialog decisions
(association of behavior with events or actions). For our purposes, specification of a user
interface does not determine look-and-feel (concrete graphics). Process in the ensuing
discussion refers to an operating system process. We also use the term agent to refer to
software components that have their own thread of control. Multiple agents may reside in
a single process.

Chiron employs a client-server architecture. The server provides clients an interface
to an extensible, object-oriented class hierarchy of graphical objects called the abstract
depiction hierarchy. The Chiron server maintains structured graphics model of the user
interface managed by each client, called the abstract depiction, and oversees the rendering
of the abstract depiction to a concrete depiction, using a windowing system and toolkit.
In addition, the server listens for events from the underlying windowing system, interprets
these events, and forwards to theappropriate client those that it cannot fully handle locally.

A Chiron client encapsulates an application and its user interface. To separate ap
plication code from user interface code, user interface agents called artists ^ are attached
to instances of objects within the application. An artist encapsulates presentation and
dialogue decisions; they are enacted by making calls to a Chiron server.

The frame of reference for communication between the artists and the application are
events (operations) on objects within the application. Operations on objects implicitly
trigger user interface activities within the artists. The triggering is performed by listening
agents associated with the objects. A dispatching mechanism responds to the triggers, and
may convey the event to one or many artists. Likewise, artists may receive events from one
or many objects.

1.2 Goals

The following paragraphs elaborate, in turn, each of our software engineering design prop
erties and briefly discuss how the Chiron architecture achieves these goals.

Architectural extensibility and flexibility. Current user interface technologies often
impose a fairly rigid set of constraints on how the application must be structured. In a large
application, however, there are typically many architectural desiderata, so it is undesirable
for the user interface to enforce a particular architecture.

Chiron provides Eirchitectural flexibility at two levels: within application processes and
across process and machine boundaries. Inside an application process, the Chiron dispatch
ing mechanism provides an unobtrusive interface between the application and the user in
terface layer. The application is not built as a set of callback routines to the user interface.
Across process boundaries, Chiron's client-server architecture provides flexibility in terms
of application languages, windowing systems and toolkits, and process inter-connection
topology.

Robustness in the presence of change. In a system that has distinct groups of con
cerns intermingled, it becomes difficult or impossible to manage changes in the environment,
since changes to one part of such a system inevitably mandate changes in other, unrelated
parts of the system. In the worst case one is required to do an amount of work proportional
to the size of the entire system whenever a change is necessary.

Chiron provides separation of concerns at two levels: between the application and the
user interface software, and between the user interface software and the underlying win
dowing system and toolkit.

Reusable software £U'tifacts. A key to software reuse is to structure systems so that
they use modular components with focused, well-defined interfaces.

The Chiron notion of artists adheres to this principle. Each artist is a stand-alone,
software agent that implements a particular user interface and has a small, well-defined
interface to the application and to the server. The artist notion facilitates software reuse

^The term originated with the Incense sysirtu |Mye83j. We use the term to apply to a concept which is
similar in purpose, but more general, powerful, .uid complex.

by factoring out user interface code from the application code, allowing for separately
maintainable and reusable entities. The reuse issue is also addressed by the design of the
abstract depiction hierarchy. A programmer can make use of the standard class hierarchy
of user interface objects, or can create new, tailored subclasses.

1.3 Specific objectives

Turning from the general software engineering goals above to more specific issues, Chiron
was designed with the following objectives in mind:

• Support for multiple graphical and textual views, with coordinated update. Multiple
coordinated views should be available to either a single user or groups of users.

• Support for concurrency, both within processes and across machine and network
boundaries. The application and user interface should have their own threads of
control; neither should be in absolute control.

• Performance comparable to standard user interface development systems and ad hoc^
hand-crafted systems.

• Support for multiple look and feels without receding, recompiling, or reloading.

• An extensible library of graphical objects.

• Support for dynamic changes to the set of active views as the application executes.

• Support for clients written in multiple languages.

The techniques used to achieve these objectives are addressed in detail throughout the
remainder of this paper. Although other user interface development systems have achieved
several of these objectives, our goal has been to simultaneously achieve all of them, not
to excel in one area only. We believe the exploitation of concurrency, an unrestricted
application architecture, and a multi-lingual design are all aspects that set Chiron apart
from existing user interface development systems.

1.4 Example client

Figure 1 shows a simple flight simulator instrument panel biiilt with Chiron. There are
several points of interest in this example.

Coordinated multiple views. The display shows how multiple artists can be attached
to the same object to provide alternate views. For example, the Airspeed artist and the
Speed Indicator artist are both bound to the speed of the aircraft simulator, the display of
one using an analog gauge and the other a digital readout. The Artificial Horizon artist is
bound to both the pitch and the roll objects of the aircraft simulator, presenting a synthesis
of their information. Separate artists for the pitch and roll objects are also present.

Panic Control BBSS Xi,!' AKHude Indlcater

!• Level Off Pani'C Recover 000 "Hi

ZJ AHeron OjntrofZ "

Bank Left 11 Bank Right

Elevator Control

Throttle Controi

-- 400 120^

•360

IAS/
1E0-;

.320 kt 200,

XJ Turn Ceardinaatsr i \ rumpus*

•

24 W ' :

30 '

1 ^ 3.^ '•

|l5 N ;

03
06

ALT XJ climb isdica^:

3 ;

Xj Fuel Indicator

Xi Speed ludicater

Figure 1: Flight simulator instrument panel. Each of the windows is associated with a separate
artist. The application manages a simple set of flight laws, and continually updates the six degrees
of freedom of the simulated aircraft. Artists giving various presentations of the vehicle's state are
attached to the objects that define the six degrees of freedom of the simulated vehicle.

Concurrency. There is a symmetry between the degree of control exercised by the ap
plication and the user. The application is active, in that it continually re-computes the
flight laws and updates the aircraft's state vector while the user can concurrently manipu
late the controls. The application and the user interface execute concurrently, coordinating
through an event-based mechanism. With conventional user interface technologies, at any
given point in time either the application is dormant and a user interface listen/dispatch
routine is in control, or the application is active and the system does not respond to user

interactions.

Multiple Look and Feels. The same application could have a different look and feel
by simply communicating with a Chiron server that uses a different implementation of the
abstract depiction hierarchy. There are no graphics libraries loaded with the cUent process.

Extensible Graphics Hierarchy. If we found that we were duplicating graphics (i.e.
a dial readout) for a particular domain, we could extend the abstract depiction hierarchy
to include a new class. This would improve efficiency by eliminating calls to the server,
simplifying artists, and ensming consistency for graphics within the same domain.

Reconfigurable Views. We can easily change the set of active views of the state of
the aircraft. Artists can be added or omitted and multiple artists can be invoked on the

same or on different displays, without recoding, recompiling or reloading the application.
Certain aspects of the client configurationare specified in an external file that is dynamically
interpreted at run-time.

1.5 Organization of the paper

The remaining sections of this paper are as follows. We begin with a detailed description of
the Chiron architecture in Section 2. Section 3 describes user interface development with
Chiron and Section 4 describes our limited, but promising, experience in supporting multi
lingual clients. Section 5 discusses the performance of the system. We then consider some
relationships between Chiron and other relevant work in the user interface area in Section
6, followed by some example uses of the system in Section 7. A summary and conclusion
section closes.

Chiron Server

i/E
Interpreter

Toolkitl Toolkit2

Chiron Client

Chiron Client

Wrapper

Wrapper

Wrapper

Figure 2: Chiron-1 conceptual architecture.

2 Chiron architecture

Appication

Section 1 provided a very brief description of the Chiron architecture in order to familiarize
the reader with the basic mechanisms used to achieve our goals. In this section we elaborate
on that description. Figure 2 shows one possible configuration of the client and server
components. Before discussing the client and server architectures in detail, we attempt to
familiarize the reader with the overall architecture by tracing the event flow of the system.

Any object whose state is to be depicted by an artist must be defined as an instance of
an abstract data type (ADT). This means that any creation, query, change, or destruction
of an object must occur via a call to the ADT's interface. ^ A listening agent, called
a wrapper^ is attached to each ADT that exports an interface identical to that of the
ADT. The application makes ADT calls indirectly through the wrapper, and otherwise
remains unchanged. The wrapper reifies ADT operations into events that are forwarded
to a dispatcher. The dispatcher then forwards the event to any artists interested in the
specific event.

An artist is an active drawing agent for an ADT. It encapsulates the presentation and
dialogue decisions for a particular graphical representation of the ADT. When an artist is
notified of an ADT operation, it may update its depiction to reflect the state change within
the ADT. Ensuing calls by the artists to create/update depictions are transmitted over an

relaxation of this assumptions is discussed on page 16.

inter-process communication link to a Chiron server.
The server implements the inheritance hierarchy of abstract depiction classes {ADH).

Calls from artists create and manipulate instances of these classes; the server thus maintains
an 'abstract depiction' of each artist's user interface. The server also oversees rendering
of the abstract depiction to a concrete depiction, using a window system and toolkit. The
instruction/event (I/E) inferprefer mediates the flow of ADH instructions from clients and
window events from the underlying graphical substrates.

When the user generates a windowing event, e.g. a menu selection, it is detected by the
server, converted to a Chiron event, and potentially sent back to the client where it will be
routed to the artist that created the object of the event, in this case, the menu. The artist
might handle the event by changing the state of an object within the application. This
would be done, as in the application, through a call to an ADT's wrapper - thus any artist
concerned with this state change will be notified. Note therefore that application objects
are modified by the user and the application program in the exactly the same manner.

The remainder of this section elaborates on this architecture. The key nm-tirae compo
nents of both the client and server architecture are discussed in detail in order to elucidate

how the architecture satisfies some of the specific objectives of the project. Section 3 de
scribes the process of creating a Chiron client and the tools available to aid in that activity.

2.1 CUent architecture

This section describes the architectural components that make up the run-time architecttire
of a Chiron client. This architecture is illustrated in Figure 3.

Chiron applications. The application is the body of code for which the client is pro
viding a user interface. It makes calls to ADTs indirectly through an identical interface
provided by the wrapper. It must also with ^ the client initializer package. Otherwise the
application remains unchanged. An application executes in its own thread of control. It is
not segregated into a collection of callback routines that are driven by the user interface,
nor does it directly control the execution of the user interface code.

The Chiron dispatching architecture. Chiron's dispatching mechanism enables the
separation of user interface and application. This mechanism is implemented primarily by
two components: the wrapper and the dispatcher.

The wrapper plays the role of listener and notifier of ADT events. It listens for ADT
calls and relays information about them to the client dispatcher in the form of a client
event. The wrapper exports an unobtrusive interface to the ADT so that the tool and
artists can make calls into it just as they would directly to the ADT. There is one wrapper
generated for each depicted ADT.

^In Ada, a with clause is used to provide visibility to library units. The application does not make calls
to the client initializer package; the elaboration of the client initializer, enabled by the with clause, will
execute the required initialization code.

^Although it is possibleto construct artists in ndditional languages,Chiron-l currently supports only Ada
[ALR83] clients. The underlying architecture iind component generators have not yet been reimplemented
to support other languages, although some preliminary work in that area is reported in Section 4.

Legend:

package^vocadura

task (agent)

• replicated per AOT

Application

Wrapper

IAPT

Access Ccntrciler

Client Initializer

Artist Manager

Dispatcher Mapper

Figure 3: The client run-time architecture

Client ^
Config.
RIe (CCF)

Client-Server

Split

The client dispatcher routes client events from wrappers to the appropriate artists.
Artists register directly with a dispatcher for notification of specific events and a dispatcher
only passes events to artists that have registered for that event. Dynamic registration
and de-registration is supported. There may be a single centralized dispatcher or dedicated
dispatchers per ADT. This mechanism is conceptually similar to broadcast message systems
such as Field [Rei90] and SoftBench [Cag90], though the actual mechanisms employed are
quite different. The differences will become apparent in the following discussion.

It is also this mechanism that supports coordinated, multiple views of objects. Multiple
artists may register for the same ADT events, allowing them to simultaneously reflect the
current state of the ADT. If an artist modifies an ADT using the wrapper, all other listening
artists will automatically be notified of the client event. Figure 4 shows the dispatching
architecture of the flight simulator application depicted in Figure 1. The top four artists are
pilot control artists and correspond to the leftmost artists in the flight simulator depiction.
Note that these artists modify the state of ADTs in response to interactions with the user.
This is done through calls to the corresponding ADT wrapper. This architecture uses one
dedicated dispatcher per ADT. Note that several artists may be registered for events with
the same ADT. Four separate artists, for example, monitor the various state aspects of the
Altitude Module ADT. The Artificial Horizon Artist registers for events on both the pitch

Elevator Control Artist

Aileron Control Artist

Panic Control Artist

Throttle Control Artist

Airspeed Artist

Speed Indicator Artist

Altimeter Artist

Altitude Indicator Artist

Vertical Speed Artist I"*'

Climb Indicator Aritist

Conqjass Artist

Pitch Artist

Artificial Horizon Artist

Turn Coordinator Artist

Roll Artist

I^el Indicator Artist

Dispatcher

Dispatcher

Dispatcher

Dispatcher

Dispatcher

Dispatcher

Dispatcher

Dispatcher

Depatcher

Wrapper

' ^ Module

Aileron Module

Panic Module

Throttle Module

Speed Module

Altitude Module

Psi Module

Amtude Module

Wrapper

Theta Module

Weim Module

Figure 4: Flight simulator dispatching architecture

Flight Simulator

Figure 5: Chiron 1.4 dispatching architecture

and the roll of the simulated aircraft.

Because multiple artists may be invoking operations on the ADT in addition to the
application, it is necessary to employ a means of access control on the ADT. Also, when an
artist updates its depiction in response to a change to ADT state, it will sometimes need
to query the ADT state if the information encoded in the client event is not sufficient to
enable the artist to update the depiction. For this reason, it is necessary that any ADT
write (or state modifying) operation be blocked until all artists have completed updating
their depictions in response to a previous state change.

ADT locking is handled by the access controller component. The access controller is used
by the wrapper to ensure concurrent-read, exclusive-write access to an ADT. The wrapper
must obtain a lock from the access controller before accessing the ADT. In addition, when a
write operation is performed all additional write operations are blocked until each interested
artist has completed updating its depiction. Update completion is detected and signaled
by the dispatcher. There is one access controller generated for each depicted ADT.

The default architecture provides one centralized client dispatcher ^yer client. However,
it is possible to generate dedicated dispatchers for ADTs. The client dispatcher then serves
as a router that directs ADT-based events and registration requests to the appropriate
ADT dispatcher for processing. An illustration of the resulting run-time dispatching archi
tecture is given in Figure 5. This ensures a consistent dispatching interface for wrappers
(for notification) and artists (for registration), allowing the dispatching architecture to be
modified without requiring any changes to wrappers or artists. The client dispatcher and
dedicated ADT dispatchers share the same interface, so it is possible to optimize a client by
circumventing the client dispatcher completely (as seen in Figure 4). This requires a trivial
hand-editing of the wrapper and artist code that can be done once an optimal dispatching
architecture is determined. Informal experience indicates that ADTs that have a high event
bandwidth should be given a dedicated dispatcher. For ADTs with low event bandwidth,
it may be optimal to use the centralized client dispatcher rather than to incur the extra
tasking overhead of a dedicated dispatcher.

Artists. Artists encapsulate the dialogue and presentation aspects of the user interface.

An axtist may depict the state of zero or more ADTs, or it may be purely interactive
and not bound to any ADT. An artist has three main responsibilities: to create an initial
graphical depiction, to respond to ADT (client) events, and to respond to user-generated
(server) events. Unlike model-based user interfaces such as ITS [WBB+90j, UIDE [SFG931,
and HUMANOID [SLN93], Chiron artists use a programmatic as opposed to a declarative
approach in defining the dialog and presentation of the user interface. This choice simply
reflects the research emphasis of the project, and is not an inherent characteristic of the
architecture.

An artist is defined as a task type, allowing multiple instances of an artist to be dy
namically invoked and terminated. It also means that artists have their own threads of
control, executing in parallel with each other and with the appHcation. Since concurrency
typically presents many new opportunities for creating buggy programs, we applied a con
currency analysis system, CATS, to Chiron. CATS performs a type of reachability analysis
and checks (exhaustively) for deadlocks. The analysis foimd two race conditions and a
deadlock, which we subsequently fixed.

An example of an artist specification for the throttle artist (depicted in Figure 1) is
given in Figure 6.

The interface to all artists consists of four task entries: one to start up the artist,
one to shut down the artist, one to accept notification of client events and another to
accept notification ofserver events. Foreach artist within a client, an artist specification is
generated along with a template for the artist body by the Chiron tool set. Further details
are provided in section 3.

Artists create and manipulate their graphical depictions by making calls to the server's
abstract depiction hierarchy. Artists respond to client and server events by registering
handling routines withinthe artist that areautomatically invoked when the artist is notified
of an event. The definition of client events and server events differ, as does the registration
mechanism.

Server events. Server events are user-generated events that are detected within the
server such as a button press, a menu selection, or entering a value in a text field. More
precisely, the server listens for X events, and reifies them to server events. Some X events
are handled entirely within the server. Some are aggregated into a server event at a higher
level of abstraction than the original X event. The object of an event may also be at a
higher degree of abstraction. For example, if a new dial class were added to the hierarchy,
the artist could receive select, move, and menu events on the composite dial object. The
declaration of a Chiron server event is given in Figure 7. The Chiron server event type
contains information about a server event that an artist might need in order to update its
depiction or determine how the ADT state should be changed.

Within the client, the mapper routes server events to the appropriate artist, namely the
artist that created the object on which the event occured. Artists register for server events
in the following manner. Artists define behaviors (event handling procedures) for specific
objects, or classes ofobjects, forparticular server events. Whenthe mapper receives a server
event on an object, if the artist that created that object has registered a behavior for that
object for the received event, then the mapper will notify the artist of the event, passing

with Client-Events; use Client-Events;
with Chiron-Standard-Library;
with System; use System;

package Throttle-Artist is

package CSL renames Chiron-Standard±ibrary;

task type Throttle-Artist is

entry Start_Artist (
ID ; CSL.ArtistJD.Type;
Self-Aptr : address;
Display-Name : CSL.Str);

entry Notify_Client-Event (
Client-Event : Client-Events.Client-EventJ'tr;
Handler-Routine : address):

entry Notify^erver-Event (
Object : CSL.Object-Type;
Server-Event ; CSL.Chiron_Event_Ptr;
Handler-Routine : address);

entry Terminate_Artist;

end Throttle-Artist;

type Throttle-Artist-Ptr Is access ThrottleJ\rtist;

end Throttle-Artist;

Figure 6: Throttle artist specification

it the object of the event, the server event, and the appropriate handling routine. The
handling routine within the artist is then invoked, with the server event and the object as
parameters. Behaviors for specific objects override behaviors for classes of objects. Artists
may change behaviors dynamically by re-registering with the mapper.

Client events. A client event definition, unlike the server event definition, differs for
each client. An initial client event definition is generated from the set of all operations on
all depicted ADTs within a client. For example, given the ADT for the throttle module
(Figure 8) of the flight simulator example, the definition is mapped onto a partial definition
of a client event type in Figure 9. One client event kind is defined for each ADT operation.
The event kind is a concatenation of the .ADT name and operation name. For overloaded
operations, a unique number is appended. The client event type defines a list of fields
for each ADT operation. Each field corresponds to a parameter or return value for that
operation. The client event mode is defined to specify whether an operation is a read or

type Chiron_EventJ<ind is (Menu_Event,
Select-Event,
Adjust-Event,
Key-Event,
Move_Event,
ResizeJEvent):

type Chiron-Event-Type(Kind : Chiron-Event-KInd) is
record

Mouse-X : integer;
Mouse-Y : integer;
Time : integer;
Num.Vai : integer;
Text-Val : Str;
case Kind is

when Menu-Event =>
null;

when Select-Event =>
null;

when Adjust-Event =>
null;

when Key_Event =>
Key-Code : character;

when Move-Event — Resize_Event =>
Dest-X : integer;
Dest-Y : integer;

end case;
end record;

type Chiron-Event-Ptr Is access Chiron_Event-Type:

Figure 7: Server event definition

write operation on the ADT. This is used by the wrapper in order to ensure concurrent-read,
exclusive-write access to the ADT. This information must be hand-specified by the client
builder as it cannot be determined accurately without a good deal of semantic analysis
which is outside of the domain of this project.

The assumption that all necessary client events can be captured by operations on the
ADT can in some cases be too constraining. The ADT interface can usually be modified to
compensate for any short comings, but sometimes this is undesirable. Also, some applica
tions are simply not naturally object-based. Therefore, it is possible for client designers to
define their own non-ADT events. This is done by simply editing the generated client events
definition. For example, an application without well defined ADTs could be "seeded" with
hand specified events. This is similar to what is done in the Zeus [Bro92] system for algo
rithm animation. Although it is still possible to support coordinated multiple views using
this approach, as also demonstrated by Zeus, it is not possible to modify the application
without consciously generating events for the user interface. Thus the separation between
the application and the user interface has been compromised.

An artist handles a client event by first registering interest in the event with the client
dispatcher. Registration includes specifying the handling routine for the event. When the

package Throttle-Module is

Maximum-Throttle: constant := 1.000000;
Minimum-Throttle: constant := 0.063000;

procedure Adjust-Throttle (Delta-Value: in FLOAT);
procedure Set-Throttle (New_Value: in FLOAT);

function Get-Throttle return FLOAT;

end Throttle-Module;

Figure 8: Throttle_Module ADT specification

dispatcher is notified of a client event, it notifies ail artists pre-registered for that event,
passing them the client event, and a pointer to the handling routine. The handling routine
is then invoked within the artist, passing it the client event. Artists may register and
de-register for client events dynamically by making calls to the dispatcher.

Communication with the Server. The client protocol manager (CPM), handles com
munication to and from the Chiron server. This includes encoding/decoding messages
into/from a lower-level communication protocol. Chiron uses Q [MOS90], a multi-lingual
interprocess communications system built on top of XDR/RPC for client-server communi
cation. ADH calls from an artist are translated to lower level calls to the CPM where they
are encoded to Q protocol form and shipped to the Chiron server. The CPM also receives
events from the server, decodes them, and forwards them to the mapper where they can be
directed to the appropriate artist.

Initialization and dynamic reconfiguration. The client initializer is responsible for
bringing up the initial client configuration. This consists of starting up the CPM task
and invoking artist instances on specified machine displays. There is one client initializer
generated per client.

Chiron supports the dynamic re-configuration of the set of active views (artists). The
artist manager provides an interface through which new instances of pre-compiled artists
can be invoked and shutdown at run-time. It is used by the client initializer for dynamic
configuration and may also be used by an artist to invoke other artists. There is one artist
manager generated per client.

The client configuration file (CCF) is used to specify the intended architecture of the
client and is used by the client component generators which generate code according to the
specified architecture. Additionally, the initial run-time configuration is specified in this file
including which artists should be invoked at startup, how many instances of those artists,
and on which machine displays. The client initializer will read the client configuration file
at client initialization, allowing configurations to be modified without recompilation.

with Throttle-Module; use Throttle-Module;

package Client-Events is

type ClientJEvent-Kind is (
Throttle-Modute-Adjust-Throttle,
Throttle-Module-Set-Throttle,
Throttle-Module-Get-Throttle,

Null-Event

):

type ClientJEvent-Type (Event-Kind : Client-EventJ<ind ;= Null-Event) is
record

case Event-Kind is
when Throttle-Module-Adjust-Throttle =>

ThrottleJ^odule-Adjust-Throttle_Delta-Value: FLOAT;
when Throttle-Module_Set-Throttle =>

ThrottleJ^odule-Set-Throttle_New-Value: FLOAT;
when Throttle_Module-Get-Throttle =>

Throttle-Module_Get-Throttle_Resuit: FLOAT;

Null-Event

type Client-Event-Ptr is access Client-Event-Type;
Oient-Event-Mode : constant array (Client-Event-Kind)

of Client-Event-Modes := (
Throttle-Module-Adjust-Throttle => Write,
Throttle-Module-Set-Throttle => Write,
ThrottleJ^odule-Get-Throttle => Read,

Null-Event => None

procedure Free-Client-Event (Client-Event : in out Client-Event-Ptr);

end Client-Events;

Figure 9: Partial client event definition for flight simulator example

Server Protocol
Manager

Client-Server

Split

Legend:

—» - calls

I I • procedure/fuKtion

C) - task (agent)

Scheduler

Event Handler

Xlib/Xt/Motif/XView X Event Loop

Figure 10: Chiron-1 Runtime Server Architecture

2.2 Server architecture

The server maintains an structured graphics model, or abstract depiction, of the graphical
contents of each window managed by Chiron. This abstract depiction simplifies and ab
stracts the details of low level user interface libraries while adding concurrency, distributed
processing, reuse, and insulation from changes in substrate technology. Concurrency allows
the server to receive, schedule, execute instructions, and respond to events generated by
the user.

Figure 10 shows the architecture of the Chiron server. The Server Protocol Manager
(SPM) handles all of the interprocess communication. It receives and decodes Q messages
from client processes, and encodes and sends Q messages to client processes. The scheduler
acts as a concurrent buifer, queuing both instructions and events until the interpreter has
time to process them. The interpreter pulls messages from the scheduler in a FIFO manner.
If the message is an instruction, it decodes the parameter list and calls the specified ADH
member function. If the message is an event destined for a client, it encodes the event
and sends it to the SPM. Events, which are generated by the X server in response to user
interactions, are sent from the ADH to the event handler, where they are converted to
a form appropriate to be inserted into the scheduler and either processed in the server
or sent back to the client. The SPM, scheduler and interpreter are all implemented in
Ada, while the ADH and a small portion of the interpreter are implemented in C++. The
event handling loop is inside an Ada task. This makes it possible to process X events and
messages from clients concurrently.

Panel Item Scrollbar Server Image Window

Bitmap EU^se GIF Polygon Polyline Text Canvas Frame Icon Notice Panel Text Window TTY

Circle Rectangle Spline

Base Popup

Compose Sc^are
Button Choice List Message Numeric Field Slider Text Field

Figure 11: Chiron-l Abstract Depiction Hierarchy

2.2.1 The abstract depiction hierarchy

The Abstract Depiction Hierarchy (ADH) is a set of classes whose purpose is to provide
a simple and high level abstraction for the construction of user interfaces. The hierarchy,
historically based on XView^, is a superset of the intersection of XView and Motif class
hierarchies. It provides a consistent interface to both toolkits. The choice of look and feel
is a run-time choice; no recompilation of artists is necessary to change the look and feel of
the user interface.

The ADH classes provide a mechanism for localization of data. In many instances it
is unnecessary to query the X server for a particular object's attribute. The ADH classes
store the most commonly used attributes as data members of the individual classes. The
ADH supports the common graphical objects found in most toolkits, plus two-dimensional
drawing objects such as polygons, circles, splines, and images such as GIFs® and bitmaps.

The ADH also provides encapsulation of functionality via subclasses and composition.
If the artist writer has an operation that will be used frequently it may be incorporated into
the ADH as a new class or an extension to an existing class. The burden of maintaining
a depiction thereby shifts from the artist to the server. This functionality then becomes
available for use by all other artists. Adding new classes to the hierarchy does not result

'This is most evident in the naming of the classesand organizationof the class tree whichlooksremarkably
similar to XView's

®The Graphics Interchange Format(c) is the Copyright property of CompuServe Incorporated. GIF(sm)
is a Service Mark property of CompuServe Incorporated.

in recompilation of pre-existing artists. Neither does adding a new member function to an
existing class. A change to the parameter list of an existing member function may require a
recompile of an artist if the artist uses that member function. If a recompilation is required,
it can usually be handled without hand editing, by simply running the artist through the
preprocessor and recompiling.

The ADH provides a general mechanism for event handling. Events are reported in
(ADH object, event) pairs; the Chiron server sends an event message to the client, where
it gets routed to the appropriate artist. Each ADH object is capable of receiving a certain
set of events based on its class type. For example, buttons may only receive select events,
while all objects subclassed from ADL_application may receive menu, select, key, adjust,
and move events.

Like most recent research and commercial user interface toolkits, the ADH suffers from
the 'least common denominator' problem as applied to the intersection of the toolkits. For
the most part, the objects that are supported by the ADH are limited to those that are
found in both toolkits. (We extended the hierarchy to support two-dimensional drawing
objects and simplified event handling.) The tradeoff of this limitation is that we provide an
easier to understand and easier to use interface. Experience with student users has shown
that a novice programmer is able to construct fairly sophisticated interfaces based on this
hierarchy in a matter of a few weeks.

We found that the logical extensibility of the abstract depiction hierarchy was limited
by its historical dependence on XView; in some cases subclassing is difficult. Contrasted
with systems such as Interviews [LCV87]. XView's architecture was not designed with
extensibility in mind. Object-oriented programming is characterized by inheritance and
dynamic binding. XView, because it was implemented in C, uses static subclassing. While
XView embodies the first characterization in class hierarchies, it does not provide dynamic
binding. The ADH consists of C++ classes that encapsulate each of the XView classes.
While this provides the artist writer with polymorphism, it does not provide an ideal design
from which to subclass and extend the hierarchy.

Several commercial toolkits, such as Galaxy [BBW92] and Open Interface [Neu91],
are now available which provide a similar kind of toolkit independence as Chiron's ADH.
The API provided by both systems can support standard look-and-feels for Motif, XView,
Windows, and Macintosh across multiple platforms. Both systems use the lowest rendering
agent on each platform giving them high performance, more layout control, and look-and-
feels on non-native platforms (i.e. XView on a PC). Unlike Chiron, both systems use a
standard single-threaded callback architecture.

2.2.2 Server drawing models

In addition to hiding the details of the implementation toolkits, the ADH provides a high
levelof abstraction allowing Chiron's drawing objects to be supported using several different
graphical languages. While Chiron's multi-lingual support has been predominantly focused
on the client side (see discussion in section 4), some experimentation with graphical and
image modeling languages within the server have been performed. Similar to how the
ADH encapsulates details of the underlying toolkit, the drawing model implementation of

the Chiron server can also be hidden from the client. As a means of demonstration, an
example Chiron client was built to run with several Chiron server prototypes. Each server
prototype used either Phigs [Gas92], PostScript [WG92], XGL^, or Xlib [0'R92] calls as
the drawing model in addition to the standard ADH classes. The example client allowed
the user, through menu selection, to choose the color of a triangle drawn on a graphical
canvas. Through abstraction, the choice of the imaging language, like the toolkit, is a
decision that is delayed until run-time or even the execution of the graphical call through
the use of dynamic library loading. This allows Chiron to capitalize on multi-lingualism at
the imaging level as well as at the programming and development level of the client.

'XGL-2.0 Reference Manual

3 User interface development under Chiron

In order to construct a Chiron client, it is necessary to specify the desired client configura
tion, build an initial client architecture, and define each artist. (These steps are described
in detail below.) Then, it is necessary to translate each artist from LoCal to native Ada.
Finally, the client is compiled, linked, and executed.

Although the focus of this work has been primarily on user interface and application
architectures, issues of user interface development cannot be ignored. Realistically a system
architecture in the user interface domain, no matter how well engineered, is not viable unless
the process of UI development can be at least partially automated. With this in mind, a
collection of tools has been implemented to assist in performing the above tasks.

3.1 Specifying a client configuration

The client developer must first determine what artists are needed and which ADTs they
will monitor. He or she must also choose a dispatching architecture, and which artists
should appear at startup and on which machine displays.

Once the configuration is determined, it must be specified in the form of a client config
uration file (CCF). The information in this file is used by various generator tools to create
appropriate client components. It is also read during client initialization in order to de
termine the run-time configuration of a client. The run-time configuration defines which
artists and how many instances of these artist should be invoked initially as well as which
display they should use. An example of a client configuration file for the configuration of
a flight simulator is given in Figure 12. A client configuration file contains the following
information:

ADT specification list: A list of the filenames of all ADT specifications from which
client events should be generated. Each ADT specification filename can optionally be
followed by the word "dispatcher". If present, a dedicated dispatcher will be generated
for that ADT.

Artist descriptions: This portion of the configuration file describes each artist, listing
its name followed by any ADTs for which it will want to receive events.

Runtime configuration: Each line contains an artist name followed by the number of
instances of that artist that should be invoked at client initialization, optionally fol
lowed by which machine display should be used. If no display is specified, unix:0 is
the default.

3.2 Generating an initi£d client architecture

Several tools exist that generate the client run-time components described in section 2.1.
In addition, a single tool, called the client.builder, generates a fuU client architecture based
on the contents of a given client configuration file.

This tool generates a client initializer, an artist manager, and a client dispatcher. A
client event definition is generated that is based on the union of all operations on ADTs

tail^pec.a
aileron ^pec.a
panic^pec.a
throttlejpec.a
speed-Spec.a
altitude-spec.a
psi-spec.a
attitude.spec.a
theta_spec.a
weight-ipec.a

Tail_Module_Artist
Aileron-ModuleJ^rtist
Panic_Module_Artist
ThrottleJ^odule-Artist
Airspeed-Module-Artist
SpeedJModule-Artist
Altimeter_Module_Artist
Altitude-Module-Artist
Rate-of-Climb_Module-Artist
Rate-Module_Artist
Compass-Module-Artist
Pitch-Artist
Horizon-Module-Artist
Turn-Module-Artist
Roll-Artist
Weight-Module-Artist

Tail-Module_Artist
Aileron-Module-Artist
Panic-Modulc-Artist
Throttle-Module-Artist
Airspeed-Module-Artist
Speed-Module-Artist
Altimeter-Module-Artist
Altitude-Module-Artist
Rate-of-Climb-Module-Artist
Rate-Module-Artist
Compass-Modulej^rtist
Pitch-Artist
Horizon-Module-Artist
Turn-Module-Artist
Roll-Artist
Weight-Module-Artist

dispatcher
dispatcher
dispatcher
dispatcher
dispatcher
dispatcher
dispatcher
dispatcher
dispatcher
dispatcher

tail-spec.a
aileronjspec.a
panic-spec.a
throttle.spec.a
speed-Spec.a
speed-Spec.a
aititude-spec.a
altitude-spec.a
altitude-Spec.a
altitude-spec.a
psi^pec.a
attitude-spec.a
attitude-spec.a theta.spec.a
thetajspec.a
theta-spec.a
weight-Spec.a

unix:0
unixiO
unix:0
unix:0
unix:0
unix:0
unix:0
unix:0
unix:0
unix:0
unixiO

unixiO
unix:0
unix:0
unlxiO
unix:0

Figure 12: Example client configuration file

in the ADT specification list. A wrapper is generated for each ADT, and a dedicated
ADT dispatcher is generated where indicated in the CCF file. An artist specification
and template for an artist body is generated for each artist that is specified in the artist
descriptions section of the CCF.

The client developer must hand-edit the client event definition in order to specify the
correct access modes (Read or Write) for each ADT operation. In addition, the developer
may want to add hand-coded client events.

3.3 Writing artists.

Artist writing is the most labor-intensive task in Chiron client building. Artist writers
build and maintain depictions programmatically by making calls to the abstract depiction
hierarchy. This includes defining how an artists will handle client and server events. We
first discuss the necessary elements to hand-coding an artist and then turn to some work
that has been done to simplify and automate this task.

Chiron provides an artist template as a starting point for artist development. A template
includes an abstraction of an artist's architecture along with directives to aid the artist
progranuner in defining the artist.

An example of an artist template for the Throttle artist depicted in Figure 1 is given in
Figure 13. The major tasks required in defining the artists are indicated by the comment
directives. They are:

• Declare and create the initial graphical objects that make up the artists.
• Define handling routines for client and server events.
• Register handling routines for specific client and server events.
• Start processing on the artist's base frame.

Artists are written in a language called LoCAL that is described in section 4. It is a
minor extension to Ada that enables the artist writer to declare, create, and manipulate (in
an object-oriented manner) instances of the graphical objects within the server's abstract
depiction hierarchy. LoCAL programs are translated by a pre-processor into valid Ada.

The fully defined artist is listed in Appendix A. To familiarize the reader with the
internals of an artist, we briefly describe the implementation of the Throttle artist. The
line numbers indicated in the following paragraphs refer to Appendix A.

Any graphical object that an artist will create and manipulate must first be declared.
Lines 29-31 provide the LoCAL declarations for the artist's base frame, panel, and slider,
which comprise all of the graphical objects within the Throttle artist. Lines 88-120 show
the LoCAL apply calls to create instances of these initial graphical objects.

This artist defines only one handling routine for a server event (when the user adjusts
the slider). The definition of this handler is given on lines 47-60. Server event handlers
have two parameters: the object of the event (in this case, the slider) and the server event
description. We use the event description to obtain the new desired Throttle position and
use that information to change the stale of the Throttle ADT.

A client event handler has only one argument, the client event description. If the
application had an autopilot mode in wlurh the throttle state would be modified program-

with Wrapper.Throttle.Module;
with ClientJ)ispatchef:

package body Throttle_Mcdule^rtist is

task body Throttle_Module-Artist is

Self-Ptr : Throttle_Module_Artist_Ptr:
Local-ArtistJD : CSL.ArtistJD_Type:
Local-Display : CSL.Str;

--<< declare artist objects here. >>

--<< declare handler routines for both client and server >>
— << events plus any auxilliary routines here. >>

--server events handlers must have the signature:
--procedure <handler_name> (Object : CSL.Object-Type;
--Event : CSL.Chiron_Event-Ptr);
—client events handlers must have the signature:
--procedure <handler_name> (Event : Client-Event-Ptr);

begin --task body

accept Start-Artist (
ID : CSL.ArtistJD-Type:
Self.^ptr : address;
DisplayJJame ; CSL.Str) do

Self-Ptr := address-to.artist(belf-Aptr);
Local-ArtistJD := ID;
Local-Display := Display.Name;

--<< register interests in client events with the >>
— « clientjdispatcher here. >>

end Start-Artist;

--« create initial graphical objects here. >>

—« set behaviors of graphical objects in response »
—<< to server events here. »

—« call adi start-processing method here. »

loop
select

accept Notify-Client^vent (
Client-Event : Client-Events.Client-Event-Ptr;
Handler-Routine : address);

or

accept NotifyjServer-Event (
Object : CSL-Object-Type;
Server-Event : CSL.Chiron-Event_Ptr;
Handler-Routine : address);

or

accept Terminate-Artist;
end select;

end loop;
end Throttle-Module-Artist;

end Throttle-Module-Artist;

Figure 13: Template generated for Throttle-Module-Artist body

matically, we would have defined an event handler for whenever the Throttle state was
modified. The client event could be used to obtain the new Throttle position and an ADH
call would be made to reposition the slider accordingly.

Registering for client events consists ofmaking a call to the client dispatcher, providing
the client event for which we are registering and the address of a handling routine for that
event. This artist does not handle any client events, but if it did, registration calls would
occur at line 77. To register for server events, the user defines the behaviors (pointers to
handling routines) for graphical objects. A behavior associates a handling routine with
each possible server event that can occur on an object or class of objects. If no handling
routine is provided, the event is ignored. On lines 125-127 we define a behavior for all
objects of class ADL^lider (a behavior for a slider instance would override this behavior)
then register this behavior by making a LoCAL seLbehavior call.

Finally we must activate the artist by invoking the startjprocessing method on the
artist's base frame. This call is found on lines 132. This will cause the artist to appear and
begin listening for server events.

Front-end builders The burden or writing artist bodies can be substantially reduced
through use of a graphical interface builder. Many of these are on the market, and perform
roughly the same services. Rather than adding another interface builder to the market we
examined how we could leverage the investment in existing tools. We discovered that the
internal form generated by Sun Microsystem's Developer's GUIDE^ tool [Sun91] (GIL) was
suitable for translation to LoCAL. Accordingly we developed two tools, gil2local and gab
(guide artist builder), which enable the use of GUIDE in creating Chiron artists.

gilSlocal translates the output of GUIDE to LoCAL, and gab allows users to update an
artist template by inserting the giI21ocal generated LoCAL calls into the appropriate places
in the artist template. The artist writer thus has a very substantial basis for creating an
artist quickly, using the set of tools provided with Chiron.

An interesting side-effect of gil21ocal and gab is that, though GUIDE was created to
support development of applications that employthe OpenLook look-and-feel, it can nowbe
used to create applications exhibiting the Motif look-and-feel since LoCAL is independent
of that choice.

Althoughthis approach can significantly reduce the time requiredto prototype a user in
terface, it suffers several drawbacks that make it less than an ideal approach. Manual effort
is still required to create and manipulate drawing objects (suchas circlesor polylines) which
are not supported by GUIDE, and to set the dynamic behaviors of those objects. Because
the corresponding graphical objects provided by the Motif toolkit differ in dimensions with
those provided by the XView toolkit, the corresponding Motiflayout generated by GUIDE
Is sometimes not aesthetically pleasing. Finally, the gab implementation expects an empty
artist template. Any iterative development would involve hand-pastingnon-generated code.
The gab tool could be modified, however, to allow interative development as supported by
GUIDE'S GIL to C generator, GXV.

®OpenWmdow8 Developer's Graphical User Interface Development Environment

Artist generators, Chiron has been developed as part of a larger project in software
engineering environments called Arcadia. Since graphs are such a pervasive data structure
in software engineering environments, the Arcadia project developed a persistent graph
package generator, called PGraphite [WWFT88]. With this tool, the user specifies the par
ticular type of graph desired and the tool generates an Ada package encapsulating the graph
and providing creation/deletion routines, traversal routines, and persistence functions. We
have extended PGraphite with artist generator capabilities. Specifically, in addition to all
the other graph attributes specified in the input to PGraphite, the user may specify which
nodes should be displayed, and with what graphical attributes. A complete artist for the
graph package is then generated.

Reusable airtist components. The pervasiveness of graphs in software engineering en
vironments has also motivated the development of a generic routine for the the layout
of hierarchical directed graphs called GLAD (Generic LAyout for Directed-graphs), which
may be used within artists for automaticallylaying out a graph and reducing edgecrossings
[Sni91]. This capability has been used in several Chiron applications, including computer
aided software engineering applications and graph-based analysis tools.

We have also found that artist writers often need to maintain relationships between pro
gram objects with graphical objects. For example, if a user selects a rectangle representing
a node in a graph, the artist will want to locate the corresponding ADT node instance.
For this, we provide a generic bidirectional association table that can be instantiated to
associate any application object with any graphical object. Additional context data may
also be stored with each relation.

4 Multi-lingual support

Chiron's client-server architecture, employing event-based integration, permits different
client modules to be written in different languages. For Chiron-1 only the language support
tools for Ada were implemented, but, assuming the same client architecture, these tools
could be changed to support other languages in addition to mixed-language clients. To test
this claim, various client prototypes were built for use with the current implementations^
of the Chiron server. The requirements Chiron places on the client development language
in addition to our experiences with these prototypes are described in the balance of this
section.

Chiron's exploitation of concurrency and event-based integration of client components
places few restrictions on the application architecture. Nevertheless it requires language
support for object-oriented concepts and run-time support for concurrency. These require
ments may not map well into various implementation and development languages, and in
some cases necessitate language extensions in order to preserve the Chiron design.

4.1 LoCAL

Current user interface languages are relatively weak from the standpoint of software engi
neering concerns such as support for large-scale programming, flexibility, and code reuse.
LoCAL is designed to overcome some of these weaknesses.

LoCAL is designed as an extension to Ada that allows effective use of the abstract
depiction hierarchy (ADH) in an object-oriented manner while meeting two additional user
interface development constraints. First, it is desired that artists be written in the same
(or very similar) programming language as clients. This is so that developers can avoid the
burden of learning a new or specialized user interface language and it also eliminates the
possibility of two different languages' run-time systems conflicting within a single process.
Ada is our language of choice for writing large-scale client applications, so an Ada-like
language for writing artists is needed. Second, the artist language must be able to interface
in a reasonable way to the ADH, since this library is used to define the components of
the user interface that the artist implements. Because the ADH is an object-oriented class

library that relies on inheritance and subclasses to achieve flexibility and reuse, and since
Ada does not have the language features necessary to support inheritance, it was decided
to implement LoCAL as an object-oriented extension to Ada.

The LoCAL features added to Ada are summarized in figure 14. The first form of
Apply creates an instance of the indicated class, using the designated constructor method.
The second and third forms of Apply invoke the designated method of the specified object.
One form is for methods that return results, and the other form is for methods that do
not return results. The Set_Behavior function establishes the artist's event handlers that

execute in response to specified user manipulations of the given ADH object.
The Chiron development toolset includes two tools that implement this extension: the

LoCAL pre-processor (/cc), and the adLcompiler. It is important to note that although the

^AU client prototypes while developed in various programming languages are compatible with both the
unmodified versions of the Motif and XView servers.

--call a constructor method to create a new instance

function ~AppIy (
class : class^ame;
method : method-name;
[<parameters to class method>J)
return object-type;

--call a method that does not return a value

procedure '--Apply (
class : class-name;
instance : object-type;
method ; method_name:
[<parameters to class method>]);

--call a method that returns a value

function —Apply (
class: class-name;
instance : object-type;
method : method_name;
[<parameters to class method>|)
return <return type of class method>;

—establish handler for each of the "behaviors"
— (user manipulations of the visual representations of
—the object)

procedure —Set_Behavior (
object: ADH-object;
behaviors : Behavior.Array-Type);

Figure 14: LoCAL extensions to the application language

adl-compiler and the Icc tool were written to provide the interface between Ada artist code
and the Chiron ADH, they provide a general capability for object-oriented interoperation
between Ada and 0++.

Icc translates LoCAL into standard Ada. It reads in a symbol table that specifies a
mapping from a set of class names and member functions to integers. A LoCAL call to a
member function of a given object is translated into a standard Ada procedure call. The
parameters of the procedure call are the integers that specify the class of the object and the
function to be invoked on the object. A reference to the object instance and the parameters
of the function are also passed as parameters to the Ada procedure call.

The adl.compiler compiles C++ class declarations into the symbol table files required
by Icc. This allows the automation of bindings to the C++ code in the ADH. After a
change to the C++ interface, all that is required is to run the adLcompiler to create a new
symbol table file, and use Icc to translate LoCAL code to Ada using the new mappings.
This process is easily automated using a standard tool such as make.

4.2 Language prototype examples

Because Chiron maintains a strong separation of concerns between the application and
the user interface software, various architectural components of the client can be coded
in different programming languages as long as the run-time support for each language
can safely coexist within a single process. For components written in languages that are
not compatible, the event-based client design lends itself well to distributing components
across process boundaries, although in the current version there are no client support tools
to automate this restructuring. In order for Chiron to support clients in other languages,
bindings must be established between the ADH and the application language. For object-
oriented application languages this binding is straightforward; for languages like Ada that
lack object-oriented language features the changes are more substantial, as described above.

In order to demonstrate the generality of the client design, prototypes using Fortran,
Lisp, and C++ are described in the following paragraphs.

Mixed Ada-Fortran Client. An interface for manipulating and visualizing the infrared
signatures of the tailpipe of Northrop's B-2 aircraft was constructed by extending pre
existing Fortran code with a Chiron artist. This was accomplished by wrapping the internal
data structures of the tool in such a way that data state changes are propagated as Chiron
client events. In addition, the Chiron artist can change the data state and visualization
in response to user actions. Although most of the support code for this application was
hand-generated, automatic support for code generation and wrapping could be provided by
Fortran-specific versions of the client support tools described in subsection 2.1.

Lisp Client. Another way to exploit multi-lingualism in the Chiron design is through the
client-server separation. Because the client and the server run in different processes and the
mechanism for inter-process communication allows for multi-lingual messages ([MOS90]),
client processes can be btiilt in various language. One such prototype was built using
Common Lisp [WH89]. The focus of this particular Lisp client was to provide development

support for specification of artists through interactive LoCAL calls to the ADH. This was
done while still maintaining a strict separation of concerns from the underlying graphical
substrates through the client-server split. Current functionality of the Chiron Lisp client
includes the mechanisms for registering with a Chiron server and the automatic generation
of CLOS^"^ primitives from the Chiron Standard Library's symbol table file (see 4.1) that
provide an interface to the Chiron server. A full suite of Chironclient tools supporting Lisp
development was never realized. In addition, the implementation of the Lisp client relied
on a multi-processing package external to the language for providing concurrency.

CH-+ Client. Another client prototype demonstrating the benefits of the client-server
separation was built using C++. C++'s support for object-oriented design and data ab
straction through class mechanisms allow a natural wrapping of C++ objects (where they
play the role of Ada ADT's). Unfortunately this places the burden of inheritance tracing
on the client support tools since C++ objects are not required to include virtual function
prototypes (signatures) in their description. Inherited interfaces from these functions need
to be exhaustively enumerated at the time of client generation to allow for the appropriate
client events to be sent to the interested artists. This problem, while not unsurmountable,
was not addressed in the C++ client development tools, and a robust and complete collec
tion was never built. Similar to the Lisp client, concurrency was provided through using a
threads package external to the implementation language.

4.3 Extended language support

Two good candidates for future Chiron client languages are Ada9X [Ada93] and Modula-3
[Har92]. Ada9X's new mechanisms for handling inheritance and polymorphism in conjunc
tion with established support for modularization, data abstraction, and concurrency allow
this language to map cleanly into the Chiron client architecture. Modula-3'sobject-oriented
programming constructs, high-level support for concurrency and concurrent access to data
structures also make this language a suitable candidate for future client support. Chiron's
design allows various client implementations to easily leverage off of these properties and
cleanly address the weaknesses of current user interface languages.

^"Common Lisp Object System(WH89j.

5 Performance

In order to effectively address the objectives of architectural flexibility, robustness in the
presence of change, and reuse of software artifacts, a tradeoff between performance and
maintainability is employed in the overall Chiron design. In this respect, the implementation
of Chiron is a compromise where the overhead of each technology is carefully weighed against
the overall system performance so that the goal of equivalent performance to ad hocsystems
is achieved. To demonstrate the scope of the overall system and to assess the performance
costs the developer incurs thro!.^h using the Chiron user interface technologies, several size
and speed statistics are provided in the balance of this section.

5.1 Space

Chiron is a robust collection of user interface support tools. In terms of lines of code, the
union of all Chiron generator tools and run-time code consists of 65KSLOC (thousand-
Source-Lines-Of-Code) of hand-written code (37K Ada and 29K of C-(~)-). 32KSLOC were
generated, for a total of 98K.

Architecture Size of binary I CSLOC^
Xll/Ada

GXV/Ada
GXV/C
GXV/C-H+
Chiron^2

1.97M 43

2.01M 195

1.48M 133

1.41M 125

l.OOM 12H-client-code

Figure 15: Architectural Space Comparison

In terms of space, the Motif implementation of the Chiron server is 7.3M, while the
XView implementation is 10.6M. A trivial Chiron client takes about IM, 320K of which
can be attributed to the Ada nin-time system.

In figure 15, a comparison is made between the implementations of a hello worldprogram
which consists of a labeled base-frame. Each of these architectures are generated from the
same GUIDE file using the GUIDE XView Ada {GXV_ADA), C^^{GXV), C-b+(GXV++),
and Chiron's gil21ocal/gab tools. The Xll/Ada example, however, is hand-coded using
the Ada bindings to the XView toolkit. Chiron client tools generate about 720 lines of
support code for a single client regardless of how many Artists and ADT's are specified in
the client configuration. This code provides functionality for artist management and client
initialization in addition to dispatching. It is important to note that the hello world Chiron
client needs to run in conjunction with one of the two Chiron servers. The flight simulator

Commented Source Lines of Code

^®121 (LoCAL) and 715 (Ada) 1055 (Ada)
^^Linked with -Bstatic to disable dynamic loading.

client illustrated in figure 1 has a binary size of 1.7M. The uncommented number of lines
of non-generated source code (including ADTs, application, and artists) is 1590.

5.2 Speed

Architecture \ Low High Average
Xll/Ada

GXV/Ada
GXV/C
GXV/C-h-F
Chiron

0.60 Sec.

0.60 Sec.

0.59 Sec.

0.64 Sec.

0.98 Sec.

Figure 16: Execution Time Comparison

Performance degradation can be expressed in terms of the number of increased instruc
tions, and the extent of this overhead is discussed in the following paragraphs.

Figure 16 providesa comparisonof times for the creation and displayof graphicalobjects
for the simple hello world program described in section 5.1. In addition to these numbers,
the overhead to bring up an interface with about 20 graphical objects is negligible and
takes about 3 seconds. An end-to-end user interaction takes approximately 15 milliseconds.
This time reflects the processing of an event generated from the concrete depiction of a
graphical object. The event traverses the following route through the Chiron architecture:
the Xll event is transferred (C to Ada) to Chiron, scheduled and interpreted in the Chiron
server, sent to the Client (process to process), mapped to the artist to which the event is
relevant, executed inside of the particular artist event handler, and possibly routed to the
ADT with which the Artist is associated. The time was measured over 1000 events and

then averaged. Measurements were made on Sun Sparc-2s, with the client and server on
separate machines.

ADH. The charge against performance through using Chiron's ADH is concentrated in
two areas: the cost of maintaining a structured object hierarchy in the server and the cost
of providing the mechanism allowing the client to access the ADH through LoCAL.

One requirement of the ADH is to provide a higher level of abstraction to the user
beyond that of graphical toolkits and the windowing system. This however creates the
situation where a single ADH call may take a large number of substrate calls to enact
the instruction. In addition to this, maintenance of the concrete depiction of an object
as a result of changing its attributes, efficient screen refreshing and redrawing, and layout
concerns and constraints are all added into the ADH and need to be constantly re-evaluated

to maintain graphical consistency. For toolkit objects this overhead is relatively small,
approximately 2-3 instructions overhead, but for graphical drawing objects not provided by
the toolkits, this overhead can be as much as 10-15 instructions per single call. Also, the
Chiron ADH, through providinga higher level of abstraction and greater degree offlexibility,
relies heavily on the object-orientedaspects ofits implementation language (C-I-+). The use

of polymorpliisni, class derivation, multiple inheritance, and user-customizable constructor
and destructor functions in C++ all incur large performance costs, especially for complex
objects embedded in deep-derivation trees as seen in the graphical portions of the ADH. A
more general discussion of performance issues using object-oriented and language dependent
techniques can be found in [Ree92al [Ree92b].

In order to maintain the advantages of flexibility that the LoCAL approach to accessing
the ADH provides, the LoCAL code is translated and expanded into pure Ada calls. This
expansion degrades performance of the system because the translation of LoCAL into Ada
results on average in three times more instructions to be executed. It is interesting to
note that historically this is roughly the same rate of expansion as first seen when adding
object-oriented extensions to the C language through C++.

Client Architecture. In addition to the code expansion and performance overhead
through using LoCAL and the ADH, Chiron's client architecture provides support code
for event-based dispatching to maintain multiple coordinated views and the application-
interface separation. For each ADT described in the client configuration file, a wrapper is
generated to provide concurrency and dispatching support. However, this introduction of
an intermediate software layer results in a performance overhead for each ADT interface
call of two procedure calls for concurrency control and two for event dispatching. Time for
dispatching is essentially the time to do a round-trip Ada rendezvous, which for N-artists
is N+2 task entry calls where an Ada task entry call is approximately equal to. a procedure
call + some small time <5 for task synchronization which is compiler and operating system
dependent.

Client-Server Split. The inter-process communication mechanism chosen to implement
Chiron's client-server split allows Chiron clients and servers to communicate to each other
across different networks, languages, operating systems, and platforms. While this allows
architectural flexibility, this advantage comes at the price of performance. In addition to the
expense of performing inter-process communication, messages sent between the client and
server need to be encoded and decoded to allow for interoperability between heterogeneous
platforms and languages. For simple,pre-definedtypes (i.e. integer, boolean, etc.) there is a
four instruction overhead (two for encoding, two for decoding), but for complex composite
types (i.e. records possibly with embedded structures) there is also a four instruction
overhead for each structure in addition to the encoding of its components. This overhead
basically represents the tagging and linearization of a complex data type. To avoid heavy
inter-process communication, the ADH is designed to minimize the number of messages
sent across the split through abstraction and reuse.

In conclusion, therefore, the use of a structured user interface object hierarchy (ADH),
a message-based dispatching client architecture, and a client-server separation, while ad
dressing Chiron's high-level design object ives, represents a tradeoff between functional ad
vantages and potential performance penalties. Because of Chiron's architectural flexibility,
systems developed using Chiron can be tailored to meet specific functional and performance
and goals.

6 Summary comparison to other work

In addition to the other systems discussed elsewhere in this paper, several key systems
influencedthe design and evolution of Chiron-l. Chiron-l's predecessor, Chiron-0 [YTT88],
from whichseveral key ideas were taken, was influenced by Smalltalk's [GRs83] model-view-
controller (MVC) paradigm and its separations of concerns. Artists for data structures
were introduced by Myers in the Incense symbolic debugging sytem [Mye83], as noted
elsewhere. Loops [SBK86] uses a special form of inheritance called annotation that binds
the equivalent of artists to objects. This annotation concept inspired Chiron's wrapper
technology. Finally, Anson's device model [Ans82l, provided some key insights in developing
concurrent interfaces.

Ongoing research projects in the user interface area offer approaches that contrast in
various ways with that of Chiron. Rather than comparing all systems on the basis of the
same criteria (which is desirable but which would consume far too much space) we instead
comment only on the most relevant features of some of these other systems.

A general architectural comparison can be made with two well-known systems, Inter
views and Garnet. Interviews [LVC89] uses C++, and is tightly coupled to that lan
guage. Application and user interface code are closely tied together, and a user interface
listener/dispatcher is in control of the single control thread. The application is dormant
until Interviews invokes application code. Application code takes the form of virtual func
tions in user-defined sub-classes of the Interviews class hierarchy. This is in contrast with
Chiron's focus on clear separation of the user interface from the application, as well as
Chiron's concurrent control model.

Garnet [MGD''"90] is written in Lisp, and applications must be coded in Lisp. Garnet
makes use of a combined constraint manager and object manager. For the application to
respond to user events, a Garnet listener is given control, and application code is again
dormant imtil invoked by the user interface layer in response to user interactions. While
architecturally this is again in contrast to Chiron, we are investigating ways of incorporating
constraint mechanisms into Chiron to achieve many of the beneflts exhibited in Garnet (and
Gilt [Mye91]).

In the Dynamic Windows/Common LispInterface Manager [McK91], presentation types
are built through inheritance from application objects. This is similar in concept to the
way Chiron artists are built, since they obtain much of their interface from the package
specifications of the object they display. Chiron, in its Ada implementation, cannot use
inheritance for this purpose, however.

The Suite system [Dew90] implements a distributed architecture that supports a group-
ware service . The ^stributed architecture of Suite is similar to Chiron's client-server
orientation, but is more fully exploited in Suite. In Suite, however, editing is the main
metaphor for user interaction and graphics are not supported.

The Picasso toolkit [RKS''"91] uses a programming language metaphor. User interface
objects are created and destroyed on scope entry and exit, and new parameter passing
modes have been devised to support user interface programming idioms. Chiron's LoCAL
has some similarities, though it is much simpler in objective. Chiron has avoided any
toolkit development, in contrast to Picasso. Picasso's triggering (based on its constraint

mechanism) is similar in purpose to Chiron's dispatcher, but Chiron uses multiple, strongly-
typed, concurrent mechanisms.

Serpent [SEI89] uses a client/server relational database trigger model with restricted
data types. This is similar to Chiron's dispatcher, but Chiron places no restriction on the
set of types that may be displayed and does not demand that the application relinquish, to
the user interface system, storage control of the objects to be displayed.

Three papers at CHI'92 are especially deserving of comment. The Rendezvous project
[Hil92] focuses on the use of the abstraction-link-view paradigm for the structuring of
applications and user interfaces. Rendezvous' abstractions are akin to Chiron's application's
ADTs; its links are related to Chiron's dispatchers, and its views are similar to Chiron's
artists. In terms of capabilities the two systems have much in common, though Rendezvous
uses constraint technology where Chiron uses a simpler event-based architecture. A key
difference, however, is that to use Rendezvous the application developer must write the
application in Rendezvous, "an extended object-oriented Lisp".

The AT&T Display Construction Set UIMS [RBW92] separates applications from the
UIMS via Unix pipes. The UIMS can thus receive data events from multiple processes.
The data messages are not richly typed, however, restricting application to situations where
simple database records suffice to capture the object to be displayed.

NASA's TAE Plus system [Szc92] is focused on making the generation of applications
with GUI's easier than by using toolkits directly. TAE insulates the application from
changes in the toolkit. TAE Plus is like many commercial systems, however, which generate
an application code template into which the remainder of the application code must be
inserted. The UIMS thus strongly determines the architecture of the application.

The Proteus document presentation system [GHM92] provides a set of services that
allow the presentation of software development documents (i.e. programs and design spec
ifications) to be determined by a formal style specification. Proteus maintains a separation
of concerns between document structure and presentation issues. This separation, similar
to Chiron's separation of user interface and application, enables coordinated, multiple views
of documents with support for simultaneous editing.

enoutlCK EVOUaenOKT vlalats K hia leiSHH)

5 tw* EtO II nan IKTtSCII:

6 ~l <«V€l(.t3STOl*T»

7> —I iiwa X : EWX U > aad 2 • 0!

B

9 fl. I ; cvo :i s:

10 —I «TaSlTIVIE.CIKT«)WT»

LOCRTICM IF VtlLATKM

14 ba«in

15 TEXr.lO.R/r CCiia 4 Mlia fcr « 'I:

IB IW.IO.in <I>i

17a AisEWKI);

IB RWiifln

19 irfv olBara =>

20 TEXT.IOAtJ.lIC CEiOFtian MOlERMR raiiari'

90l.EVBi.C96TWIirr

9ai.pixiTi«.ca6T«iiir

salua fir I: 2

Mlua tr A: 1

iratapraMad iitll riia* Kill imeu

Figure 17: The Anna Debugger reporting a violation.

7 Example uses of Chiron

Chiron has been applied to a wide range of problems, by undergraduate and graduate
students at UCI and the University of Colorado, the development team, and unaffiliated
research groups both at UCI and elsewhere. Several of these applications are briefly de
scribed below. These descriptions are designed to illustrate the range of applications for
which Chiron is appropriately used as well as to indicate the degree to whichits separations
of concerns and other technical characteristics have been effective in practice.

7,1 The Anna debugger

The Anna Debugger was built at Stanford University by p[rogrammers not affiliated with
the Chiron project. It debugs Ada programs which use Anna assertions. The debugger
notifies the user when an Anna assertion is violated and displays the assertion in question
(See Figure 17). The user can then perform any number of operations and then continue
the execution of the Ada program. The Anna Debugger's user interface has progressed
from a textual command-line interface to an X-based, viz. Xlib, interface, and finally to a
Chiron interface. In fact all three interfaces coexist. The choice of which user interface to
use is made at application load time. The key to this achievement is a clean interface to
the application which aU three user interfaces respect.

0«jeriaan<«s I

|)>lr*ct Data
Anomalits:

|)fon< SaTcctad

Piltir ChojcBS

•♦ Soirc* Off ^Sara fti 1^
« 'we Off ^ T«^ On

* Stiaa Off ^ Stidiv On

lI'JI

I oroodur* sqrKH. In.AHir Inttstc
nisult out Inta^Kt
Out.DI9lts: In lntl9*D It

Demginiler Intesvj-N:
Mnt.O'Olt Intastr
SUo.SIze r Inteoor;
InlsrmidlgtK intHtf :*0;
Cur.Diglts: innger :• 0:

Z baqin
3 while Cur.Cl9lts< 1-tOut.Dl9lts loop

— Try Che diolts between 0 end 9
—Ef^fllvely. thissolves;
— remglndar - ItnCermedtate " 30 *-nexC_dlglt]
— fcr the smallest positive value

4 Step.Size w intermediate *30 * i;
6 NexC.Dl9lC:>0;
a while hemainder >- StepJIze loop
9 Oemalnder ;• flamalnder - Step,Slza;
II Step-Size :*Scip.Slza* 2;
13 Ne<t.Dl9lC:-Nast.Dl4ll«' 1;

end loop;

— ering two mca places Into the remainder and «
10 Aemalnder;- Aamainder • 100:
13 Intermediate IntermadlaCB *10 * NexUDlQlt

—we have computed theresult outtoone mere ei
14 Cur.Dlglts Cur.Olgits + 1;

end loop; I
5 nesult - marmedlate:

Figure 18: The ProDAG artist annotating a CFG

7.2 ProDAG/TAOS

The Software Testing Group at UCI, distinct from the Chiron group, has developed a
graphical user interface using Chiron for two systems called ProDAG (PROgram Depen
dence Analysis Graph) and TAGS (Testing with Analysis and Oracle Support). ProDAG is
a tool set that performs analysis of dependencies between program statements. TAGS is an
environment which supports the analysis and testing process of software development. Both
systems provide an application programmatic interface (API) to all of their functionality.
The GUI for ProDAG consists of six Chiron artists that use the API to provide access to
all of the tools in ProDAG. In the same manner, four artists are used for the TAGS system.
In ProDAG, the GUI allows a user to analyze a program, display its control flow graph
(CFG), and then annotate the CFG to display the dependency information in a variety
of ways (See Figure 18). In TAGS, the GUI is used to develop test cases and test data
and then execute, verify, and analyze test execution. ProDAG/TAGS consists of eighty-five
thousand lines of code produced by four to six programmers. Forty-nine thousand lines of
code are contained in the API and supporting appHcation. The GUI takes up the remaining
thirty-six thousand lines of code with greater than seventy percent of that code generated
by Chiron and the Pleiades object management system [TC93]. The GUI developer thus

Score: 30

Figure 19: The Tetris artist

wrote about ten thousand lines of code between the two systems.
The API approach used in ProDAG/TAOS lent itselfnaturally to Chiron's ADT-based

artists. In fact, once the API was set, the programmer who developed the Chiron GUI
for ProDAG/TAOS did so independently of the programmers who developed the code for
the tools. In addition, the GUI developer was able to make use of Chiron's generator
tools to quickly generate an initial interface which could then be refined. The GUIDE
and gil21ocal/gab tools allowed the developer to create the initial layout of the artists and
then generate skeleton code to implement that layout. The GLAD layout system speeded
development of the CFG artist. The final task was to flesh out the generated code to
respond meaningfully to calls made on the API.

7.3 Multi-player Tetris game

A Chiron developer produced a multi-player Tetris artist (See Figure 19). On each players'
screen, Tetris blocksfall into a well. The playersuse the keyboard to rotate and position the
blocks. When a player clears a row of blocks, this row, minus the block which caused the
row to become complete, appears at the bottom of the well of the other player's displays.
Thus, while players do not interact with each other on the screen (i.e. they don't see each
other's falling blocks) their actions do eventually affect the other players. The nm-time
configiuration of the game (how many players and their machines) can be changed using
the standard client configuration file that all Chiron clients use. This file allows changes
in the client's configuration between invocations without having to compile or link those
changes into the artist. The strength of Chiron's client-server approach is displayed by
this artist. During a game, each instance of the Tetris artist runs independently of the

others, focusing only on its user's actions and sending the server the appropriate messages
to update its display. This artist also illustrates Chiron's concurrency advantages. Each
instance must listen and respond to key events from the user, row completion events from
the other artists, as well as animating the falling Tetris blocks.

8 SummEiry and conclusions

Several principles guidedthe design of Chiron. Primary impactsof three of them on Chiron
axe described below.

Separation of concerns. The two areas in which the notion of separation of concerns
were considered important were the separation of the application and the user interface
code, and the separation of the user interface code and the underlying toolkit and win
dowing system. The artist concept provides separation between the application and the
user interface code. The notion of the abstract depiction hierarchy, coupled with the client-
server architecture, provides separation between the user interface code and the underlying
toolkit and windowing system.

Concurrency. Concurrency was achieved along a couple of dimensions. The application
code can be concurrent, since multiple Ada tasks can be active in an application process.
Artists run concurrently with the application. Concurrencyalso arises becauseof the client-
server split. One large application could consist of several clients and servers, each running
on a different machine.

Language and platform independence. The client-server architecture ofChiron makes
it possible to have application components written in different languages work together.
Artists in the clients communicate via inter-process communication links to the server, and
it does not matter what language they are written in. The abstract depiction hierarchy
hides the details of the particular underlying toolkit.

The Chiron user interface system provides separation of concerns to enhance reusability
and robustness to change, architectural extensibility and flexibility in developing applica
tions, and support for multiple-user and networked applications. At the same time Chiron
has been able to realize a level of performance necessary for applications typical to software
development environments, the original context for Chiron.

Chiron is particularly well suited for distributed, long-lived, object-based applications.
Applications of substantial complexity particularly benefit from Chiron's separations, for
the design of the application's software architecture is independent of user interface con
cerns. The Chiron architecture is also ideal for heterogeneous applications that may include
multiple languages, multiple platforms, and COTS software.

A wide variety of users, from undergraduate students to professional programmers, have
successfully applied Chiron to a wide range of applications. We believe therefore that the
principles, architectural schemes, and mechanisms we have explored are both workable and
desirable; we encourage other UI researchers to benefit from our efforts. The system and
additional papers are available by anonymous ftp to liege.ics.uci.edum /pub/arcadia/chiron.,
or on the World-Wide Web (URL http://www.ics.uci.edu/Arcadia/chiron.html}.

Acknowledgments

Mary Cameron, Ruedi Keller, and Dennis Troup were key contributors to the original
Chiron-l architecture. Other important contributions been made by John Self, Craig
Snider, and Robert Zucker. Critical performance improvements were made by David
Levine.

References

Ada 9X Mapping/Revision Team. Ada 9X Reference Manual. Intermetrics,
Inc., Cambridge, Massachusetts, September 1993. Version 4.0.

American National Standards Institute. Military Standard Ada Programming
Language (ANSI/MIL--STD-1815A-1983), January 1983.

Ed Anson. The device model of interaction. Computer Graphics, 16(3):107-
114, July 1982. (Proceedings of SIGGRAPH 82).

Jeff Barr, Andrew Bernard, and Jay Wettlaufer. Galaxy Application Environ
ment Technical Description. Visix Software Inc., 11440 Commerce Park Drive,
Reston VA 22091, 1992.

Marc H. Brown. Zeus: A system for algorithm animation and multi-view
editing. Technical Report 75, Digital Systems Research Center, Palo Alto,
CA, February 1992.

Martin R. Cagan. The HP SoftBench environment: An architecture for a new
generation of software tools. Hewlett-Packard Journal, 41(3):36-47, June 1990.

Prasun Dewan. A tour of the suite user interface software. In Proceedings of the
Third Annual Symposium on User Interface Software and Technology, pages

•57-65, Snowbird, UT, October 1990. Association for Computing Machinery.

Tom Gaskins. PHIGS Programming Manual O'Reilly and Associates, Inc.,
103 Morris Street, Suite A, Sebastopol, CA 95474, 2nd edition, 1992.

Susan L. Graham, Michael A. Harris, and Ethan V. Mimson. The Proteus
presentation system. In Proceedings of ACM SIGSOFT '92: Fifth Symposium
on Software Development Environments, pages 130-138, Washington D. C.,
December 1992-.

Adele Goldberg and David Robson. SmaUtalk-80: The Language And Its
Implementation. Addison-Wesley, 1983.

Samuel P. Harbison. Modula-3. Prentice Hall, Englewood Cliffs, New Jersey
07632, 1992.

Ralph D. Hill. The abstraction-line-view paradigm: Using constraints to con
nect user interfaces to applications. In Proceedings of the Conference on Hu
man Factors in Computing Systems, pages 335-342, Monterey, CA, May 1992.
Association for Computing Machinery.

Mark A. Linton, Paul R. Calder, and John M. Vlissides. Interviews: A C-b+
graphical interface toolkit. In Proceedings of the USENIX C-f-f Workshop,
Sante Fe, NM, November 1987. Appeared as The Design and Implementation
of Interviews and this is a later version.

Mark A. Linton, John M. Vlissides, and Paul R. Calder. Composing user
interfaces with Interviews. IEEE Computer, 22(2):8-22, February 1989.

Scott McKay. GLIM: The Common Lisp Interface Manager. Communications
of the ACM, 34(9):58-59, September 1991.

Brad A. Myers, Dario A. Guise, Roger B. Dannenberg, Brad Vander Zanden,
David S. Kosbie, Edward Pervin, Andrew Mickish, and Philippe Marchal. Gar
net: Comprehensive support for graphical, highly interactive user interfaces.
IEEE Computer, pages 71-85, November 1990.

M. Maybee, L. J. Osterweil, and S. D. Sykes. Q: A multi-lingual interprocess
communications system for software environment implementation. Technical
Report CU-CS-476-90, University of Colorado, Boulder, June 1990.

Brad A. Myers. Incense: A system for displaying data structures. Computer
Graphics, 17(3):115-125, July 1983.

Brad A. Myers. Separating application code from toolkits: Eliminating the
spaghetti of call-backs. In Proceedings of the Fourth Annual Symposium on
User Interface Software and Technology, pages 95-105, Hilton Head, South
Carolina, November 1991.

Neuron Data Inc., 156 University Avenue, Palo Alto CA 94301. Neuron Data
Open Interface Technical Overview, 1991.

Tim O'Reilly. Xlib Reference Manual O'ReiUy and Associates, Inc., 103 Morris
Street, Suite A, Sebastopol, CA 95474, 2nd edition, 1992.

Joseph P. Rotella, Amy L. Bowman, and Catherine A. Wittman. The AT&T
display construction set user interface management system (UIMS). In Pro
ceedings of the Conference on Human Factors in Computing Systems, pages
73-74, Monterey, CA, May 1992. Association for Computing Machinery.

David R. Reed. Efficiency considerations in C++, part 1. C++ Report,
4(3):27-30, March/April 1992.

David R. Reed. Efficiency considerations in C++, part 2. C++ Report,
4(5):23-27, June 1992.

Steven P. Reiss. Connecting tools using message passing in the field environ
ment. IEEE Software, 7{4):57-66, July 1990.

Lawrence A. Rowe, Joseph A. Konstan, Brian C. Smith, Steve Seitz, and
Chung Liu. The PICASSO application framework. In Proceedings of the Fourth
Annual Symposium on User Interface Software and Technology, pages 95-105,
Hilton Head, South Carolina. November 1991.

Mark J. Stefik, Daniel G. Bobrow, and Kenneth M. Kahn. Integrating access-
oriented programming into a multiparadigm environment. IEEE Software^
3(1):10-18, January 1986.

SEI. Serpent overview. SEX Technical Report CMU/SEI-89-UG-2, ESD-TR-89-
08, Carnegie-Mellon University Software Enginnering Institute, August 1989.

Piyawadee "Noi" Sukaviriya, James D. Foley, and Todd Griffin. A second
generation user interface design environment: The model and runtime archi
tecture. In Proceedings of the Conference on Human Factors in Computing
Systemsy pages 375-382, Amsterdam, April 1993. Association for Computing
Machinery.

Pedro Szekely, Ping Luo, and Robert Neches. Beyond interface builders:
Model-based interface tools. In Proceedings of the Conference on Human Fac
tors in Computing Systems, pages 383-390, Amsterdam, April 1993. Associa
tion for Computing Machinery.

Craig Snider. GLAD user's manual. Arcadia Technical Report UCI-91-15,
University of California, October 1991. Arcadia technical note: User's manual
for a generic hierarchical graph layout package. Version 1.0.

SunSoft, 2550 Garcia Avenue, Mountain View, OA 94043. OpenWindows De
veloper's Guide 3.0 User's Guide, 1991.

Martha R. Szczur. Transportable appUcations environment (TAE) plus user
interface designer workbench. In Proceedings of the Conference on Human
Factors in Computing Systems, pages 231-232, Monterey, CA, May 1992. As
sociation for Computing Machinery.

Peri Tan and Lori A. Clarke. Pleiades: An Object Management System for
Software Engineering Environments. In ACM SIGSOFT '93: Proceedings of
the Symposium on the Foundations of Software Engineering, Los Angeles, Cal
ifornia, December 1993.

Richard N. Taylor and Gregory F. Johnson. Separations of concerns in the
Chiron-1 user interface development and management system. In Proceedings
of the Conference on Human Factors in Computing Systems, pages 367-374,
ATnfit.prHfl.Tn, April 1993. Association for Computing Machinery.

C. Wiecha, W. Bennett, S. Boies, J. Gould, and S. Greene. ITS: A tool for
rapidly developing interactive applications. ACM Transactions on Information
Systems, 8(3):204-236, July 1990.

John Wamock and Chuck Geschke. PostScript Language Reference Manual
Adobe Systems Incorporated, Addison-Wesley, Menlo Park, California, 7th
edition, November 1992.

[WH89] Patrick Henry Winston and Berthold Klaus Paul Horn. Lisp. Addison-Wesley,
Reading, Massachusetts, 3rd edition, 1989.

[WWFT88] Jack C. Wileden, Alexander L. Wolf, Charles D. Fisher, and Peri L. Tarr.
PGRAPHITE: An experiment in persistent typedobject management. In Pro
ceedings of ACM SIGSOFT '88: Third Symposium on Software Development
Environments, pages 130-142, Boston, MA, November 1988.

[YTT88] Michal Young, Richard N. Taylor, and Dennis B. Troup. Software environment
architectures and user interface facilities. IEEE Transactions on Software En
gineering, 14(6):697-708, June 1988.

A Throttle artist example

--Author: Robert S. Zucker (rzuckerQbonnie.ics.uci.edu)
— Date: 13 April 1992
--Subject: Throttle_ModuleJ^rtist.cal
— Note: Adapted from David Levine's Ada source and Brewster,
--Larry Thomas, "Modeling Flight". IEEE Potentials 9:2,
--April 1990, pages 34-41; and from Brewster's Pascal
--source: "Flight Simulator, Subsonic Jet Aircraft, Version
—4.26" dated February 26, 1990. Brewster made his
--software available only to individuals and only for
--educational purposes, and strictly prohibits any and all
--commercial use.

with Wrapper_Throttle_Module;
with Client-Dispatcher;

with TEXTJO;

package body ThrottleJ^loduleJVrtist is

task body ThrottleJ^odule-Artist is

SelfJ'tr : ThrottleJ^odule_ArtistJ^tr;
Local-ArtistJD : CSL.ArtistJD.Type;
LocalJDisplay : CSL.Str;

—<< declare artist objects here. >>

Artist-Frame
Artist-Panel
Throttle

: "CSL.ADL-Base-Frame;
: "CSL.ADL.Panel;

: -CSL.ADL-Slider;

Slider3ehavior : *"Behavior-Array-Type := (
Others => System.No-Addr);

--<< declare handler routines for both client and server >>
— << events plus any auxilliary routines here. >>

—server events handlers must have the signature;
—procedure <handler-name> (Object: CSL.Object.Type;
— Event : CSL.Chiron^vent-Ptr);

—client events handlers must have the signature:
—procedure <handler_name> (Event: Chent-Event-Ptr);

procedure Handle_Slider (Object: "CSL.Object-Type;
Event: "Chiron-Event-Ptr) is

Float-Result: Float;

—User has moved the slider, get the new value from the event
—information and convert it to type Float range 0.0 to 1.0.
FloatJ^esult := Float(Event.Num_Val) / 100.0;

—Update throttle ADT
Wrapper-Throttle-Module.Adjust-Throttle (Float-Result);

end Handle-Slider;

begin --task body

accept Start-Artist (
ID : CSL.ArtistJD_Type;
Self^ptr ; address;
Display-Name : CSL.Str) do

Self_Ptr := address-tO-artist(belf_Aptr);
Local_ArtistJD := ID;
LocalJDisplay := Display .Name;

--<< register interests in client events with the >>
--<< appropriate dispatchers here. >>

—this artist does not receive ADT-based events

end Start-Artist;

--<< create initial graphical objects here. >>
TextJo.Put-Line ("Throttle Artist");

—Upon startup, a base frame will be created that will
--be used to hold panel window.

Artist-Frame := ''Apply(ADL.Base-Frame.
create,

Frame-Label => "Throttle Control",
Show-Footer => True,
X => 10,
Y => 773);

—Upon startup, a panel window will be created that will
—be used to hold the slider.

Artist-Panel := "•Apply(ADLJ^anel,
create,
Parent => Artist-Frame,
Foreground => Black,
Background => Black);

— Upon startup, a slider will be created with the following
—attributes.

Throttle := "Apply (ADL-Slider,
create.
Parent
Label

Slider-Value
Min.Value
Max-Value
Show-Value-Field
Foreground
Slider-Width

=> ArtistJ'anel,
=> "Throttle",
=> 43,
=> 6.
=> 100,
=> True,

=> White,
=> 200);

'ApplyfADL-Panel, Artist-Panel, ADL-windowJit);
*'Apply(ADL-Base-Frame, Artist-Frame, ADL.windowJit);

— << set behaviors of graphical objects in response >>
— << to server events here. >>

Slider_Behavior(Select-£vent) := Handle-Slider'ADDRESS;

'Set.Behavior (ADL-Slider, Slider-Behavior);

— << call adi start-processing method here. >>

"•Apply(ADL_Base_Frame, Artist-Frame, start-processing);

loop
select

accept Notify-Client-Event (
Client-Event ; Client-Events.Client-Event_Ptr;
Handler-Routine : address);

or

accept Notify-Server-Event (
Object : CSL.Object-Type;
Server-Event : CSL.Chiron-Event_Ptr;
HandlerJRoutine : address);

or

accept Terminate-Artist do
--destroy all graphical objects

"'Apply(ADL-baseJrame,
artistJrame,
destroy,
artistJrame);

end Terminate-Artist;

end select;
end loop;

end Throttle-Module-Artist;

end Throttle-Module-Artist;

