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Two hundred and fifty-four 
metagenome-assembled bacterial 
genomes from the bank vole gut 
microbiota
Anton Lavrinienko1, Eugene Tukalenko1,2, Timothy A. Mousseau3, Luke R. Thompson4,5, 
Rob Knight  6,7,8, Tapio Mappes  1 & Phillip C. Watts  1 ✉

Vertebrate gut microbiota provide many essential services to their host. To better understand the 
diversity of such services provided by gut microbiota in wild rodents, we assembled metagenome 
shotgun sequence data from a small mammal, the bank vole Myodes glareolus (Rodentia, Cricetidae). 
We were able to identify 254 metagenome assembled genomes (MAGs) that were at least 50% (n = 133 
MAGs), 80% (n = 77 MAGs) or 95% (n = 44 MAGs) complete. As typical for a rodent gut microbiota, 
these MAGs are dominated by taxa assigned to the phyla Bacteroidetes (n = 132 MAGs) and Firmicutes 
(n = 80), with some Spirochaetes (n = 15) and Proteobacteria (n = 11). Based on coverage over contigs, 
Bacteroidetes were estimated to be most abundant group, followed by Firmicutes, Spirochaetes and 
Proteobacteria. These draft bacterial genomes can be used freely to determine the likely functions of 
gut microbiota community composition in wild rodents.

Background & Summary
Vertebrate gut microbiota are often complex communities1,2 that are important determinants of their host’s 
health3,4, by providing essential nutrients and metabolites5,6, modulating the host’s immune system7 and by limit-
ing the niche space available for colonisation by pathogens8,9. Laboratory rodents have provided compelling evi-
dence that the gut microbiota has an important role in maintaining host health10,11. The diversity of species within 
a gut microbiota provides the host with potential access to thousands of novel, accessory genes1. Understanding 
the type and diversity of services that can be delivered by the gut microbiota to the host requires knowledge about 
microbial genomes.

Gut microbiota composition of wild rodents have been characterised using marker gene sequencing surveys. 
Within the superfamily Muroidea (containing mice, rats, voles, hamsters, gerbils and related taxa)12, for example, 
gut microbiota of wild caught mice Mus musculus domesticus are dominated by the bacterial phyla Firmicutes and 
Bacteroidetes13–17. Wild wood mice Apodemus sylvaticus show marked seasonal variation in gut microbiota, pre-
sumably reflecting a change in diet14; other studies have found an association between helminth infection and gut 
microbiota community in wild mice Apodemus flavicolus13. Moreover, the gut microbiota of bank voles Myodes 
glareolus (arvicoline voles within the Cricetidae) may be altered by anthropogenic environment impacts. For 
example, the gut microbiota of M. glareolus inhabiting areas contaminated by radionuclides (adjacent to the for-
mer nuclear power plant at Chernobyl, Ukraine) were characterised by an increase in Firmicutes and a reduction 
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in Bacteroidetes16,17. Exposure to radionuclides is also associated with a reduction in (1) inter-individual variation 
and (2) the degree of temporal changes in bank vole gut microbiota community composition18.

While a change in microbiota composition can elicit a change in its function6, the impact of altered gut micro-
biota community composition in wild rodents is unknown because available genome/gene catalogue information 
is biased towards microbiota derived from laboratory animal models19,20 rather than wild animals. To better 
understand whether a change in gut microbiota could have some functional relevance, we used shotgun sequenc-
ing to construct metagenome assembled genomes (MAGs) for the gut microbiota of an arvicoline rodent, the 
bank vole M. glareolus. Bank voles are common in forest habitats of central and northern Europe and parts of 
Asia21. Also, bank voles are used as a model species in evolutionary ecology research22,23, for example with selec-
tion lines created to examine effects of physiology and diet on gut microbiota24.

We generated shotgun sequence data for DNA extracted from the faeces of bank voles. Here we present a 
description of 254 draft bacterial genomes (MAGs) that we estimate to be 50% or more complete and with ≤10% 
contamination. Phylogenetic analysis of these MAGs indicates that they comprise a typical gut microbiota for 
rodents within the superfamily Muroidea13–17, being dominated by members of the Bacteroidetes (n = 132) and 
Firmicutes (n = 80), but with some Spirochaetes (n = 15) and Proteobateria (n = 11) (Fig. 1). Bacteroidetes were 
estimated to be most abundant (55% abundance based on coverage, with all taxa assigned to the Bacteroidales), 
followed by Firmicutes (24%, dominated by MAGs assigned to Clostridiales), Spirochaetes (12%, all MAGs 
assigned to Spirochaetales) and Proteobacteria (3%, predominantly Desulfovibrionales) (Table 1). Taxonomic 

Fig. 1 Phylogenetic diversity of metagenome assembled genomes (MAGs) from bank vole Myodes glareolus 
gut microbiota and reference genomes of Bacteria and Archaea available in RefSeq (listed in Supplementary 
Table 4). Presence of a MAGs from the bank vole gut microbiota is highlighted by the coloured outer ring, 
with black indicating the MAGs whose taxonomy was not be resolved (to phyla or better resolution) using 
either ANVI’O or CheckM. Midpoint rooted maximum likelihood tree was constructed from the concatenated 
alignments of 16 ribosomal proteins. Size of grey circles on branch midpoints indicate the level of bootstrap 
support (range 0.8–1.0).
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placements for each MAG, as well as contig statistics and estimates of genome completeness and MAG abun-
dance, are provided in Supplementary Table 3.

These draft bacterial genomes to provide a useful resource to quantify the functions of the dominant members 
of wild rodent gut microbiota. Moreover, given the emerging interest in identifying the functions of relatively 
uncharacterised families of bacteria, such as the S24-7 that often dominate rodent gut microbiota25,26, these data 
should facilitate comparative genomic analyses of gut microbiota function and evolution across mammalian 
hosts. Also, the bank vole is a hyper-reservoir of zoonotic pathogens27–30. Given its role as a reservoir host of 
zoonotic pathogens, the potential link between gut microbiota and host health3,4, and evidence that infections 
associate with altered gut microbiota in rodents13,14, these data can provide detailed insights into the potential 
changes in services provided by gut microbiota that accompany infections in the bank vole. Draft genomes are 
deposited with NCBI Genbank under the BioProject accession PRJNA61338131, with metadata about the (1) bank 
vole samples and the (2) MAGs provided under the BioSample accessions SAMN14404158-SAMN14404199 and 
SAMN14407068-SAMN14407322 respectively.

Methods
Sampling and read data collection. Two faecal samples from 20 bank voles were collected from within 
the Chernobyl Exclusion Zone, Ukraine (51.30 N, 30.07 E) during May-June (faecal sample 1) and June-July 
2016 (faecal sample 2). Full details of the live trapping procedures are provided in Lavrinienko et al.16,17. All 
procedures were performed in accordance with legal requirements and regulations from the Ukrainian author-
ities (957-i/16/05/2016) and the Animal Experiment Board in Finland (ESAVI/7256/04.10.07/2014). Metadata 
(e.g. location, body size, weight) associated with these samples are provided in Supplementary Table 1. Samples 
were transported (on dry ice) to Finland for DNA extraction based on the import permission from the Evira 
(3679/0460/2016). Total DNA was isolated from 0.1 g of faecal material using a PowerFecal DNA Isolation kit 
(MoBio Laboratories, Carlsbad, CA, USA) following the manufacturer’s instructions. Briefly, DNA extractions 
were performed in a dedicated laboratory space within a laminar flow hood using aseptic techniques (surface 
sterilisation, sterile plastic, aerosol barrier filter tips). We did not extract blank DNA samples as this procedure 
returns insufficient DNA for library construction and faecal samples contain high microbial biomass; rather we 
extracted DNA from two samples twice to assess to confirm that a sample’s microbiota profile was consistent (see 
Technical Validation). All the procedures were completed within 10 days by AL, using the same DNA isolation 
kit batch for all the samples (Supplementary Table 1). DNA concentrations were quantified with a Qubit 2.0 fluo-
rometer (Invitrogen, Carlsbad, CA, USA) (data provided in Supplementary Table 2).

NGS data were generated using Illumina HiSeq 4000 sequencing technology to generate 100 bp paired 
end read data at the Beijing Genomics Institute (BGI, www.bgi.com/global/). Read data are available at NCBI 
Genbank (SRA) under the accession numbers SRR11425428-SRR11425469 (Supplementary Table 1), and within 
the BioProject accession number PRJNA61338131.

Assembly. Read data were processed using ATROPOS32 v.1.1.5 (parameters: -q 15 --minimum-length 90), 
after which the reads were mapped (BOWTIE233 v.2.3.4, parameters: --very-sensitive) against a draft bank vole 
genome (GCA_001305785.1) to filter out reads (from *.bam files) derived from the host (SAMTOOLS v.1.4 view, 
parameters: view -f 12 -F 256) (https://www.htslib.org/doc/samtools.html). Assembly of metagenome read data 

Phylum Proportion

  Family

Actinobacteria 0.94

  Actinomycetales 0.94

Bacteroidetes 54.90

  Bacteroidales 54.90

Firmicutes 23.93

  Clostridiales 21.34

  Erysipelotrichales 0.11

  Lactobacillales 1.84

  na 0.64

Proteobacteria 3.05

  Campylobacterales 0.84

  Desulfovibrionales 2.21

Spirochaetes 12.10

  Spirochaetales 12.10

Tenericutes 0.37

  Mycoplasmatales 0.37

(na Bacteria) (4.71)

Table 1. Relative proportion of phyla and families of bacteria present in the bank vole Myodes glareolus gut 
microbiota; na indicates unassigned taxonomic classification.
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to obtain draft bacterial genomes followed the approach used to recover draft genomes from the TARA oceans 
metagenomics data34. Individual samples were assembled using MEGAHIT35 v.1.1.1-2 (parameters: default) to 
reduce memory requirements and in attempt to avoid bubbles (unresolvable branches) due to genetic diver-
sity among strains. Using MEGAHIT, we assembled a total of 1,057 million paired end reads into 4,721,549 
primary contigs (5,916,721,003 bp). These primary contigs were filtered to retain only those contigs ≥ 2 kbp in 
length, which were then passed through CD-HIT-EST36 v.4.7.0 (parameters: -c 0.99 -n 11 -M 0) to merge the 
completely overlapping contigs (at 99% identity); this reduced set of primary contigs was then co-assembled 
using MINIMUS2 in AMOS37 v.3.1.0 (parameters: -D REFCOUNT = 0 OVERLAP = 100 MINID = 95) to com-
bine overlapping contigs. After this procedure, we were left with 171,806 secondary contigs (39,092 contigs and 
132,714 singletons) for binning.

Construction of metagenome assembled genomes (MAGs). Host-filtered metagenomic reads were 
mapped against the secondary contigs using BOWTIE233 v.2.3.4 (parameters: --sensitive). Binning of contigs 
into MAGs was competed using BINSANITY38 v.0.2.7. First, we generated a coverage file using BINSANITY 
profile (parameters: scale; multiply by 100 and log transform). We then ran the secondary contigs through 
BINSANITY-LC workflow (parameter: -x 5000 -C 50 -p -5); use of a 5 kbp length cutoff for contigs (which 
meant that 66,480 secondary contigs were input into BINSANITY) and the BinSanity-lc script was required as 
there were too many contigs to complete the binning procedure using BinSanity-wf and/or all secondary con-
tigs. BinSanity-lc attempts to overcome memory limitation problems associated with binning many contigs by 
creating subsets of contigs using K-means clustering prior to implementing affinity propagation for clustering. 
The quality and likely taxonomic identities of the putative MAGs was assessed using two softwares39–42. First, we 
used CHECKM39 that searches for the occurrence of a collection of lineage-specific markers genes in the putative 
bins. Second, we mapped read data to the contigs (constructed by MEGAHIT) using BOWTIE233 (parameters: 
--sensitive --no-unal), and the resulting *.sam files were processed using the metagenomic workflow imple-
mented by ANVI’O v.5.240,41: ANVI’O also assesses completeness and contamination of MAGs by searching for 
presence of a collection of 139 bacterial single-copy core genes42. Bins were defined as ‘high completion’ when 
they met the following criteria with either ANVI’O or CHECKM: ≥95% complete with ≤10% redundancy (cate-
gory 1), ≥80% complete with ≤5% redundancy (category 2), or ≥50% complete with ≤2% redundancy (category 
3). ANVI’O (--anvi-summarize, parameters: default) was used to estimate the relative proportions of bacterial 
phyla and families based on the average coverages of MAGs (that had been divided by the overall average cover-
ages in samples) (Table 1).

Using BINSANITY, contigs were placed into 900 bins, of which 775 (86%) contained putative bacterial DNA 
(based on the presence of the core panel of markers used by CHECKM). Two hundred and fifty-four (33%) of 
these bins were classified as high-quality bacterial metagenomes (MAGs), representing 16,395 contigs (24.7% 
of the 66,480 contigs used for binning). Of these MAGs, 45, 76 and 133 were defined in categories 1, 2 and 3 
respectively. MAGs derived from multiple samples (in this case, from 42 faecal samples taken from 20 bank voles 
over two time points, and with two samples extracted twice – see Supplementary Information 1) often represent 
genomes of several taxa or strains, and further analysis and assembly will be required to generate complete bac-
terial genomes43. The remaining contigs, presumably representing a mixture of genetic material from the gut 
microbiota (such as viruses, plasmids, protists, some bacteria, etc.) as well as some read data derived from the 
bank vole host genome (potentially the fraction of highly repetitive DNA that could not be assembled in the draft 
genome) and also bank vole dietary material, are available for further analysis.

Phylogenetic assessment of MAGs. To assess the phylogenetic diversity of the MAGs we predicted cod-
ing sequences in the secondary contigs (that had been assigned to draft genomes) using PRODIGAL44 v.2.6.3 
(parameters: -m -p meta), and then searched for the sequences of a core panel of phylogenetic markers: the phy-
logenetic markers used are 16 ribosomal proteins (L2, L3, L4, L5, L6, L14, L16, L18, L22, L24, S3, S8, S10, S17 and 
S19) that are often syntenic, and which have been used for a comprehensive phylogenetic assessment of Bacteria, 
Archaea and Eukarya45, as well as phylogenetic placement of MAGs34. To provide wider context to the phyloge-
netic diversity of our MAGs, we also downloaded more than 1,600 Bacterial and Archaeal complete/representa-
tive genomes from NCBI’s Refseq database46 (https://www.ncbi.nlm.nih.gov/refseq/: date accessed 11/09/2019) 
(see Supplementary Table 4 for list of reference genomes). We searched for the 16 phylogenetic markers from 
our MAGs and the reference genomes using HMMSEARCH47 in HMMER v.3.1b2 (parameters: -E 1e-5) and 
the Hidden Markov Models for the 16 ribosomal proteins that were downloaded from Pfam database48 (https://
pfam.xfam.org). Genomes that lacked half or more of the phylogenetic markers were not used in the phylog-
enomics analysis. Sequence data for each marker were aligned using MUSCLE49 v.3.8.31 (parameters: --maxiters 
16). Alignments were trimmed using TRIMAL50 v.1.2rev59 (parameters: -automated1) and concatenated using 
the CONCAT script implemented by BINSANITY38. A detailed protocol for this phylogenomic workflow can be 
found at ProtocolsIO (https://doi.org/10.17504/protocols.io.mp5c5q6). Following this protocol, we were able to 
construct a phylogenetic tree for 167 MAGs and 1,664 reference genomes using FASTTREE51 v2.1.9 (parameters: 
-gamma -lg), which was viewed and annotated using iTOL52 (https://itol.embl.de).

Data records. Project data (host metadata, metagenome shotgun sequence data, MAGs) have been deposited 
in NCBI Sequence Read Archive, under the SRA study accession SRP25405631. The concatenated alignment of 
the 16 phylogenomic loci for MAGs and reference genomes and the associated phylogenetic tree (Newick format) 
have been deposited with Figshare53.
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Technical Validation
Quality of the host-filtered and trimmed Illumina reads was quantified using FASTQC (https://www.bioinfor-
matics.babraham.ac.uk/projects/fastqc/), and observed to be very good: example quality plots for six samples 
are given in Supplementary Figure 1, and the basic information on the total number of reads and other statistics 
associated with reads is presented in Supplementary Table 7. Potential cross-contamination of samples was lim-
ited by following guidelines for analyses of microbiota communities54,55; for example, DNA extractions took place 
within a dedicated laboratory space under a laminar flow hood using aseptic techniques (such as, surface sterili-
sation, use of sterile plasticware, and use of aerosol barrier pipette tips). Sample processing was completed within 
10 days by AL, using the same batch of DNA isolation kits for all samples. DNA concentrations were quantified 
with a Qubit 2.0 fluorometer (Invitrogen, Carlsbad, CA, USA) and NanoDrop Spectrophotometer (ThermoFisher 
Scientific, MA, USA). Extracting total DNA from 0.1 g of faecal material using the PowerFecal DNA Isolation kit 
(MoBio Laboratories, Carlsbad, CA, USA) typically provided 20–100 ngµl−1 DNA (Supplementary Table 2) for 
library construction. To assess for potential contamination (e.g. from laboratory reagents, and/or contamination 
of samples), we extracted DNA from two samples twice, independently, and these samples were sequenced as sep-
arate libraries also (i.e. there were 42 libraries prepared) (Supplementary Table 1). We found low (r < 0.2) correla-
tions (Supplementary Table 6) in the abundances of the MAGs among most pairs of samples (see Supplementary 
Table 5 for mean coverages per sample and MAG, which were calculated using ANVI’O v.5.239,40 as the ‘mean 
coverage of a contig divided by overall sample mean coverage’). Hence, these MAGs exhibit substantial variation in 
their abundance among individuals and timepoints (Supplementary Table 5), which is consistent with expected 
levels of inter-individual and temporal variation in rodent gut microbiota community composition14,16–18. The 
notable exceptions to these low pairwise correlations in MAG abundance were the comparisons of MAG abun-
dances between the pairs of independent, replicate DNA extractions (r = 0.999 for samples 25 and T25, and 
r = 1.000 for samples 69 and T96) (Supplementary Table 6). The high similarity in MAG abundance among the 
independent, replicate extractions, but otherwise individual community profiles (that are typical rodent gut 
microbiota13–17) in each sample, implies that read data reflect the sample’s microbiota and that contamination of 
samples during DNA extraction was minimised55.

Metagenome data have been assembled and refined into MAGs using the automated quality control steps, 
assembly procedures and the thresholds described in the manuscript. In addition, contigs were passed through 
NCBI’s Contamination Screen to remove any residual adaptor contamination (21 out of 16,486 contigs con-
tained within the MAGs had one NGS adaptor sequence that was removed; Supplementary Table 3). Technical 
validation of the taxonomic assignments, completeness and potential contamination of the putative bacterial 
MAGs was achieved using several softwares, but we recommend that further, independent technical validation 
be applied by users of these draft MAGs.

Received: 8 April 2020; Accepted: 27 August 2020;
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