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Abstract 
A general geometrical fra'fTI:_ework for image process­

ing is presented. We consider intensity images as sur­
faces in the (x, I) space. The image is thereby a two di­
mensional surface in three dimensional space for gray 
level images. The new formulation unifies many clas­
sical schemes, algorithms, and measures. via choices of 
parameters in a "master" geometrical measure. More 
important, it is a simple and efficient tool for the de­
sign of natural schemes for image enhancement, seg­
mentation, and scale space. Here we give the basic 
motivation and apply the scher_ne to enhance images. 
We present the concept of an image as a surface in di­
mensions higher than the three dimensional intuitive 
space. This will help us handle movies, color, and vol­
umetric medical images. 

1 Introduction 
Motivated by [1, 21], we consider low level vision 

as an input to output process. For example, the most 
common input is a gray level image; namely a map 
from a two dimensional surface to a three dimensional 
space (IR3

). We have at each point of the xy coordi­
nate plane an intensity I(x, y). The IR3 space-feature 
has Cartesian coordinates (x, y, I) where x and y are 
the spatial coordinates and I is the feature coordinate. 

*This work is supported in part by the Applied Mathemat­
ics Subprogram of the Office of Energy Research under DE­
AC03-76SF00098, ONR grant under N00014-96-l-0381, and 
in part by the National Science Foundation under grant PHY-
90-21139. 

The output of the low level process in most models 
consists of 1). A smoothed image from which reliable 
features can be extracted by local, and therefore differ­
ential operators. 2). A segmentation, that is, either a 
decomposition of the image domain into homogeneous 
regions with boundaries, or a set of boundary points 
- an "edge map" . 

The research on the low level vision process in the 
retina and the brain indicate the existence of layers 
serving as operators such that the information is pro­
cessed locally in the layers and forwarded to the next 
layer with no interaction between distance layers. This 
means that the low level vision' process can be de­
scribed by a local differential operator. This process 
is called scale space where tis the ~cale (layer) param­
eter. 

There are many definitions for scale spaces of im­
ages aiming to arrive at a coherent framework that 
unifies many assumptions. One such assumption is 
that "only isophotes matter". We argue that this as­
sumption, though leading to many interesting results 
in many cases, seems to fail in many other natural 
cases. Let us demonstrate it with a simple example: 
In Fig. 1 we see two images of a bright square on a 
darker background. 

In fact, we notice that (see Fig. 2) in the second 
image the lower left corner of the 'bright square' is 
much darker than the upper right corner of the 'dark' 
background. Furthermore, even the upper right corner 
of the 'bright' square is darker than the upper right 



Figure 1: Two images of a bright square on dark back­
ground 

corner of the 'dark' background. The boundary of the 
inner square in the left image is closely related to one 
of the isophotes of the gray level image in that image, 
as shown in the upper row of Fig. 2. In the second 
case, we added a smooth function - a tilted plane -
to the first intensity function. This additional smooth 
function might .be the result of non-uniform lighting 
conditions. It is obvious that in the second intensity 
image (the right image) the isophotes play only a mi­
nor role in the perception process of the image. 

The importance of edges in scale space construc­
tion is obvious. Our view is consistent with the rest of 
the vision community in that boundaries between ob­
jects should survive as long as possible along the scale 
space, while homogeneous regions should be simplified 
and flattened in a more rapid way. On the other hand, 
we still want to preserve the geometry and mathemati­
cal integrity that results in some interesting non-linear 
'scale spaces'. Another important question, for which 
there are only partial,answers, is how to treat multi 
valued images. A color image is a good example since 
one actually talks about 3 images (Red, Green, Blue) 
that are composed into one. Should one treat such 
images as multi valued functions as proposed in [13]? 

We attempt to answer some of the above questions 
by viewing images as embedding maps, that flow to­
wards minimal surfaces. We consider two dimensions 
higher than most of the classical schemes, and instead 
of dealing with isophotes as planar curves we deal with 
the whole image as a surface. For example, a gray level 
image is no longer considered as a function but as a 
two dimensional surface in three dimensional space. 
In another example, we will show how to treat color 
images as a 2D surfaces in 5D: e.g. (x,y,R,G,B) space. 

The remainder of this paper is organized as follows: 
In Section 2 we comment on the notions of metric 
and length needed for the definition of measure and 
the flow. We present in Sec. 3 our measure and a 
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Figure 2: The two images from Fig. 1, their isophotes 
and the image as a surface in the (x, y, I) space. 

choice of minimization that gives a generalized version 
of the mean curvature flow. Then, in Section 4 we 
introduce the flow· itself that we have chosen to name 
Beltrami flow, and present a geometric interpretation 
in the simplest 3D case. Next, Section 5 presents the 

·metric and the resulting flow for color images. The 
analysis of movies and volumetric medical images is 
presented in Sec. 7. We refer the interested reader to 
[28] for further details and examples including a new 
segmentation procedure motivated by [29]. 

2 The Metric 

Figure 3: Length element of a surface curve ds. 

The basic concept of Riemannian differential ge­
ometry is distance. Let us start with the impor-
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tant example X : :E --+ IR3
. We denote the lo­

cal coordinates on the two dimensional manifold :E 
by (111 , 112). The map X is explicitly given by 
(X 1 (111,112),X2 (111 ,112),X3 (11 1 ,112

)). Since the local 
coordinates 11i are curvilinear, and not orthogonal in 
general, the distance square between two close points 
on :E, p = ( 111 , 112

) and p + ( d11 1
, d11 2

) is not ds2 = 
d11i + d11~. In fact, the squared distance is given by 
a positive definite symmetric bilinear form g;j ( 111 , 112) 

called the metric 

ds 2 g~vdO"~dO"v 
_ gu(d11

1
)

2 + 2g12d11
1

d11
2 + g22(d11

2
)

2
, (1) 

where we used Einstein summation convention in the 
second equality; identical indices that appear one up 
and one down are summed over. We will denote the 
inverse of the metric by g~v, so that g~vffv-r = 8~, 

where 8~ is the Kronecker delta. 

2.1 Induced metric 
Let X : I; --+ M be an embedding of :E in M, where 

M is a Riemannian manifold with a metric (gij )M. 
We can use the knowledge of the metric on M and the 
map X to construct the metric on :E. This procedure, 
is called the pullback and is given explicitly as follow: 

where i, j = 1, ... , dirnM are being summed over, and 
. i - (}xi(q' ,172) 
m short we use o~X = 8 · · qP. 

We will use the following simple and useful exam-
ple that is often used in computer vision: Consider 
embedding of a s11rface described as a graph in IR3

, 

Using Eq. (2) we get 

(4) 

where we used the identification X 1 = 111 and X 2 = 
112 in the map X. 

Actually we can understand this result in an intu­
itive way: Eq. (2) means that the distance measured 
on the surface by the local coordinates is equal to the 
distance measured in the embedding coordinates, see 
Fig. 3. Under the above identification, we can write 

ds2 dx 2 + dy2 + dl2 

dx 2 + dy2 + (Ixdx + Iydy) 2 

(1 + 1;)dx2 + 2Ixlydxdy + (1 + 1;)dy2
. 
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3 Polyakov Action and Harmonic 
Maps 

In this section, we present a general framework for 
non-linear diffusion in computer vision. The equa­
tions will be derived by a minimization problem from 
an action functional. The functional in question de­
pends on both the image manifold and the embedding 
space. Denote by (:E, g) the image manifold and its 
metric and by (M, h) the space-feature manifold and 
its metric, then the map X : :E -+ M has the following 
weight 

S[Xi, g~v, h;i] = J dm11Jgg~v o~XiovXi h;j(X), 

(5) 
where m is the dimension of :E, g is the determinant 
of the image metric, g~v is the inverse of the image 
metric, the range of indices is f-l, v = 1, ... , dim :E, and 
i,j = 1, ... , dimM, and h;j is the metric of the em­
bedding space. This functional, for m = 2, was first 
proposed by Polyakov [25] in the context of high en­
ergy physics, and the theory known as string theory. 

Given the above functional, we have to choose the 
minimization. We may choose for example to min­
imize with respect to the embedding alone. In this 
case the metric g~v is treated as a parameter and may 
be fixed by hand. Another choice is to vary only with 
respect to the feature coordinates of the embedding 
space, or we may choose to vary the image metric 
as well. In [28] we show how different choices yield 
different flows. Some flows are recognized as exist­
ing methods like the heat flow, with passive coordi- . 
nate transformation [16], the Perona-Malik flow [24], 
the geodesic active contours [5, 6, 17], the color flow 
[27, 8, 4], the mean-curvature flow [20] and its variants 
[14], and even a new invariant flow of images painted 
on surfaces [18]. Other choices are new and will be 
described below. 

To gain some intuition about this functional, let 
us take the example of a surface embedded in IR3 and 
treat both the metric (g~v) and the spatial coordinates 
of the embedding space as free parameters, and fix 
them to 

g = (~ ~) (6) 

From now on, we also fix the embedding space to 
Euclidean (IR3 in the example at hand) with Carte­
sian coordinates (i.e. h;j :::= 8;j). We refer the reader 
again to [28] for the general case. Then, up to a non­
important constant, we get 



If we now minimize with respect to I, we will get the 
usual heat operator acting on I. 

Using standard methods in variation calculus (see 
(28]), the Euler-Lagrange equations with respect to 
the embedding are: 

__ 1_hil 6S = _1 8 ( r;; iJ.V 8 Xi) (8) 2vg 6X1 vg iJ. ygg v 

Few remarks are in order. First notice that we used 
our freedom to multiply the Euler-Lagrange equations 
by a strictly positive function. Since (9p.v) is positive 
definite, g := det(gp.v) > 0 for all <rp.. This factor is 
the simplest one that doesn't change the minimization 
solution while giving a reparametrization invariant ex­
pression. The operator that is acting on Xi is the nat­
ural generalization of the Laplacian from flat spaces 
to manifolds and is called the second order differen­
tial parameter of Beltrami (19], or for short Beltrami 
operator, and we will denote it by A.9 . 

For a surface I:, embedded in 3 dimensional Eu­
clidean space, we get a minimal surface as the solution 
to the minimization problem. In order to see that and 
to connect to the usual representation of the minimal 
surface equation, we notice that the solution of the 
minimization problem with respect to the metric is 

(9) 

On inspection, this equation is simply the induced 
metric on I:. For the case of a surface embedded in 
IR3 we calculated it explicitly in (see Eq. (4)). Plug­
ging this induced metric in the first Euler-Lagrange, 
Eq. (8) we get the steepest decent flow 

(10) 

where H is the mean curvature, fJ is the normal to 
the surface: 1 

H 

jJ 

and g = 1 + I'f, + Ii. We see that this choice gives us 
the mean curvature flow! This should not be a sur­
prise, since 'the action functional for the above choice 
of metric g p.v is 

1 Note also that some definitions of the mean curvature in­
clude' a factor of 2 that we omit in our definition. 

which is the Euler functional that describes the area 
of the surface (also known in high energy physics as 
the Nambu action). 

In general for any manifold I: and M, the map 
X : I; -+ M that minimizes the action S with re­
spect to the embedding is called a harmonic map. 
The harmonic map is the natural generalization of 
the geodesic curve and the minimal surface to higher 
dimensional manifolds and for different embedding 
spaces. 

The generalization to any manifold embedded with 
arbitrary co-dimension is given by using Eq. 8 for 
all the embedding coordinates and using the induced 
metric Eq. 9. 

4 The Beltrami flow 
In this section, we present a new and natural flow. 

The image is regarded as an embedding map X : I: -+ 

IR3 , where I; is a two dimensional manifold, and the 
flow is natural in the sense that it minimizes the ac­
tion functional with respect to I and (9ij ), while being 
reparametrization invariant. The coordinates X 1 and 
X 2 are parameters from this view point and are iden­
tified as above with <r 1 and <r 2 respectively. The result 
of the minimization is the Beltrami operator acting on 
I: 

where the metric is the induced one given in Eq. 2, 
and i is the unit vector in the I direction. 

The geometrical meaning is obvious. Each point on 
the image surface moves with a velocity that depends 
on the mean curvature and the I component of the 
normal to the surface at that point. Since along the 
edges the normal to the surface lie almost entirely in 
the x-y plane, I hardly changes along the edges while 
the flow drives other regions of the image towards a 
minimal surface at a more rapid rate. Let us further 
explore the geometry of the flow in 3D: 

4.1 Geometric Flows Towards Minimal 
Surfaces 

A minimal surface is the surface with the least area 
that satisfies given boundary conditions. It has nice 
geometrical properties, and is often used as a natu­
ral model of various physical phenomena, e.g. soap 
bubbles "Plateau's problem", in computer aided de­
sign, in architecture (structural design), and recently 
even for medical imaging (7]. Numerical schemes for 
the mean curvature flow, and the construction of min­
imal surfaces under constraints, has been the subject 
of considerable research (12, 10, 11, 9]. 
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For'constructing the mean curvature flow of a gray 
level image as a surface, we follow three steps: 

(1). Given the surface S that evolves according to 

the geometric flow ~ = F, where F is an arbitrary 
smooth flow field. The geometric deformation of S 
may be equivalently written as ~ = (F, N)iJ, where 

iJ is the unit normal of the surface at each point, 
and (F,iJ) is the inner product (the projection ofF 
on N). The tangential component affects only the 
internal parameterization of the evolving surface and 
does not influence its geometric shape. 

(2). The mean curvature flow is given by: ~ = 
HiJ, where H is the mean curvature of S at every 
point. Let us now use the relation given in Step 1: 

(3). Considering the image function I(x, y), as a· 
parameterized surface S = (x, y, I(x, y)). We may 

write the mean curvature flow as: * = (JJ!,Z} Z, 
for any smooth vector field Z defined on the surface. 
Especially, we may choose Z as the f direction, i.e. 
Z = (0, 0, 1). In this case 

~ · Z = )1 + T£ +I~· (0, 0, 1) = Jg(O, 0, 1). 
(N,Z) 

(13) 
Fixing the (x, y) parameterization along the flow (i.e. 
using the fixed x, y plane as the natural parameteriza-

tion), we have St = B;(x, y, I(x, y)) = (0, 0, It(x, y)). 
Thus, for tracking thet evolving surface, it is enough 

to evolve I via * = H J1 + T£ +I~, where the mean 
curvature H is given as a function of the image I, see 
Fig. 4, and Eq. (11). 

Figure 4: Left: Mean curvature flow. Right: Beltrami 
flow. 

Substituting for H (see [10) for another derivation 
of H), we end up with the following evolution equation 

(1 + Iff)Ixx- 2Ixiyixy + (1 + J';}Iyy 
It = 1 + J2 + J2 , (14) 

X y 
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with the image itself as initial condition I( x, y, 0) = 
I(x, y). Using Beltrami second order operator 1}.9 and 
the metric g, Eq. (14) may be read as It = gD..9 I. 

·On the other hand, the Beltrami flow (selective mean 
curvature flow) It = D..9 I is given explicitly for the 
simple 2D case as 

see Fig. 4. 
As an example, Fig. 5 compares the results of 

the Beltrami flow and the mean curvature flow both 
applied to a digital subtraction angiogram (DSA}. It 
demonstrates the edge preserving property of the Bel­
trami flow relative to the mean curvature flow. 

Figure 5: Left: Original medical image. Middle: Re­
sult of the mean curvature flow. Right: Result of the 
Beltrami flow. 

We note again that some properties for the mean 
curvature flows that are relevant to some of our cases 
are studied by the PDE community, e.g. [2). One im­
portant result, at least for the level set framework [23), 
in which the mapping is from IRm to IRm+l (embed­
ding with codimension 1) is that embedding of evolv­
ing surfaces is preserved [15). Roughly speaking, it 
means that surfaces can not cross as they evolve if 
they do not cross to begin with. 

In [28) we show that large ratio between the gray 
level axis and one of the coordinate axis leads to po­
tential surfaces via the heat equation [3, 22), while at 
small ratio we have the TV (total variation or L1 ) 

[26). We have thereby linked together many classical 
schemes via a selection of one parameter, that is, the 
image gray level scale with respect to its xy coordi­
nates. This scale is determined arbitrarily anyhow in 
most of the current schemes. 

5 Color 
We generalize the Beltrami flow to the 5 dimen­

sional space-feature needed in color images. The em­
bedding space-feature space is taken to be Euclidean 
with Cartesian coordinate system. The image, thus, 



is the map f : E -+ IR5 where E is a two dimensional 
manifold. Explicitly the map is 

We note that there are obvious better selections to 
color space definition rather than the RGB flat space. 
Nevertheless, we get impressive results even from this 
oversimplified assumption. 

We minimize our action (5) with respect to the met­
ric and with respect to (r, Ig, Jb). For convenience we 
denote below (r,9,b) in general notation by i. Mini­
mizing the metric gives, as usual, the induced metric 
which is given in this case as follows: 

911 1 + (!;)2 + (!;)2 + (!~)2, 
912 I;I~ + I;Iff + I~Ii, 
922 1 + U;)2 + (Iff)2 + Ui)2

, 

9 det(9ij) = 911922 - 9i2· 

Note that this metric differs from the Di Zenzo metric 
[13] by the addition of 1 to 911 and 922· The source of 
the difference is the map used to describe the image. 
Di Zenzo used X : IR2 

-+ IR3 while we use X : E-> 
IR5. 

The action functional under this choice of the met­
ric is the Euler functional S = J d2 rr .;g. It is simply 
the area of the image surface. Minimization with re­
spect to Ii gives the Beltrami flow 

(16) 

which is a flow towards a minimal surface that pre­
serves edges. 

For simple implementation of the Beltrami flow let 
us first compute the 6 matrices: I~, I~, and the follow­
ing 6 matrices: 

-1/2( Ii Ii) 9 922 X - 912 y > 

-1/2( Ii Ii) 9 911 y - 912 X • 

Then the evolution is giyen by 

It = 9-1/2 (p~ + q~). 

(17) 

(18) 

In [28] we show that we can avoid the square root 
computations for this flow. 

6 Beltrami Flow in Color Space 
We now present some results of denoising color im­

. ages using our model. Spatial derivatives are approx­
imated using central differences and an explicit Euler 
step is employed to reach the solution. We represent 

Figure 6: Color results 
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the image in the RGB space; however, other represen­
tations and different numerical schemes (as in [9]) are 
possible. 

The results are presented in Fig. 6 as follows: In the 
first row of Fig. 6 the Beltrami flow is demonstrated to 
form an edge preserving scale space in color. Three im­
ages that correspond to different scales are presented 
left to right. Observe the way the fine geometric de­
tails disappear first, while sharp edges are preserved 
along the evolution. 

The second row shows a color image corrupted with 
Gaussian noise. The reconstruction result by apply­
ing Beltrami flow is also shown on the right. Itera­
tion has been manually stopped to produce the result. 
Constraints similar to [4] can be added; see [28] for 
details. 

Finally, third and fourth rows of the figure present 
the result of applying present the result of applying the 
Beltrami flow to reconstruct a color image with noise 
artifacts introduced first by wavelet lossy compression 
and then by JPEG lossy compression. The left pair 
depicts the corrupted image and the right pair is the 
result of reconstructing it with the Beltrami flow. 

7 Movies and Volumetric Medical Im­
ages 

Traditionally, MRI volumetric data is referred to 
as 3D medical image. Following our framework, a 

·more appropriate definition is of a 3D surface in 4D 
(x, y, z, I). In a very similar manner we will consider 
gray level movies as a 3D surfaces in 4D, where all 
we need to do is the mental exercise of replacing z of 
the volumetric medical images by the sequence (time) 
axis. In Fig. 7, the first row shows images at different 
z locations and the second row shows the correspond­
ing denoised images, the third image in both sequences 
is magnified showing the selective smoothing effect in 
this case. This is a relatively simple case, since now 
we have co-dimension equal to one. 

The induced metric in this case is given by 

(19) 

and the Beltrami flow is now: 

It = g- 2 ( Izz(l + il, +I;)+ Iyy(1 + i1 +I;) 

+Ixx(1 +I;+ f1)- 2Ixiyixy 
-2Iyiziyz- 2Izixizx) (20) 

where g = 1 + I1 + I; + I'}. 
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8 Concluding Remarks 
Inventing a perceptually good segmentation pro­

cess, and formulating a meaningful scale space for im­
ages is not an easy task, and is actually what low level 
vision research is about. Here we tried to address these 
questions and to come up with a new framework that 
unifies many previous results and introduces new pro­
cedures. There are still many open questions to be 
asked, like what is the right aspect ratio between the 
intensity and the image plane? Or in a more general 
sense, what is the 'right' embedding space h;j? 

The question of what is the 'right norm' when deal­
ing with images is indeed not trivial, and the right an­
swer probably depends on the application. For exam­
ple, the answer for the 'right' color metric h;j is the 
consequence of empirical results, experimental data, 
and the application. Here we covered some of the gaps 
between the two classical norms ( L1- TV and the L 2 ) 

in a geometrical way and proposed a new approach to 
deal with multi dimensional images. We used recent 
results from high energy physics that yield promising 
algorithms for enhancement, segmentation and scale 
space. 
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