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ABSTRACT OF THE DISSERTATION

Multi-scale simulations of biophysics problems, with emphasis on Importance Sampling

by

Chen Lin

Doctor of Philosophy in Chemistry

University of California, Los Angeles, 2021

Professor Robijn F. Bruinsma, Chair

The behavior of a biophysical system often is quite different when investigated on different

length scales and a complete description of such a system typically requires different ap-

proaches for these different length scales. At atomic and mesoscopic scales, a considerable

number of degrees of freedom are involved. The associated free energy profiles are relatively

rugged with energy barriers or kinetic bottlenecks preventing efficient sampling when doing

numerical simulations. To alleviate this problem, a variety of sampling strategies have been

developed.

In this thesis, I will start with general backgrounds of multi-scale modeling of biophysical

systems, and review the different sampling strategies that are being used when doing simu-

lations. Next, I will talk about three of my projects. The first two involve protein binding

problems at both the microscopic and the mesoscopic level. The third one is the diffusion-

driven phase separation problem inside a cross-linked network of semiflexible polymers. I

will use these three projects to illustrate how one can apply multi-scale descriptions and

sampling techniques to biophysical systems in and out of equilibrium.
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CHAPTER 1

Introduction

1.1 Multi-scale modeling of problems in biophysics.

Multi-scale modeling describes research projects that focus on features of a system at multiple

scales of time or space. Important problems such as the physics of polymers [2], proteins,

DNA, RNA and many other biological macro-molecules [3] have been approached in this

manner.

The behavior of a system can be very different when investigated in different scales.

On each scale level, particular approaches are used for the description of a system. For

example in biophysics, many phenomena can be approached at four different levels. At the

quantum mechanical level, electron wavefunctions are computed. Chemical reaction kinetics

involving bond breaking and reformation, including catalytic processes, can be studied at

this level [4]. Next, at a “quasi-microscopic” scale, chemical bonds are simplified as effective

potentials and molecular dynamics methods are used to simulate the dynamics by solving

numerically classical Newton equations of motion [5]. The forces between the molecules are

calculated using interatomic potentials & force fields from a large library, such as GROMACS

[6], CHARMM [7] and AMBER [8], that was computed separately, when necessary at the

quantum level. These force fields usually have five terms [9]:

Etot = Estretch + Eangle + Edihedral + Eelectro + EV dW (1.1.1)

where the red terms represent interactions of permanent bonds, such as covalent bonds.

These often are represented by effective harmonic springs. The blue terms are reversible, non-

1



bonding interactions, such as van der Waals interactions and hydrogen bonding. Examples

of studies at this level are detailed investigations of the mechanisms of protein conformation

transfer and protein folding [10].

Next, on the “mesoscale” level, clusters of groups of atoms or molecules are considered

as large quasi-molecules (“coarse-graining”). The effects of interactions with the solvent are

included as a combination of friction or viscosity and random noise. The researched object

typically is performing a form of Brownian motion due to collisions with the solvent molecules

that represent thermal fluctuations. At this scale, the slow diffusive dynamics of large

molecules can be studied, where the detailed electronic structure and molecular conformation

changes are coarse grained as boundary conditions [11]. Finally, at the macro-scale level the

system is investigated by a combination of continuum mechanics and thermodynamics. At

this scale, thermal fluctuations are ignored [12].

The first study in this thesis focuses on the intra-molecular binding of the very large

Gag protein, the structural protein of the HIV-1 virus. The intramolecular binding mecha-

nism was first studied at the microscopic level by all-atom MD simulations. While this gave

important information on the binding mechanism, it could not handle the long time scales

associated with the diffusive binding/unbinding kinetics. In order to go beyond the limi-

tations of this approach, we developed a coarse-grained model at the mesoscale level using

Brownian dynamics simulations and applied methods of non-equilibrium thermodynamics.

Finally, we studied the problem of phase separation of proteins at a coarse-grained level to

gain a better understanding of the non-equilibrium aspects.

1.2 Enhanced sampling and collective variables (CV).

All-atom simulations of complex systems by Molecular Dynamics (MD) simulations is a pow-

erful tool in many branches of physical science. However, for very large biological macro-

molecules relaxation times scales may range from microseconds up to seconds. For typical

MD simulation time step in the femtosecond to picosecond range [13], this is far beyond our

2



current computational resources. One important reason for these long time scales is that

the relaxation may depend on rare events where the system passes between different sectors

of configuration space separated by high free energy barriers. Kinetic traps in the form of

long-lived metastable states may be another reason for long relaxation times.

To alleviate these problems, the computational hardware has been improved, such as the

use of GPUs [14]. Separately, new software has been developed in the form of enhanced sam-

pling techniques. These sampling techniques can be categorized into three classes: tempering

techniques [15], collective variable (CV) based enhanced sampling [13] [16] and mathematical

approaches [17]. The first one is beyond the scope of our research while we defer discussing

new mathematical methods to a later section.

The key idea of the CV-based sampling method is to integrate over the “fast” degrees of

freedom while fixing a limited number of “slow” degrees of freedom (DoF), known as collective

variables (CVs). Collective variables are in general functions of the microscopic configuration

that have to be integrated over while keeping the CVs fixed. They may have a simple

geometric interpretation, such as the separation between two subgroups of a macromolecule

or torsion angles when two subgroups are rotated with respect to each other. The CVs also

may be large amplitude versions of the slowest relaxation modes of the groundstate. Other

choices for the CVs may be the total potential energy or entropy of the system. When

simulating a phase transition, the Landau order parameter is the natural choice for the CV.

The proper choice of the CVs is a central question for enhanced sampling computational

methods [13] [16].

Assume that a CV, or set of CVs, denoted by s has been identified. The probability that

the CV adopts a certain value under conditions of thermal equilibrium is given by:

P (s) =

∫
dNrδ[s(r)− s)]e−βU(r)∫

dNre−βU(r)
(1.2.1)

Here, U is the potential energy for the micro-configurations with N the total number of DoF.

More precisely, P (s)ds is the probability of finding the CV in the small interval ds of CV

3



variables. The free energy difference between two sets of CV values i and j is

∆Q(sij) = − 1

β
ln
P (si)

P (sj)
.

If a reference point is defined, one can sketch a free energy surface with respect to that point,

which is known as the “potential of mean force”.

As mentioned, calculating Q(sij) becomes very difficult when phase space is divided into

sectors separated by large energy barriers. To speed up the calculation, one can add a bias

potential V(s) to the energy of the system:

P (s)b =

∫
dNrδ[s(r)− s)]e−β[U(r)+V (s(r))]∫

dNre−β[U(r)+V (s(r))]
(1.2.2)

This bias potential will flatten the free energy surface and push the simulation towards rare

regions along selected CV. Finally, one needs to reconstruct the real distribution from the

biased simulation data:

P (s) = P (s)be
βV (s) < e−βV (s(r)) > (1.2.3)

A number of methods belonging to this class have been developed, The Parrinello group

contributed a lot of them. A popular approach is Metadynamics, a method that depends

on adding a history dependent biased potential. This potential can be regarded as a set of

Gaussians deposited along the system trajectory in the selected CVs space to discourage the

system from revisiting configurations that already been sampled and force it to oversample

rare but events such as barrier crossing [13][18]. A related approach is Variationally En-

hanced Sampling (VES) [19] that fills simultaneously gaps in the whole free energy surface

by guessing the bias potential in the form of a linear expansion of basis functions. The coef-

ficients of the expansion are obtained by minimization of a functional of the bias potential.

The minimization process changes the set of coefficient of expansion to adjust the shape

of the bias potential to match the gaps in free energy surface. The form of functional was

inspired by Kullback-Leibler divergence of information theory [20]. It actually maximizes

the relative entropy during the optimization.
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Other methods are adaptive force bias [21], steered MD [22] and local elevation [23].

They are all aimed at increasing the accuracy of the selection of bias potential and the

reconstruction of probability distribution in different ways. A useful review is ref [24]. In this

thesis Umbrella Sampling [25] [16] is used, developed by Torrie and Valleau. The sampling

is implemented by many windows along the selected CV, with each of them confined by

a bias harmonic potential. Thus the sampling is enhanced within a certain region. Then

one uses the Weighted Histogram Analysis Method (WHAM) [26] to reconstruct the biased

simulation data by collecting information from all windows. In the following section we apply

the umbrella sampling method combined with WHAM to the Gag protein.
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CHAPTER 2

The Gag Protein Problem

2.1 Introduction of the Gag protein problem

Despite intense research efforts, important aspects of the life-cycle of the HIV-1 virus are not

well understood [27]. One of these unresolved issues concerns the initiation of the assembly

of the protein shell, or capsid, of HIV-1 virus particles (or virions). This capsid is composed

of the very large Gag polyproteins (from group-specific antigen). It encloses the viral genome

composed of two 10 kilobase single-stranded RNA molecules, to be denoted by gRNA. During

assembly, the gRNA molecules must be selected from among an overwhelming majority of

host mRNA material present in the cytoplasm. Gag protein is the only protein that is

required for the production of virus-like particles (VLPs). Expression of just Gag in non-

infected cells – so with no gRNA molecules present – leads to the release of non-infective

VLPs that are morphologically indistinguishable from infectious viruses but that package

host mRNA molecules instead of gRNA. The unresolved issue in this context concerns the

gRNA selection mechanism: despite intense in-vivo and in-vitro studies by many labs, HIV-1

Gag proteins appear to have hardly any binding specificity for gRNA over generic RNA. Yet,

over 90 percent of the virions produced in the infected cell do carry HIV-1 gRNA molecules.

RNA selection is known to take place during the very first assembly steps, which involves

at most only few Gag molecules, so this strange selection mechanism must be a feature of

either individual Gag proteins or of a small number of interacting Gag proteins.

As shown in Fig.1, the Gag polyprotein is composed of a number of domains – connected

by unstructured, flexible linkers – that are conventionally labelled as MA, CA-NTD, CA-

CTD and NC (MA stands for “membrane associated”, CA stands for “capsid”, NTD and
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CTD refer to the N and C terminals of the CA domain, while NC stands for ”nucleo-capsid”).

In the assembled state, shown in Fig.1, the Gag proteins form a hexagonal lattice [28]

A B

MA CA-NTD CA-CTD NC

1-132 133-277 278-364 379-433

~ 120 nm

~ 80 nm

SP1

365-378

Figure 2.1.1: (A) Schematic of the domains of Gag. The MA domain has a large number

of positively charged residues (at neutral pH) while the CA domain, which is composed of

the linked CA-NTD and CA-CTD subdomains, is close to neutral. The NC (nucleocapsid)

domain, which is separated from the CA-CTD subdomain by the short SP1 sequence, has

a net positive charge. (B) Schematic of the immature capsid. The positively charged MA

domains of the Gags are associated with the negatively charged plasma membrane (PM). The

CA-CTD domains of adjacent Gags are bonded by hydrophobic interactions while positively

charged NC domains are associated with the negatively charged viral RNA molecules (not

shown).

stabilized (in part) by hydrophobic interactions between the CA-CTD domains. In solution

Gag proteins largely are monomeric. A single-molecule FRET study (fluorescent recovery

after photobleaching) of Gag proteins in solution [29] reported that they have a range of

conformations, some with the MA and NC domains in close proximity (to be denoted by “F-

Gag”) and some with the two domains far from each other (to be denoted by “U-Gag”). The
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U-Gag state has a broad MA-NC distance probability distribution with relatively large MA-

NC distances, suggesting that the U-Gag state has significant conformational fluctuations.

In contrast, the F-Gag state has a narrow MA-NC distance distribution with relatively short

MA-NC distances. The F-Gag and U-Gag states of Gag seem to be stable and do not

interconvert over typical FRET observation times (up to 100 s). Importantly, the F-state

is the majority component of monomeric Gag in solution. In a recent MD simulation of

Gag [30], the different domains of Gag were found to move as rigid solid bodies linked by

flexible tethers if the initial state corresponded to the unfolded U-Gag state of the FRET

experiments. The MA and NC domains are not correlated in this state. The authors also

identified a folded state, with the MA and CA-CTD domains in close contact with each

other. In this state, which could correspond to the F-state, the MA and NC domains are

quite correlated, indicative of long-range allosteric interactions [31]. Both states remained

stable over a simulation time of 300 ns.

The fact that the majority component of Gag in solution is in the F-Gag state suggests

a possible gRNA selection mechanism. Assume that the observed lack of affinity of Gag

proteins for gRNA is not a property of Gag in general but specific only for F-Gag. If U-Gag

would have increased binding affinity for gRNA (due to allosteric coupling) and an increased

ability to associate with other Gag molecules (due to exposed CA domains) then the F-to-U

transformation could act as a regulatory assembly gateway that prevents or retards capsid

assembly. In this paper, we report on MD simulations of the interactions between individual

domains of Gag. Based on the earlier simulation study [28], we first hypothesized that the

physical mechanism that stabilizes the F-Gag state involves attractive interactions between

the MA and CA-CTD domains that should be strong enough to disrupt the hydrophobic

Gag-Gag interactions that stabilize hexagonal Gag arrays [28]. Next, the CA domain has

exposed hydrophobic residues on its outer surface and homo-dimeric hydrophobic interac-

tions between adjacent, charge-neutral CA-CTD domains are known to make an important

contribution to the stabilization of assembled hexagonal arrays of Gag proteins. For this

reason, we also hypothesized that the hydrophobic residues of CA-CTD that are assembly-
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Figure 2.2.1: MA-CA bound state. Examples of electrostatic interactions are highlighted:

(a) the positively charged (blue) R-43 residue of MA (green) is in proximity of the two

negatively charged (red) E-344 and E-345 groups of CA-CTD (blue). (b): the (gold) Q59

and Q63 polar residues of MA are in proximity of the (gold) Q-351 polar residue of CA-CTD.

critical also stabilize the MA-CA bound state since that would be an effective way to prevent

assembly of Gag proteins. The simulations discussed below on MA/CA-CTD interaction and

on CA-CTD dimeric interaction support the first but not the second hypothesis.

2.2 All-atom simulation and Umbrella Sampling

2.2.1 MA-CA bound state

In order to search for an MA/CA-CTD bound state, we constructed a list of possible MA/CA-

CTD pairing configurations arranged in terms of binding scores computed using standard

protein-protein docking software (see Methods Section). Next, each candidate configura-

tion underwent a short MD simulation. Only one of the configurations, the one shown in

Fig.2.2.1, survived the test. Electrostatic interactions dominate the binding interface of this

configuration. It included the polar CA-CTD residues R294, V297, M347, T348, Q351 and

the two negatively charged E-344 and E-345 residues of CA-CTD as well as the polar MA

residues F44, Q59, Q63, P66, S67, T70 and the positively charged residue R43. Figure 2a

highlights the charged residues and Fig.2b some of the polar residues. The polar MA residues

of the binding interface are preceded by a long sequence of positively charged residues (Lys-

15, Lys-18, Arg-20, Arg-22, Lys-26, Lys-27, Lys-32, Lys-39, and Arg-43) while it is followed

by two more (Lys-95, and Lys-98). The free energy difference between F-Gag and U-Gag

of course could also involve the other domains of Gag. To test whether this MA/CA-CTD

bound state survives as part of a complete Gag protein, we carried out simulations of full

Gag with an initial state in which the MA/CA-CTD pair is bound (simulations were limited

to 40 ns durations because of the very large size of the Gag protein). The bound state
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remained intact over the duration of these runs.

To quantify the strength of the bound state, we computed the Potential of Mean Force

(PMF), using the umbrella sampling method. The results are shown shown in Fig.2.2.2.

The horizontal axis (X) is the MA/CA-CTD center of mass (COM) separation. The PMF

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4

-6

-4

-2

0

Centers of mass separation (nm)

P
M

F
(k

c
a

l/m
o

l)

Figure 2.2.2: Left: Potential of Mean Force V (X) between the MA and CA-CTD subdomains

(Gold). Vertical axis: PMF in kcal/mole. The horizontal axis X axis is the distance between

the centers of mass of the MA and CA subdomains in nanometers (nm). Red line: fit to

V (X) = V0 − kBT ln (exp(β∆U − F (X −X0)) + 1).

has a potential well with a depth ∆VMC of about 7 kcal/mole (' 12 kBT) while the COM

separation X0 at the potential minimum is about 2.2 nm. Between 2.2 and 3.2 nm, the PMF

increases approximately linearly, after which it levels off. Polar interactions are the main

contributers to the attraction in the linear regime of the PMF. The linear part of the PMF

translates into to a constant attractive force F of about 44 pN. If the bound state is treated

as a two-state mechano-chemical system subject to a constant force Fi then corresponding

PMF would have the form V (X) = V0 − kBT ln (exp(β∆V − Fi(X −X0)) + 1). 1.

1The actual ∆V is expected to be somewhat less than the computed value because the sampling umbrella
potential used in the computation of the PMF has spherical symmetry and thus constrains the motion to
the CA-CTD COM in all three directions, not just along the COM separation vector. For COM separations
larger than 3.3 nm, the actual ∆V should be reduced by the entropic free energy associated with the release
of two translational degrees of freedom, which equals kBT (black dashed line in Fig.2.2.2).
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When the computation of the MA/CA-CTD PMF was repeated on approach, with an

initial COM separation X increased to 3.2 nm but with the same relative orientation of the

MA and CA-CTD domains as in the bound state, then the simulations failed to equilibrate.

This was found to be due to rotational Brownian motion causing orientational misalignment

between the MA and CA-NTD domains. The MA/CA-CTD interaction potential is appar-

ently highly directional: the two domains need to be lined up precisely in order for a bond to

form. The interaction appears to have a ratchet-like character with kinetic traps appearing

on approach but not on separation.

To gain insight into the effect of the COM displacement on the bonding between inidi-

vidual residues, we made histograms of the separation between the centers of mass of the

positively charged R-43 residue of MA and the negatively charged E-344 residu of CA for

different values of the mean COM separation < X > of the two domains. The COM of the

MA domain was fixed while the COM of the CA domain was subject to a parabolic umbrella

potential. For < X >= 2.3 nm, which is at the bottom of the PMF, the histogram were

fitted by two Gaussian with maxima at 0.79 nm, respectively, 0.83 nm. The width of the

Gaussians was comparable to the width of the COM of the CA-CTD domain in the umbrella

potential. When the COM separation was increased to 2.7 nm the histogram retained the

same general shape but displaced by about 0.4 to 0.5 nm while it also is stretched. The dis-

palcement is comparable to the increase of the COM separation. The stretching is attributed

to a combination of a rotation of the bonding direction and a structural deformation. The

histogram were fitted with two Gaussians centered at 1.20 nm and 1.34 nm. The electrostatic

bond apparently was still intact though the mean separation between the two residues had

increased. Finally, when the COM separation was increased to 3.2 nm, a single peak in the

histogram was observed at 3.1 nm, which is considerably in excess of the COM displacement.

The natural interpretation is that the electrostatic bond had snapped. The extended tail

toward states with smaller separations indicates that there still were fluctuations towards

states with residual electrostatic bonding.
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2.2.2 Homodimeric CA-CTD Interactions

In order to place the intermolecular MA/CA-CTD bond in context, we compared it with

the intermolecular bond between two Gag proteins that are part of the Gag lattice of the

immature virion. The sub-tomographic study of ref.[28] indicates that the assembly-critical

residues W316 and M317 of one CA-CTD domain form a homo-dimeric hydrophobic contact

with the W316 and M317 domains of the CA-CTD domain of an adjacent Gag protein.

We computed the PMF of two CA-CTD domains with the starting state of the simulation

produced by excising a pair of CA-CTD domains from across the two-fold symmetry sites of

the hexagonal lattice. The pair first was thermally equilibrated by an 80 ns MD simulation

(see Fig.5), during which the bond remained intact, followed by a measurement of the PMF.

The PMF of the CA dimer has a potential well with a depth ∆VCC of about 1.8 kcal/mole

(or about 4 kBTT) and a range of about 0.6 nm. Unlike the MA/CA-CTD PMF, there is

no extended region with constant slope. The CA-CA binding free energy ∆VCC is about

three times smaller than the MA/CA-CTD binding free energy. The MA-CA electrostatic

interaction is apparently sufficiently strong enough to disrupt the hydrophobic bonds that

stabilize the hexagonal Gag lattice of the capsid.

2.2.3 Conclusion

The simulations support the proposal that the Gag protein has a bound state (F-Gag) with a

binding energy that exceeds that of the hydrophobic interactions that stabilize the hexagonal

Gag lattice. Against expectations, the simulations also indicate that this bound state has

an electrostatic character. It already is well appreciated that electrostatic interactions play

an important role for the state of the Gag protein in general and for RNA selection in

particular [32]. MA has a non-specific affinity for RNA molecules and the plasma membrane

believed to be due, at least in part, to the large number of positively charged residues

of MA. Separately, the NC domain appears to bind to RNA by a combination of non-

specific electrostatic interactions that involve positively charged residues of NC and specific

hydrophobic interactions [32]. These electrostatic interactions involve charged residues but
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the MA/CA-CTD binding interface is largely charge neutral. The MA/CA-CTD bound state

we are reporting on is mostly stabilized by dipolar interactions. Because binding between

dipolar molecules is weaker than that between molecules with opposite monopole charges the

total MA/CA-CTD binding energy of 7.2 kcal/mole necessitates multiple dipolar contacts,

which we indeed found to be the case. Because the MA/CA-CTD bond is held together by a

significant number of weak polar contacts that collectively determine the binding free energy,

we should expect that the extended polar MA/CA binding interface is conserved in terms

of mutations. There indeed is a stretch of 14 residues known as the major homology region

(MHR) that appears to be highly conserved, not only for HIV-1 Gag variants, but also across

different retroviruses. Deletion or mutation of MHR residues leads to less virion production

and higher levels of Gag oligomerization on the membrane. The MHR corresponds to the

residue numbers 285-304 in Fig.1 so it does include the CTD-CA residues that are involved

with the formation of the bond.

The simulations disproved our second hypothesis concerning a key role for the assembly-

critical hydrophobic residues of the CA-CTD domain. The hydrophobic residues of CA-CTD

actually remain fully exposed to the aqueous environment. This has the interesting conse-

quence that two F-Gag proteins should be able to dimerize through hydrophobic interactions

and possible form VLPs. The F-Gag bound state is sterically quite different from the con-

formation of Gag proteins that are part of a hexagonal lattice so aggregates of F-Gag should

be quite different from HIV-1 virions or the virion-like VLPs. In-vitro self-assembly studies

that involve mixing RNA and Gag in physiological salt buffer, report formation of ' 30

nm diameter particles in addition to the ' 130 nm diameter virion-like VLPs [Campbell,

1999]. We propose that these small-sized VLPs, which are relatively unstable, are composed

of F-Gags linked by the exposed CA-CTD hydrophobic residues.

According to the physics of aqueous electrostatics, binding between oppositely charged

macroions should be weakened by the addition of polyvalent ions while addition of mono-

valent salt should have the same effect. The addition of negatively charged tRNA [33] and

of IP6 (cyclic penta-phosphate) groups [34] both increase the binding specificity of Gag for
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gRNA. Separately, the addition of the IP6 molecule stabilizes normal-sized VLPS over the

small-sized VLPs. A natural interpretation would be that the association of the negative

polyions with the positive MA residues weakens the bound state but this is not so obvious

because of the presence of the large number of MA positive residues that lie outside the

binding interface: binding of IP6 or tRNA to MA would be expected to involve mainly these

positive MA residues. However, some of the positive MA residues are immediately adjacent

to the polar residues of the binding interface so the MA/CA-CTD bound state still could be

disrupted by short-range allosteric coupling between the charged and polar residues when

tRNA or IP6 binds to the positively charged MA residues. Related to this, if the MA domain

would be more flexible in the unfolded state than in the bound state, then this also could

favor disruption of the bound state because that flexibility would facillitate the binding of

the tRNA and IP6 groups to the positively charged residues. These possibilities can all

be investigated by MD simulations and we plan to do this. Finally, long-range allosteric

interactions between the NC and MA/CA parts of Gag also could play a role in terms of the

interaction of MA with tRNA and IP6. Checking this requires more complex simulations of

the whole Gag proteins.

The effect of increased monovalent salt concentration on the RNA binding specificity

of Gag deserves additional discussion. The authors of Ref.[32] report that increased salt

concentration increases binding specificity. They interpret their results in terms of the de-

pendence on salt concentration of the binding of the NC sequence to the ψ sequence, an

important packaging signal of gRNA. They argue that at lower salt concentration generic

electrostatic interactions of RNA with the MA and NC groups collectively produce a folded

state. Increased salt concentration weakens this state in favor of specific hydrophobic inter-

actions of NC with the ψ sequence. The MA domain can interact with the plasma membrane

in that case. The authors of a second study [33] confirm that increased salt concentration

enhances binding specificity and also confirm that the competition between non-specific elec-

trostatic interactions with non-specific hydrophobic interactions play an important role. In

addition, they report a surprising dependence on salt concentration of the dissociation con-
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stant of the binding of Gag to RNA: it is relatively independent of salt concentration at

low salt concentrations until it sharply rises at higher salt concentration beyond a threshold

concentration. In contrast, one would expect on the basis of aqueous electrostatics that in-

creased salt concentration should immediately weaken the generic electrostatic interactions

and that only when non-electrostatic interactions dominate should the dissociation constant

be independent of salt concnetration. The authors of [33] interpret this results in terms of

a salt-induced conformational change of Gag and propose the presence of a folded state of

Gag stabilized by electrostatic interactions. Our simulations would be consistent with this

proposal but it is clear that MD simulations of the MA/CA bound state have to be repeated

at different salt concentrations and compared with simulations of the NC-RNA interaction

before drawing conclusions.
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Figure 2.2.3: Histogram of the COM separations of the R-43 residue of MA and the E-344

residue of C for different values of the average COM separation < X > of the two domains.

Top: 2.3 nm. Middle: 2.7 nm. Bottom: 3.2 nm
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Figure 2.2.4: CA-CA contact after a 80ns simulation The hydrophobic residues W316 and

M317 are highlighted.
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CHAPTER 3

Diffusion-limited reactions between confined proteins.

3.1 Introduction

In the previous section we studied bonding between the MA and CA sub-domains of the

Gag protein where the initial state already was bonded. Using all-atom MD simulations,

we obtained an effective potential of mean force. However, the time-scale for the bonding

between the MA and CA sub-domains of an isolated Gag protein starting from an extended

conformation is much larger than what can be probed by MD simulations. The two sub-

domains are connected by a long, flexible linker. Kinetics is diffusive and, because the

MA-CA boundstate is highly directional, presumably involve many contact events that do

not lead to bonding. This clearly is a problem that should be studied at a coarse-grained,

mesoscopic level.

The problem of the MA and CA groups locating each other is a special case of a diffusion-

limited process in molecular biology. These are quite common for reactions involving enzymes

and proteins where a ligand binds to a receptor on a molecule [35]. For the case of reactions on

cell membranes, a target molecule may have to diffuse in two dimensions along the membrane

until it hits a patch before a reaction can take place. A repressor protein may have to diffuse

in one dimension along a DNA molecule until it finds an operator sequence to which it can

bind. Alternatively two proteins in contact may have to adjust by rotational diffusion to a

conformation with the correct binding pockets lined up [36]; This group of problems often

can be simplified in the form of a toy model in which particles diffuse along some boundary.

Such models were first proposed nearly a century ago by Smoluchowski [37] and have since

been studied extensively in different conditions and aspects to mimic different backgrounds.
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In the pioneering work of Berg and Purcell [36], it was assumed that there were small non-

overlapping patches distributed over the surface of a sphere. Next, in the Collins and Kimball

model [38], a surface was discussed that was partially covered by reactive material. The initial

condition of the reactants may be variable. For instance, the small particle maybe initialized

at infinity [36] or it directly starts on the surface [39]; it could also be confined within the

targeted surface or restricted by a reflective boundary/harmonic potential outside the surface

which animate the escaping of a molecule from a cell or compartment [40][41]. Most papers

assumed the reaction surface to be a sphere. To complement that, other geometries were also

investigated such as a sphere with cavity [42] or the surface of a cylinder et.al [43]. Other

extensions are cases where the reactants are rotating with several reactive patches [44].

Almost all studies we just mentioned assumed that the patches are purely reactive while

the remaining surface is reflective. Typically, the achievement be made with these conditions

is the rate of reaction or mean first passage time (MFPT)/first hitting time (FHT) of the

process. Complicated surface mechanism with this assumption have been studied. The

MFPT of events triggered by arrival of multiple particles instead of a single has also been

studied. This can be used to explain the process of vesicular transmitter release in neurons

is initiated after the arrival of five calcium ions onto the vesicle sensor et.al [45].

The reactivity of patches is another feature that has been discussed. Variable reactivity

can be modeled by introducing and activation energy barrier that needs to be overcome

before binding or activity/accessibility of the target. Reactions may happen with a certain

probability conditional on two object touching each other. This extension of the conventional

diffusion & first hitting time model is named the Diffusion Limited Reaction Model [46].

Beyond that, motivated by systems with targets that are not always reactive, stochastic gated

models have been developed. In this case, the reactivity is not a constant but may decay

or be random. This appears to reproduce the binding site under conformation transitions

or catalysis fooling et.al [47]. Finally, the remaining non-reactive surface may not be purely

reflective, for example because of generic adhesive interactions. This mechanism could play

a big role to shift the kinetics from bulk to surface transport or to an intermediate form
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known as Bulk-mediated Surface diffusion.

A simple example of this form of transport is the Lévy walk. This happens when the

hopping of the particle along the surface depends on an adsorption/desorption rate while

the particle may resume its surface diffusion with a certain probability. It was shown that

under these conditions the particle performs a Lévy walk [48]. Thorough studies with dif-

ferent desorption rates have also been carried out with different patch sizes [49]. This last

mechanism, separating a liquid bulk phase and a surface is important in biological process.

The exchange between surface&bulk diffusion confers a flexibility to bio-system for a target

search process.

An important mathematical result in this area should be mentioned here. Grebenkov

[50] has proposed a new formalism to describe the bulk-surface diffusion process with mixed

boundary conditions. As we just reviewed, conventional description relies on bulk diffusion

D and reactivity κ on the surface, where the surface reaction mechanism are incorporated via

boundary condition, i.e. mechanism on patches. However, in the new paradigm he proposed,

instead of using a single Langevin equation, he used a stochastic equation:

dXt =
√

2DdWt + n(Xt)dlt (3.1.1)

to describe two process simultaneously. In equation 3.1.1, the Xt is the position of particle,

n(Xt) is a boundary normal vector and importantly lt is boundary local time, it only increases

when the particle touches the boundary (reactive region). The intriguing property of the new

equation is that it separately describes the bulk diffusion Xt and surface encounter lt, The

full propagator P0 is the joint probability of the two processes. The two random processes

can have their own stopping time or first hitting time. For example, the particle may die

spontaneously as a Poisson process, i.e. the particle will die with the same probability in

each time spot. The boundary process can be set in same manner, and the reaction rate κ

it self can be turn to a variable, leading the stopping time for the local boundary to be an

integral of the distribution:
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Φ(l) = e−
∫ l
0 dl
′
k(l
′
) (3.1.2)

Such alternative description allows one to model complicated surface conditions. For in-

stance, for the case that the patch reactivity is not a constant, one can set it as a distribution

to including this feature in one analytic description.

After this short review of bulk-surface diffusion and reaction problems, we return to the

MA-CA problem and develop our own approach.

3.2 Basic settings of the coarse-grained model

We studied a model where a sphere and a moving point particle represented the two sub-

domains of the protein. A sketch is shown below. The harmonic potential between them

models the confinement by the tether models the polymer chain between MA and CA sub-

domains. Similar coarse-grained models could be used to address the broader question of

reactions between weakly-interacting proteins at high concentrations or, essentially equiva-

lently, reactions between a few weakly-interacting proteins confined inside a small volume.

Next, we also included a Lennard-Jones (LJ) potential between the two objects. The attrac-

tive part represents non-specific affinity, for example due to van der Waals attraction. The

repulsive part of L-J is the hardcore of the sphere.

The sphere has two portions, one is reflective, the other is reactive, which is our simplified

binding site. In the simplest case, the southern hemisphere is the reactive part while the

northern hemisphere is the reflective part. For the reactive part, if the particle reached a

certain point inside the well of the L-J potential then the simulation was stopped.

Below, we first offer a theory for the steady state distribution of the system. Then we

extend this theory by implement Brownian dynamics. The detailed setting can be found in

section 3.4.
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Figure 3.2.1: Toy representation of the coarse grained model

3.3 Fokker-Planck equation and steady state distribution

We’ve used two analytic ways to derive the steady state concentration profile. The first one

was turning the stochastic Langevin equation to a deterministic Fokker-Planck equation to

find the probability distribution of particles. For the second way, the basic assumption was

that there always was one particle. Whenever the simulation was stopped, a new particle

was introduced at the maximum of the probability distribution. Then, by considering the

conservation of current at equilibrium distance i.e. 20 in the case of k = 1/400, we could

find an expression for probability distribution of particles. The resulted expression of the

distribution is:

P1(r) ∝ e−βφ(r)

∫ r

r0

eβφ(r′)

r′2
dr′

The plotted curve is shown below:
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Figure 3.3.1: The blue dashed line is the L-J potential. The blue and red solid curves are

steady state distributions with absorbing surface at r = 10 (σ) and r = 11.2 (min of L-J)

respectively

3.4 Numerical model of a diffusing particle

3.4.1 Diffusion process

The dynamics of a mesoscopic system in continuous space can be described by Diffusion

process. In solution system, the diffusion process most of time related to Brownian motion,

which were investigated by Langevin, Einstein [51] and Smoluchowski at the beginning of

last century [52]. Then later proved experimentally by Perrin [53].

In diffusion process, the effect from surrounding medium like the collision by solvent

molecules are integrated together as a thermal noise. Mathematically, this process can be

described by a Langevin equation:

m~̈xt = −∇U(~xt)− γmẋt +
√

2mγkBTR(t) (3.4.1)

where U(~xt) is the potential energy of the system, usually in equilibrium condition it is

time invariant. γ is the friction coefficient and R(t) is the white noise, which should be a

stationary Gaussian process and satisfying < R(t)R(t′) >= δ(t− t′). Noticed the noise term

represents the thermal fluctuation of the system at a certain temperature T , thus it directly

samples canonical ensemble.

The overdamped case of Lagevine dynamics is Brownian dynamics, in which the accel-
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eration was ignored: γmẋt = −∇U(~xt) +
√

2mγkBTR(t). Below, we will use a discretized

Brownian dynamics with dimensionless units to implement the numerical simulation.

3.4.2 Basic settings

We carried out a Brownian dynamics to extend our analytical theory. The dynamics was

governed by following updating rule:

Xn+1 = Xn + Vn∆t (3.4.2)

Vn+1 = Vn(1−∆t) + Fn∆t+ ∆n (3.4.3)

the Xn, Vn and Fn are dimensionless displacement, velocity and external force respectively

while ∆n is dimensionless Wiener noise with a correlation function that is a delta function

in time. We leave all detailed derivations to the Appendix section.

To implement the simulation, we first obtain the equilibrium distribution of the system

by running Langevin dynamics for a 10,000 steps during which there were no reaction. The

distribution without L-J attraction has a wider range than that with L-J as shown below:

Figure 3.4.1: Equilibrium distribution with pure stochastic process, without stopping con-

dition

The most probable distance for this equilibrium distribution was used as the starting

point or source of the first hitting model. New particles were generated after a particle

24



Figure 3.4.2: Equilibrium distribution with 10 kT L-J, without stopping condition

reached the stopping location of the inside the L-J potential of the reactive part of the

sphere. For the case that the whole surface was reactive, the resulting distribution had a

good agreement with analytic solution as shown below:

Figure 3.4.3: Steady state distribution with whole sphere reactive, stopping condition set at

min of L-J

The distribution of absorbing surface at r = 10 also agree with analytic solution with a

significant peak near the boundary (the red curve in figure 3.3.1):

Noticed that above plots are both under the condition of perfect reactive sphere (whole

sphere are reactive with probability 1). Thus, if we set the stopping condition at the min

of L-J, but with fraction of surface reactive with a probability, the distribution tends to act
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Figure 3.4.4: Steady state distribution with whole sphere reactive, stopping condition set at

σ = 0

like the second plot, in which the reactive probability mimics the energy barrier.

3.5 Pure diffusive and incoming current with an edge field

We initialized the behavior of particles on the surface for the case that it diffuses in from

infinity. The fixed spheres as one reactant is divided into two portions (3.5.1), one is perfect

reactive and the other is purely reflective.

θ

Figure 3.5.1: Two portions of the circle

By utilizing Fick’s law and Neumann Boundary Condition, we can find the surface density

of particles. In which the current density is of the form ~j(~r) = −c~∇n(~r), where n(~r) is the

density of the source particles that is being delivered. The boundary conditions at the surface
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Figure 3.5.2: Surface density with a reflective boundary

give rise to the following restrictions on the density:

n(1, θ) = 0 0 < θ < θ0 (3.5.1)

∂n(r, θ)

∂r

∣∣∣∣
r=1

= 0 θ0 < θ < π (3.5.2)

Furthermore, because of the symmetry of the system, we know that we can express n(~r)

in the following form outside of the sphere:

n(r, θ, φ) ≡ n(r, θ) = n0 +
∞∑
l=0

al
rl+1

Y 0
l (θ, 0) (3.5.3)

By expanding the spherical harmonic by Legendre polynomials, Pn(cos θ), via

Y 0
l (θ, φ) =

1√
2π

√
2l + 1

2
Pl(cos θ) (3.5.4)

The complete set of functions fulfill the boundary conditions in the two regions by its or-

thonormal property.

By truncating the equation with a complete set of 80 Legendre polynomials, one can

solve the equation analytically and get the results of density and incoming current on the

surface, as shown in 3.5.2 and 3.5.3:

It’s clear that the density is zero in the region in which the sphere is absorbing, agree with

our boundary condition. The incoming current also have a good agreement, which is zero
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Figure 3.5.3: Surface density with a reflective boundary
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Figure 3.5.4: Reaction rates respect to different open angles by calculating incoming current

in the region in which the sphere is reflecting (all particles tends to flows into the absorbing

region due to concentration difference).

Finally, one can set different portion of the sphere to investigate the relation between

incoming current and open angle. The result shown in 3.5.4 nearly a straight curve, but

as log-log plot fitting shows, the exponent is 1.24. One should not expect the naive

linear proportionality of Angle-Rate relation with large angles, which breaking

the assumption of Berg-Purcell model.

The density and incoming current at the vicinity of the boundary between absorbing and

purely reflective region can be also described by Laplace’s equation by conformal mapping

[54].

By investigating an analytic function of the complex variable x + iy, where x and y are
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Figure 3.5.5: Complex function Φ(x, y) to represent surface density

real that has the proper behavior along a line of singularities. The function is actually simple

as: √
x+ iy =

1√
2

√√
x2 + y2 + x+

i√
2

√√
x2 + y2 − x (3.5.5)

As the function above is a harmonic function, it’s real and imaginary parts are both

solution of Laplace’s equation:(
∂2

∂x2
+

∂2

∂y2

)
1√
2

√√
x2 + y2 + x = 0 (3.5.6)

When y = 0, the behavior of real part of (3.5.5) is interesting. When x > 0, the

argument of the outer square root is 2x. When x < 0, the argument is zero. In fact, we

have a function that, along the real axis is zero when x is negative and is proportional to
√
x

when x is positive, which is similar to the behavior of density at two sides of the boundary.

Making y non-zero smooths out this behavior. The figure 3.5.5 is a plot of the real part

(without the square root of 2) for y = 0.001 and constant.

We expect the derivative of the potential function with respect to y have similar behavior

as incoming current. The derivative is:

Ey(x, y) =
y

2
√
x2 + y2

√√
x2 + y2 + x

(3.5.7)

Taking the limit y → 0, we find that for x > 0 this function is zero, while for x < 0 is is

proportional to 1/
√
x, which similar to the incoming current we presented above as expected.

Again, the function smooths out when y is non-vanishing as the figure shown in figure 3.5.6:
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Figure 3.5.6: Differentiation of complex function Φ (x,y) to represent incoming current

3.6 Analytical model of surface hopping and evaporation

After simply assumed the particles are purely reflective on the surface of the sphere, we now

structured a model which allows particles can be absorbed and evaporated with a certain

parameters, which plays a role as Lennard-Jones potential allowing the particles to move in

a finite range above the surface. Notice that the film will have variable thickness, but we

further assume that the structure of the film does not affect the diffusion current density of

the incoming particles, i.e. tangential moving along the surface.

We have the following equation governing the time dependence of c(x, t):

∂c(x, t)

∂t
= S − α(x)c(x, t) +D

∂2c(x, t)

∂x2
− εc(x, t) (3.6.1)

Here, S is the constant incoming current density of particles, while α(x) is a measure of

the permeability of the substrate and ε is the rate of evaporation. We will assume that the

film extends from x = 0 to x = L, and that the film is uniformly permeable from x = 0 to

x = L/2. We will impose Neumann boundary conditions on the density at the extrema of

the film, which means we can express c(x, t) as follows.

c(x, t) =
∞∑
n=0

Cn(t) cos(nπx/L) (3.6.2)

We could analyze the steady state situation, which is described by Eq. (3.6.1) with the

right hand side equal to zero. We start by integrating the left hand side of the equation from
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Figure 3.6.1: The surface density profile calculated by equation 3.6.1, by turning off evapo-

ration rate

x = 0 to x = L, where the evaporation will be turned on later.

0 = SL−
∫ L/2

0

αc(x) dx

= SL−
∞∑
n=0

∫ L/2

0

αCn cos(nπx/L)dx

= SL− αC0L/2− α
∞∑
n=1

Cn sin(nπ/2)
L

nπ
(3.6.3)

(See more details in appendix)

The plots 3.6.1 show the results of solving the equations by truncation with n going up

to 199.

The diffusion current on the surface can be calculated by taking derivatives of the density

file. The resulted curve is shown below, where the current at the vicinity of reactive/reflective

boundary is maximized, consistent to our intuition. The surface hopping mechanism is

analyzed below by the Markov State Model.

The above calculation was carried for assuming a flat surface. To extend the model to

the surface of a sphere, we used spherical harmonics. Taking consideration of the symmetry

of the system, we have spherical harmonic: Y l
m(θ, φ) ∝ Pl(cos θ). In fact, the proper basis

set consists of the normalized Lagrange polynomials

fl(θ) =

√
2l + 1

2
Pl(cos θ) (3.6.4)
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Figure 3.6.2: the incoming current profile calculated by equation 3.6.1, by turning off evap-

oration rate
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Figure 3.6.3: The surface density profile calculated by equation 16, with finite evaporation

rate ε = 0.13

If we expand (3.6.1) in this basis set, we can solve for densities and diffusion currents

similar to those calculated for the sinusoidal basis set. We replace θ as a variable by x = cos θ,

so that we can write

c(x, t) =
∑
l

Cl(t)fl(x) (3.6.5)

This expansion gives us the ability to treat this as a non-homogeneous system, which will be

useful for the analysis of the eigenvalue structure. The detailed solution of above equation

can be found in the appendix.

By truncating the equation above and turning on the evaporation parameter, we could

obtain the surface concentration profile.
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Finally, we need to take three dimensional diffusion into account. If one assumes that

evaporated particles re-condense uniformly, then we can effect that outcome by restoring the

value of the x-independent l = 0 contribution, which is the only one that integrates to a

non-zero value. Thus, the new equation set is B.0.2 (in appendix) for l 6= 0 and the equation

below for l = 0.

0 = S − α
∑
l′

C
(0)
l′

∫ x0

−1

fl(x)fl′(x) dx

= S − α
∫ x0

−1

f0(x)ρ(x) dx

= S − α 1√
2

∫ x0

−1

ρ(x) dx (3.6.6)

Mathematical details are in the appendix.

As just pointed out, when we assume that all evaporation is recovered uniformly over the

surface, we end up with a rate of absorption by the sphere that is independent of both the

rate of evaporation and the size of the reaction zone. This follows directly from the steady

state equation for the l = 0 mode of the set (3.6.4), and it is exactly consistent with the

constant reactivity we set in the numerical model (see section below).

3.7 Reaction rates and eigenvalue structures from the analytical

model

We could take derivatives of the calculated density files to get the incoming current as we

did in the section 3.5. The current in steady state is the net flux in the system, that is

the reaction rate based on our setting. List of reaction rates with different open angles and

evaporation parameters is shown below. Notice that the reaction rate may be smaller with a

larger attractive potential (smaller evaporation rate), which means attraction is not always

helpful. We will further explain this in detail numerically in the later section.

We then included time-dependence. The function c(x, t) obeys the equation:
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Figure 3.7.1: Reaction rates with respect to different open angles (each curve) and hopping

rates, calculated by derivatives of density profile

∂c(x, t)

∂t
= S(t)− α(x)c(x, t) +D

∂

∂x

(
(1− x2)

∂c(x, t)

∂x

)
− εc(x, t) (3.7.1)

In this description, both S(t) and c(x, t) are time-dependent on the number of particles in

the vapor and film respectively. This relationship between the film and the vapor phase turns

the full equation set into a set of homogeneous linear equations. The resulted eigenvalues

and eigenvectors correspond to dynamics of the process, i.e. the time dependence of the film

concentration. This could be explained as the rate matrix, the eigenvalue zero corresponds

to steady state and all the other eigenvalues represent the dynamics before reach it. Figures

shown below are the time evolution of the surface concentration and the selected eigenvectors

which imply the distrubution changed over time.

Numerically, the concentration change on the film can be directly reproduced by obtain-

ing the time series of the simulation data. The eigenvalue structures also have analogy in

rate/transition matrix in Markov State meaning. One can find the resulted eigenvalues and

eigenvectors on the next page. We will defer the discussion with more details in the following

sections.
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Figure 3.7.2: The time evolution of the density c(x, t) when all particles start off in the vapor

phase. On the right-hand side of the plots, the height of the density curve (non-reactive

region) increases monotonically with time. On the left-hand side, the density increases at

first, then decreases, reflecting the larger rate of loss in the reactive region
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Figure 3.7.3: Three top eigenvalues of the homogeneous function
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Figure 3.7.4: The eigenvectors associated with the three smallesr eigenvalues.
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3.8 Importance sampling and mathematical approaches review

3.8.1 Markov State Model (MSM)

The evolution of many-body physical systems described by Newtonian Mechanics is deter-

ministic at an atomistic level in the sense that the state of a system at a certain time is

determined by the initial conditions. However, at the level of biologically relevant inter-

acting macromolecules in an aqueous medium an enormous number of degrees of freedom

are involved and a deterministic description becomes cumbersome and impractical [55]. The

experience has been that the evolution of such systems is best described in terms of a limited

set of collective variables subject to thermal noise, describing the effect of, say, the collisions

of solvent molecules with the macromolecules. The effect of the noise is very important

and probability theory, the theory of stochastic processes, statistical physics and statistical

tools all play an important role in the description. The proper choice of the collective vari-

ables is an important question in this context. We will call such a description mesoscopic,

distinguishing it from a microscopic, atomistic descriptions on the one hand and, on the

other hand, from macroscopic descriptions such as equilibrium and non-equilibrium thermo-

dynamics or the Navier-Stokes equation [56], when the effects of stochastic fluctuations are

less apparent.

The Markov State Model (MSM) is an example of an important statistical tool that can

be used to identify the collective variables [57]. Briefly, MSM is a representation of a Master

Equation that determines the time evolution of the occupation probabilities of a Markov

chain [17], as defined below. Before we dive into the implementation of MSM, we first

review the MSM in the context of stochastic processes. At typical mesoscopic time scales

(e.g., nanoseconds to microseconds). One expects that a mesoscopic system has sufficient

time to decorrelate from its initial state because of the effects of the thermal fluctuations of

the aqueous solvent that have picosecond correlation times.

The dynamics is coarse-grained in the form of transitions between several distinct con-

formations, which we will call macrostates. In the MSM it is assumed that the number
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of such macrostates is finite, says N . Under these assumptions, the simplest form of dy-

namics is a discrete random walk from state to state in which the steps are described by a

time-dependent random variable Xt with t an integer representing discrete time. The formal

definition of the Markov process is as follows. Suppose the random variable can adopt N

possible values (i.e., states) {ij} ≡ {i0, i1...in, ...iN}. Define Pt(Xt = in) to be the time-

dependent probability that the random variable occupies state in at time t. For an MSM,

the occupation probabilities at time t + 1 are completely determined by the state of the

system at time t. For a Markov process the probability of a transition between two states

is independent of time. Define the conditional probability that the process is in state j at

time t+ 1 given that it is in state j at time t:

Pij = P(Xn+1 = j|Xn = i) (3.8.1)

Gathering all transition probabilities together between all paired states, one can create a

transition matrix Q, whose ith row and jth column entry is the conditional probability Pij.

The transition matrix we just defined is the heart of a Markov model. First, it completely

governs the evolution of stochastic process. For a given initial distribution of states µ0,

the distribution after n time steps is µ0Q
n, which is known as the Chapman-Kolmogorov

equation. Second, the eigenvalue structures (also known as ’spectral decomposition’ in some

text books) can be analyzed. The following lemma is the mathematical foundation of MSM:

Lemma 3.8.1 The eigenvalues of Q are bounded by 1, that is |λi| ≤ 1;

Lemma 3.8.2 Q always has the eigenvalue λ = 1

Lemma 3.8.3 Irreducibility of Q is equivalent to the property that every pair of states in

the state space communicates with each other. This means that a state of ergodicity can be

reached.

We refer again to [57] for the proofs of these lemmas. Briefly, for lemma 1&2, the

(left) eigenvalue 1 corresponds to the steady-state or equilibrium distribution of states. The
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remaining eigenvalues describe the relaxation dynamics of the system. The right eigenvectors

have a different meaning associated with expectation values.

So far, the time variable took on discrete values. We now want to generalize it to the

case where t is a continuous time variable, corresponding to a continuous time Markov

chain (CTMC). Formally, assume a continuous trajectory {Xt} on a discrete state space:

{i0, i1...in, ...iN}. We can write down the transition probability by analogy with the discrete

case:

Pij(τ) = P(Xτ+s = j|Xs = i) (3.8.2)

The Chapman-Kolmogrov equation takes the form:

P(τ + s) = P(τ)P(s) (3.8.3)

Define the matrix K = limh→0
1
h
(P(h)− I), where h is the time interval between the two

jumps. The Chapman-Kolmogrov equation reduces to:

P (τ + h)− P (h)

h
=
P (h)− I

h
P (τ) (3.8.4)

By definition of differentiation and the commutation of P(h) with P(τ) one can solve

the equations dP(t)
dt

= KP(t) and dP(t)
dt

= P(t)K, which is so-called Kolmogrov forward and

backward equation. The solution is:

P(t) = eK(t)P(0) (3.8.5)

K is here called the generator or rate matrix of the Markov chain. The entries Kij represent

the rate of switching between state i and j. The transition matrix is the heart of the

continuous Markov State Model.

To implement MSM in a practical case, one should first cluster the state space from the

raw data of an experiment or numerical simulation to a short list of macro-states. This
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can usually be done using clustering techniques, such as k-means, or a geometric partition

of the microscopic state space, for example by Voronoi tessellation. Then, one can build

a transition matrix Q of the macro-states that were selected. To build such a transition

matrix, one starts from a “count matrix” C. An entry of the count matrix Cij is the number

of transitions from state i to j. These counts are of course a function of the lag time τ , which

we defined in the CTMC formulation. This a key parameter that controls the performance

of MSM and we will give more details later in section 3.7. After selecting an appropriate

τ , the transition matrix is then constructed by dividing the the entries of each row by the

summation of the row. More details of the technical setting such as how to obtain sufficient

data adaptively can be found in [58], [17] and references therein.

The transition matrix provides important information. For instance, one can get the rate

matrix by taking logarithm of transition matrix. The net current between two paired states

can be obtained. Finally, instead of analyzing the distribution of the macro-states, one can

trace the distribution of reactive trajectories by calculating the relative probability of each

possible path from entries of transition matrix along the path, which known as Transition

Path Theory.

3.8.2 Transition Path Theory (TPT)

Transition Path Theory (TPT) is a tool to statistically describe the reactive trajectories [1],

aiming to obtain more information from transition events. Traditional ways of analyzing

transition rates such as Transition Stat Theory (TST) [59] and Transition Path Sampling

(TPS) [60] simply partition the system into two and analyze the ensemble of transitions

between them. These schemes, however are uninformative. The detailed trajectories may

way complicated on the half way of transition. This can be illustrated by a maze example:

A walker starts from A and targeting B. In most cases, it will get lost on several dead

ends on its way and may return to A before reaching B, those will be miscounted in TST.

Even if we do focus on the path that do reach B before returning to A, the complex wandering

during this process was missed. In TPT, it quantifies the probability flux cross any surface
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Figure 3.8.1: The maze example of the transition path [1]

on the half way of reaction by the so-called committor function m(x) [61] [1]. We formally

define it: committor function is the probability that the trajectory starting from x /∈ A ∪ B

reaches first B rather than A.

It’s obvious that the probability density to observe a trajectory at x (whether reactive or

not) is e−βU(x)

Z
where Z is the partition function. The equivalence of distribution in trajectory

ensemble and Boltzmann ensemble is guaranteed by ergodic hypothesis. Then conditional

on that, one should times m(x)(1 −m(x)) for a trajectory will be reactive. Summarizing,

the probability density to observe a reactive trajectory at point x /∈ A∪B at time spot t is:

e−βU(x)

Z
m(x)(1−m(x)) (3.8.6)

then properties such as probability current, flux and reaction rate all can be further derived

from that.

The implementation of TPT can be done in a ”continuous” manner by binning the

region between the reactant and product as a mesh [61], or it integrates well with MSM

[62], the coarse-grained macrostates can be regarded as a discretized version of binning. As

for raw data obtaining from simulations, for a simple equation of motion, one can obtain a
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long trajectory (i.e. considerable transition events included), then prune this trajectory to

the trajectory ensemble we want [61]; for complicated system, such as MD simulation of a

macromolecule, the sampling process relies on numerical method such as String Method [63]

to obtain reactive trajectories efficiently.

3.8.3 Connection between Importance Sampling and Enhanced Sampling

The view of trajectory space of sampling problem is actually connect the enhanced sampling

and importance sampling by probability theory. The problem of importance sampling can

be regarded as a optimization problem under constraints [57]. In which, one focus on a

trajectory space Ξ, and h be a real valued function defined on Ξ with probability distribution

p. The expectation value of h can be calculated by:

Ep[h] =

∫
Ξ

h(x)p(dx) (3.8.7)

However, mathematically, when p is an extreme nonuniform function, the samples are

wasted around the maximum but may never visit the tailed regions. In MD simulation, it

can be an analogues that among the whole trajectory space, the probability of observing a

transition between metastable states will be small. In importance sampling, instead of draw

samples from the extreme distribution p, one draw samples from a ”proposal distribution

q”, such that the probability of transition events in this distribution are higher than those

in original. Then, the samples can be drawn from the proposal distribution to make the

sampling process more efficient. Finally, the quantities of interest can be re-weighted from

the samples of q as:

Ep[h] =
1

N

N∑
i=1

h(Ξi)w(Ξi),Ξi ∼ q (3.8.8)

the w here is the weight of each value h(Ξi) in the original distribution. The existence of

the measure of re-weight is guaranteed by Radon-Nikodym theorem, that is the absolute

continuity of p respect to q. One can check reference [64] and [57].

41



In molecular dynamics, the above approach is implemented by exploiting the Boltzmann

distribution corresponding to the energy function. The ”proposal distribution” in this case

is the biased distribution after adding bias potential. In the context of the Variationally

Enhanced method we mentioned in section 1.2, one can select a ”proposal distribution” so

does the bias potential [19]. In most cases, such as Metadynamics, Umbrella Sampling, the

proposed distribution is a constant, in which the target is flat the energy surface.

We want this discussion to complete the idea of rare-event sampling and enrich the view

of audiences. It should be recognized that the sampling techniques in multiscale simulation

still have ample space to be developed. This could be achieved by keep pushing the accuracy

and efficiency of choice of bias potential and re-weighting regimes from lending corresponded

mathematical concepts or directly marry mathematical concept from math such as proba-

bility theory and stochastic process into simulation context. Below, we will use the MSM

for our analysis of Brownian dynamics simulation, a preliminary result by TPT will also be

presented at the end of this section.

3.9 Markov State Model and on/off rate estimation

Now we return to the numerical treatment of this problem. One can check the section 3.2 for

the detailed setting. Recall that the model injects a particle from the equilibrium distance

as a source, after the former one reacted on the sphere, allowing the system to reach a steady

state. We will briefly extend the discusion of Nonequilibrium system later.

The aim of the current and following sections is using advanced statistical techniques

to systematically interpret the simulated Langevin dynamics trajectory data. One could

review section 3.8 for the detail of Markov State Model and Transition Path Theory. Here

we give a brief reminder. On first divides a high dimensional set of data points into several

clusters, each one denoting a distinct macro-state. One then use statistical techniques to

investigate the kinetic network of those macrostates. Mathematically, they are applications

of continuous time Markov Chain (CTMC).
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Here, as our system already a coarse-grained description, it is straightforward that we

can discretize the system into a four states model. Namely, four states are: the state

unbound from (off) the sphere, bound to the sphere on the non-reactive region, bound

to the sphere on the reactive region and the reaction state (as shown in figure 3.9.1). Here

for the implementation, we use simple unsupervised learning, k-means algorithm for this

discretization process.

Figure 3.9.1: Cartoon representation of the 4-states model

Then, one can follow the section 3.8 to build a transition matrix. Noticed, to create a

transition matrix or Q matrix of a continuous time Markov chain, one need to first have a

count matrix C, which entries are a function of lag time τ . The lag describes the time interval

in which transitions between states are defined, a reasonable choice of τ should guarantee

sufficient transitions between each state and makes the transition Markovian. Practically,

one should check the implied timescales of the different processes and see that they don’t

change as a function of lag time to make the choice appropriate. The transition matrix is

then constructed by dividing the the entries of each row by the summation of the row.

Qij =
Cij∑
j Cij

The transition matrix is the heart of MSM. After the matrix comes in handy, one can
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learn a lot about the corresponding system by post-analyzing the matrix. First, one can use

the solution of Kolmogrov equation:

~P (t) = e−tK ~P0 (3.9.1)

to get the rate matrix. Then the current between paired states are:

Jij = PijKij − PjiKji (3.9.2)

So does the on/off rate and net current through the system can be estimated. The dynamics

of the system can also be learned by analysis of eigenvalue structure of the matrix. Finally,

the transition path of mechanism can be investigated by calculating the ”commitor function”

and transition distribution. We will directly present the results of those applications in the

following sections, and again encourage audiences to read the section 3.8 for the mathematical

details.

3.10 Numerical estimation of surface concentration

By implementing Brownian Dynamics as mentioned in section 3.4, one could also get infor-

mation of surface concentration for the steady-state system by simply counting number of

particles appeared on the surface. The particles be counted are the one presented in the

on state which has been defined by the discretization process mentioned above. Here, to

be consistent with the analytical work, we present the case with the hemisphere reactive

and reactivity p = 0.5. The resulted distribution has a good agreement with the analytical

derived profile with finite evaporation rate.

We also traced the time evolution of the surface concentration distribution by counting

the particles in different time interval. The resulted distribution change is similar with

the theory, where the initial distribution is nearly flat and then particles are gradually

accumulated in the nonreactive region as shown in 3.10.1

Notice that the density on the reactive region changes monotonically in this numerical

result, which does not agree with the theory. We speculate that this due to the different
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Figure 3.10.1: Time series of surface concentration, each histogram distinct a distribution

at different time spots

Figure 3.10.2: Steady state surface concentration of the hemisphere case

deposition mechanisms between the two models. We will discuss this in detail in the following

section of reaction rate.

3.11 First hitting time and reaction rate

The relation between reaction rate and area of reactive region (open angles) is the main

result of this project. We already calculated the reaction rate analytically as the incoming

current which cross the reactive/reflective boundary. Here we use two approaches, mean first
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passage time (MFPT) and net current through the system by MSM to numercically estimate

the reaction rate. The discrepancies between numerical results and theory will be discussed.

The inspiration to biological target searching process will also be reviewed.

We first investigated the reaction rate by 1 over the expectation of first hitting time or

MFPT, 1
〈t〉 = 1

MFPT
or Nt

T
where Nt is the number of reaction events and T is the total length

of the trajectory. This property can be also explained as the total current through the system

as we mentioned earlier. The implementation of the first hitting time calculation is exactly

identical to the simulation of steady state distribution in section 3.4. Here we generate

more events (eject more particles), i.e. 5000 events for each calculation. The parameters

such as spring constant k = 1
600

and the reactivity p = 0.5 for the Langevin dynamics

simulation were selected. For k = 1
600

there was a good confinement of the particle but its

corresponding equilibrium distance are out of L-J’s effective range, thus one expected to

observe the competition between 3-dimensional diffusion and 2-dimensional diffusion which

enhanced by L-J. As for reactivity, here we use p = 0.5 as an intermediate and simple case.

To be consistent with analytical works, we first checked the rate without L-J attraction,

that is the particle’s displacement are governed only by harmonic potential and stochastic

force. Notice that simulation of the particle is confined to a certain range. This is different

from the setting of analytical solution, in which the particle diffused in from infinity. How-

ever, the resulting reaction rate is nearly linear with respect to the opening angles of the

reactive part of the sphere. This means that the Berg-Purcell model still is valid. Quantita-

tive agreement and discrepancy between the analytic and numeric models will be discussed

later

Next, we turned on the L-J potential. To compare with the analytic solution with

non-zero evaporation rate, we also implemented several simulations with different strength

of L-J. There is a significant difference between L-J and evaporation in analytical model.

In the latter case, evaporation corresponds to the rate of escape out of the LJ well. Larger

evaporation rates correspond to weaker bound state so weaker L-J potentials in the numerical

simulation. The dependence of the reaction rate on different open angles is presented in
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3.11.1:

Figure 3.11.1: Reaction rates respect to different open angles (each curve) with different L-J

potential, calculated by MFPT

The blue curve is the pure-diffusive case without L-J as mentioned earlier in this section.

For the three curves with different L-J, they all monotonically increase respect to open angles

and emerge a positive curvature and converged with large angles which we saw in analytical

solution. The linearity at small angle limit implies the Berg-Purcell model still holds for the

case with short range interaction, i.e. L-J potential.

Different from the analytical solution, however, we do not observe the crossover between

curves with different strength of L-J. The numerical results presented here do indicate the

rate proportional to the depth of L-J for all angles, but no optimal condition exits. This

observation conflict with the one we obtained from section 3.6, in which increased attraction

did not always mean increased reaction rates. Specifically, for the case of small angles,

intermediate binding strength can produce a higher reaction rate. A deeper potential well

results in a longer two dimensional searching process if the reactive region is small enough.

For intermediate depth of the potential, the particle gets the chance to hop off the surface

and then return to the surface to start a fresh search, which speeds up the reaction. From

this perspective, we could also explain the discrepancy between analytic and numeric results.
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Figure 3.11.2: Cartoon representation of 4-states model and currents through it

In the analytical model, one assumes that the particles are uniformly redistributed over the

whole sphere after evaporation. The three-dimensional searching method would be helpful

in this case. Differently,in the numerical simulation we have a short range interaction, in

which the particle will be locally redistributed to its vicinity but not really an efficient three-

dimensional relocation. Along with this, a particle which does escape may also take a very

long time to return to the surface.

We confirmed our result by calculating the current through by MSM analysis. In the

four-states model we created, the current from the limbo state, that is the reaction state to

the source is essentially the reaction rate. Theoretically, in the non-equilibrium steady state,

such current is also the net current through the system, i.e. the net flux across each state.

For a specific state i, this could be calculated by:

Ji =
∑
j 6=i

Pikij − Pjkji (3.11.1)

where Pi and kij are stationary distribution and transition rate which came in handy when

we obtained the transition matrix.

The corresponded kinetic scheme can be summarized by the cartoon below.
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The master equation is then:

dP0

dt
= −(k01 + k02)P0 + k10P1 + k20P2 +

dP3

dt
(3.11.2)

dP1

dt
= −(k10 + k12 + k13)P1 + k01P0 + k21P2 (3.11.3)

dP2

dt
= −(k20 + k21 + k23)P2 + k12P1 + k02P2 (3.11.4)

dP3

dt
= k13P1 + k23P2 (3.11.5)

then the resulted rate matrix is:


−(k01 + k02) k10 + k13 k20 + k23 0

k01 −(k10 + k12 + k13) k21 0

k02 k12 −(k20 + k21 + k23) 0

0 k13 k23 0


the extra terms in the first row for the off diagonal elements come from replacing dP3

dt
in

equation 3.11.2 with equation 3.11.5, as we just repeated, the state 3 is a sink where we

set an artificial current from state 3 to state 0. Beyond that, since for this case the fourth

column is all zeros due to the sink in state 3, we can ignore the fourth row and column and

analyze the 3x3 submatrix instead. This will facilitate us in the process of taking the matrix

log to solve the Kolmogrov forward and backward equation. The logorithm of transition

matrix can be processed easier by diagonalizing it. Below is the computed rate respect to

different open angles with L-J equals 10kBT .

The magnitude of net current has a good agreement with most of open angles. However,

when the open angle large enough, current from state 2 to 0 was computed inaccurate due

to oversimplification of the system, this lead to a dramatic decreasing of rate at large angles.

One need to reconsider the selection of number of macrostates, but here we first stick with

it but postpone the discussion later. The resulted eigenvalue structures of this three states

system also illustrate the dynamics of the system, we discuss this in the following section.
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Figure 3.11.3: Net current through the system from 3 states model

The net current in equation 3.11.1 above is also proportional to entropy production rate

of the non-equilibrium system, we will discuss more of this in the section 3.13 along with

more non-equilibrium essentials of the system.

In a review by Mirny in 2008, the combination of 3-D diffusion and 2-D diffusion was

discussed [65]. Most of the biological processes are controlled by diffusion limited reaction,

it required reactant travel across the human cell, with a crowding molecule environment, the

transport even slower as a subdiffusion process. However, the reactant molecules are actually

faster than image to reach their target. In 1968, Delbruck [65] showed that the reduction

of dimension could speed up the target searching process. A typical example is the protein-

DNA binding problem, in that situation, the protein first binds DNA in a random location,

then do a 1D sliding to search the targeted fragment. Different from simple 1D searching, the

pure 2D process sometimes redundant, where the same area will be visited repeatedly by a

small excursion, thus the searching is inefficient. Loverdo et.al [66]. argued the combination

of 2D and 3D diffusion is a good strategy. The long distance jump helps a particle to explore

new locations, thus making the search less redundant and faster. This optimal condition was

also observed in our theory, in which the hopped particle has chance to relocate anywhere

on the sphere as we set it can deposit on the surface uniformly. The discrepancy between

theory and numerical model can be explained the hopping with a short-range interaction

cannot lead to a fast transport in 3D but a excursion around its hopping location.
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Figure 3.12.1: Three lowest eigenvalues as a function of the opening angle.

3.12 Reaction dynamics by MSM analysis

As we briefly mentioned at section 3.7, we could understand the dynamics of the system

before reaching the final steady state. Similar with the homogeneous linear equation, we

can analyze the eigenvalue structures of the transition matrix to investigate more about the

dynamic process.

The first two eigenvalues with respect to different angles have a good agreement with the

theoretical prediction. The first eigenvalue corresponds to the steady state that with all open

angles it emerges zero decay rate. The second and the third one from analytical model are

constant decay rate which denoting the thermal fluctuations before reaching the final state

are gradually vanished. The second modes was also observed from the numerical analysis.

However, the third mode shows non-monotonic behavior with respect to the opening angles.

Specifically for the two extremes with large and small opening angles, the decay rates are

very large. This discrepancy in eigenvalue structures resulted from the limited basis set

in the numerical model. The coarse grained four states model is not comparable with the

(roughly) one hundred terms of the Legendre polynomial expansion.

These trends were also appeared in the eigenvectors which corresponds to the probability

distributions of each mode. Figure 3.12.2 gives the relative probability of each mode with

respect to open angles. The steady state distribution changed monotonically with increasing

angle. The second and the third eigenvalues indicate a shift of mechanism when we increase

the opening angle.
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(a) steady state

(b) 2nd mode

(c) 3rd mode

Figure 3.12.2: Eigenvectors of three modes
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3.13 Entropy production rate

In this section, we will discuss more properties of the system in macroscopic view. As

we keep generate particles from source, the process is clearly a steady state non-equilibrium

system. By thermodynamics meaning, it is irreversible and will keep producing entropy. This

essential violate the detailed balance which is the characteristic of an equilibrium system.

This violation could be checked by Kolmogrov criterion: kijkjkkki 6= kikkkjkji [67].

Different from master equation and transition matrix which illustrated the process mi-

croscopically, entropy is a macroscopic description. To bridge the gap between micro and

macroscopic description, we define a quantity, entropy production [68]:

Ṡ =
1

2
(
∑
i 6=j

Pikij − Pjkji)ln(
kij
kji

) (3.13.1)

From a thermodynamic point of view, this quantity manifest the system’s response to the

coupled external ”force” [69]. In our case, the force are given as a net flux due to reaction

and continuous fed of reactant (injection of particle).

The accurate calculation of entropy production rate requires we include the limbo state,

cause in the 3 state model the rate matrix was simplified to


−(k01 + k02) k10∗ k20∗

k01 −(k10 ∗+k12) k21

k02 k12 −(k20 ∗+k21)


here k13 and k23 have been eliminated from the matrix and the k10 and k20 rates have

been modified. The rates from states 1 and 2 to 3 have been eliminated since now we

are no longer counting the number of reactions happening from state 1 and 2 to 3. They

are instead counted as transition from the bound states, 1 and 2, to the unbound state 0.

This reorganization is a good approximation when the hopping rate is ignorable, and the

transition from state 1 & 2 to 3 so does 0 are dominant. However, ignoring the hopping

transition would make the estimation of entropy production inaccurate.
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The truncation of four state matrix is not trivial, where every non-diagonal element is

non-negative, which is known as the embedding problem. This problem come from Galois

theory is way profound in our discussion, we here refer to [70] for a possible approximation.

3.14 Transition path and reaction mechanism

We take two extreme cases of open angles for the TPT analysis to illustrate the difference

of open angles that will shift the transition mechanisms. As the model is a coarse-grained

description, we use the transition matrix to calculate the probability distribution of the

transition path by a sequence of conditional probabilities along the different possible paths

from initial state 0 or off state to the final state 3 or the reaction. Resulted plots are shown

in 3.14.1. The horizontal axis here is the probability that starts from 0 or A and ends in 3 or

B, known as committor probability. The size of the circle indicates the net flux through the

state. One can easily see, for a small angle case π
10

, the flux was dominant at the reflective

state where the particles accumulated there for the target searching process. On the contrary,

with a large angle, the reactant state is dominant as almost all particles directly rain down

to the reactive spot without any stay.
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(a) committor probability calculated from the simulation

with π
10 open angle
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(b) committor probability calculated from the simulation

with 9π
10 open angle

Figure 3.14.1: Committor probabilities with two open angles
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CHAPTER 4

Growing a Droplet in a Filament Network

4.1 Liquid-liquid phase separation in living cells

Liquid-liquid phase separation occurs when a change in thermodynamic parameters causes

the components of a binary mixture to segregate. Liquid-liquid phase separation eventually

produces an interface separating two components, such as oil floating on water. Below is an

artistic interpretation of phase separation inside the complex environment of a cell.

This phenomenon is common in biological systems and it may play a purposeful role as a

mechanism that allows cells to respond to the changes in the environment. By concentrating

certain compounds and excluding others, it can speed up the reaction [71]. For example,

in neurons signaling molecules may aggregate to ensure smooth communication [72]; Phase

separation also can protect cells by helping them to adapt to the environmental change, such

as dramatic temperature and pH change [73]. However, phase separation could also damage

the cell if it occurs at the wrong place or time, by creating clogs or aggregates of molecules

which correspond to neurodegenerative diseases, such as ALS [74]. The figure below shows

examples.

Different from typical liquid-liquid phase separation, the phase separation in the cel-

lular system usually inter-plays with cross-linked polymer networks, which makes it more

complicated.

Past work focused on the elastic resistance of the medium against the swelling pressure of

the growing droplet. One work that should be mentioned here is the experimental work from

the Dufresne group [75]. In their work, they argued that the growth of the droplet is driven by
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Figure 4.1.1: Artistic interpretation of phase separation inside a cell.

(a) speed up reactions

[71]

(b) ensure a smooth

communication [72] (c) protect cells [73]

(d) neurodegenerative

disease [74]

Figure 4.1.2: Examples of phase separation in cells
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Figure 4.1.3: Phase separation according to linear elastic theory

the chemical potential difference between the dilute minority component molecules at infinity

and the dense minority component inside the droplet. In their model, the swelling droplet

keeps interacting mechanically with the elastic medium. As the droplet swells, cavitation

phenomena may happen when linear elasticity breaks down.

Recent theoretical work focused on the impact of stiffness & shear modulus of surround-

ing networks on the phase separation phenomenon. The Zwicker group predicted that the

distribution of the droplets is a result of the gradient of stiffness and can be regarded as a

reversed Ostwald ripening [76][77]. The Meng group verified experimental work of the pro-

portionality between droplet size, number density, and shear modulus of the elastic network

[78]. All works, however, modeled the system by using mean field theory and the interaction

between droplet and network were described by continuum mechanics.
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4.2 Two dimensional model of the growing droplet

4.2.1 Basic Settings

Different from past works we reviewed above, we create a two-dimensional model dynamical

model for the numerical simulation. In this model, a hexagon lattice of deformable Gaussian

potentials is used to represent either filaments or a coarse-grained representation of a higher

filament concentration region. This allows one to simulate different elastic networks by

changing parameters of the Gaussian potentials. Harmonic spring connecting the Gaussians

provides mechanical stability of the network. Next, a disk is used to represent a droplet of

minority phase. The motion of the Gaussian bumps and the droplet are both governed by

Brownian dynamics with external potentials:

Ẋd(t) = − Dd

kBT
∇Uint +

√
2Ddσ(t) (4.2.1)

Ẋg(t) = − Dg

kBT
(−∇Uint +∇Uh) +

√
2Dgσ(t) (4.2.2)

Here, Xd and Xg are locations, Dd and Dg are the diffusion constants of the droplet

and Gaussians respectively while σ again is the Wiener noise we used previously. Uh is the

harmonic potentials between each pair of Gaussians:

Uh =
1

2
k( ~xgi − ~xgj)

2 (4.2.3)

where ~xgi and ~xgj are locations of the Gaussian i and j.

Importantly, the droplet has an interaction potential Uint that depends on the overlapping

area between the droplet and Gaussians. Conversely, a Gaussian will interact with the droplet

by Newton’s third law, for which explains the negative sign in equation 31. Importantly, the

size of the droplet is a variable that depends on Uint, surface tension, chemical potential, and

the dewetting parameter. The dynamics of radius (size of the droplet) will couple with the
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Figure 4.2.1: 2D lattice of Gaussian (red dots) with a droplet (blue dot)

motions of the droplet and Gaussians, which leads to intriguing properties. I will explain

this in the next section.

4.3 Interaction between Gaussians and growing droplet

4.3.1 Overlapping & Interaction Energy

As we just mentioned, the interaction energy has a key impact on the dynamics of the system.

We now formally define how it depends on the overlap between droplet and Gaussian and

then how to calculate it use a ”soft droplet” trick.

First we define the magnitude of Gaussian potential density. For an arbitrary Gaussian

with its center locate at ~xg, the potential Ug is:

Ug( ~X) = U0e
− 1

2σ2 ( ~X− ~xg)2

(4.3.1)

Here, U0 is the maximum of Gaussian and σ is the standard deviation. Those two parameters

represent the height and width of the bump, it allows one to mimic different strength &

density of filaments. We further set a disk with radius R at ~x, and ~y is the vector locate
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Figure 4.3.1: Cartoon representation of the interaction between the Gaussian and the droplet

within the disk, it is the substitution of an arbitrary vector respect to the center of Gaussian

~X − ~xg. The interaction energy is the integral of the potential density over the area of the

disk. A naive cartoon is shown below:

Intuitively, we use this interaction potential to simulation the forces generated by fila-

ments’ deformation. Mathematically it follows:

Uint =

∫
|~y−~x<R|

Ug(~y)d2~y (4.3.2)

Normally we set the disk as a ”hard disk” with sharp edge, i.e. the vector ~y are limited

within the edge. Then we can rewrite the equation 4.3.2 into a polar coordinate form:

Uint =

∫ 2π

0

dθ

∫ R

0

rdre−
x2+2xrcosθ+r2

2σ2 (4.3.3)

Here we extend equation 4.3.2 by equation 4.3.1. The ~x would still be the location vector

of the disk, however the vector ~X− ~xg in equation 4.3.1 be expressed in the polar coordinates

as a vector ~z:

~z = ~x+ x̂rcosθ + ŷrsinθ, 0 < r < R (4.3.4)

A simple illustration is helpful for understanding the model:
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Figure 4.3.2: Toy representation of integral in polar coordinate

However, it is hard to truncate this integral analytically which requires Bessel function.

We will put the derivation into the appendix session. Here, we regard the droplet as a

”soft disk” to simplify the integral. In the ”soft disk” version, we regard the disk itself as a

Gaussian density:

ρsoftD = ρ0e
− r2

2R2 (4.3.5)

To be clear, we can also formulate the ’hard disk’ we derived above, its density should be a

step function:

ρhardD = H(R− |r|) (4.3.6)

and in equation 4.3.2, we drop the constant density ρhardD = 1 within the integral range.

Differently from the soft version, the part be integrated is fixed to be one which fulfills

the condition that the minority phase (droplet) has a fixed amount. With this setting, the

interaction energy will be:

Uint =

∫
d2~yUg(~y)ρ(~y) (4.3.7)

Along with equation 4.3.1, the integral would be:
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Uint = U0

∫
d2~ye−

~y2

2σ2 e−
|~y−~x|2

2R2 (4.3.8)

A simple illustration would be exactly identical as before. Here we first focus on the

argument of exponential term, it can be collected and then reorganized by completing the

square:

− 1

2σ2
y2 − 1

2R2
(y2 − 2~x~y + ~x2) = − x2

2(σ2 +R2)
+
R2 + σ2

2σ2R2
(~y − σ2

R2 + σ2
~x)2 (4.3.9)

plug it back with putting ~y irrelevant term in front of the integral:

Uint = e
− x2

2(σ2+R2)

∫
d2~ye

R2+σ2

2σ2R2 (~y− σ2

R2+σ2 ~x)2

(4.3.10)

which is a Gaussian integral and the result is straightforward:

Uint = π(
2σ2

R2 + σ2
)U0e

− x2

2(σ2+R2) (4.3.11)

The resulting expression shows that the interaction strength grows with increasing R,

which is consistent with intuition.

4.3.2 Chemical Interaction

We now start to formulate the dynamics of R. We first focus on how a Gaussian interacts

with er droplet chemically. For this purpose, we start from fundamental thermodynamics,

where we assume the minority phase act like an ideal solution and its Gibbs free energy is:

F = NkBT ln(
n

n0e
) (4.3.12)

in which n is the number density of the minority phase, and n0 = (mkBT
2π~2 )

3
2 is a reference

density. Then we can obtain the chemical potential:
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µ =
∂F

∂N
|T,V = kBT ln(

n

n0

) (4.3.13)

whew we applied the chain rule by using relation n = N
V

. The gradient of the chemical

potential will generate a current of particles ~J = −ν∇µn, where ν is the mobility. This

relation is actually the diffusion equation:

∂tn = −∇ ~J = D∇2n (4.3.14)

in two-dimensions. The solution will be:

n(r) = Alnr +B (4.3.15)

where A and B are undetermined constants.

Now we focus on the equilibrium condition of the diffusion. In this condition the chemical

potential of minority phase is balanced with that of mixed phase (ideal solution as we

assumed): µin = µ = kBT ln(n
∗

n
), in which n∗ is an arbitrary number density of minority

phase. Here we further set the number density at infinite region is a fixed value n∞, which

plays a role of a reservoir of minority phase. If those two regions relaxes separately as steady

currents, we can get an equation series by plug them in equation 4.3.15:

n(R) = AlnR +B = n∗;n(ρ) = Alnρ+B = n∞ (4.3.16)

here R is the radius of the droplet and ρ is the location at infinity. Then by solving this, the

undetermined constants can be expressed by the constants we have:

A =
n∞ − n∗

ln ρ
R

;B =
n∗

ln ρ
R

lnρ− n∞lnR

ln ρ
R

(4.3.17)

now we plug them back to the equation 4.3.16, then take gradient respect to r. The

constant B directly vanished and the current on the droplet R will be a simple expression:
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J(R) = −D
R

n∞ − n∗

ln ρ
R

(4.3.18)

Now we can determine the dynamics of radius R by assuming the incoming current, the

flux equation 4.3.18 times 2πR, equals to the area change rate:

da

dt
= 2πR

D

R

n∞ − n∗

ln ρ
R

= 2πRṘ (4.3.19)

where we applied a = πR2. Then the radius change rate can be obtained by reorganizing

4.3.19:

Ṙ =
D

R

n∞ − n∗

ln ρ
R

(4.3.20)

then the number density of minority phase can be expressed by the equilibrium condition

we mentioned above: n∗ = n0e
µin
kBT . Since ρ >> R is always true in our assumption, so we

could further set ln ρ
R

as a constant D̃. Thus the radius change rate can be reorganized as:

Ṙ =
D̃

R
(n∞ − n0e

µin
kBT ) (4.3.21)

here the heart of our model is the chemical potential µin is dependent on the interaction

energy:

µ
′

in = µin + α
U(~x,R)

R2
(4.3.22)

one can regard the last term as the excess Gibbs free energy offered by interaction potential

up to a parameter α. 1
R2 here represent unit area, alpha combining 1

R2 represent the number

of molecules. So α is the density of minority phase, which is the intrinsic property of different

material. In this equation it represents how sensitive the droplet against interactions, thus

we name α as the ”dewetting parameter”. Noticed that, to make equation 4.3.22 reasonable,

we assume that in the condensed phase the Gibbs free energy is nearly identical to Helmholtz

free energy. We also drop the entropy term.
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This equation give us good intuition about the dynamics of radius. It is controlled

by a constant flow from infinity proportional to n∞. When a droplet is located at the

local minimum of the potential surface, the present chemical potential of the droplet µ
′

is

smaller than that at infinity, thus particles flows in so the droplet will grow. Conversely, the

droplet free energy increases when it overlaps with the Gaussian, leading to a larger chemical

potential than that in reservoir, thus particles flow out and the droplet shrinks. Below in

figure 4.3.3 we again use a cartoon to illustrate this dynamics.

Figure 4.3.3: Cartoon of the size change of the droplet

Finally we could absorb all constant terms to a single parameter for a clean look, in which

we assume:

Ṙ0 = D̃n∞; Ṙ1 = n0D̃e
µin
kBT (4.3.23)

then equation 4.3.21 can be written as:

Ṙ =
1

R
(Ṙ0 − Ṙ1e

αU(~x,R)

kBTR
2 ) (4.3.24)
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4.3.3 Mechanical Interaction

Besides the chemical interaction via excess Gibbs free energy, now we also considerate the

mechanical interaction to the droplet. For which, we consider the surface/line tension of the

droplet. We already know the chemical potential of the minority phase by equation 4.3.22,

now if we add a small particle to the droplet, the updated chemical potential should be:

µ
′
= µ+

Γa

R
(4.3.25)

in which a = 1
n0

is the area per molecule of the incoming cluster.

To prove equation 4.3.25, one just need to image a simple case: add a small particle to

the drop, which result in a perturbation of radius, R + dR. Then we know the perimeter

change should equals to: 2πdR. Thus the area work (analogy of volume work in 2 dimension)

should be:

∆µ = Γ(2πdR) = Γ2π
a

2πR
(4.3.26)

where we use the relation that area change 2πRdR equals to the parameter a. As we

assume the area a is the area/molecule, thus area work is the Gibbs free energy change

per molecule, that is the chemical potential change. Then the chemical potential change

from thermodynamic and mechanical interactions can be collected together, the resulted

expression of Ṙ is:

Ṙ =
1

R
(Ṙ0 − Ṙ1e

αU(~x,R)

kBTR
2 + Γa

RkBT ) (4.3.27)

4.4 Summary.

We found that the parameter α controls the dynamical properties of the droplet. For α

between six and ten, the droplet interacts strongly with the filament. The may evaporate

shortly after the simulation start of the simulation or undergo a number of shrink-and-
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growth cycles, producing the characteristic ”shark fin shape” dependence of radius on time.

Eventually, the droplet will evaporate when there is a sufficiently large thermal fluctuation.

For α between 1.3 and 6, the system is in a quasi-equilibrium steady-state regime with

the radius fluctuating around a mean value. Finally, for α smaller than 1.3, the droplet

interacts only weakly with the surroundings. The radius will grow in time proportional

to t
1
2 , permeating the surrounding filaments. The changes that take place in the growth

characteristics also affect the mobility of droplet. In both the evaporation regime and the

steady-state regime, the droplet will be localized most of the time in a minimum energy

location, with rare jumps to neighboring minima. In the diffusive regime of small α where

the droplet permeates the surrounding filaments, the droplet will be much more mobile.

It is interesting to compare these regimes with the equilibrium phase diagram that was

recently obtained by the Kosmrlj group for this problem [79]. The phase diagram obtained

in that paper is shown in figure 4.4.1.

The regime of micro-droplets would correspond to the regime of large α parameter while

the regime permeation corresponds to the regime of small α. The so-called permeo-elastic

number is roughly inversely proportional to α. There is no analog in our theory for cavitation

where the droplet pushes the filaments out of the way and it would be interesting to pursue

that.

4.5 Radius fluctuations and concentration field

With our current settings, the fluxes are driven by the gradient of chemical potential, and

the growth rate is identical to the incoming flux. This setting is under the assumption that

the diffusion is large enough such that the concentration field along this transportation can

be soon vanished, ∇2c = 0; ∂c
∂t

= 0.

However, in actuality, the low and high density/concentration domains are separated by

an interface. The relaxation of the concentration field is not instanteneous as we assumed.

Instead of analytically solving the Cahn-Hilliard equation [80] for this diffusive system, we
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(a) A. LLPS without interplaying with polymer networks; B. LLPS

in an elastic network has three scenarios: (i) Cavitation; (ii) Micro-

droplets; (iii) Permeation

(b) Phase diagram of LLPS in an elastic network as a function of

elasto-capillary h and permeo-elastic number p

according to ref.[79]

Figure 4.4.1: Phase diagram and possible scenarios of LLPS
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Figure 4.5.1: Toy representation of flux integral around the surface

use Einstein relation [81] to add a radius fluctuation to the dynamics of R as a proxy of the

concentration field. Specifically, we add a noise term to the flux term which corresponds to

the time evolution of the concentration profile:

∂c

∂t
= −~∇ ~J ; ~J = −νc~∇µ+ ~Jn (4.5.1)

Again, here ν is the mobility and ~Jn is the noise term we add to the flux. Specifically, a path

integral around the perimeter of the sphere was added to integrates fluxes around it:

Ṙ =
1

R
(Ṙ0 − Ṙ1e

αU(~x,R)

kBTR
2 + Γa

RkBT ) +
a

2π

∫ 2πR

0

dsJnr (4.5.2)

where s is the path along the perimeter and a again is the molecular area, and this integral

can be represented as a cartoon in figure 4.5.1:

We now consider this correction term together as ζ(t) = a
2π

∫ 2πR

0
dsJnr . Then the auto-

correlation function of ζ(t) is:

< ζ(t)ζ(t′) >= (
a

2π
)2

∫ 2πR

0

ds

∫ 2πR

0

ds′ < Jnr (s, t)Jnr (s′, t′) > (4.5.3)

it can be easily estimated as 2πR( a
2π

)2∆1
l
δ(t− t′) up to an undetermined constant ∆. That

relies on equal time correlation of Helmholtz free energy and kinetics of the concentration

change: ∂δc
∂t

= D∇2δc− ~∇ ~Jn. Here we only want audiences notice the radius would fluctuate
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up to a noise due to such relaxation of the matter transfer. As we are not turning on this

noise term in our later investigation, here We only leave the result is ∆ = 2Dc(R).

4.6 Non-linear 1D system and Bifurcation

Before we turn on the fluctuations of dynamics of radius and displacement, we first simplified

the system into a 1 dimensional model by coarse-graining the net force around droplet.

This simplification can be done by assuming several Gaussian potentials around the

droplet exert an effective harmonic force on it, thus we could regard all point mass on the

droplet feels such potential. For a location center of mass of the droplet ~r and an arbitrary

point ~ρ deviates from the center, this integrated potential is:

Ueff =

∫
~ρ<|R|

d2~ρ
1

2
u0(~r + ~ρ)2 =

1

2
u0(r2πR2 +

π

2
R4) (4.6.1)

here u0 is the effective spring constant of the harmonic, we measure this constant by simu-

lating the 2D model with a small deviation, to make it comparable with the original model.

After obtaining the effective potential, we just need to replacing the Uint in equation

4.3.24 by this. The resulted expression has a clean look:

Ṙ =
1

R
(Ṙ0 − Ṙ1e

αu0(r2π+π
2R

2)

kBT
+ Γa
RkBT ) (4.6.2)

Together with the equation of motion γ d~r
dt

= −∂U
∂r

of the droplet, and with turning off both

noise terms, the resulted differential equation series can be regarded as a nonlinear dynamical

system. This deterministic description offers us insight in the dynamics. Here we use the

resulted flow lines of vector field to illustrate it.

When we turn off the interaction energy, all vectors point towards the center location

dominated by a regular harmonic potential. With α = 5, a stable fixed point emerges at

r = 0, R = R∗ in which R∗ is the saturated radius, the horizontal vectors indicate at almost

all finite displacement the radius tends to converge to the saturated radius. Two unstable
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(a) α = 0 (b) α = 5 (c) α = 9.2

Figure 4.6.1: Three regimes of flow lines

fixed points result from surface tension, when the size of the droplet is small enough, i.e.

R ≈ 0 the mechanical interaction forces the evaporation at a finite displacement. However,

at later stage α = 9.2, almost all vectors strictly rain down towards negative R, indicating

the droplet will constantly evaporate even with a finite interaction with the potential.

4.7 The effective dynamics and theory by a perturbation

4.7.1 Stochastic dynamics

Now we turn on the thermal noise to use the stochastic dynamics to illustrate the difference

between those two regimes. The resulted dynamics of radius and displacement with two

different α are shown at top of this page:

With α = 5, the radius rarely fluctuate but converge to the saturated radius. But

with α = 9.2, the evaporation events frequently happened which shown as blue dots in the

below figures. In this case, the dissipation by interacting with potential cannot balanced by

the thermal fluctuation, the restarting-fluctuation-evaporation process keeps consuming free

energy and a steady state nonequilibrium condition has developed. In this case, the droplet

cannot forget its initial condition with finite life time before it reaches the saturated radius

state.
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(a) α = 5

(b) α = 9.2

Figure 4.7.1: Two regimes of dynamics
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4.7.2 A theoretical explanation by a small perturbation

The dynamics presented above is hard to truncate analytically. However, here we offer a

theory to explain it by assume the radius change around saturated value up to a small

perturbation: R2 = R̄2 + x(t), here x(t) is the time-dependent perturbation. We further

collect all prefactors as two constants in equation 4.6.1 in a cleaner form: Ueff = 1
2
Cr2R2 +

DR4. Thus at steady state, we have both differentiation equals zero, noticed here we also

ignores the surface tension γ as the nonlinear dynamics showed, it just has light influence

when the droplet small enough:

−CR2r = 0; R̄ =

√
1

αD
ln(

Ṙ0

Ṙ1

) (4.7.1)

then the effective potential and the dynamics of the displacement can be written as:

U ′eff =
1

2
C(R̄2 + x)r2 +D(R̄2 + x)2; ζ

dr

dt
= −C(R̄2 + x) + η(t) (4.7.2)

here η(t) is the white noise of the 1D dynamics. For x = 0, this is a trivial over-damped har-

monic oscillator and the time correlation of the displacement has the form < r(t)r(0) >=<

r2 > e−
t
τr which up to a constant τr = η

CR̄2 . then the dynamics of x can be captured by

plugging in the perturbation expression of R:

1

2

dx

dt
= Ṙ0 − Ṙ1e

α(DR̄2+ 1
2
Cr2+Dx) (4.7.3)

by extracting constant term with R̄ and D, one can Taylor expand the remaining exponential

term as both r and x are small values at steady state. The resulting expression is:

1

2

dx

dt
= Ṙ0 − Ṙ1e

αDR̄2

(1 +
1

2
αCr2 + αDx) (4.7.4)

By applying the saturated radius, equation 4.7.1, the above expression was cleaned up:

1

2

dx

dt
= −Ṙ0(

1

2
αCr2 + αDx) (4.7.5)
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Next, we defined the time scale τR = 1
2Ṙ0αD

, then we again rewrite the dynamics as:

dx

dt
= − 1

τR
x− Ṙ0αCr

2(t) (4.7.6)

The dynamics of x can be solved analytically up to a integral:

x(t) = −R̄0αC

∫ t

0

dt′e
− t−t

′
τR r2(t′) + x(0)e

− t
τR (4.7.7)

then with a long timescale t >> τR, the last term can be ignored. Then we plug in equation

4.7.7 into equation 4.7.2:

ζ
dr

dt
= −CR̄2r(t) + R̄0αC

∫ t

0

dt′e
− t−t

′
τR r2(t′) + η(t) (4.7.8)

it is clear that the second term introduces a ”memory kernel” to the dynamics of r, which

consistent to the stochastic dynamics result, in which the droplet cannot forgot its initial con-

dition with a finite life time before reach the equilibrium steady state. This non-uniformity

in time is a strong evidence for a non-equilibrium condition.

4.8 Violation of fluctuation-dissipation theorem (FDT)

4.8.1 Non-equilibrium condition

Important biological processes such as the phase separation problem we now discussing

consume energy, thus push the system away from equilibrium. Other examples such as

molecular motors [82], proteins transport cargo [83] are now hot topics under intense research.

In a wide range of such situations, one can categorize the non-equilibrium system into these

three classes [84]. One is the system is slow relaxing towards the equilibrium but yet reached;

the second is the system imposes a non-zero steady current through boundary condition (i.e.,

the constant particles we generated in the Diffusion confinement problem and the molecule

current from a reservoir we discussing now); the third class of non-equilibrium systems is

so-called active matter in which energy is dissipated at the microscopic scale in the bulk
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so that each component of the system has an irreversible dynamic. In general, the non-

equilibrium conditions are generated due to the non-uniformity in space or time. Thus

the nonzero net current through the system is also an important property to distinguish

the non-equilibrium system from the equilibrium condition, where the detailed balance is

violated. The quantitative study of non-equilibrium systems, especially the one far away

from equilibrium & steady state requires calculations of dynamical observable [69] such

as changing rate of state function, which relies on Large Deviation theorem (LDT) from

advanced probability theory [85]. In short, LDT estimates the probability that the empirical

average approaches a value other than the real average. This deviation could be regarded as

rare events. Here we defer this action to our future work, but present a qualitative prove of

the presence of the non-equilibrium condition by using typical tool, Fluctuation-Dissipation

theorem.

4.8.2 Verify the non-equilibrium system by FDT

In above section 4.7.2, our theory absorbed the dynamics of size change into the displacement

by using perturbation theory, the resulted coupled dynamics offers an evidence of non-

equilibrium condition by the appearance of ”memory kernel”. Here we use the typical tool,

the Fluctuation-Dissipation Theorem (FDT), to quantitatively prove the presence of non-

equilibrium:

Sx(ω) =
2kBT

ω
χ(ω) (4.8.1)

here x is a observable or signal; S is the Fourier transform of signal into frequency space; χ

is the response function or susceptibility, which usually measured under a oscillatory field.

For a proof, see [86]. Here we only give a brief explanation: in general, FDT states that

the autocorrelation function which is a measure of the intensity of spontaneous fluctuations

is proportional to the imaginary part of the response function, which quantifies the energy

dissipation by the environment due to an external perturbation.

This tool has proved to be a successful way to check the deviation from equilibrium.
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In practical terms, it is a complicated method. First, this method requires two separate

measurements including the correlation function and the response function be available.

Second, the measurement of the response function depends on a measurement of the effect

of a weak external force. Third, it is hard to guarantee the measurement are made within

the linear response regime, that is, with a small perturbation. Below we use a AC force with

a finite magnitude as small perturbations.

We exerted an periodical AC force: f(t) = Msin(ωt) as an extra term of the equation

of motion of the dropet. Then the displacement would emerges a periodical movement as

expected and we can guess it can be expressed by a simple Fourier expansion r1cosωt +

r2sinωt)sinωt.

Then the out phase component of the driven displacement are calculated by:∫ Ttot

0

r(t)sinωtdt =
n=nmax∑
n=0

r(n∆t)sin(ωn∆t)∆t (4.8.2)

Here, n and nmax are the number of steps that should be converted to a real number by

multiplying with ∆t; All raw data below are without the normalizing prefactor 1/Ttot and

the time step ∆t. Also for the integration in equation 80, the target is to get the coefficient

of the Fourier series, where in the integral for the guessed displacement:

∫ Ttot

0

(r1cosωt+ r2sinωt)sinωtdt '
1

2
r2Ttot (4.8.3)

Thus one should multiply the raw integration with 2 to get the Fourier component r2. The

resulting out-of-phase component is measured for different magnitudes of the AC force.

Below we take ω = 5 and simulated the intermediate case α = 3 as an example. The

measured slope is the response. Again as we mentioned earlier, one should convert it with

several prefactors.

Then by assuming the driven system is a damped harmonic oscillator, one can get the

analytical expression of the susceptibility (response).

Reχ =
k

k2 + γ2ω2
; Imχ =

−γω
k2 + γ2ω2
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Figure 4.8.1: Measure response from raw data of Fourier component v.s amplitude

(a) α = 3 (b) α = 5 (c) α = 9

Figure 4.8.2: Fitting =χ

(4.8.4)

The physical meaning of the real part is the effective spring constant and the imaginary part

is the dissipation due to the external force.

We want to fit the numerical results above in this form by regarding the γ and k as

undecided constant and ω as a variable.

By converting the raw data to the real magnitude of Fourier component as mentioned

at the beginning of this section, the linear fitted parameter has a good agreement with the

one we really use, in which the friction coefficient γ = 1.5; effective spring depending on

saturated radius DR̄2.

Then we turn to the measurement of autocorrelation function to check the relation be-
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tween imaginary component of χ and Fourier transformed auto-correlation function for the

validation of FDT:

c(ω) =
2kBT/γ

ω2 + k2/γ2
=

2kBT

ω
Imχ(ω) (4.8.5)

The c(ω) is calculated by pick the real part of the discrete Fourier transform (to consistent

with equation 80). Noticed in equation 80, we use ordinary frequency ω, here we first use

the angular frequency k which be generally used in built-in functions of Python packages:

Ωk = Re

n=nmax∑
n=−nmax

c(n∆t)cos(
2π

Ttot
kn∆t)∆t (4.8.6)

by relation Ttot = nmax∆t, we can rewrite equation 5 as:

n=nmax∑
n=−nmax

c(n∆t)cos(
2π

nmax
kn)∆t (4.8.7)

For an ACF with noisy signal in larger lag times, we could fitted the discrete signal

c(nδt) as an analytic polynomial function c(t). This continuous signal can be transferred by

continuous time Fourier transform (CTFT):

Ωξ =

∫ Ttot

−Ttot
c(t)e−2πitξdt (4.8.8)

For the angular frequency ξ in CTFT, we should translate it into k in DTFT. The

exponential argument tξ in CTFT can be analogy as a discrete expression ξ∆tn, which

should equals to the argument in equation 4.8.7: k n
nmax

= ξ∆tn.

We will follow this with first a checking of simple case FT, e−ax
2
:

One can see the CTFT and DTFT have a perfect agreement with theory (figure 4.8.3).

Finally we apply this routine to the fitting of ACF signal. Noticed to consistent with the

ordinary frequency ω used in simulation as shown in equation 4.8.2, one should pick the kth

discrete Fourier component (equation 4.8.6 & 4.8.7), for which 2π
nmax

k = ω∆t. Then, with a

consistent ω one need to times ∆t to convert to the real value, as in the built-in function,

there is a default time step equals one, which is not the case here. Finally, again, one need

to convert all frequency to a standard dimension. Here we use ξ mentioned above:
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Figure 4.8.3: Verify the DTFT and CTFT by e−5x2

2πk
n

nmax
= 2πξ∆tn = ωn∆t (4.8.9)

In figure 4.8.4 are two set of curves with α = 5 and 9.2, we can easily see at small α the

equilibrium condition still holds, but with a larger one, the FDT is violated. In the later

case, the deviations are significant at low frequency region, which qualitatively agree with

Large Deviation theorem that those events should be rare, and its frequencies are expected

to be low.

In summary we have shown for a simple model of arrested phase-separation by an ex-

ternal potential that the resulting droplets constantly consume free energy and are in a

non-equilibrium state.
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(a) α = 5

(b) α = 9.2

Figure 4.8.4: Verify the FDT by DTFT, the blue dots are Fourier transformed Autocorrela-

tion function of displacement r ; the orange dots are imaginary part of response function χ

from sequence of perturbed simulations
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APPENDIX A

Numerical integration of the Langevin equation in

dimensionless units

We start from a general one-dimensional Langevin equation:

mẍ+ γẋ = F (x) + η(t) (A.0.1)

Here η is the white noise with zero mean and with an autocorrelation function < η(t)η(t′) >=

2kBTδ(t− t′). We next discretize this equation by integrating over a time interval ∆t with

tn = n∆t;xn = x(tn); vn = v(tn) (A.0.2)

This gives:

∫ tn+∆t

tn

d2x

dt2
dt+

∫ tn+∆t

tn

γ
dx

dt
dt =

∫ tn+∆t

tn

F (x)dt+

∫ tn+∆t

tn

η(t)dt (A.0.3)

This is approximated as

m(vn+1 − vn) + γ(xn+1 − xn) =

∫ tn+∆t

tn

F (x)dt+

∫ tn+∆t

tn

η(t)dt (A.0.4)

at time tn+1 the force is expanded in a Taylor expansion, F (xn)+F ′(xn)vn(t−tn)+...O(∆t2).

Inserting this into the integral we get:

∫ tn+∆t

tn

Fdt = F (xn)∆t+
1

2
F ′(xn)vn∆t2 +O(∆t3) (A.0.5)

Since η(t) & η(t′) are uncorrelated random variables, the integral of the white noise must be

a Gaussian random variable with zero expectation. Its variance can be calculated as:
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σ2
n =

∫ tn+1

tn

dt′
∫ tn+1

tn

dt′′ < η(t′)η(t′′) >= 2kBTγ∆t (A.0.6)

thus the magnitude of the integral of the noise is 2kBTγ∆t, we here name it as ∆n. This

expression indicates that the random force will dominant when time step is small enough.

With preparing all integral up to a range within time step, now the Langevin equation can

be translated to a update rule:

xn+1 = xn + vn∆t+O(∆t2); vn+1 = vn − γ
vn∆t

m
− F (xn)∆t

m
+

∆n

m
+O(∆t2) (A.0.7)

We now convert all quantities into a dimensionless manner. The important step is define

a characteristic time: τ0 = m
τ

. This selection guaranteed when ∆t < τ0, the inertial

effect would dominant, on the contrary the viscous effect will play a main role. Then the

dimensionless time step should be ∆̄t = ∆t
τ0

.

Then we define the characteristic energy by equipartition theorem: 1
2
m < v2 >= 1

2
kBT .

Thus the characteristic velocity and displacement can be derived as:

v0 =

√
kBT

m
;x0 = v0τ0 (A.0.8)

similarly the dimensionless quantities can be obtained by dividing the characteristic one from

raw value. This makes the updating rule in A.0.7 can be rewrite as follows:

¯xn+1 = x̄n +
vn∆t

x0

= x̄n +
vn∆t

v0τ0

= x̄n + v̄n∆t (A.0.9)

¯vn+1 = v̄n − γv̄n
∆t

m
τ0 −

F (xn)∆̄tτ0

mv0

+
∆n

mv0

= v̄n − v̄n∆̄t− F (xn)∆̄tτ0

mv0

+
∆n

mv0

(A.0.10)

the reorganization of the second term is hold by γτ0
m

= 1 which is the definition of τ0. Then

comparing the corresponding terms, we can further define characteristic force and random

noise:
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F0 =
mv0

τ0

=
mv2

0

τ0v0

=
kBT

x0

; ∆̄n =
∆n

mv0

(A.0.11)

the variance, that is the magnitude of the noise can be estimated as:

σ̄2 =
2kBTγ∆t

m2v2
0

=
2kBT∆t

mv2
0τ0

= 2∆̄t (A.0.12)

this lead to the expression in 3.4.3.
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APPENDIX B

Detailed truncation of the spherical harmonics in the

surface diffusion model

3.6.3 is an inhomogeneous linear equation in the coefficients Cn. The dependence on t has

been left out, as we know that the solutions will be time-independent. If we multiply by

cos(mπx/L) with m 6= 0, then the equation becomes homogeneous. In general it is

−α
∞∑
n=0

Cn

∫ L/2

0

cos(nπx/L) cos(mπx/L) dx−D π2

2L
Cm = 0 (B.0.1)

The integral in (B.0.1) is readily carried out, and we end up with a set of homogeneous linear

equations.

Then, in the steady state, we can replace the coefficients in equation 3.6.5 by their steady

state values, which we will denote as C
(0)
l . The equations for those coefficients, obtained by

multiplying the steady state equation by the fl(x)’s and integrating are

0 = Sδl,0 − (Dl(l + 1) + ε)C
(0)
l − α

∑
l′

C
(0)
l′

∫ x0

−1

fl(x)fl′(x) dx (B.0.2)

We assume that the reactive surface extends from x = −1 to x = x0. In the calculations of

current interest to us, we set x0 = 0.
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APPENDIX C

Calculation of the interaction energy of a rigid disk

We continue from 4.3.3. We first do the θ integral:

∫ 2π

0

dθe−
xrcosθ
σ2 = 2πI0(

xr

σ2
) (C.0.1)

which is the 0th modified Bessel function of the 1st kind. Thus the interaction energy can be

rewrite as:

Uint = U0e
− x2

2σ2 2π

∫ R

0

rdrI0(
xr

σ2
)e−

r2

2σ2 (C.0.2)

Now we define dimensionless variables: x̄ = x
σ
; r̄ = r

σ
and rewrite the integral as:

Uint = 2πU0e
− x̄2

2σ2 σ2

∫ R

0

r̄dr̄I0(
x̄r

σ2
)e−

r̄2

2 (C.0.3)

then calculate the force by chain rule: F = −dUint
dx

= −dUint
σdx̄

then:

|F | = 2πU0σ| − x̄e−
x̄2

2 I + e−
x̄2

2

∫ R
σ

0

r̄dr̄I0e
− r̄

2

2 | (C.0.4)

then use recursion relation dI0(x)
ddx

= I1(x), above equation becomes:

2πU0σ|
∫ R

σ

0

σ̄2dr̄I1e
− r̄

2

2 + e−
x̄2

2

∫ R
σ

0

r̄dr̄I0e
− r̄

2

2 |e−
x2

2 (C.0.5)

by defining B(x̄, r̄) = r̄I1(x̄, r̄)− x̄I0(x̄, r̄), we finally clean the look:

f(x̄, R̄) = e−
x̄2

2 |
∫ R

σ

0

dr̄r̄e−
r̄2

2 B(x̄, r̄)| (C.0.6)
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ing in elastic networks: cavitation, permeation, or size selection? arXiv preprint
arXiv:2102.02787, 2021.

[80] Chuck Yeung, T Rogers, A Hernandez-Machado, and David Jasnow. Phase separation
dynamics in driven diffusive systems. Journal of statistical physics, 66(3):1071–1088,
1992.

[81] Lorenzo Costigliola, David M Heyes, Thomas B Schrøder, and Jeppe C Dyre. Revisiting
the stokes-einstein relation without a hydrodynamic diameter. The Journal of chemical
physics, 150(2):021101, 2019.

92
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