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ABSTRACT

The Adaptive Publish-subscribe Distance Vector (APDV)
protocol is introduced as an example of a new approach to al-
lowing distance-vector routing to scale by integrating it with
adaptive publish-subscribe mechanisms. APDV combines
establishing routes to well-known controllers using distance-
vector signaling with publish-subscribe mechanisms. The
latter allow destinations to publish their presence with sub-
sets of controllers, and sources to obtain routes to intended
destinations from those same controllers. Controllers are se-
lected dynamically using a fault-tolerant distributed election
algorithm to ensure that each non-controller node is cov-
ered by at least a given number of controllers within a few
hops. Extensive simulation experiments are used to compare
APDV with AODV and OLSR, which are representative pro-
tocols for on-demand and proactive routing. The results
show that APDV achieves significantly better data delivery,
attains comparable delays for delivered packets, and incurs
orders of magnitude less control overhead than AODV and
OLSR, even under heavy data loads.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design— Wireless communication; C.2.2
[Computer-Communication Networks]: Network Pro-
tocols—Routing protocols

Keywords

Publish-subscribe; routing; service discovery; distance vec-
tors; hash table; distributed algorithm; MANET.

1. INTRODUCTION

Traditional routing protocols for wireless ad hoc networks
rely on the network-wide dissemination of signaling pack-
ets stating either proactive updates to the state of links or
distances to destinations, or on-demand requests for routes
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to destinations. However, as the number of network nodes,
connectivity changes, and new traffic flows increase, both ap-
proaches tend to incur excessive signaling overhead, and the
problem is even worse for the case of mobile ad hoc networks
(MANET). Section 2 summarizes the prior work aimed at
making routing more scalable in ad hoc networks. This re-
view indicates that routing protocols for ad hoc networks
are such that the signaling needed to maintain destination-
based routing tables up to date works independently of the
functionality needed to map the names of destinations to
either their locations or routes to them.

Although considerable work has been reported on service
discovery in ad hoc networks, the solutions to date either op-
erate on top of a routing infrastructure, or augment one of
the existing routing protocols to support service discovery.
Interestingly, none of the prior solutions to make routing
more scalable integrate destination-based routing with adap-
tive publish-subscribe mechanisms in a way that reduces the
signaling required for both routing and service discovery.

The main contribution of this paper is presented in Sec-
tion 3 and consists of introducing a new approach to rout-
ing in wireless ad hoc networks based on publish-subscribe
mechanisms that is far more scalable than traditional on-
demand or proactive routing. The Adaptive Publish-subscribe
Distance Vector (APDV) protocol is presented as an exam-
ple of this approach.

APDV integrates three components: (a) electing a sub-
set of nodes to serve as controllers that maintain routes to
nearby destinations, (b) maintaining routes to all known
controllers using distance vectors, and (c) using publish-
subscribe mechanisms with which destinations inform con-
trollers of routes to them and sources obtain routes to des-
tinations.

Section 4 describes the results of several simulation exper-
iments used to compare the performance of APDV to that
of AODV [16] and OLSR [9], which are representatives of
traditional on-demand and proactive routing, respectively.
The three protocols are compared using static and dynamic
topologies. The impact that network size, traffic load, mul-
tiple access interference, and mobility have on performance
are examined using packet-delivery ratio, average end-to-end
delay, and signaling overhead as the performance metrics.
The results from these experiments show that APDV incurs
orders of magnitude less signaling overhead than AODV and
OLSR while attaining similar or better packet delivery ratios
and average delays.



2. RELATED WORK

Prior routing approaches assume that the mapping of des-
tination names to addresses or routes is done independently
of routing, and includes using hierarchies, limiting the dis-

semination of control messages, distributed hash tables (DHT),

Bloom filters, virtual or geographical coordinates, or sets of
dominating nodes to reduce the size of routing tables or the
amount of route signaling.

Hierarchical routing schemes organize nodes into clusters
(e.g., [2], [12], [15], [20]) and some reduce signaling of clus-
tering schemes by limiting propagation of control messages
based on their distance from an originating point (e.g., HSLS
[17]). The limitations of these approaches are that the af-
filiation of nodes to clusters is easily broken when nodes
move, and re-establishing such affiliations incurs consider-
able overhead, and incorrect routes can result in schemes in
which signaling decays based on the distance to the links.

DHT-based schemes (e.g., [14], [18], [23]) are attractive
because a DHT grows only logarithmically with the number
of intended destinations. However, typical DHT schemes
define a virtual topology, and substantial signaling overhead
can be incurred to maintain the links of virtual topologies
defined in large MANETSs. AIR [5] avoids the use of vir-
tual topologies, but requires the use of variable-length pre-
fix labels instead of addresses. Another approach consists of
hashing node identifiers of destinations into Bloom filters,
which are then used in routing updates [1]; however, such
schemes suffer from the existence of false positives, in which
case nodes incur considerable overhead.

Routing protocols that use geographical coordinates for
routing (e.g., GPSR [11]) are limited by the requirement to
have GPS services and still incur signaling overhead discov-
ering the geo-locations of destinations. A number of schemes
use virtual coordinates consisting of the distances of nodes
to a few reference nodes (e.g., [4], [24]). The main limita-
tion of this type of virtual coordinates is that multiple nodes
may be assigned the same virtual coordinates, and there is
no inherent uniqueness to a specific vector of distances to
beacons. This results in either incorrect routing or the use
of additional signaling (typically flooding) aimed at resolv-
ing false positives.

There are many proposals attempting to reduce the num-
ber of relays that need to forward signaling messages for a
given number of destinations. The best known example of
this approach is the use of multipoint relays in OLSR [9].
The main limitation of these proposals is that they call for
the establishment and maintenance of connected dominating
sets, i.e., the nodes selected to forward signaling messages
must form a connected subgraph. This tends to require a
large subset of nodes, especially in dynamic topologies.

There is a large body of work on resource and service dis-
covery in ad hoc networks [21]. What is striking about this
prior work is that all proposals either assume that names
are mapped to addresses and routing to those addresses is
then done independently (e.g., ADNS [8]), or augment ex-
isting routing protocols with service discovery functionality
(e.g., LSD [13], AODV-SD [6], L+ [3]). The use of a com-
mon hash function to select controllers in APDV is similar
to the approaches used in ADNS and L+. However, ADNS
and L+ operates on top of the routing protocol assuming
that directory sites or landmarks have been selected, while
APDV integrates routing with the selection of controllers
and the mapping of names to routes.

3. ADAPTIVE PUBLISH-SUBSCRIBE
DISTANCE VECTOR (APDV)

3.1 Overview

APDYV assumes that each network node is assigned a network-
wide unique node identifier, and takes advantage of the broad-
cast nature of radio links. First, a subset of nodes are se-
lected dynamically to serve as controllers. A controller acts
as a directory server by maintaining the routes to destina-
tions nearby, with destinations being denoted by their node
identifiers. The distributed algorithm used to select con-
trollers ensures that each non-controller node is within a
maximum distance r from a minimum number k of local
controllers for the node, and as a side effect informs each
node about the routes to its one- and two-hop neighbors.
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Figure 1: Example of APDV operation

Fig. 1 illustrates the basic operation of APDV assuming
that each node has at least one local controller within two
hops. In the example of Fig. 1, nodes a, k, m, x and r are
the elected controllers of the network.

All network nodes maintain routes to all controllers using
a loop-free distance-vector routing algorithm. For simplicity,
we assume in this paper that a node maintains a single route
to each controller, but APDV can be extended to provide
multiple loop-free paths. Each node contacts each of its
local controllers to publish its presence. To do this, node d
sends a publish message to each of its local controllers with
the mapping (d, {1}, ...,1%}), where I (1 < i < k) is a local
controller for node d. Each local controller I, of node d and
each relay between d and the controller receiving the publish
request from d stores a tuple stating d, the next hop to d,
and {I},...,1%}. In addition, node d uses a common hash
function to select an anchor controller aq that should store
the mapping (d, {l,...,%}), and sends such a mapping to
controller ay. The relay nodes between d and aq can cache
the mapping information. In the example of Fig. 1, node d
has published its presence with its local controller (node )
and its anchor controller (node a); note that controller » has
a route to node d while controller a has a route to controller
r and the mapping (d, ).

A source requiring a route to destination d uses the same
common hash function on the identifier of node d to find
the anchor controller for d, aq4, and sends a subscription re-



quest to controller aq stating d and (s, {i},...,1%}), where
I8 (1 < i < k)is a local controller for node s. In turn,
controller aq responds with the mapping (d, {1}, ...,1%}) and
sends that response towards the nearest local controller for
source s selected from the set {2, ..., lf} The answer is redi-
rected to source s by either the selected controller IZ or the
first relay node along the route from a4 to controller k£ with
a route to s. Node s can then send data packets to des-
tination d by sending them towards the nearest controller
in the set {I},...,1%}. Those packets will be redirected to
d after either reaching the selected controller in {l}h ey lf}}
or a node along the route from s to the selected controller
with an active route to d. In the example of Fig. 1, node
s subscribes to node d by contacting anchor a, which main-
tains the mapping (d, ) and returns it to node s by sending
its response towards node k, which is the local controller of
node s. Node a also caches the mapping (s, k). Node s
sends data packets to d by sending them towards controller
r; however, node y is in the route from s to r and also has
a route to d, and forwards the data packets directly to d.
The rest of this section presents important details regard-
ing the information and mechanisms used in APDV for se-
lecting controllers, maintaining routes to controllers, and
publishing and subscribing to destinations using controllers.

3.2 Information Stored and Exchanged

The information maintained at each node allows the node
to select and route to controllers, route to local destinations,
and learn the local controllers associated with distant des-
tinations on demand. Node i maintains a controller table
(CT?) stating information about all controllers elected in
the network; a neighbor controller table (NCT") stating in-
formation reported by each neighbor of node i regarding all
controllers elected in the network; a neighbor table (NT*)
stating information about all one- and two-hop neighbors
of node ; a neighbor local routing table (NLRT") stating
routing information reported by each neighbor regarding all
destinations within two hops and some destinations within
 hops; a local Touting table (LRT") stating routing informa-
tion about all destinations within two hops and some desti-
nations within r hops; a neighbor routing table (NRTi) stat-
ing information reported by each neighbor regarding distant
destinations; and a routing table (RTi) stating information
about distant destinations.

APDV employs soft-state to operate efficiently in dynamic
networks, and a node transmits its HELLOs periodically
every 3 seconds and the HELLO includes some or all the
updates made to node’s tables. A node stores all the infor-
mation from the HELLOs it receives from its neighbors, and
also caches information it receives in subscription or publica-
tion requests from neighbors. Entries in RT® and NRT" are
populated by the publish-subscribe signaling described sub-
sequently. NT¢ CT?, NCT®, LCL!, and NLRT®, LRT",
are updated by the exchange of HELLOs among one-hop
neighbors.

For each controller ¢ selected in the network, CT* speci-
fies: the identifier of node ¢ (nid:); the distance from i to ¢
(dl); the successors (next hops) from i to ¢ (s.); and a se-
quence number (snt) used to avoid routing loops. NCT"
stores the controller tables reported by each neighbor of
node ¢. The entry for controller ¢ reported by neighbor j
and stored in NCT" is denoted by {m’dij, dij, snij}.

For each neighbor j of node i, NT"® specifies: the identi-
fier of the node (nid}); a sequence number (sn}) created by
j and used to determine that the entry is the most recent
from node j; a controller status flag (cs?) stating whether
or not node j is a controller; the controller counter (k;)
stating the number of controllers within r hops of node j;
and the local controller list (LC'L}) consisting of the identi-
fiers of all controllers within r hops of node j. An entry for
neighbor v in NTY sent in a HELLO to node i is denoted
by {nidd, sn,csl, ki, LCLi}, and the same entry stored in
NT"® is denoted {nidij,snij,csij,kij,LCLij}‘

An entry for destination j listed in LRT" specifies: the
identifier of the node (nid}); a sequence number (sn’) cre-
ated by j used to avoid routing loops; the distance from ¢
to j (d%); the successor in the route to j (s?); and the local
controller list of node j (LCL;-)7 which may be a link to NT*
if the node is within two hops. An update made by neighbor
j to LRT? communicated in a HELLO is denoted by {m’d{;,
snd, dd, LC’LZ,}, and the corresponding entry stored at node
iin NLRT" is denoted by {m’dij, snf,j, dij, LC’Lij}. An
entry for destination v listed in RT" simply specifies the
identifier of the node (nid’) and the list of local controllers
for node v (LC’LZ,)7 because node 7 maintains the routes to
all controllers in CT".

Node 4 includes its own information in NT*, i.e., it stores
an entry corresponding to nidi, and uses the information in
its HELLOs. A HELLO from node 4 contains: nid:, sn!,
cst, ki, and updates to NT?, CT?, and LRT". An update to
NT* regarding neighbor j consists of the tuple {m’d;»7 sn;»,
csé-, kj-, LC’L;-}. An update to CT"? regarding controller c
consists of the tuple {nid:, d, sn’}. An update to LRT"
regarding destination v consists of the tuple {m‘di, sni, db,
LCLL}.

3.3 Selecting and Routing to Controllers

The distributed selection of controllers in APDV amounts
to selecting a dominating set C' of nodes in the network that
serve as controllers, such that every node u ¢ C (called sim-
ple node) is at a distance smaller than or equal to r hops
from at least k nodes in C (called controllers). A node u
is said to be (k,r) dominated (or covered) if there are at
least k nodes in C' within r hops from u. There is a large
body of work on dominating sets in graphs [7], and many
distributed algorithms exist to approximate minimum con-
nected dominating sets (MCDS) with constraints (e.g., [10]).
However, the controller selection scheme in APDV is simply
aimed at obtaining a set of controllers that cover all nodes
but need not be a MCDS, and maintaining routes to all
selected controllers. It is based on HELLO messages ex-
changed among one-hop neighbors. To keep the selection
algorithm and signaling simple, only distances to controllers
and node identifiers are used as the basis for the selection of
controllers.

3.3.1 Selecting Controllers

The only way to add or delete controllers in the network
is for nodes to self-select themselves to become controllers
or stop being controllers. A given node i determines to add
or delete its own entry in CT", respectively, according to
the Controller Addition Rule (CAR) and Controller Deletion
Rule (CDR) defined below.



Node i is initialized with CT?* = ¢ and NT® = ¢, and
waits for a few seconds to start receiving HELLOs from
nearby nodes. Hence, according to CAR, node ¢ will se-
lect itself as a controller when it is first initialized, unless it
has received HELLOs from neighbors that prompt it not to
include itself as a controller based on CDR. Node ¢ updates
an entry for j # i € CT" according to the rules described in
the next subsection, which ensure that no loops are formed
for routes to controllers. Once node i has updated NT* and
CT* by processing the HELLOs it receives from neighbors,
it computes its local controller list (LC'L?) from CT*, such
that v € LOL" if d}, < r, and sets ki = |[LCL'|.

CAR (Controller Addition Rule):
Node 7 adds itself to CT"* if
(ki <k)A[i= Min{nid} Vj € NT* | (j ¢ CT*) A (ki < k)} ]

CDR (Controller Deletion Rule):

Node i deletes itself from CT* if

(ki >k)A[VYj€ENT [ (|LCL; —{i}| > kVj &€ LCL} ) A
(nid < nid} Vj € LCLY) ]

Fig. 2 shows an example of controller selection in APDV
in a network of six nodes, assuming that each node must be
covered by one controller (k = 1) within two hops (r = 2).
For simplicity, the example assumes that HELLO transmis-
sions are synchronized. The figure shows the local controller
list (LCL) at each node, and each new state per node in the
figure is determined by the reception of HELLOs from all
neighbors, followed by the addition or deletion of controllers
in the LCL resulting from applying CAR and CDR, delet-
ing controllers that are farther than 2 hops away, or deleting
a controller after the successor to that controller sends an
update with a deletion of the controller (see RCR and UCR
below).

As Fig. 2(a) shows, in this example each node selects
itself as a controller after initialization following CAR and
sends a HELLO, because nodes do not wait for HELLOs
to arrive before using CAR. Fig. 2(b) shows that, after
receiving a HELLO from each neighbor, a node may add
new controllers reported in the HELLOs, but may delete
itself from being a controller based on CDR, which is the
case for nodes 30, 50 and 90. Figs. 2(c) to 2(f) illustrate the
deletion of a controller entry from LCL at a given node when
the successor towards the controller sends a HELLO that
deletes the controller, which is the case of node 20 deleting
controller 90 and node 18 deleting controllers 30 and 50 in
Fig. 2(d), or nodes 30 and 18 deleting controller 20 in Fig.
2(f), for example. Fig. 2(g) illustrates the fact that nodes
include in their LCLs only those controllers within r = 2
hops, which is the case of node 90 not including controller
10 in its LCL. Fig. 2(g) shows the final state of the LCLs
for the example network.

3.3.2  Routing to Controllers

For simplicity of presentation, in this paper we assume
that each node maintains a single route to each controller
selected in the network using the updates to controller tables
included in HELLOs.

APDV uses a distance-vector routing approach to main-
tain routes to controllers. To guarantee loop-free routes,
APDV uses sequence numbers that restrict the selection of
next hops towards a given controller by any node, such that
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Figure 2: Example of controller selection in six-node
network with £ =1 and r = 2.
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only those neighbors with shorter distances to the controller
or with a more recent sequence number reported by the con-
troller can be considered as successors. An important aspect
of APDV is that entries for controllers can be deleted on
purpose as a result of CDR, rather than only as rare oc-
currences due to failures or network partitions. Together
with the transmission of periodic HELLOs, the Reset Con-
troller Rule (RCR) and the Update Controller Rule (UCR)
discussed below address this functionality.

Let N* be the set of one-hop neighbors of node i. Node i
updates CT; as a result of HELLOs from neighbor j € N*
or the loss of connectivity to neighbor j. If node ¢ loses
connectivity to node j, the entries in C’T; are deleted. Once
node i is selected as a controller, it is the only node that can
change the sequence number for its own entry in controller-
table updates sent in HELLOs.

When a given node ¢ decides to delete itself as a controller
based on CDR, its entry must be deleted in the rest of the
network. To accomplish this, node i uses RCR to set its self-
entry with an infinite distance and an up-to-date sequence
number for a finite period of time 7', before deleting its self-
entry from CT* to ensure that the rest of the nodes delete
the entry for 7 in their controller tables. If node i receives
a HELLO from j or experiences a link failure that makes it
update CT; for entry ¢ # i : {nidij, df:j, snij}, node i up-
dates its entry for ¢ in CT" according to UCR, which forces
node 7 to propagate a reset update or to select a successor to
controller ¢ that is either closer to ¢ or has reported a more
recent sequence number from c.

RCR (Reset Controller Rule):
If node i must delete itself from CT*? using CDR then
set di = co; sni = snl + 1; reset-timer’ =T



UCR (Update Controller Rule):
If (3¢ € NT® | sniq > snl )
then begin
if ((v=sg) A (sng, > sng) A(dg, = 00) )

ey de = 00

i
then set sn; = sng,,;

else begin
set d = Min{d.; + 1| (f € NTH)A
(sng; = Maz{sn,, | v € NT*)}}
set s, =35 | (j € NT") A (de; =d — 1)
set sn! = Maz{sn., | veE€ NT'};
else begin
set dl = Min{dL;+1| (f € NT*)A(snl; = snl)A(dl; < dl)};
set st =j | (j € NT') A (d; = di — 1)

3.4 Publish-Subscribe Mechanisms
for Name-to-Route Resolution

Nodes learn about routes to controllers and to one- and
two-hop neighbors, but have no routes to destinations many
hops away as a result of the exchange of HELLOs.

To allow sources to obtain routes to arbitrary destina-
tions without incurring network-wide dissemination of sig-
naling messages, APDV uses a publish-subscribe mechanism
for name-to-route resolution. The use of consistent hashing
in APDV is similar to recent proposals for distributed name
resolution in MANETSs (e.g., ADNS [8]) that use consistent
hashing to map the names of destinations to one of several
predefined directory sites storing the name-to-address map-
ping for destinations. The key differences between APDV
and this prior work are that: (a) the directories (i.e., con-
trollers) are selected dynamically; (b) a node publishes its
presence with multiple controllers; and (c) name resolution
is integrated with the selection of and routing to controllers,
rather than running on top of routing. Hence, in APDV,
controllers maintain name-to-route mappings, rather than
storing name-to-address mappings and then using an un-
derlying routing protocol to obtain the routes for known
addresses.

For simplicity, we describe the publish-subscribe mecha-
nisms in APDV assuming that node identifiers constitute the
names for which routes must be found. However, it should
be noted that the same publish-subscribe mechanisms in
APDV are applicable to support information-centric net-
working, such that nodes publish and subscribe to names
of destinations, content or services, rather than just node
identifiers.

3.4.1 Publishing Destinations

Publishing in APDV consists of having a local controller
know the route to a given destination or having an anchor
controller know the mapping from a node identifier to a list
of local controllers. Subscribing in APDV consists of a node
requesting a way to reach a named destination through an
anchor controller.

In APDV, node i publishes itself with the k controllers
listed in LCL?, and with one or more anchor controllers.
The local controllers in LCL* are within r hops of node 4
and serve as the “landmarks” for other nodes to submit data
to node 14, given that nodes far away from node i do not have
routes to node i. Accordingly, a local controller for node %
must maintain a route to node i, and it also maintains the
mapping (i, LCL?), so that it can find alternate ways to
reach node i if its route to 4 fails. The anchor controllers

are needed for nodes far away from destinations to obtain
the mappings between the identifiers of those destinations
and their local controllers. For simplicity, in this paper we
assume that a single anchor controller is used for any one
node.

The anchor controller for node 7 (denoted by a;) is ob-
tained by using a network-wide consistent hash function that
maps the identifier of node i into the identifier of one of the
controllers selected in the network. Controller a; must store
the mapping (i, LCL"), so that it can provide any node v
far away from node i the list LC'L?, with which node v can
send data packets towards the local controller in LC'L? that
is nearest to node v according to its controller table CT".

The forwarding of a publication request from a node to its
local controllers is done by the exchange of HELLOs. Given
that nodes maintain loop-free routes to all controllers, publi-
cation requests directed to local controllers of nodes are for-
warded over the reverse loop-free routes already established
from local controllers to nodes. The routes maintained by
local controllers to nearby nodes are refreshed periodically;
each node creates a new publication request by increasing
the sequence number included in the LRT self-entry of its
own HELLO. If node i receives a HELLO from neighbor j
with a publication request originated by node v, which con-
sists of update to LRT? for destination v ({nid, snd, d,
LCLJ}), then node i forwards the request (i.e., it includes
the LRT® entry {nid’,, sn, d%, LCL.} in its own HELLO)
if it is the successor for node j to any of the controllers listed
in LCLY. Once a local controller ¢ receives an entry for des-
tination v and ¢ € LCL", then ¢ publishes (i.e., stores) the
entry {nid;, sng, dy, sy, LCLg}, where s is the neighbor
from which it received the publication request. Controller
¢ may also forward it if it is the successor to another con-
troller in LCL" for the neighbor from which it received the
publication request.

The submission of a publication request from node i to
its anchor controller a; is done by node ¢ using the network-
wide consistent hash function on the set of identifiers in CT*
to obtain hash(i) = a;, where a; € CT®. After that, node 4
sends a publication request to its successor towards its an-
chor controller a; with the tuple {nid:, sn!, di, LCL!}. Each
node v in the route from node 7 to controller a; forwards the
publication request towards a; and caches the tuple {nidy,
sni, di, sy, LCLY}. Once controller a; receives the request,
it stores the tuple {nid;?, sn;t, d;i?, s, LOL{"}. Hence,
each node processing a publication request learns the route
to the node issuing the request, and the anchor controller is
able to obtain the mapping needed to redirect nodes sending
subscription requests to the local controllers of node 4.

3.4.2  Subscribing and Routing to Destinations

The forwarding of subscription requests is handled in much
the same way described above for the case of publication re-
quests. When node o has data for destination j ¢ CT?,
it computes hash(j) = aj, where a; € CT° and sends its
subscription request towards a;. The subscription request
from node o regarding destination j states the identifier of
node j, its anchor controller a;, and LCL°. When a; re-
ceives 0’s request, it responds with the tuple {nid;’, sn;’,
LCL‘;"} and sends the response to the nearest controller it
finds in LC'L?. Node o stores the tuple {nidj, snj, LCLj}
in RT° upon receiving the reply to its subscription. Data
packets from o are then sent towards the controllers in LCL]



that are the closest to node o. A data packet must specify
the sender, the destination, and the selected local controller
of the destination. This can be done by encapsulating the
header of the packet stating the origin and the destination
with a header stating the origin and the selected local con-
troller of the destination. Once the packet reaches a relay
node y with an active route for the destination, the packet
is forwarded directly to the destination itself, as long as the
distance from node y to the destination is at most r hops.

4. PERFORMANCE COMPARISON

We used QualNet [19] (version 5.0) as the discrete event
simulator to compare the performance of APDV with the
performance of AODV and OLSR, which are representative
protocols for the traditional on-demand and proactive rout-
ing schemes used in ad hoc networks. We use packet deliv-
ery ratio, end-to-end delay, control overhead as our perfor-
mance metrics. The control overhead is the average number
of control packets generated by the routing protocols. We
evaluated the three protocols in static and mobile networks.
In a static network, nodes are uniformly distributed in the
network to avoid disconnected nodes. The random way-
point model was chosen as the mobility model for mobile
networks. The routing protocols are tested using the IEEE
802.11 DCF as the underlying MAC protocol, and all sig-
naling packets are sent in broadcast mode. Data sources
produced a constant bit rate (CBR) traffic at a rate of 10
packets per second. The three protocols use the same time
period to refresh their routing structures. For APDV we
used £ = 2 and r = 3 to select controllers. Each simulation
ran for 10 different seed values. Unless otherwise stated, the
simulation environment details are listed in Table 1.

Table 1: Simulation Environment

MAC Protocol 802.11 Simulation time 300s
Data source CBR Data rate 10 packets/s
Pkts. per flow 500 Flow duration 50s
Static Network:

| Total nodes [ 100-400 | Node placement | Uniform
Mobile Network:
Total nodes 100 Network size | 1800 x 1800 m2
Mobility model Randem waypoint | Pause time | 10s
Min.-Max. Vel. 1-10m/s

4.1 Results for Static Networks

4.1.1 Impact of Increasing Network Size

To evaluate the impact of network size on the perfor-
mance of the protocols we used static topologies and an
ideal physical layer with low data rates per sources in order
to limit the impact of Multiple Access Interference (MAI)
on the observed performance [22]. The number of nodes
is increased from 100 to 400. To avoid having denser net-
works as the number of nodes is increased, the simulation
area is increased proportionally to the number of nodes, so
that node density is similar in all cases. The end result is
that the 802.11 MAC protocol experiences perfect capture;
hence, when multiple packets are received concurrently at a
receiver, the receiver decodes one of them successfully. Be-
cause traffic load is kept small, MAI due to data traffic is
minimum, but the effect of MAI becomes a factor when sig-
naling traffic increases. To exercise the signaling of all pro-
tocols, each data flow lasts 50 seconds, and the total number
of concurrent data flows is the same in the network at any

time. CBR flows are established among randomly selected
nodes, and each CBR source generates a total of 500 data
packets of 256 B at a rate of 10 packets per second. To
avoid bias of traffic load when the network size is changed,
we used 5% and 10% of the total number of nodes for the
sources with concurrent data flows. The results show that
APDV scales much better than AODV and OLSR in every
aspect.

The results for 5% of concurrent data flows are shown
in Fig. 3(a)-(c). Fig. 3(a) shows that all protocols at-
tain high delivery ratios when the network size is increased
subject; however, APDV attains the highest delivery ra-
tios. Fig. 3(b) shows the average control overhead in-
duced by the protocols. APDV incurs the smallest and
contrasts with the overhead induced by OLSR, which ex-
periences a steep increase for 400 nodes. APDV incurs
limited and fairly constant control overhead because only
unicast publish-subscribe requests to anchor controllers are
sent other than HELLOs. OLSR erroneously interprets the
loss of control packets due to collisions as topology changes,
triggering new topology control messages that are diffused
in the network and generate more congestion. Fig. 3(c)
shows that APDV attains similar end-to-end delays of de-
livered packets when the protocols have the same delivery
ratios. APDV shows slightly higher delays than AODV for
400 nodes, which is mostly due to the fact that APDV de-
livers more packets than AODV, but in some cases packets
may take routes slightly longer than with AODV. OLSR’s
longer delays are due to the queueing of packets waiting for
signaling packets to be sent.

Fig. 4(a)-(c) show the results for 10% traffic load. All
three protocols perform similarly up to 200 nodes. Fig.
4(a) shows that APDV scales much better than AODV and
OLSR. For 400 nodes, APDV is capable of delivering close to
40% more packets than AODV and 25% more packets than
OLSR. The reason behind this behavior can be observed in
Fig. 4(b), which presents the average control overhead in-
duced by the protocols. The figure shows that the control
overhead incurred by APDV remains constant as the num-
ber of nodes increases, while AODV and OLSR incur more
overhead as the number of nodes increases. The control
overhead in OLSR is a function of the number of nodes in
the network. By contrast, Figs. 3(b) and 4(b) show that the
control overhead in AODV depends on the traffic load, the
heavy traffic load and continuous arrival of new flows forces
AODV to constantly flood the network with route requests.
Under high congestion, many control packets are lost due
to collisions, which is interpreted by AODV as broken links
that need to be repaired, and hence nodes react to these
packet losses by generating even more route requests, which
congest the network even more. Fig. 4(c) shows the end-to-
end delays attained by delivered data packets. We observe
that APDV performs similar to or better than the other two
protocols for all network sizes.

4.1.2 Impact of Increasing Number of Flows

In this scenario we increase the number of concurrent CBR
sources from 10% to 40% of the 100 nodes in the static net-
work using a real physical layer. Nodes are uniformly dis-
tributed in a simulation area of 1800x1800 m?2. The same
CBR flow scheme described in Section 4.1.1 is used. The
results are shown in Fig. 5(a)-(c). Fig. 5(a) shows that
APDV and AODV attain similar packet delivery for 10 and
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20 concurrent flows, and that APDV is consistently better
than OLSR. APDV attains far better packet delivery than
AODV and OLSR for 40 flows; APDV delivers close to 30%
more packets than OLSR for 40 flows, and AODV can de-
liver less than 5% of the packets! Fig. 5(b) shows the control
overhead induced by the protocols. APDV incurs very lim-
ited and fairly constant control overhead, which contrasts
with the overhead incurred by AODV for 40 flows. Even
though OLSR is able to keep the control overhead almost
constant, it is still much higher than in APDV-almost an
order of magnitude—even for a small number of data flows.
Fig. 5(c) shows that APDV attains the smallest average end-
to-end delays of delivered packets for all traffic loads, and
that delays in OLSR increase dramatically for 40 data flows,
which is a consequence of data packets being queued wait-
ing for signaling packets to be sent. The delays in AODV
for 40 flows appear to be better than for OLSR, but these
delays are only for 5% of the packets transmitted, compared
to more than 60% of the packets in APDV and more than
30% of the packets in OLSR.

4.2 Results for Mobile Networks

In this scenario we evaluate the performance of the proto-
cols in mobile 100-node networks using a real physical layer,
with the number of concurrent CBR sources increasing from
10% to 40% of the number of nodes. The simulation en-
vironment is described in Table 1. Fig. 6(a)-(c) show the
results of these experiments. Fig. 6(a) shows that APDV
consistently outperforms AODV and OLSR. Under heavy
traffic load, APDV scales better than AODV and OLSR
and is capable of delivering close to 30% more packets than
OLSR for 40 flows, while AODV is ineffective and delivers
less than 3% of the packets. Fig. 6(b) shows that APDV
incurs limited and fairly constant signaling overhead in mo-
bile networks, which helps to illustrate the fact that its use
of controllers and adaptive publish-subscribe mechanisms is
very well suited for MANETSs. By contrast, AODV’s over-
head explodes for 40 flows, which is the reason why data
packets cannot be delivered to destinations. Fig. 6(c) shows
that APDV attains the smallest end-to-end delays of deliv-
ered data packets, which is a consequence of incurring lim-
ited signaling overhead that lets data packets flow faster to
their intended destinations. By contrast, delays in OLSR ex-
plode for 40 flows, because data packets must wait in queues
while signaling packets are transmitted.

5. CONCLUSION

We introduced the Adaptive Publish-subscribe Distance
Vector (APDV) protocol to provide scalable routing in ad
hoc networks using distance vectors by integrating routing
with the selection of controllers serving as directories, and
name-to-route resolution based on publish-subscribe mecha-
nisms. We used simulation experiments to compare its per-
formance with the performance of AODV and OLSR. APDV
achieves significantly better data delivery, attains compara-
ble delays for delivered packets, and incurs substantially less
control overhead than AODV and OLSR, because it substi-
tutes network-wide dissemination of link states or distances
to destinations with publish-subscribe signaling with con-
trollers.

More work is needed to fully exploit the approach advo-
cated in APDV. One important aspect is the use of a hierar-
chy of controllers to allow destinations to be known locally,

regionally or globally. The performance impact of different
values of k and 7, and the use of multi-path routing and
load balancing among multiple loop-free paths should also
be explored.
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