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Abstract 
Models of categorization instantiate specific hypotheses 

about psychological processes controlling behavior. 
Neuroimaging provides a tool to visualize the neural 
correlates of these same processes in human subjects. By 
combining techniques, we can begin to make the connection 
between behavior and neural activity. Here we collected fMRI 
data using a category learning paradigm where subjects were 
encouraged toward a particular strategy by the underlying 
category structure. The application of mathematical models of 
category learning to this behavioral data enabled the 
organization of fMRI data according to the actual strategy 
employed.  

Keywords: categorization; modeling; neuroimaging 
 
Categorization is a process by which the brain assigns 
meaning to stimuli. Experience with these stimuli facilitates 
the grouping of distinct items that may share similar 
properties into categories, such as ‘cars’ or ‘birds.’ This 
grouping is critical for rapidly and appropriately selecting 
behavioral responses. While there are numerous categories 
that we’ve already acquired over our lifetime, adults possess 
the ability to acquire new categories. It is this learning 
process that is under investigation here. 

The study of categorization has a long history in cognitive 
psychology, particularly in the domain of computational and 
mathematical modeling. A variety of models exist that 
support different theories about the cognitive operations 
involved in categorization. These models are traditionally 
tested by comparison to human behavioral data in an 
attempt to understand the specific operations that contribute 
to categorization. 

Collecting functional magnetic resonance imaging (fMRI) 
data while subjects are undergoing category learning allows 
us to test hypotheses about the involvement of neural 
processes in theoretical models of categorization. Recently, 
a number of different neuroimaging studies have 
investigated the neural correlates of category learning in 
different tasks. In general, the data suggests that there exist 
multiple neural systems that can support category learning.  

One approach aimed at dissociating these systems is to 
present different category structures that preferentially elicit 

one learning system over another. However, this approach 
presupposes that learning the categories only recruits the 
operation of one system at a time. A key question is whether 
the systems are independent or competitive. 

Here we collected fMRI data from two groups performing 
visual category learning in two different ways. The 
underlying category structure of the to-be-learned categories 
differed between groups so as to encourage one type of 
strategy over another. Mathematical models of learning 
were fit to the behavioral data to identify the specific 
strategy each subject was using. Modeling identified 
particularly good instances of strategy use, but also 
demonstrated that some subjects used the sub-optimal 
strategy regardless of their experimental group. We then 
analyzed the fMRI data in two different ways. The first 
grouped subjects according to their experimental group, 
which assumed that the group assignment was sufficient to 
elicit the appropriate learning strategy. The second re-
grouped the subjects according to their preferred strategy. 
By looking selectively at subjects who best exhibited each 
strategy, additional elements of the neural circuits 
supporting each type of category learning were identified. 
The results of these analyses demonstrate that models of 
category learning can effectively guide fMRI data analysis. 
Likewise, imaging can provide additional constraints to 
existing models of categorization. 

Models of categorization 
In the literature, models designed to capture category 
learning behavior can be grouped into three general types: 
exemplar, prototype and decision-boundary models. 

Exemplar models of categorization (Medin and Schaffer 
1978; Hintzman 1986; Nosofsky 1986) posit that people 
represent categories by storing individual exemplars of the 
category in memory. When encountering a novel item, their 
classification decision depends on the similarity of that item 
to every stored exemplar. Categorization relies upon 
memory for these exemplars, which is presumably the same 
memory that allows for the recognition of those exemplars 
(Nosofsky 1991). One challenge to exemplar theory comes 
from the performance of amnesic patients on a 
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Figure 1: (A) RB and (B) II category learning tasks. Each 
point represents a distinct Gabor patch (sine-wave) stimulus 
defined by orientation and frequency (thickness of lines). In 

both stimulus sets, there are 2 categories (red and blue 
points). RB categories are defined by a vertical boundary 

(only frequency is relevant) and II categories by a diagonal 
boundary (both dimensions are relevant). In both stimulus 
sets there are examples of a stimulus from each category. 

categorization task. These patients have no memory for 
individual stimuli, but retain the ability to categorize 
(Knowlton and Squire 1993). Although this is taken by 
some as evidence for multiple memory systems, others (eg. 
Nosofsky and Zaki, 1998) have shown that a single-system 
model can also account for this result. Our hypotheses rely 
on the multiple systems framework, which is constrained by 
known neuroanatomical connections. At this time, the single 
system models have not incorporated a hypothesis about 
how to connect to neuroanatomy so it is not yet possible to 
compare predictions about functional neuroimaging data 
across theories. 

Prototype models (Posner and Keele 1968; Reed 1972; 
Smith, Murray et al. 1997) maintain that a category 
representation consists of a prototype of the trained 
exemplars. A prototype is usually defined as corresponding 
to the central tendency of the experienced stimuli. Novel 
stimuli are then categorized according to their similarity to 
this prototype. This differs from the exemplar models in that 
one does not need to have seen the prototype of the category 
to effectively learn, rather this information is accumulated 
over training. 

In decision-bound models (Ashby and Townsend 1986), 
people make categorical decisions using a decision 
boundary that divides a multidimensional psychological 
space into category-response regions. Through experience, 
the categorizer learns to associate a particular category label 
with each region, and learning the categories amounts to 
identifying the decision-boundary that separates the 
categories. The mathematical models described here are 
based on the decision-bound theory of categorization.  

Decision-bound theory 
A number of reports support DBT as an effective 
description of visual category learning (Ashby and Gott 
1988; Ashby and Maddox 1990; Ashby and Maddox 1992; 
Maddox and Ashby 1993). Typically, the stimuli in these 
experiments vary on 2 or more dimensions. For example, in 
the current task the stimuli were sine wave grating that 
varied in frequency (thickness of lines) and orientation of 
lines. The two-dimensional perceptual space of the stimuli 
 

can be partitioned into 2 (or more) categories by decision 
boundaries that can be linear or non-linear.  

A linear boundary that segments the perceptual space 
along one dimension (e.g., a horizontal or vertical boundary) 
can be easily described by a verbal rule (Rule-based; RB). 
In contrast, a decision boundary that does not fall along a 
cardinal orientation requires the learner to integrate 
information across the 2 dimensions in order to determine 
category membership (Information-integration; II). These 
two category structures (Figure 1), while existing in the 
same perceptual space, require very distinct types of 
learning strategies. 

COVIS 
One multiple systems model that provides a specific 
hypothesis about the neural basis of RB and II 
categorization is the COVIS model (COmpetition between 
Verbal and Implicit Systems) proposed by Ashby (Ashby, 
Alfonso-Reese et al. 1998). In this model, 2 learning 
systems compete to provide the output response: an explicit, 
rule-based system dependent upon working memory and 
attention; and an implicit, procedural learning system. While 
COVIS itself is not a DBT model, we can use DBT-based 
mathematical models to test the theory. That is, models that 
isolate RB and II behavior can shed light on a theory that 
makes hypotheses about their specific neural correlates. 
Evidence in favor of COVIS comes from a number of 
sources, most recently neuroimaging. 

Under the COVIS theory, the rule-based system learns 
through a conscious process of rule generation and testing, 
cognitive functions normally subserved by the frontal lobes. 
Neuroimaging of rule-based tasks has shown consistent 
activity in the prefrontal cortex (PFC), anterior cingulate 
and head of the caudate (Rao, Bobholz et al. 1997; 
Lombardi, Andreason et al. 1999; Filoteo, Maddox et al. 
2005). The theory maintains that potential rules being tested 
are stored in working memory and are either discarded or 
retained according to the feedback. The structures within the 
medial temporal lobe (MTL) may also support this type of 
learning (Ashby and Valentin in press) by maintaining the 
specific rule that distinguishes the categories. This could 
effectively consist of memorizing a specific stimulus near 
the decision boundary. 

The implicit learning system in COVIS is hypothesized to 
depend upon the posterior body and tail of the caudate 
nucleus and its interconnections with posterior visual 
cortical areas. Evidence supporting the important role of the 
caudate in this system is based primarily on its 
neurobiological properties. The spiny neurons in the tail of 
the caudate receive projections from the visual cortical 
neurons in TE (inferotemporal cortex) in a many-to-one 
fashion (Wilson 1995). This massive convergence allows a 
wide variety of complex information to be compressed to its 
most basic representation, which is precisely the type of 
process necessary for categorization.  

While neurally inspired, the COVIS model makes several 
strong predictions about the different behavioral 
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characteristics of RB and II category learning that have been 
tested empirically. RB learning was disrupted more than II 
learning by the simultaneous performance of either a 
numerical Stroop (Waldron and Ashby 2001) or a sequential 
memory scanning task (Maddox, Ashby et al. 2004). The 
interfering tasks both rely on working memory and 
attention, which emphasizes the importance of these 
processes to the RB system. In contrast, manipulations of 
the nature and timing of the feedback impair II category 
learning more than RB (Maddox, Ashby et al. 2003; 
Maddox and Ing 2005), supporting the observation that the 
feedback-based dopamine learning signal is time dependent. 
COVIS provides a strong theoretical basis for RB and II 
category learning that we can use to interpret the 
neuroimaging results. 

fMRI of RB and II category learning 
We implemented a visual category learning experiment in 
the scanner to examine the neural correlates of RB and II 
category learning. The application of mathematical models 
of category learning to the behavioral data allowed for 
characterization of the actual strategies being employed by 
the participants. This modeling then allowed us to 
reorganize the imaging data in a way that better 
distinguished the RB and II category learning network 
activity.  

Methods 
Participants 
Thirty-three healthy, native English-speaking, right-handed 
adults (10 males) were recruited from the Northwestern 
University community. All participants gave informed 
consent according to procedures approved by the 
Northwestern University Institutional Review Board and 
were compensated for their time. Participants were 
randomly assigned to either the RB (N=11) or II (N=22) 
group. Two II participants were eliminated due to poor 
quality EPI data (due to subject movement). Twice as many 
II subjects were recruited because initial model analyses 
revealed a sub-set of II subjects using an RB strategy. 
 
Materials 
Stimuli were circular sine wave gratings that varied in 
spatial frequency and orientation (Maddox, Ashby et al. 
2003). Participants were instructed to place each stimulus 
into one of two categories and to try to learn these 
categories over time based on the feedback given after each 
trial. The category structures differed only in the location of 
the optimal category boundary (Figure 1). 
 
Procedure 
On each trial, a fixation cross was presented for 750ms 
followed by a single stimulus for 2 sec. During this time, 
participants indicated to which category they judged the 
stimulus belonged. Stimulus offset was followed by a 500 
ms visual mask and then 750 ms of feedback (“Right”, 
“Wrong”). Each participant received 320 categorization 

trials in four 80 trial blocks. An equal number of fixation-
only trials were pseudo-randomly interspersed between 
stimulus trials to maximize the separability of the measured 
hemodynamic response. 
 
MRI acquisition 
fMRI data were collected using a GE 3.0 T MRI scanner 
equipped with a transit/receive head coil while participants 
performed the categorization task. Whole-brain, gradient-
recalled EPI (40 axial 3 mm slices, 0 gap) were collected 
every 2 sec (TE= 25 ms; flip angle = 78°; 22 cm FOV; 
64x64 acquisition matrix; resulting voxel size = 3.44 x 3.44 
x 3 mm) for 326 volumes in each of 4 scans. Following the 
functional runs, high-resolution, 3D MP-RAGE T1-
weighted scans (voxel size = 0.859 mm x 0.859 x 1 mm; 
160 axial slices) were collected for each participant. 
 
Data analysis 
Preprocessing and statistical analysis of the data were 
performed with a collection of software based on AFNI 
(Cox 1996). Functional images were co-registered through 
time to correct for motion, normalized to MNI stereotactic 
space, and spatially smoothed. Voxels were fit to a general 
linear model function based on blocking stimuli to track 
activity that changes as a result of processing specific trials. 

Based on a priori hypotheses about the involvement of 
specific neuroanatomical areas (Nomura, Maddox et al. 
2007) we also employed a region of interest (ROI) analysis 
in the hippocampus/parahippocampal gyrus and the caudate 
nucleus of the basal ganglia. Each individual’s ROIs were 
aligned using the ROI alignment (ROI-AL) method 
described in Stark and Okada (2003).  
 
Mathematical models of RB and II learning 
Following previous work (Maddox and Filoteo 2001), two 
models derived from DBT were fit to each participant’s 
responses to get a more detailed picture of how they were 
categorizing the stimuli. For each participant, both the RB 
and II models were fit separately to each of the four 80-trial 
blocks. The RB model assumed a vertical decision boundary 
(in stimulus space) reflecting the use of a rule dependent on 
a single stimulus dimension (e.g. frequency). The II model 
assumed a decision boundary with slope equal to 1.0 (i.e. a 
diagonal line reflecting integration of both dimensions). In 
each case, the model identified the placement of this 
boundary and the perceptual noise parameter that best 
accounted for the observed data.  

Thus the models both had exactly two free parameters to 
allow for direct comparison of fit. Best fitting parameter 
values were identified by a downhill simplex method and 
the corresponding fit value were used to sort the subject 
runs. 

Results and Discussion 
Behavioral performance 

For both groups of participants, performance was above 
chance in all runs, and the groups demonstrated similar 
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Figure 2: RB and II 
model fits for RB 

(top) and II subjects 
(bottom). Fit values 
were separated into 
thirds with darker 

hues (i.e. from pink to 
red for RB fits) 

indicating better fit. 
RB fits are in warm 
and II in cool colors. 

The darkest hues were 
included in the fMRI 

analysis. White 
blocks indicate data 
loss due to subject 

movement. 

Figure 3: RB vs. II, correct vs. incorrect trials in the (A) 
MTL and (B) Caudate ROIs. In the left anterior MTL, 

successful RB categorization activity was greater than that 
of the II group. In contrast, II successful categorization was 
greater in the right posterior body of the caudate than RB 

categorization activity. 

learning curves. Learning across runs was reflected in a 
significant linear trend (F (1, 29) = 24.716, p < 0.05). Mean 
accuracy averaged across all 4 runs for the RB group was 
77.3% (SE = 0.034) and for the II group was 66.6% (SE = 
0.055). The RB group accuracy was significantly greater 
than the II accuracy across runs (F (1,29) = 12.5, p< 0.05). 
The performance difference between groups was an 
expected consequence of matching the discriminability of 
the categories. 
 
Modeling behavior 
Out of 31 subjects, there were 120 useable blocks of data. 
The RB model best accounted for 78/120 runs and the II 
model for 42/120 runs. After sorting the model fits from 
high to low by group, we selected only the top third from 
both to be included in the resulting fMRI analyses. In some 
cases, subjects contributed more than one run to the 
analysis. The accuracy of the best RB-fit runs was 66.0% 
(SE = 1.21) and the best II-fit runs was 63.0% (SE = 1.14). 

A color-coded schematic of the best fitting model per run 
is shown in Figure 2. The results of the analysis revealed 
that the RB subjects, in general were using an RB strategy 
with the exception of RB subject #11. The II subjects were 
more heterogeneous. Four out of 20 II subjects were fit 
consistently with the II model, but five II subjects were fit 
better with the RB than the II model across all runs. The 
remaining II subject runs were split between either an RB or 
II fit, suggesting these people were particularly prone to 
strategy switching behavior. This model analysis was used 
to sort the fMRI data in a way that better segregates RB and 
II strategy use irrespective of the group assignment.  

 
fMRI analysis 
Region-of-interest (ROI) analyses based on a priori 
hypotheses in the MTL (Figure 3A) and caudate (Figure 3B) 
revealed differential activity between groups during 
successful categorization. Although performance differences 
between the groups suggests differences in task difficulty, 

that the activity patterns in these small volumes are 
consistent with previous fMRI studies (Nomura, Maddox et 
al. 2007) suggests that the activity was related to strategy-
use.  

An alternative interpretation to the dissociation between 
successful categorization activity here is that the MTL and 
caudate play differential roles in the processing of positive 
and negative feedback. With the current design it is 
impossible to dissociate the activity to the initial 
categorization from the feedback-associated activity because 
of the limitations of deconvolution, but hypotheses about 
feedback processing will become important in future models 
of categorization. 
 
Models applied to fMRI data 
Mathematical models of RB and II categorization 
successfully identified subjects within a particular group 
using a non-optimal strategy. In particular, the II group 
contained a large number of subject runs that were better fit 
with the RB model. This may explain in part the lack of 
whole-brain group differences in the fMRI analysis above. 
The models also identified blocks of trials in which a 
subject was using a strategy particularly well. By examining 
the functional activity associated with only the best fit runs, 
we hoped to isolate activity associated with purely RB or II 
category learning. 

Figure 4A contrasts correct and incorrect trial activity 
within the top 26 subject runs that were best fit by the RB 
model. Activity during correct trials was observed in the left 
anterior MTL and bilateral superior frontal cortex. Similar 
MTL activity was also seen in the ROI analysis (Figure 3A) 
using the non-modeled grouping of subjects. That the same 
area was revealed in this model-based analysis of the same 
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Figure 4: Correct (red) vs. incorrect (blue) trials for (A) best 
RB model fit runs and (B) best II model fit runs. All images 
were thresholded at T>4, cluster>350mm3. When fMRI data 

was grouped according to model-fit value, activity was 
detected in areas consistent with the COVIS theory of 

category learning. 

Figure 5: One II subject (#18, run 4) run that was best fit 
with the RB model (left) and the corresponding contrast of 
correct vs. incorrect trial activity (right). Plus signs indicate 
the category membership of the stimuli whereas the circles 

show the pattern of subject responses. Instances where 
colors agree indicate correct responses and all others are 
incorrect. The green line indicates the optimal decision 

boundary and the black line the best fitting account of the 
data according to the RB model.  

data suggests that the best fit RB runs here may have been 
driving the effect seen in the ROI. There were also several 
areas that were more active for these RB-fit subjects when 
they made an incorrect category judgment, particularly in 
PFC and medial frontal cortex. 

The pattern of activity elicited by correct and incorrect 
trials suggests that these trials are associated with different 
cognitive operations. According to COVIS, the RB system 
generates and selects amongst a variety of rules based on the 
feedback after each trial. The feedback received during 
incorrect trials should be an important indication of when 
the decision boundary needs updating. The data here 
suggests that the inferior and medial PFC are associated 
with updating the rule after receiving disconfirming 
feedback whereas the MTL and frontal cortices are involved 
with maintaining the appropriate rule.  

This is one example where fMRI analysis can inform 
models of categorization. Given two models that make 
contrasting predictions about feedback processing, the 
evidence shown here would support a model that assigns the 
processing of positive and negative feedback to different 
components of the hypothesized network. 

Figure 4B shows the contrast of correct and incorrect 
trials within the top 14 subject runs that were best fit by the 
II model. During correct trials, we observed bilateral 
caudate activity as well as an area in the left visual 
association cortex. While activity in the caudate was 
expected based on our ROI analysis, the visual cortical 

activity was not present in the previous fMRI analysis. In II 
category learning, the trials in which the subject responded 
correctly are those in which it is particularly important to 
link the category label with the appropriate region in 
perceptual space. In COVIS, one of the hypothesized 
functions of the caudate is to develop a category 
representation through the association of activity in 
posterior caudate with activity in visual association cortex. 
By only examining functional activity in subjects that were 
utilizing an II strategy, we’ve identified a component of this 
II categorization network that was expected based on a 
theoretical model. 

A specific example of the efficacy of the model-fitting 
method of identifying strategy independently of the imposed 
category structure is shown in Figure 5. This data comes 
from an II subject run that was best fit with the RB model. 
This subject persisted in clearly using an RB strategy 
(although still maintained 66.35% accuracy) in spite of 
disconfirming feedback. Including this subject in the II 
group analysis would not contribute to understanding the 
neural correlates of II category learning.  Of further note, 
the pattern of functional activity observed during this run is 
similar to that of the group of RB-modeled subjects (Figure 
4A), i.e., the MTL and frontal activity for correct trials and 
inferior PFC activity for incorrect trials. The methodology 
of this analysis suggests that the possibility that future fMRI 
endeavors may be able to make predictions of strategy use 
based on neural correlates. 

Conclusion 
The observed differences in functional activity in the MTL 
and caudate ROIs suggest that the groups were segregated 
enough to reveal distinct neural correlates of RB and II 
category learning as seen previously (Nomura, Maddox et 
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al, 2007). That is, although modeling revealed that the II 
group contained a portion of subjects better fit with an RB 
model, the sensitive ROI analysis was still able to pull out 
the activity related to II learning. 

The results of the RB and II mathematical model-based 
fMRI analyses revealed a collection of areas that were not 
detected in the original fMRI analysis. In accordance with 
the COVIS theory of category learning, the best fitting RB 
runs were associated with activity in PFC and MTL and best 
fitting II runs in caudate and posterior visual cortex. The 
successful utilization of the model-fitting technique shown 
here to isolate the most effective applications of RB and II 
strategies suggests that this method in combination with 
fMRI can be used to further identify the brain networks 
supporting these processes. Development of a trial-by-trial 
computational model that instantiates the competitive 
interaction between the hypothesized RB and II networks is 
underway and will enable even more specific analyses of the 
fMRI data.  
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