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Determination of the Accuracy of the Observations
by Carl Friedrich Gauss.

Translation by Joakim Ekström, with preface.

Abstract. Bestimmung der Genauigkeit der Beobachtungen is the second of the threemajor pieces that
Gauss wrote on statistical hypothesis generation. It continues the methodological tradition of�eoria
Motus, producing estimates by maximizing probability density, however absence of the change-of-
variables theorem causes technical di�culties that compromise its elegance. In�eoria Combinationis,
Gauss abandoned the aforementioned method, hence placing Bestimmung der Genauigkeit at a cross-
roads in the evolution of Gauss’s statistical hypothesis generation methodology.�e present translation
is paired with a preface discussing the piece and its historical context.
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Translator’s Preface and Discussion
by Joakim Ekström, UCLA Statistics

Carl Friedrich Gauss (1777-1855) published three major pieces on statistical hypothesis generation:
�eoria Motus (1809), Bestimmung der Genauigkeit (1816) and�eoria Combinationis (1821) (see
Sheynin, 1979).�eoria Motus was translated into English by C. H. Davis in 1858,�eoria Combina-
tionis was translated into English by G. W. Stewart in 1995, but an English translation of Bestimmung
der Genauigkeit has, in spite of great e�orts, not been found in the literature. Hence the present
translation.

Bestimmung der Genauigkeit der Beobachtungen, as its complete title reads, is an interesting histor-
ical text for many reasons. In it, Gauss uses the statistical hypothesis generation method of�eoria
Motus for the purpose of estimating the standard deviation, basically, but is challenged by technical
di�culties. In�eoria Combinationis, Gauss abandoned the aforementioned method in favor of
a more rudimentary, and substantially less ambitious, method that considers linear combinations
of the observations. As such, Bestimmung der Genauigkeit is conceptually and chronologically at a
crossroads in the evolution of Gauss’s statistical hypothesis generation methodology.
In addition, Bestimmung der Genauigkeit contains a �rst discussion of the estimator property that

Fisher (1922) termed asymptotic relative e�ciency, the de�nition of the Gauss error function, and
Hald (1999) even argues that the piece contains the �rst application of the method of maximum
likelihood.
�is preface aims to discuss and provide historical context to Bestimmung der Genauigkeit and

Gauss’s statistical hypothesis generation methodology.

1. Historical context

Fundamentally, the statistical hypothesis generation method of�eoria Motus and Bestimmung der
Genauigkeit is based on the idea of Jakob Bernoulli (1654-1705), as discussed in Ars Conjectandi (1713),
that empirical observations should be evaluated through the concept of probability. More precisely,
the method is based on Bernoulli’s ��h axiom: “Between two, the one that seems more probable should
always be chosen.”
While elegant in principle, Bernoulli’s approach has a fundamental weakness, which was �rst artic-

ulated by fellow philosopher-mathematician Gottfried Leibniz (1646-1716) in correspondence with
Bernoulli (1703). In many applications, for instance Gauss’s �eld of astronomy, there are commonly
in�nitely many possibilities that each has probability zero; i.e. there exists continuous, or non-atomic,
probability distributions.�erefore, if every possibility has probability zero then choosing the most
probable is not a meaningful course of action.
A pragmatic circumvention of this conundrum was proposed by Johann Lambert (1760; 1765),

and subsequently by Jakob’s nephew Daniel Bernoulli (1778), through a statistical criterion. Utilizing
probability density, if one possibility has greater probability density than another, then by the density
criterion the former is deemed more probable than the latter. Gauss employed the density criterion
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in�eoria Motus and Bestimmung der Genauigkeit; the statistical criterion continues to be widely
used to this day.
�e di�culty in applying the density criterion is that relevant probability distributions need to be

derived. In�eoria Motus, Gauss sought to determine the most probable Kepler orbit given observa-
tions of a heavenly body, and applied the Gauss-Pearson decomposition x = µ + u where x is the
observation, µ the ideal part, i.e. the true position of the heavenly body, and u the observational error.
A hypothesized ideal part ν yields the representation x = ν + e where e is the representation residual,
and by Gauss’s theory of errors the most probable ideal part corresponds to the most probable repre-
sentation residual under the probability distribution of the observational error (see Ekström, 2012,
for a comprehensive discussion). In�eoria Motus, under assumptions of statistically independent
and normally distributed observational errors, maximal density is obtained by minimizing a sum of
squares.
In Bestimmung der Genauigkeit, derivations of probability distributions aremuchmore challenging.

If the absolute value of the observational error is denoted by y, and the standard deviation of its
probability distribution by σ , then under the normal distribution assumption the quotient y/σ is chi
distributed with one degree of freedom. However, deriving the density function of this transformed
random variable requires the change-of-variables theorem, which had not yet been fully developed
in the early nineteenth century. In the absence of this needed change-of-variables result, Gauss
developed a change-of-variables formula, according to which the transformed random variable, y/σ ,
is chi distributed with two degrees of freedom. Note that in the notation of Gauss the standard
deviation satis�es σ = (

√
2h)−1, where h is his accuracy measure.

A remark with respect to the density criterion is that, because the probability density function
of the chi distribution with one degree of freedom is strictly decreasing, maximizing density yields
an extreme value. Speci�cally, the most probable standard deviation under the density criterion
is identically zero, regardless of the observations. �is example illustrates the sometimes bizarre
consequences of the density criterion. By contrast, the chi distribution with two degrees of freedom,
which Gauss’s change-of-variables formula yielded, has its mode at one, and as a consequence the
estimate of the standard deviation is the intuitive and very sensible square-root of the mean square
error.

2. Gauss’s change-of-variables formula

If a random variableW can be expressed as a transformation T of a random variableU ,W = T(U),
then the probability thatW attains an element of a set B can be determined through the identity

Prob(W ∈ B) = Prob(T(U) ∈ B) = Prob(U ∈ T−1(B)), (1)

where T−1 denotes inverse of T . Consequently, ifU has a probability density function, the probability
thatW attains an element of B can be obtained by integrating the probability density function over the
set T−1(B). While elegant, this method is in general di�cult to apply directly because determining
inverse images of sets is o�en quite laborious.
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By the change-of-variables theorem, if the inverse transformation T−1 is di�erentiable and injective
on an open set that contains B, then

∫
T−1(B)

f dλ = ∫
B
( f ○ T−1)∣JT−1 ∣dλ,

where JT−1 denotes the Jacobian determinant of T−1 and λ denotes the Lebesgue measure (see Rudin,
1987). Consequently, if bothW and U have probability density functions, fW and fU respectively,
andW = T(U) where T is di�erentiable and injective, then

∫
B
fWdλ = ∫

B
( fU ○ T−1)∣JT−1 ∣dλ, (2)

and thus the identity fW = ( fU ○ T−1)∣JT−1 ∣ is obtained.
Since the Lebesgue measure was constructed at the turn of the twentieth century, the change-of-

variables theorem was not available to Gauss who died in 1855. However, simple versions can be
derived through the fundamental theorem of calculus, which was well established in Gauss’s days. In
spite of this, Gauss did not use that result, but constructed a new change-of-variables formula for this
particular requirement. In the following, Gauss’s change-of-variables formula is discussed in some
detail.
In�eoria Motus, Gauss argued that if P and Q are two probability distributions and one accepts

the premise Prob(L(W) = P) = Prob(L(W) = Q) > 0, where L(W) denotes the probability
distribution ofW , then it holds that

Prob(L(W) = P∣W(ω) ∈ E)
Prob(L(W) = Q∣W(ω) ∈ E)

= P(E)
Q(E)

,

for any subset E satisfying Q(E) > 0.�is relation can be shown through an application of Bayes’
theorem; the issue of constructing topological product spaces of probability distributions and values
of random variables is not discussed in the present text. In Bestimmung der Genauigkeit, probability
densities are treated by method of in�nitesimal calculus, allowing Gauss to propose analogously

Dens(L(W) = P∣W(ω) ∈ {b})
Dens(L(W) = Q∣W(ω) ∈ {b})

= Dens(W(ω) ∈ {b}∣L(W) = P)
Dens(W(ω) ∈ {b}∣L(W) = Q)

,

where b is some value in the range ofW .
More speci�cally, if {Tα}α∈A is an indexed set of transformations, A being its index set, then

the indexed set {L(Tα(U))}α∈A is a set of probability distributions, and if the probability density
function of Tα(U) is denoted by fTα(U), then Gauss’s density identity can be expressed

Dens(L(W) = L(Tα(U))∣W(ω) ∈ {b}) =
c fTα(U)(b)
fTα0(U)(b)

,
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where c is a constant and α0 ∈ A. Furthermore, if the identity function is an element of {Tα}α∈A and
if the probability distribution L(Tα(U)) is unique for each α ∈ A, then the identity can be written

f̂W(α) = Dens(W = Tα(U)∣W(ω) = b) =
c fTα(U)(b)

fU(b)
, (3)

which is Gauss’s change-of-variables formula.
As it is constructed, the function f̂W of Equation (3) is de�ned on the index set, A, rather than

the range of the transformed random variable. However, in the applications of Gauss the index sets
are taken so that they equal the ranges of the transformed random variables; thus alleviating this
inconsistency. In Bestimmung der Genauigkeit, the the index sets are either the non-negative real
numbers or the real numbers, matching the ranges of the transformed random variables studied.

3. First derivation of the accuracy measure

In Section 3 of Bestimmung der Genauigkeit, Gauss uses his change-of-variables formula to derive
the probability density function of his accuracy measure, h, which is de�ned by σ = (

√
2h)−1.

Letting y denote the absolute value of the observational error, it is natural to use the Gauss-Pearson
decomposition y = σu, where L(u) = χ1, i.e. the chi distribution with 1 degree of freedom. In this
part of Bestimmung der Genauigkeit, Gauss approaches the observation as a manifested quantity, and
the observation is therefore treated as a constant. Solving for σ yields L(σ) = L(yu−1), and so the
ideal part to be estimated is treated as a random variable.
By the change-of-variables theorem, the probability density function of the random variable yu−1

is fyu−1(z) = fσ(z) = cz−2e−y2/2z2 , where c is a constant and z the real-valued argument. By applying
Gauss’s change-of-variables formula, using the known probability density functions fu(z) = c1e−z

2
/2

and fy(z) = fσu(z) = c2σ−1e−z
2
/2σ 2 , one obtains f̂σ(z) = c̃z−1e−y2/2z2 , where c1, c2 and c̃ are constants.

If Gauss’s accuracy measure h is used instead of the standard deviation, σ , the change-of-variables
theorem yields fh(z) = ce−z2 y2 , i.e. L(

√
2hy) = χ1, while application of Gauss’s change-of-variables

formula produces f̂h(z) = c̃ze−z2 y2 , i.e. L(
√
2hy) = χ2.

It may also be noted that f̂σ and f̂h are inconsistent relative to the change-of-variables theorem in
the sense that, letting R(h) = (

√
2h)−1 = σ , it holds that f̂σ ≠ ( f̂h ○ R−1)∣JR−1 ∣; hence contradicting

Equation (2). In fact it holds that f̂σ = ( f̂h ○ R−1), i.e. Gauss’s formula does not account for the
Jacobian determinant.�is circumstance explains why Gauss’s change-of-variables formula did not
give rise to corresponding problems in�eoria Motus, because with the additive Gauss-Pearson
decomposition x = µ + u solving for the ideal part µ yields µ = x − u, which is a transformation that
has Jacobian determinant absolute value equal to one. In this case, Equation (1) can easily be applied
directly, as well.
Given the derived density function f̂σ(z) = c̃z−1e−y2/2z2 , application of the density criterion yields

that the most probable value of h is (
√
2y)−1, and with m statistically independent observations the

most probable value of h is
√
m/2 y⃗t y⃗, where y⃗ and y⃗t denote the vector (y1, . . . , ym) and its transpose

respectively.�is corresponds to estimating the variance by the mean square observation, a result
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that Gauss expressed comfort with; according to Sheynin (1979) the estimate had been discussed by
Laplace in the year 1815.
In Section 4, Gauss derives the probability density function of the observational error of his

estimate. If the estimate
√
m/2 y⃗t y⃗ is denoted by H, then this observation of h is equipped with

Gauss-Pearson decomposition H = h − λ where h is the true accuracy and λ = h − H denotes the
observational error. By using y = (

√
2H)−1, the function f̂h can be written f̂h(z) = cze−z2/2H2 , and

by Equation (1) f̂h−z(H) = f̂h(H + z). Gauss’s change-of-variables formula, Equation (3), yields

f̂λ(z) =
c f̂h−z(H)
f̂h(H)

= c̃(H + z)e−(H+z)2/2H2

He−H2/2H2
= c̃(1 + z/H)e−z/He−z

2
/2H2 .

Given m statistically independent observations y1, . . . , ym,

f̂λ(z) = c̃m(1 + z/H)me−mz/He−mz2/2H2 ,

and by using theMaclaurin series for log(1+x) one obtains the approximation (1+x)m ≈ emxe−mx2/2,
and it follows

f̂λ(z) ≈ c̃m(emz/He−mz2/2H2)e−mz/He−mz2/2H2 = c̃me−mz2/H2 .
Hence Gauss concludes that for large m, λ is approximately mean zero normally distributed with
variance H2/2m, and consequently his accuracy estimate, h = H + λ, is approximately normal,
L(h) = N(H,H2/2m).

4. Determination of 50% confidence intervals

In Sections 4 and 5, Gauss discusses determination of probable limits of the true value of the
accuracy measure, which in modern terminology are referred to as endpoints of 50% con�dence
intervals.
In general, the preferred method of Gauss is to �rstly obtain results of the form Q ∼ N(q, q2c2/m),

whereQ is the sample estimate of a true value q, c a constant, andm the sample size. A 50% prediction
interval forQ is q(1±

√
2ρc/
√
m), where ρ = 0.4769363 . . . is the number such that the 75% percentile

of the standard normal distribution equals
√
2ρ. Gauss then states that Q(1 ±

√
2ρc/
√
m) is a 50%

con�dence interval for q, a maneuver which may be termed the prediction-con�dence interval
substitution.
In a modern argument, the assumed probability distribution of Q implies that the random variable

converges in probability to q as the sample size goes to in�nity, and by an application of Slutsky
theorems an asymptotic 50% con�dence interval for q is Q(1 ±

√
2ρc/
√
m). Hence, by substitution

of the true value for the sample estimate, an approximate con�dence interval for the true value is
obtained from a prediction interval for the sample estimate. Consequently, this prediction-con�dence
interval substitution is correct asymptotically.�e challenge of this method lies in �nding relevant
sample estimates that satis�es Q ∼ N(q, q2c2/m).
In Section 4, Gauss uses the estimateH =

√
m/2 y⃗t y⃗, derived in Section 3, to �nd a 50% con�dence

interval for h. In this part of Bestimmung der Genauigkeit, the observation is considered a given
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constant and the ideal part to be estimated is considered a random variable. Since Gauss obtained
L(h) = N(H,H2/2m), the probable limits for h are H(1 ± ρ/

√
m).

�e twenty-�rst century standard solution of this problem looks like the following: Since the
observations are assumed statistically independent and identically distributed N(0, (

√
2h)−2), 2H−2

is identi�ed as a sample mean and is hence, suitably normalized, asymptotically normal by the central
limit theorem. Also, H is asymptotically normal by Cramér’s theorem, and

√
m(H − h) converges

in distribution to N(0, h2/2).�us a 50% prediction interval for H is given by h(1 ± ρ/
√
m), and

by the prediction-con�dence interval substitution an asymptotic 50% con�dence interval for h is
given by H(1 ± ρ/

√
m). Even though Gauss uses his imperfect change-of-variables formula, he still

reaches the correct asymptotic con�dence interval, which is quite remarkable.
At the conclusion of Section 4, Gauss claims that 50% con�dence intervals for the quantity r = ρ/h,

i.e. themedian absolute error, are both R/(1±ρ/
√
m) and R(1±ρ/

√
m), where R = ρ/H. By Cramér’s

theorem, the second con�dence interval is asymptotically correct. Although Gauss o�ers minimal
explanation, the �rst con�dence interval is given in the same sentence as the con�dence interval for h,
and it is therefore possible that the �rst con�dence interval for r is obtained through a transformation
of the con�dence interval for h. Speci�cally, if д(x) = ρ/x, so that д(h) = r, then, because д is
continuous and strictly decreasing on the positive reals, the image of the intervalH(1±ρ/

√
m) under

д is R/(1 ± ρ/
√
m).

5. Second derivation of the accuracy measure

In Section 5, Gauss proceeds along a line of reasoning which from a twenty-�rst century perspective
is more conventional; studying distributions of statistics. By using results of Pierre-Simon Laplace,
Gauss claims that sums of powers of the absolute values of the observations, S(n) = yn1 +⋯ + ynm in
the present notation, are normally distributed assuming the sample size, m, is a large number. Under
the normal distribution assumption, the expected value and variance of S(n) are computed, and then
construction of 50% prediction intervals for S(n) is straightforward.
However, the aim is to construct con�dence intervals for his accuracy measure, and for this

purpose Gauss proposes the transformation Tn(z) = r n
√
z/mK(n), where K(n) denotes the expected

value of yn. Gauss claims that the most probable value, which equals the expected value under the
normal distribution assumption, of Tn(S(n)) is r, however the equality E(

n√S(n)) = n
√
E(S(n)) holds

only if n = 1 or if the random variable is one-point distributed, as follows by Jensen’s inequality.
Further, Gauss uses the equality Var( n√S(n)) = σ2µ2(1−n)/n/n2, where µ and σ denote the mean and
standard deviation of S(n), which also only holds if n = 1. But asymptotically, by Cramér’s theorem
the claims hold for all n, and through this asymptotical approximation it holds approximately that
Tn(S(n)) ∼ N(r, r2A(n)/n2m), where A(n) satis�es Var(S(n)) = mK(n)2A(n).
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�us, for n = 1, 2, 3, . . . , asymptotic 50% prediction intervals for Tn(S(n)) are given by r(1 ±√
2ρ/n
√
A(n)/m), and asymptotic 50% con�dence intervals for r are obtained through the prediction-

con�dence interval substitution, i.e. Tn(S(n))(1±
√
2ρ/n
√
A(n)/m). For n = 2, Gauss notes that the

50% con�dence interval is identical to that obtained in Section 4.
On more than one occasion, Gauss derives results that fundamentally rest on Cramér’s theorem

(for reference, see, e.g., Ferguson, 1996). �is circumstance raises the question of whether Gauss
was aware of this twentieth-century result. In writing, Gauss o�ers little explanation other than
stating that the results hold clearly.�ough fundamentally, Cramér’s theorem is an application of
local linear approximation of di�erentiable functions, and considering Gauss’s works on power series
expansions it is not at all inconceivable that Gauss understood this result. At the same time, the fact
that he did not elevate the result into a theorem, or at least discuss it in some detail, must be taken as
circumstantial evidence that Gauss did not fully understand the entirety of this elegant result. An
additional possibility is that Gauss presumed asymptotic normality, and then simply computed the
means and variances.

6. Efficiency, non-parametrics, and illustration

Section 6 of Bestimmung der Genauigkeit discusses a property of the estimates of r that in modern
terminology is referred to as asymptotic relative e�ciency.�is treatment may well be one of the
�rst discussions of this estimator property, which o�en is attributed to Fisher (1922). According to
the computations of Gauss, the estimate based on the sum of squares has the smallest variance and
therefore utilizes the observations most e�ciently.
Despite being less e�cient, i.e. less accurate at a given sample size, Gauss argues that the most

easily computed estimate well can be used; thereby demonstrating a willingness to accept a trade-o�
of accuracy for ease of computation. It should be noted that the simplest estimate is asymptotically
normal through the central limit theorem only, while the other estimates are asymptotically normal
through the central limit theorem paired with Cramér’s theorem; a circumstance that typically yields
a worse asymptotical approximation of the distribution of those latter estimates.
In Section 7, Gauss discusses a 50% con�dence interval for r that is based on the sample median of

the absolute values. While no citation is given, the results Gauss uses could well be of Laplace, since
Laplace studied the sample median and is referenced in Section 5.�e 50% con�dence interval given
is correct asymptotically. Section 8 provides a numerical example from astronomy, which was the
scienti�c discipline of Gauss’s professorship.

7. Discussion

Bestimmung der Genauigkeit is an interesting historical document for many reasons. In and
of itself, it demonstrates that Gauss maintained an interest in statistics and the advancement of
science through empirical observation.�e text also demonstrates that Gauss sometimes were, to an
extent, pragmatic; using approximations when reasonable and arguing that a less e�cient estimate in



TRANSLATOR’S PREFACE AND DISCUSSION 9

some instances can be preferred on the ground that it is more easily computed. As a service, Gauss
provides the reader with numerical values so to facilitate easier computation. Like in�eoria Motus,
the derivations rest on an assumption of normally distributed observational errors. In its entirety,
Bestimmung der Genauigkeit provides a rare unmediated insight into Gauss’s statistical hypothesis
generation methodology.
In the statistics literature, Bestimmung der Genauigkeit has been discussed in the context of the

early history of the method of maximum likelihood (Hald, 1999). In Section 3, Gauss derives the most
probable value of his accuracymeasure in a way that has technical similarities to the twentieth-century
likelihood method. However, at close examination it is quite clear that Gauss is using a method that
was conventional at his time and also applied in�eoria Motus; deriving the probability distribution
of the observational error and using the mode as the most probable value, as per the density criterion
of Lambert and Bernoulli.�e technical similarities between Gauss’s derivations and the method of
maximum likelihood are a result of Gauss’s imperfect change-of-variables formula.
Possibly due to elegance-compromising technical di�culties caused by his imperfect change-of-

variables formula, Gauss abandoned the method of�eoria Motus and Bestimmung der Genauigkeit,
i.e. estimation through Bernoulli’s ��h axiom and the density criterion. In�eoria Combinationis,
Gauss used a more rudimentary and substantially less ambitious method based on the premise
of restricting estimates to linear combinations of the observations. Given an m-sized sample x⃗ of
statistically independent and identically distributed real-valued observations, the linear combina-
tions a⃗tx⃗ are unbiased estimates when a⃗t(1, . . . , 1) = 1. Since the variances of those estimates are
proportional to a⃗t a⃗, the minimum variance unbiased linear combination estimator ism−1(1, . . . , 1)tx⃗,
i.e. the arithmetic mean.�eoria Combinationis was Gauss’s last major piece on statistical hypothesis
generation.
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Z e i t s c h r i f t
f ü r

A s t r o n o m i e
u n d

v e r w a n d t e W i s s e n s c h a f t e n.

March and April 1816.

XII. Determination of the Accuracy of the Observations.
by Professor Gauss,

Knight of the Royal Hanoverian Guelphic Order.

1.

In the justi�cation of the so-called Method of Least Squares, it is assumed that the probability of
an observational error ∆ can be expressed through the formula

h√
π
e−h

2∆2 ,

where π denotes the half circumference, e the basis of the hyperbolic logarithm, and h a constant1 that,
by Section 178 of�eoria Motus Corporum Coelestium, can be viewed as the measure of the accuracy
of the observations.2When using the Method of Least Squares to estimate the most probable value
of the quantity that the observations depend on, then knowledge of the constant h is not needed;
even the ratio of the accuracy of the estimate to the accuracy the observations is independent of h.
Still, knowledge of the accuracy measure h is interesting and instructive in and of itself, and I will
therefore show how one through the observations may reach such knowledge.

2.

First, I am allowing myself to precede the subject matter with a few explanatory remarks. For
convenience, I denote the value of the integral

∫
2e−t2dt√

π
,

1In�eoria Motus, Gauss argued, through making a parallel with the method of the arithmetic mean, that this should
be accepted as the probability of all observational errors. During the nineteenth century, this claim was commonly referred
to as the law of errors.
2In modern notation, h−1 = σ

√
2 where σ denotes the standard deviation.

11
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from 0 to t, by Θ(t).3 A few separate values provide an understanding of the shape of this function.
One has

0.5000000 = Θ(0.4769363) = Θ(ρ),
0.6000000 = Θ(0.5951161) = Θ(1.247790ρ),
0.7000000 = Θ(0.7328691) = Θ(1.536618ρ),
0.8000000 = Θ(0.9061939) = Θ(1.900032ρ),
0.8427008 = Θ(1) = Θ(2.096716ρ),
0.9000000 = Θ(1.1630872) = Θ(2.438664ρ),
0.9900000 = Θ(1.8213864) = Θ(3.818930ρ),
0.9990000 = Θ(2.3276754) = Θ(4.880475ρ),
0.9999000 = Θ(2.7510654) = Θ(5.768204ρ),
1 = Θ(∞).

�e probability that the error of an observation lies between the limits −∆ and +∆, or, disregarding
the sign, is not greater than ∆, is

= ∫
he−h2x2dx√

π
when one stretches the integral from x = −∆ to x = +∆, or two times the same integral when taken
from x = 0 to x = ∆, thus

= Θ(h∆).

�e probability that the error is not less than ρ
h is thus=

1
2 , or equal to the probability of the contrary;

we shall name this quantity the probable error, and denote it by r.4 By contrast, the probability that
the error exceeds 2.438664r is only 110 ; the probability that the error rises above 3.818930r is only

1
100 ,

and so forth.

3.

We shall now assume that the errors α, β, γ, δ, . . . , have been manifested through m actual
observations, and investigate what can be concluded from these with respect to the values of h and
r. If one makes two suppositions, in which the true value of h is either set to = H or = H′, then the
probabilities of observing the errors α, β, γ, δ, . . . relate as5

He−H
2α2He−H

2β2He−H
2γ2⋯ to H′e−H

′2α2H′e−H
′2β2H′e−H

′2γ2⋯,

i.e. as
Hme−H

2
(α2+β2+γ2+⋯) to H′me−H

′2
(α2+β2+γ2+⋯).

3In modern terminology, Θ(t) is the (Gauss) error function.
4In modern terminology, r is the median absolute value.
5Apparently, a statistical independence assumption is also made.



DETERMINATION OF THE ACCURACY OF THE OBSERVATIONS 13

�is relationship therefore expresses the probabilities that the true value of h was H or H′, a�er the
realization of these errors (T. M. C. C. Section 176); or, the probability of each possible value of h is
proportional to the quantity6

hme−h
2
(α2+β2+γ2+⋯).

�emost probable value of h is consequently that which maximizes this quantity, from which one
derives the familiar rule

=
√

m
2(α2 + β2 + γ2 + . . . )

.

�e most probable value of r is thus

= ρ
√
2(α2 + β2 + γ2 +⋯)

m
= 0.6744897

√
α2 + β2 + γ2 +⋯

m
.

�is result holds generally, whether m is large or small.

4.

One understands easily that the smaller m is, the less reliable these determinations of h and r
are, in terms of accuracy. For this purpose we develop the degree of accuracy one should attach to
these determinations, in the case where m is a large number. For convenience, we denote by H the
previously derived most probable value of h, i.e.

√
m

2(α2 + β2 + γ2 +⋯)
,

and note that the probability that H is the true value of h to the probability that H + λ is the true
value of h relate as

Hme−
m
2 to (H + λ)me−

m(H+λ)2
2H2 ,

or as7

1 to e−
λ2m
H2
(1− 13

λ
H+

1
4

λ2
H2
−
1
5

λ3
H3
+⋯).

�e second term is only appreciable, relative to the �rst, when λ
H is small, and therefore we may

allow ourselves to use
1 to e−

λ2m
H2 ,

instead of the speci�ed relation. Simply put, the probability that the true value of h lies between
H + λ and H + λ + dλ is very close to

= Ke−
λ2m
H2 dλ,

where K is a constant speci�ed so that the integral

∫ Ke−
λ2m
H2 dλ,

6�is derived probability distribution is incorrect; see translator’s preface.
7�is step utilizes the Maclaurin series for log(1 + x); see preface.
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between appropriate limits with respect to λ, shall = 1. Instead of such limits, it is here permitted to
take the limits −∞ and +∞, since the size of m clearly renders e−

λ2
H2 negligible as soon as λ

H seizes to
be a small fraction, whereby

K = 1
H

√m
π
.

Hence the probability that the true value of h lies between H − λ and H + λ is

= Θ( λ
H
√
m),

thus this probability = 1
2 when

λ
H
√
m = ρ.

�e odds are thus one-to-one that the true value of h lies between H(1 − ρ
√

m) and H(1 +
ρ
√

m), or
that the true value of r falls between

R
1 − ρ
√

m
and

R
1 + ρ
√

m
,

where R denotes the most probable value of r that was derived in the preceding Section. One can
name these limits the probable limits of the true values of h and r.8 Clearly, we can here also set the
probable limits for the true value of r as R(1 − ρ

√

m) and R(1 +
ρ
√

m).

5.

In the preceding investigation, we have been of the view that we consider α, β, γ, δ, . . . as given
quantities, and seek the amount of probability that the true values of h and r lie between certain
known limits. However, one can also look at the matter from another point of view, and under
the presumption, that the observational errors are subjected to a certain probability law that, in
turn, determines the probability that the expected value of the sum of squares of m observational
errors falls between known limits.�is problem, given the condition that m is a large number, has
already been solved by Laplace,9 as has the problem of determining the probability that the sum
of m observational errors itself falls between certain known limits. One can easily generalize this
investigation even further; I am here content with stating this result.
Let ϕ(x) denote the probability of the observational error x, so that ∫ ϕ(x)dx = 1 when one

stretches the integral from −∞ to∞. We shall generally denote by K(n) the value of the integral

∫ ϕ(x)xndx ,

8In modern terminology, these limits are the endpoints of a 50% con�dence interval.
9Laplace is presumably Pierre-Simon Laplace (1749-1827), French mathematician and astronomer.
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between these limits.10 Let further S(n) denote the sum

αn + βn + γn + δn +⋯

where α, β, γ, δ, . . . denote undetermined m observational errors.�e parts in that sum should all
be taken as positive, also for odd n.
�en mK(n) is the most probable value of S(n), and the probability that the true value of S(n) falls

between the limits mK(n) − λ and mK(n) + λ is11

= Θ
⎛
⎝

λ√
2m(K(2n) − K(n)2)

⎞
⎠
.

Consequently the probable limits of S(n) are

mK(n) − ρ
√
2m(K(2n) − K(n)2)

and
mK(n) + ρ

√
2m(K(2n) − K(n)2).

�is result holds generally, for every law of the observational errors. If we turn to the case where

ϕ(x) = h√
π
e−h

2x2

is taken, then we �nd

K(n) =
Π 12(n − 1)
hn
√

π
,

where the characteristic Π is taken in the meaning of Disquisitiones generales circa seriem in�nitam
(Comm. nov. soc. Gotting. T. U., Section 28).12�us, 13

K = 1, K I = 1
h
√

π
K II = 1

2h2 , K III = 1
h3
√

π
K IV = 1⋅3

4h4 , KV = 1⋅2
h5
√

π
KVI = 1⋅3⋅58h6 , KVII = 1⋅2⋅3

h7
√

π , and so forth.

Consequently, the most probable value of S(n) is

mΠ 12(n − 1)
hn
√

π
,

10In modern terminology, K(n) is the expected value of the n:th power.
11Apparently, this as an application of the central limit theorem. For normal distributions the mode equals the mean,

and Var(S(n)) = m(K(2n) − K(n)2).
12�e function Π is de�ned Π(λ) = ∫

∞
0 yλe−ydy, i.e. Π(λ) = Γ(λ+ 1) = λΓ(λ), where Γ denotes the Gamma function.

�us Π(−1/2) =
√

π and Π(n) = n! for n ∈ N.
13Apparently, these are the expected values of the powers of the absolute value.
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and the probable limits of the true value of S(n) are

mΠ 12 (n−1)
hn
√

π
⎛
⎝
1 − ρ
√

2
m (

Π(n− 12 )
√

π
(Π 12 (n−1))

2 − 1)
⎞
⎠

and
mΠ 12 (n−1)

hn
√

π
⎛
⎝
1 + ρ
√

2
m (

Π(n− 12 )
√

π
(Π 12 (n−1))

2 − 1)
⎞
⎠
.

If, as above, one sets ρ
h = r, so that r represents the probable observational error, then, clearly, the

most probable value of

ρ n
√

S(n)
√

π
mΠ 12 (n−1)

is = r,14 and the probable limits of the value of that quantity are

r
⎛
⎝
1 − ρ

n

√
2
m (

Π(n− 12 )
√

π
(Π 12 (n−1))

2 − 1)
⎞
⎠

and

r
⎛
⎝
1 + ρ

n

√
2
m (

Π(n− 12 )
√

π
(Π 12 (n−1))

2 − 1)
⎞
⎠
.

Hence, the odds are also one-to-one that r lies between the limits15

ρ n
√

S(n)
√

π
mΠ 12 (n−1)

⎛
⎝
1 − ρ

n

√
2
m (

Π(n− 12 )
√

π
(Π 12 (n−1))

2 − 1)
⎞
⎠

and

ρ n
√

S(n)
√

π
mΠ 12 (n−1)

⎛
⎝
1 + ρ

n

√
2
m (

Π(n− 12 )
√

π
(Π 12 (n−1))

2 − 1)
⎞
⎠
.

For n = 2, these limits are
ρ
√
2S II
m (1 −

ρ
√

m)
and

ρ
√
2S II
m (1 +

ρ
√

m) ,
which agree entirely with those found above (Section 4). In general, the limits for even n are

ρ
√
2 n
√

S(n)
m⋅1⋅3⋅5⋅⋯ ⋅(n−1) (1 −

ρ
n

√
2
m (
(n+1)(n+3)⋯(2n−1)
1⋅3⋅5⋅⋯ ⋅(n−1) − 1))

and

ρ
√
2 n
√

S(n)
m⋅1⋅3⋅5⋅⋯ ⋅(n−1) (1 +

ρ
n

√
2
m (
(n+1)(n+3)⋯(2n−1)
1⋅3⋅5⋅⋯ ⋅(n−1) − 1)) ,

14�is is correct for n = 1, but only asymptotically so for n = 2, 3, 4, . . . ; see translator’s preface.
15�is is the prediction-con�dence interval substitution; see translator’s preface.
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and for odd n they are

ρ n
√

S(n)
√

π
m⋅1⋅3⋅5⋅⋯ ⋅

1
2 (n−1)

(1 − ρ
n

√
1
m (

1⋅3⋅5⋅⋯ (n−1)π
(2⋅4⋅6⋅⋯ ⋅(n−1))2 − 2))

and16

ρ n
√

S(n)
√

π
m⋅1⋅3⋅5⋅⋯ ⋅

1
2 (n−1)

(1 + ρ
n

√
1
m (

1⋅3⋅5⋅⋯ (2n−1)π
(2⋅4⋅6⋅⋯ ⋅(n−1))2 − 2)) .

6.

I attach the numerical values for the simplest cases:

Probable limits of r

I. 0.8453473 S
I

m (1 ±
0.5095841
√

m )

II. 0.6744897
√

S II
m (1 ±

0.4769363
√

m )

III. 0.5771897 3
√

S III
m (1 ±

0.4971987
√

m )

IV. 0.5125017 4
√

S IV
m (1 ±

0.5507186
√

m )

V. 0.4655532 5
√

SV
m (1 ±

0.6355080
√

m )

VI. 0.4294972 6
√

SVI

m (1 ±
0.7557764
√

m )
From this one can also see that determination method II is the most advantageous of them all.

When using Formula II, one hundred observational errors give a result that is as reliable as17

114 using I,
109 using III,
133 using IV,
178 using V,
251 using VI.

However, Formula I has the advantage of the most convenient computation, and since it is not
much less precise than II one may use this formula when one does not have the sum of the squared
observational errors readily available, or wishes to know it.

7.

Even more convenient, although considerably less accurate, is the following procedure. One orders
all m observational errors, absolute values taken, by their size and names the middle most, if m is
odd, or the arithmetic mean of the two middle most, if m is even, byM.18 It can be shown, to which

16�ere is possibly a misprint in the last numerator.
17In modern terminology, this property is referred to as asymptotic relative e�ciency.
18In modern terminology, this is the sample median of absolute values.
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in this place nothing further can be provided, that given a large number of observations the most
probable value ofM is r, and that the probable limits ofM are19

r (1 − eρ2√ π
8m)

and
r (1 + eρ2√ π

8m) ;

or, that the probable limits of the value of r are20

M (1 − eρ2√ π
8m)

and
M (1 + eρ2√ π

8m) ,

or in numbers
M (1 ± 0.7520974√

m ) .

�is procedure is thus only slightly more accurate than application of Formula VI, and one must
randomly draw 249 observational errors to accomplish the same as with 100 observational errors
when using Formula II.

8.

�e application of any of these methods on the 48 observational errors from Bode’s21 annual
astronomical book for 1818, Page 234, of the right ascensions of the Polar star by Bessel,22 yielded

SI = 60.′′46,
SII = 110.600,
SIII = 250.341118.

From this follows the most probable value of r through

Formula I ∶ 1.′′065, probable uncertainty ±0.′′078,
II ∶ 1.024, ±0.070,
III ∶ 1.001, ±0.072,

Section 7 ∶ 1.045, ±0.113,

an agreement that could barely have been expected. Bessel got 1,′′ 067 himself, and seems therefore
to have computed according to Formula I.

19Although uncredited, this result is possibly of Laplace.
20�is is the prediction-con�dence interval substitution; see translator’s preface.
21Bode is presumably Johann Elbert Bode (1747-1826), German astronomer.
22Bessel is presumably Friedrich Bessel (1784-1846), German mathematician and astronomer.
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⋆ ⋆ ⋆ ⋆
At this occasion, I share yet another correction that should be made to�eoria Motus Corporum

Coelestium, Pages 218 and 219. One reads, namely,

Page 218 Line 3 instead of e
−h2 s2

δ′′′ , e−hh′′′s2 ;
Line 4 instead of

√
1

δ′′′ ,
√

δ′′′;
Page 219 Line 8 instead of

√
A,
√
B′,
√
C′′,
√
D′′′, 1

√

A
, 1
√

B′
, 1
√

C′′
, 1
√

D′′′
.

�ese incorrectnesses were caused through the circumstance that a di�erent terminology was
used in an earlier stage of the investigation; their exchanges were in the indicated instances neglected.
�e numerical example is, as one sees, computed according to the corrected terminology, although
one computational error is made.�e equation on Page 219, Line 5 from bottom, should namely be

6633r = 12707 + 2P − 9Q + 123R,

and consequently the accuracy of r, Page 220,

=
√
2211
21

= 7.34.

�ese corrections were brought to my attention by Mr. Nicolai,23 to whom I here therefore express
my most profound thanks.

UCLA Department of Statistics, 8125 Mathematical Sciences Building, Box 951554, Los Angeles CA, 90095-
1554

E-mail address: joakim.ekstrom@stat.ucla.edu

23Nicolai is presumably Friedrich Bernhard Gottfried Nicolai (1793-1846), German astronomer.




