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ABSTRACT

Continuously time variable sources are often characterized by their power

spectral density and flux distribution. These quantities can undergo dramatic

changes over time if the underlying physical processes change. However, some

changes can be subtle and not distinguishable using standard statistical ap-

proaches. Here, we report a methodology that aims to identify distinct but

similar states of time variability. We apply this method to the Galactic su-

permassive black hole, where 2.2 µm flux is observed from a source associated

with Sgr A*, and where two distinct states have recently been suggested. Our

approach is taken from mathematical finance and works with conditional flux

density distributions that depend on the previous flux value. The discrete, un-

observed (hidden) state variable is modeled as a stochastic process and the tran-

sition probabilities are inferred from the flux density time series. Using the most

comprehensive data set to date, in which all Keck and a majority of the pub-

licly available VLT data have been merged, we show that Sgr A* is sufficiently

described by a single intrinsic state. However the observed flux densities exhibit

two states: a noise-dominated and a source-dominated one. Our methodology

reported here will prove extremely useful to assess the effects of the putative gas

cloud G2 that is on its way toward the black hole and might create a new state

of variability.

Subject headings: Galaxy: center — Methods: statistical — Accretion, accretion disks

— Black hole physics
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1. Introduction

Many different mechanisms can cause an astronomical source to be variable. Accreting

black holes, for example, are variable electromagnetic sources for reasons such as oscillations

in an accretion disk, changes in the accretion rate, or turbulent plasma processes like

magnetic reconnection leading to an acceleration of electrons. Most often the observed

variability in the flux can be well described by a single stochastic process such as a random

walk (e.g. Kelly et al. 2009; MacLeod et al. 2010; Zu et al. 2013). If, however, the accretion

rate suddenly jumps (e.g. due to the tidal disruption of a star or asteroid) the observed

variability can change drastically and in a way that is not well described by a random

walk. Such a state change in the variability could be obvious if the effects are large like an

increase of the mean flux by orders-of-magnitude. However, there could be changes that

are subtle and not trivial to detect. In this paper, we present a formal method to do just

that. We apply the method to the massive black hole in the center of the Milky Way. This

source is of particular interest, since two distinct states have been claimed to be present in

the past (Dodds-Eden et al. 2011), and the upcoming encounter with the gaseous object

G2 (Gillessen et al. 2012, 2013a,b; Phifer et al. 2013; Meyer et al. 2013) might or might not

lead to a variability state change.

The emission associated with the accretion flow around the Galactic black hole, Sgr A*,

has been detected in a few wavelength regimes (for recent reviews see Genzel, Eisenhauer

& Gillessen 2010; Morris, Meyer & Ghez 2012; Falcke & Markoff 2013). While it was first

detected at radio wavelengths a few decades ago (Balick & Brown 1974), its discovery in the

X-rays (Baganoff et al. 2001) and near-infrared (Genzel et al. 2003; Ghez et al. 2004; Eckart

et al. 2004) did not happen until the early 2000s when advanced imaging systems came

online (Chandra/XMM in the X-rays and adaptive optics in the near-infrared). Sgr A* is

in Eddington terms the most under-luminous massive black hole accessible to observations.
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Its unexpected faintness inspired a class of radiative inefficient accretion flow models (e.g.

Narayan et al. 1995; Blandford & Begelman 1999; Yuan et al. 2003, 2004).

While Sgr A* is variable across all observable wavelengths, its variability is most

pronounced in the near-infrared (NIR) and X-rays with flux excursions that lie a factor of

∼ 10 (for the NIR) and ∼ 100 (for the X-ray), respectively, above the low flux levels. Early

studies of Sgr A*’s NIR and X-ray variability reported the existence of a quasi-periodic

oscillation (QPO) of ∼ 17 min in the flux (Genzel et al. 2003; Aschenbach et al. 2004).

However, this finding was not confirmed by later statistical analyses (Do et al. 2009). The

potential existence of a QPO was met with great interest, since it potentially offers a way

to measure the spin of the black hole and to test the curvature of space-time close to it (e.g.

Broderick & Loeb 2005; Meyer et al. 2006; Johannsen & Psaltis 2011).

One advantage of the NIR over the X-ray regime for studying the variability of Sgr A*

is that it is visible at NIR wavelengths much more of the time. While Sgr A*’s X-ray

emission peaks above the steady background created by the extended, larger-scale thermal

accretion flow around 4% of the time (Neilsen et al. 2013), Sgr A*’s NIR emission is

almost always (& 90%) detected at the highest angular resolution possible today with Keck

Observatory (as we will show here and in Witzel et al., in prep.). Recent NIR studies have

shown that Sgr A* is sufficiently modeled as a purely random process. The power-spectral

density (PSD) of Sgr A*’s time variability is a featureless power-law for relatively high

frequencies, a characteristic that can be modeled with a random walk and is more generally

called red noise (Do et al. 2009; Meyer et al. 2008). At lower frequencies, the power-law

breaks to a shallower slope at a timescale of 150 − 600 minutes (Meyer et al. 2009; Witzel

et al. 2012).

In addition to the PSD, another key quantity to describe Sgr A*’s variability is its flux

density distribution. Recently, Dodds-Eden et al. (2011) and Witzel et al. (2012) looked at
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the total flux density distribution in the NIR by constructing a histogram of all observed

flux density values. Interestingly, their interpretations are quite different: Dodds-Eden et

al. (2011) use a log-normal distribution + a power-law tail – convolved with a Gaussian to

account for measurement errors – to describe the distribution and argue that Sgr A* has

two distinct states, one described by the log-normal part, the other by the power-law tail.

In contrast, Witzel et al. (2012) find that only a power-law (convolved with a Gaussian)

is needed to accurately describe the flux density histogram of Sgr A*. It is important to

note that both studies do not use timing information to argue for one or two states. The

question whether or not multiple states can be inferred from the data was identified as a

key question in understanding Sgr A* by Genzel, Eisenhauer & Gillessen (2010).

In this work, we derive a formal method to answer the question of how many states

can be inferred from Sgr A*’s light curve. In section 2 of the paper we will present our

methodology in detail. While it has been developed with the specific case of Sgr A* in

mind, its application should be more general. It is useful whenever one wants to investigate

if a time variable source exhibits distinct states of variability. This method is known in

economics as “regime switching model” (see, e.g., Hamilton 1994). We then apply this

approach to Sgr A* using the most extensive NIR data set constructed to date (Witzel et

al., in prep.). We end by discussing how to assess the upcoming impact of the gaseous

object G2 on the accretion flow around the black hole. Our methodology along with the

unprecedented data set, which represents the best base line of Sgr A*’s behavior before G2

swings around in early 2014, is the ideal tool set to quantify Sgr A*’s response to any mass

accreted from G2.
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2. Methodology

The notion of hidden states in a time series has been applied to many diverse fields

for a few decades (e.g Rabiner 1989). Simply put, the idea is that observables entail

information about states that are not directly accessible to the observer. Fig. 1 sketches a

simple system that can be in a ground state and an excited state and the distribution of the

observable is different for each state. Overall, a mixture distribution would be observed. A

2-state hidden Markov model that looks at the time sequence of observations and assumes

a general form for the distributions is able to determine their parameters, the probability

to transition from the ground to the excited state and vice versa, as well as the probability

to be in a certain state for every observation. Modeling the stochastic process of the state

variable as Markovian means that the process satisfies the Markov property: one can make

predictions for the future state based solely on its present state just as well as one could

knowing the process’ full history.

The key to this approach is that we move beyond the simple unconditional flux

distribution – measured by the histogram of all flux densities – and use the information in

the time series to identify conditional flux distributions. To illustrate the difference between

unconditional and conditional distributions, consider the following analogy. Imagine that

one wanted to forecast the high temperature on the Santa Monica beach tomorrow. One

way to do this would be to compute the distribution of all high temperatures over the entire

year and use the mean of this unconditional distribution as the forecast. A much better

way to proceed, however, would be to estimate the distribution of day-ahead temperatures

conditional on today’s high temperature being, say, 50 degrees. By conditioning on today’s

temperature, the distribution for tomorrow’s temperature would be much tighter and more

informative that would be the unconditional distribution based on the entire year. This

analogy illustrates the intuition behind our approach. We use the current flux measurement
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to specify the conditional distribution of the subsequent flux measurement, and estimate

a range of conditional distributions, one for each state, rather than just using the single

unconditional distribution.

In the following, we will first describe our approach and the construction of the

likelihood function in more detail with a simplified example (adopted from Hamilton 2005)

and then generalize this to the more complex case of Sgr A*.

2.1. Simple example

Let us consider a hypothetical flux time series where yt is the flux measured at time t,

and the data are well described by a stochastic model of the form

yt = c1 + φyt−1 + εt, (1)

where c1 and |φ| < 1 are constants, and ε ∼ N (0, σ2). Let us further assume that we would

like to test whether a model that allows a change in mean flux gives a better description of

the data. For a permanent change of the mean flux we could just write down a different

parameter c2 for some t > t1,

yt = c2 + φyt−1 + εt. (2)

We are, however, interested in a situation where we can jump back and forth between both

models. We will refer to the different models as different states, and at a given time the

source emitting the flux is in state st = j, where j = 1 or 2 in our example. We will assume

that this state is not directly observable (e.g. with spectroscopic observations), but has to

be inferred from the light curve itself.

The unobserved state is modeled using a Markov switching approach. Concretely, let

pij be a matrix that reflects the transition probabilities of switching to another state or
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remaining in the current state,

pij = Prob(st = j|st−1 = i), (3)

and let Πjt be the probability of being in state j at time t,

Πjt = Prob(st = j|yt). (4)

The probability density of yt for our model is then

f(yt|st = j, yt−1) =
1√

2πσ2
exp

(
−(yt − cj − φyt−1)2

2σ2

)
= fjt. (5)

With these notations, the conditional probability density of yt can be written as

h(yt|yt−1; θ) =
∑
i,j

pijΠit−1fjt, (6)

where θ means the set of parameters in the model (here, cj, φ, and pij). Since Πjt is not

directly observable, it has to be recursively calculated by observing that

Πjt =

∑
i pijΠit−1fjt
h(yt|yt−1; θ)

. (7)

Starting at t0 we can execute the iteration to solve for all Πjt. This means that the final

log-likelihood function of the whole light curve is given by

log h(y1, y2, y3, ..., yT |y0; θ) =
T∑
t=1

log h(yt|yt−1; θ). (8)

The maximum of this log-likelihood function gives the preferred values for cj, φ, and pij.

2.2. Extension to Sgr A*

While the simple model elucidates the construction of the likelihood function, it is

not well suited to be applied to light curves from Sgr A*. The main reason is that the
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real data set shows unevenly sampled measurements with big gaps representing limited

telescope time, the night/day cycle, the observability of the Galactic center from the ground

throughout a year, measurements of sky background, and instrument failures. This requires

us to use a more appropriate model that is time continuous and not discrete as in the above

example. Furthermore, the flux density distribution is not Gaussian, and the data contain

measurement noise. This is where the astronomical application of the regime switching

approach departs from mathematical finance. We will deal with these points step-by-step

in the following.

A popular model to describe the random variability of Quasars is a so-called damped

random walk, which is the only process that is stationary, Gaussian, and Markov. This

process is also known as an Ornstein-Uhlenbeck (OU) model, which is the nomenclature

we will use here. It is similar to red-noise models with a broken power-law as the power

spectral density, which have been used to model Sgr A* in the past (Do et al. 2009; Meyer

et al. 2009; Witzel et al. 2012). Most recently, Dexter et al. (2013) used an OU process to

successfully describe the sub-mm variability of Sgr A*. Additionally, Kelly et al. (2009),

MacLeod et al. (2010), and Zu et al. (2013) have shown that an OU process is an excellent

description of AGN flux variations. Its key advantage for our purpose is that it is a time

continuous model which makes the handling of sampling gaps easier.

The OU model is determined by three parameters, the mean µ, the speed of mean

reversion k, and the volatility σ, and the dynamics can be described by the following

stochastic differential equation:

dy = k(µ− y)dt+ σdZt, (9)

where dZt is the increment of a Brownian motion with Zt ∼ N (0, t). A solution to this

equation is the conditional distribution

f(yt+∆t|yt) =
1√

2πσ̃2
exp

(
−(yt+∆t − µ̃)2

2σ̃2

)
, (10)
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µ̃ = yte
−k∆t + µ

(
1− e−k∆t

)
, (11)

σ̃2 =
σ2(1− e−2k∆t)

2k
. (12)

Our goal is to identify whether more than one state is present in the light curves

from Sgr A*. In order to test a model with two or more states against the baseline model

of one state only, it is important that the baseline model is already a good description

of the overall flux distribution and power spectral density. A OU process matches the

observed characteristics of Sgr A*’s power spectrum: a broken power-law which is otherwise

featureless. The observed flux distribution, however, is not Gaussian. As reported by

Witzel et al. (2012) and Dodds-Eden et al. (2011) a heavy tailed, power-law like distribution

convolved with a Gaussian describes the flux density distribution more accurately. We will

therefore also use the exponential and double-exponential of a OU process to model Sgr A*.

Since this translates into the equivalent of a log-normal (and loglog-normal) distribution,

we will in the following use the notation of a log- and log log-OU process. Please note

that taking the logarithm twice is purely empirically motivated and not rooted in physical

considerations. Ideally, we would like to use a power-law distribution, but a stochastic

model similar to eq. (9) which results in a power-law density is not known.

The conditional distributions for the log- and log log-OU processes are given as follows:

(1) for the log of a OU process,

f(yt+∆t|yt) =
1√

2πσ̃2yt+∆t

exp

(
−(ln (yt+∆t)− µ̃)2

2σ̃2

)
, (13)

µ̃ = ln (yt)e
−k∆t + µ

(
1− e−k∆t

)
, (14)

σ̃2 =
σ2(1− e−2k∆t)

2k
, (15)

and (2) for the log log of a OU process,

f(yt+∆t|yt) =
1√

2πσ̃2yt+∆t ln(yt+∆t)
exp

(
−(ln(ln(yt+∆t))− µ̃)2

2σ̃2

)
, (16)
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µ̃ = ln(ln(yt))e
−k∆t + µ

(
1− e−k∆t

)
, (17)

σ̃2 =
σ2(1− e−2k∆t)

2k
. (18)

The choice of a time continuous model leads to the parameter ∆t in the equations

above and offers therefore a direct way to deal with the gaps in Sgr A*’s light curve for the

conditional distribution. However, the transition matrix P = pij is calculated for a specific

time difference τ and must also be modified when gaps are present. A straightforward way

is to multiply the transition matrix with itself N times for a gap that is τ ·N :

A = PN ,with N = max(1, round(∆t/τ)). (19)

For Sgr A*’s data set, that has an average sampling of one measurement per 1.2 mins (not

counting the big nightly / yearly gaps), we chose a final value of τ = 1 min. We have

explored much shorter values but found it to make no significant difference. For values

of ∆t > 1000 mins we set ∆t = 1000 mins, since these gaps are safely greater than the

coherence time scale of Sgr A* (Meyer et al. 2009; Witzel et al. 2012).

The stochastic model in equation (9) aims to describe the intrinsic properties of the

source under consideration. In a realistic setting, however, an additional noise component

is present that reflects the measurement process. This measurement noise is typically

white noise, i.e. it does not depend on the previous observation, and it is well described

by a Gaussian and therefore fully specified by one parameter σmeas. Often, there exists an

estimate of σmeas. For the case of Sgr A* for example, nearby stars of similar magnitude

visible in the same image offer a straightforward way to estimate the measurement noise,

since these stars have constant flux intrinsically. In case an independent estimate of σmeas

is present, it can be advantageous to include it in the stochastic model of the source. In

order to do this, the conditional distribution from the OU process has to be convolved with
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a Normal distribution N (0, σmeas),

f̃(yt+∆t|yt;σmeas) =

∫
f(x|yt) ·

1√
2πσ2

meas

exp

(
−(yt+∆t − x)2

2σ2
meas

)
dx. (20)

For the important cases of a log- or log log-OU process (eqs. 13 and 16) this integral has to

be calculated numerically in every term of the sum in the likelihood function eq. (8). Note

that this dramatically increases the computing time. For us, the duration of computing

the posterior with the numerical integration increased to the order of days from just a few

hours without it. Please also note that this approach of incorporating the measurement

noise assumes that it is constant. While photon noise leads to an increase of noise with flux,

the data properties are well modeled with the assumption of constancy and may reflect the

dominance of PSF measurement noise (Witzel et al. 2012, Witzel et al., in prep.).

2.3. Is an additional state justified?

An important question is how to decide whether more than one state is needed at

all, and if so, how many different states can be inferred from the data. Here lies an

important distinction between astrophysical and economic analyses: while the latter are

mainly interested in a precise model of a time series to make accurate forecasts, the

former are insight driven. The necessity of different states could point to different physical

mechanisms and elucidate the astrophysics of the source under consideration. Whether

an additional state is necessary in the model of an astronomical time series should be

assessed by several metrics. Bayesian methods like comparing the Bayesian evidences for

different models belong to the standard methods well suited to compare models, but have

the (dis-)advantage of forcing one to write down specific priors for the parameters, which

is often ambiguous. Note that Hamilton (2005) warns that methods relying on likelihood

ratio tests fail to satisfy necessary regularity conditions.
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A quite robust way of assessing the necessity of an additional state is to look at the

global likelihood/posterior distribution in another way: too many assumed distinct states

will lead to a highly multi-modal, very irregular looking posterior distribution. If only the

maximum of the distribution is tried to be determined, the optimizer might often fail to

converge at all in this case. Most importantly, the individual states should show persistence,

if they are real. In any solution with a superfluous additional state the probability of

remaining in that state p22 will be � 0.1, while a significant additional state should show

persistence with p22 & 0.8. If the additional state has a very low probability of remaining

in that state, two things might occur: (1) the probability of remaining in the first state is

also very low, meaning that the states fluctuate from point to point. It seems extremely

unnatural that state changes in the observed source occur exactly at the sampling rate of

the measurements. (2) The probability of remaining in the first state is very high. In this

case, the source will be in the additional, second state hardly at all. Only very few flux

points will be assigned to that state and a natural explanation is that these are outliers for

the assumed first state conditional distribution. This can easily happen if any assumption

of the stochastic model is not quite accurate, e.g. if the flux density distribution is not quite

log-normal or the measurement noise is not strictly constant.

3. Results for Sgr A* data

In this section we will show the results of the regime-switching approach applied to

Sgr A*. We will use two data sets, both taken with adaptive optics in the near-IR K-band:

all publicly available (up to 2010) VLT data as published in Witzel et al. (2012), and all

AO Keck data taken from Sgr A* (up to and including 2013; see Witzel et al., in prep.).

The photometry has been extracted in the same way in both data sets. We refer the reader

to Witzel et al. (2012, and in prep.) for details. Key features of each data set are:
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• The VLT data were taken with NaCo in Ks-band (2.18 µm; 68 mas resolution), the

Keck data with NIRC2 in K’-band (2.12 µm; 53 mas resolution),

• the VLT data contain 10,639 quality-selected data points, taken between 6-13-2003

and 6-16-2010, and the Keck data contain 3,157 quality-selected points between

7-16-2004 and 7-19-2013,

• the average sampling of the covered time periods is 1.2 minutes (VLT) and 1.1 minutes

(Keck),

• the integration time is 28 seconds for Keck and ranges between 30 and 40 seconds for

VLT,

• both data sets use consistent flux density calibration using 13 non-variable stars

throughout all epochs,

• both data sets are corrected for extinction with mext = 2.46 and for confusion levels

(epoch by epoch),

• the (Gaussian) measurement noise is determined to be 0.32 mJy (VLT) and 0.16 mJy

(Keck),

• typical background fluxes are 0.6 mJy (VLT) and 0.3 mJy (Keck), and

• the data cover a de-reddened flux density range of 0–29 (VLT) / 23 (Keck) mJy which

is consistent with a power-law distribution of intrinsic fluxes in both cases.

Figure 2 shows the complete data set. Since the two data sets come from different

telescopes and instruments, and show substantial differences in noise characteristics, we

mainly analyze them separately.
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In the following, we will first model SgrA* using a single state only. This will serve as

our baseline model. We will then go on modeling the data with two states and see whether

a substantial improvement has been achieved.

3.1. The role of measurement noise

We will first present an analysis without accounting for the measurement (white) noise

component. Since measurement noise is of course present in our data, this might seem odd.

However, we think that any first pass of a new data set should be done without the very

time consuming convolution in equation (20), and we want to present our results in a way

that the reader might and should approach his or her own data. In addition to avoiding the

substantial computing time, there is another argument for not including the measurement

noise at first is a meaningful approach: Since the approximately white measurement noise

is very different from a damped random walk (in addition to a different mean and variance,

it does not depend on the prior flux point and its mean reversion time scale is therefore

infinity), any changes in the flux densities that are dominated by the measurement noise

will be picked up as a second state in our algorithm. If a second state is convincingly found

and that state is consistent with the white measurement noise, it is clear that no second

state intrinsic to the source can be derived from the data. The measurement noise is a

manifestation of the limit of what we can learn from given data and while it can be included

in a model, it can not be removed. The treatment with the convolution in equation (20)

is still necessary to infer the accurate parameters of the model, but the simple question of

how many variability states are present in a source can be answered without it.
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3.2. Baseline model

Up to now, the timing behavior of Sgr A* has always been modeled using only a single

state in the literature. An advantage of this approach is that it allows for any choice of the

overall flux distribution, e.g. a power-law convolved with a Gaussian as in Witzel et al.

(2012). In our methodology, however, where we explicitly model conditional distributions,

we do not have the freedom to choose a power-law behavior, since a dynamic model similar

to eq. (9) that results in a power-law distributions is not known. We therefore have to show

first that a log- or log log-OU process can accurately model the overall, unconditional flux

distribution as well. If this was not the case, any additional state would likely be preferred

just because a single state does not appropriately reflect the distribution of fluxes. The

key feature we are looking for is a different timing behavior, since this is expected from a

significantly distinct state that reflects a distinct physical process in the accretion flow.

To first order, the total flux distribution of Sgr A* is peaked and highly skewed.

Exploring the distribution visually, it is noticeable that the histogram of the log(flux) and

log(log(flux)) resembles a Gaussian, although still skewed in the latter case. This skew is

minimized when a constant is added to the whole light curve, i.e. yt = yt + c for all t, where

yt denotes the flux density at time t. For the loglog of the flux this constant evaluates to

c = 1.25 mJy for the VLT data and c = 1.35 mJy for the Keck data, and in the case of

log(flux) it is 0 mJy for both data sets. Note that a constant of c > 1 would be required in

any way in order for the loglog to be defined, since the light curves are normalized such that

min(yt) = 0. Table 1 shows the Bayesian evidences and the best fit parameter values for

both models and data sets. The preferred model in both cases is the loglog one, although

the difference to the log model is marginal for the VLT data. We adopt the loglog-OU

process as the baseline when measurement noise is not included via eq. (20), and the

resulting model as well as the observed flux density histograms for the VLT data are shown
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in Fig. 3. The comparison of baseline model and data shows that while the agreement is

very good, it is not perfect. However, since we can not use power-law distributions and do

not explicitly model the measurement noise here, this is not surprising.

We have used the Bayesian nested sampler MultiNest (Feroz & Hobson 2008; Feroz,

Hobson & Bridges 2009) to explore the posterior distribution, and assumed uniform priors

for the parameters U(0, 10).

3.3. Modeling without the measurement noise component

We can now turn to the question we set out to answer: does Sgr A* have more than

one state? While the choice of the conditional distribution for the baseline model was

motivated to most closely match the observed overall flux distribution (for a single state the

conditional flux distribution obviously equals the overall one), the two state case is more

complex. Fundamentally, the selection of the form of the conditional distributions (e.g. OU,

log-OU, ... ) is an assumption to make and can not be derived from the data themselves.

In a practical approach, we have chosen many different combinations and looked at them

individually.

The results of the modeling with different assumptions for the conditional distributions

are summarized in table 1. Strikingly, all two state scenarios are preferred over the single

state model for both data sets as indicated by the Bayesian evidence. All posteriors are

well behaved and not more than bi-modal (for a two-state model, the posterior will often

be bi-modal), and the probabilities to remain in a given state is high, indicating persistence

of these states. Taken together, this is strong evidence for the presence of more than one

variability state in the observed flux from Sgr A*. The overall preferred two-state model is

one consisting of a log log-OU and a log-OU state. This is true for both the VLT and Keck
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data sets.

In Fig. 4 we show the observed VLT flux density time series in a decomposed way: in

the upper panel are all points that are with probability > 0.5 in the log-OU state, while

the lower panel shows all flux points that are with probability > 0.5 in the log log-OU

state. The differences are clearly visible. In fact, in all explored two-state models one

state is always reverting to its mean fast and has a lower mean, while the other state is

slower mean-reverting with a higher mean. A fast mean-reversion here means that this

time scale is at the order of the sampling. We have also tested that the second state is not

only preferred because of a better description of the overall flux distribution: forcing the

two states to have the same form of the unconditional distribution by setting µ1 = µ2 and

σ2 = k2/k1 σ1, we still see strong evidence for a second state (see last lines in Table 1). It is

the timing that drives the significance of a second state.

The fact that one of the two states is quickly mean reverting to a fairly low mean

suggests the interpretation that this state is predominantly describing the parts of the light

curve that are dominated by measurement noise, which is approximately white noise. Note

that even if this is the case, the above analysis is still valuable since it offers a recipe to label

each point-to-point change of the flux series as “noise-dominated” or “source-dominated”.

Consistent with this interpretation is the observation that the less noisy Keck data are only

6% of the time “noise-dominated”, while the VLT data are “noise-dominated” 17% of the

time.

3.4. Modeling with measurement noise

Our hypothesis is that the quickly mean reverting state represents the measurement,

white noise process. We will test this in two ways: since we have an estimate of σmeas we
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Table 1. Multi-state modeling of Sgr A* (without measurement noise component)

Model log(Evidence) Parameter valuesa

VLT data

log log-OU -9639 (k, µ, σ) = (0.13, 0.16, 0.17)

log-OU -9642 (k, µ, σ) = (0.10, 0.69, 0.30)

log log-OU/OU -5364 (k1, µ1, σ1, p11, k2, µ2, σ2, p21) = (0.016, 0.24, 0.061, 0.96, 0.52, 2.90, 0.84, 0.11)

loglog-OU/log-OU -4813 (k1, µ1, σ1, p11, k2, µ2, σ2, p21) = (0.52, 0.016, 0.32, 0.91, 0.017, 1.29, 0.079, 0.02)

log log-OU/log log-OU -5177 (k1, µ1, σ1, p11, k2, µ2, σ2, p21) = (0.019, 0.25, 0.059, 0.97, 0.42, 0.002, 0.28, 0.08)

log log-OU/log log-OUb -5334 (k1, µ, σ, p11, k2, p21) = (0.031, 0.16, 0.060, 0.97, 0.14, 0.08)

Keck data

log log-OU -733 (k, µ, σ) = (0.04, 0.023, 0.12)

log-OU -939 (k, µ, σ) = (0.04, 0.29, 0.26)

log log-OU/OU -158 (k1, µ1, σ1, p11, k2, µ2, σ2, p21) = (0.02, 0.03, 0.08, 0.92, 0.016, 3.86, 0.33, 0.13)

loglog-OU/log-OU -32 (k1, µ1, σ1, p11, k2, µ2, σ2, p21) = (0.17, 0.04, 0.29, 0.74, 0.015, 1.06, 0.073, 0.02)

log log-OU/log log-OU -180 (k1, µ1, σ1, p11, k2, µ2, σ2, p21) = (0.017, 0.10, 0.067, 0.96, 0.10, 0.014, 0.21, 0.16)

log log-OU/log log-OUb -175 (k1, µ, σ, p11, k2, p21) = (0.021, 0.036, 0.067, 0.96, 0.067, 0.15)

aThe unit for the k parameter is always min−1. The units for µ and σ ∗
√
t depend on the model and are either mJy,

log(mJy), or log(log(mJy)). The prior for all parameters is a uniform distribution U(0, 10).

bThis model only allows for changes in the timing behavior. Here, we set µ1 = µ2 and σ2 = k2/k1 σ1. This tests whether

the additional state is mainly driven by a different timing behavior (manifested in the mean reversion time k), or by the

unconditional flux distribution (described by µ and σ).
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can make use of eq. (20). Furthermore, Witzel et al. (2012) developed a Monte Carlo tool

to simulate Sgr A* light curves (assuming a single state only), and we can analyze these

mock data separately.

We summarize our results in Table 2 for the real data, and in Table 3 for the mock data.

Regarding the real data, the evidence for a second state vanishes when the measurement

noise is incorporated into the model. For both data sets the second state becomes highly

non-persistent with a probability to remain in that state of p22 .1%. This is in stark

contrast to the case of modeling without the extra noise component where generally

p22 &90%. For the VLT data, there is also no improvement in the Bayesian evidence. While

there is some improvement in the evidence for the Keck data, the structure of the solution

suggests that a few outliers drive this behavior (see also discussion in section 2.3).

Regarding the mock data, table 3 shows that the mock data lead to a very similar

solution as the real data, which is encouraging. Since the mock data algorithm was

calibrated to the VLT data in terms of the sampling function and applied noise, the

agreement between the mock data and the real VLT data is stronger than to the Keck

data. When the measurement noise is not incorporated into the modeling, a second state

is clearly preferred. Since the mock data follow a single-state process by construction, this

shows that the white measurement noise leads to a discernible state in addition to the

intrinsic red noise process of Sgr A*. And again, when the noise is explicitly convolved into

the conditional distributions, the evidence for a second state vanishes. The solution puts

the probability to remain in the second state to p22 . 1%.

In summary, the evidence for two distinct states in the flux from Sgr A* disappears

when the measurement noise is taken into account. We therefore see our hypothesis verified:

the quickly mean-reverting, lower-mean state represents the state when the observed flux

changes are dominated by instrumental noise, and the slowly mean-reverting, higher-mean
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state represents the state when the flux changes are dominated by Sgr A* itself.

It is interesting to note that the same result holds true when the analysis is done on a

combined Keck and VLT data set (see Fig. 2). While two states are again being picked up

when the measurement noise is unaccounted for, one state tends to describe white noise and

the other Sgr A* intrinsically. With the measurement noise convolved into the conditional

distributions, the evidence for a second state vanishes.

3.5. The parameters of the single-state (best-fit) model

We have shown that Sgr A* is sufficiently described by a single-state process once the

measurement noise is accounted for in the modeling. The accurate model for Sgr A*’s

light curve is therefore the log-OU process convolved with Gaussian noise (see table 2).

While it is tempting to interpret these parameters and compare them to different modeling

approaches of the past, one has to be cautious when the single-state parameter inference is

done as the limiting case of a multi-state model, as we have done here.

The reason for caution is the following: Our approach models the conditional

distribution from one measurement to the next, f(yt+∆t|yt), which is necessary in the

context of a multi-state Markov model. If only a single state is assumed, this means,

however, that only the typical sampling horizon ∆t is used to estimate the mean-reversion

time scale k. If the OU process is completely accurate and describes the true nature of the

source, this is unproblematic. If, however, there are deviations from the OU process in the

data, a different sampling horizon would lead to a different estimate of k. Ideally, a global

approach using all time lags in the data would be used to estimate k for a single-state

process. Since we focus here on multi-state modeling, this is beyond the scope of this work.

We would like to note, however, that the analysis of our mock data lead to consistent results
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Table 2. Multi-state modeling of Sgr A* with measurement noise componenta

Model log(Evidence) Parameter valuesb

VLT data

log log-OU -7899 (k, µ, σ) = (0.06, 0.14, 0.10)

log-OU -7436 (k, µ, σ) = (0.04, 0.75, 0.17)

loglog-OU/log-OU -7420 (k1, µ1, σ1, p11, k2, µ2, σ2, p21) = (0.07, 0.17, 0.10, 0.99, 0.72, 1.39, 0.56, 0.98)

2nd state irrelevant and non-persistent (p22 =2%)

Keck data

log log-OU -432 (k, µ, σ) = (0.02, 0.04, 0.07)

log-OU -417 (k, µ, σ) = (0.02, 0.37, 0.16)

loglog-OU/log-OU -194 (k1, µ1, σ1, p11, k2, µ2, σ2, p21) = (0.01, 0.04, 0.05, 0.97, 0.20, 1.33, 0.28, 0.99)

2nd state irrelevant and non-persistent (p22 =1%)

aThe value for σmeas is σmeas = 0.32 mJy for the VLT data (Witzel et al. 2012), and σmeas = 0.16 mJy for the

Keck data (Witzel et al., in prep.).

bThe unit for the k parameter is always min−1. The units for µ and σ ∗
√
t depend on the model and are either

log(mJy) or log(log(mJy)). The prior for the parameters is a uniform distribution U(0, 1), only for µ2 it is U(0, 3).
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Table 3. Multi-state modeling of mock dataa

Model log(Evidence) Parameter valuesb

Modeling without measurement noise component

log log-OU -9157 (k, µ, σ) = (0.10, 0.15, 0.15)

log-OU -10477 (k, µ, σ) = (0.11, 0.87, 0.29)

loglog-OU/log-OU -7975 (k1, µ1, σ1, p11, k2, µ2, σ2, p21) = (1.25, 0.001, 0.28, 0.97, 0.04, 1.48, 0.11, 0.01)

Modeling with measurement noise componentc

log log-OU -8486 (k, µ, σ) = (0.04, 0.25, 0.07)

log-OU -8286 (k, µ, σ) = (0.04, 0.87, 0.14)

loglog-OU/log-OU -8248 (k1, µ1, σ1, p11, k2, µ2, σ2, p21) = (0.03, 0.04, 0.06, 0.50, 0.07, 1.75, 0.09, 0.999)

2nd state non-persistent (p22 =0.1%)

aThe model for the mock data is taken from Witzel et al. (2012) where it has been calibrated with the VLT data

and uses a single state only.

bThe unit for the k parameter is always min−1. The units for µ and σ ∗
√
t depend on the model and are either

log(mJy) or log(log(mJy)). When no measurement noise is modeled, the prior for all parameters is a uniform distribution

U(0, 10). When measurement noise is modeled, the prior for the parameters is a uniform distribution U(0, 1), only for

µ2 it is U(0, 3).

cThe value for σmeas is σmeas = 0.32 mJy.
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with the analysis of the real data, which means we explicitly confirm the results of Witzel

et al. (2012).

4. Discussion & Conclusion

Using the most extensive light curve of Sgr A* to date with combined data from

the VLT and Keck Observatory (Witzel et al., in prep.), we arrive at two main results:

(1) the observed flux from Sgr A* shows two distinct states, a noise-dominated and a

source-dominated one, and (2) the intrinsic variability of Sgr A* is sufficiently described by

a single state stochastic process. Both findings have interesting implications, and we will

discuss them in turn.

The presence of a noise-dominated and a source-dominated state in Sgr A* is a

manifestation of the colloquial language used in the Galactic center community, where it is

often talked about a quiescent and a flaring state of Sgr A* in the NIR. We have shown

here that this intuitive distinction is right when describing observed light curves, however

Sgr A* is intrinsically not in quiescent and flaring states but rather in one single state

only. The language is therefore somewhat imprecise and the word “flare” should not be

used to describe Sgr A* in the NIR. This also means that the lack of statistical evidence

for a QPO of ∼ 17 minutes can not be explained by distinct states of which only one is

accompanied by a QPO, a possibility raised by Genzel, Eisenhauer & Gillessen (2010). The

fact that the intrinsic behavior of Sgr A* shows no evidence for a second state explores

and falsifies the idea first suggested by Dodds-Eden et al. (2011). Physically, this means

that one stochastic process without the addition of time resolved, discrete events – like the

disruption of asteroids – fully explains our data set.

It will be interesting to see whether a change of Sgr A*’s intrinsic variability state
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changes when the gaseous, red, emission-line object G2 has passed the black hole in early

2014 (Gillessen et al. 2012, 2013a,b; Phifer et al. 2013; Meyer et al. 2013). Since there is gas

associated with this object, it could potentially offer a unique probe to observe the response

of the accretion flow to a sudden increase of mass. However, the amount of gas is uncertain

and it is unclear if there will be any visible effect to the flux emission from Sgr A*. Two

scenarios are likely; either something obvious will happen to Sgr A*’s flux distribution like

a shift towards a much higher mean, or – if there is any change at all – it can be very subtle

requiring a detailed statistical method like the one we have developed here. This statistical

methodology, in addition to the best possible data baseline by merging the VLT and Keck

data, might prove crucial in understanding G2’s impact on Sgr A*.

Compared to simpler methods, our Hidden Markov Model approach presented here has

the distinct advantage that it not only answers the question whether two states are needed,

but it also solves for the times when the state changes happen. For G2 this is important,

because although the time and distance of closest approach is fairly well known for G2’s

orbit, it is unclear when the gas has come down from ∼ 2400RS all the way to a few RS

where the near-infrared flux gets emitted. Given enough observations, solving for the time

of state change (if there will be one) can directly test accretion flow dynamics around

Sgr A*.

Another benefit of our approach that assigns a probability to each flux change to

be noise- or source-dominated is that it offers a recipe to get an astrometric position of

Sgr A* in the infrared. The astrometry of stars orbiting around the black hole aims to

detect deviations from a purely Keplerian orbit as the next milestone (e.g Ghez et al.

2008; Gillessen et al. 2009; Meyer et al. 2012). The astrometry is currently limited by the

construction of an absolute reference frame that is used to transform all star positions into

a common frame. This frame of reference is defined by seven maser sources visible in the
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radio as well as infrared (Yelda et al. 2010). Since Sgr A* is also visible at both of these

wavelengths and sits at a position that is most important to anchor the reference frame,

it could be of tremendous help in overcoming the current limitations. However, reliable

astrometry of Sgr A* has been elusive. Its position changes as a function of brightness,

probably because unresolved stellar sources bias its position, and the resulting astrometric

shift is dependent on the relative contribution of Sgr A*’s intrinsic flux. Our two-state

modeling approach effectively filters out the flux point variations in the time series that

are dominated by Sgr A* itself. Getting a position based on the images only where the

apparent flux from Sgr A* is source-dominated should improve the astrometry and lead to

a consistent determination of its position.

As a final remark we would like to note that the multi-state methodology present here

is directly applicable to other sources such as AGN as well. The only key assumption is the

validity of the OU process (also called a damped random walk). This also means that the

method is not wavelength specific. The analysis of optical AGN light curves, e.g., should

be possible in exactly the same way as is presented here.
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Meyer, L., Ghez, A. M., Schödel, R., et al. 2012, Science, 338, 6103, 84

Meyer, L., Ghez, A. M, Witzel, G., et al. 2013, Proceedings of IAU Symposium #303,

eprint arXiv:1312.1715

Morris, M. R., Meyer, L., Ghez, A. 2012, RAA, 12, 995

Narayan, R., Yi, I., & Mahadevan, R. 1995, Nature, 374, 623

Neilsen, J., Nowak, M. A., Gammie, C., et al. 2013, ApJ, 774, 42

Phifer, K., Do, T., Meyer, L., et al. 2013, ApJ, in press, eprint arXiv:1304.5280

Rabiner, L. 1989, Proceedings of the IEEE, 77, 2, 257

http://arxiv.org/abs/1306.1374
http://arxiv.org/abs/1312.1715
http://arxiv.org/abs/1304.5280


– 29 –

Witzel, G., Eckart, A., Bremer, M., et al. 2012, ApJS, 203, 18

Yelda, S., Lu, J. R., Ghez, A., et al. 2010, ApJ, 725, 331

Yuan, F., Quataert, E., Narayan, R. 2003, ApJ, 598, 301

Yuan, F., Quataert, E., Narayan, R. 2004, ApJ, 606, 894

Zu, Y., Kochanek, C. S., Kozlowski, S., Udalski, A. 2013, ApJ, 765, 106

This manuscript was prepared with the AAS LATEX macros v5.2.



– 30 –

Fig. 1.— A sketch of a 2-state hidden Markov model. The observable quantity shows the

dashed overall distribution. It can be decomposed into a ground state (GS) and an excited

state (ES), both of which are not directly observable. Given a sequence of observations,

the parameters of the individual distributions as well as the transition probabilities can be

solved for. Note that this sketch is overly simplified and in our application to time series the

overall, unconditional distribution can not simply be calculated as the weighted sum of the

conditional ones.
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Fig. 2.— This figure shows the longest, most comprehensive NIR light curve of Sgr A* that

is available today (13, 800 data points, here displayed without gaps longer than 30 min); see

Witzel et al. (in prep.). This data has been taken in the K-band from 2003 to 2013 with

both the VLT (black) and the Keck observatory (red) and shows a typical cadence of about

1 minute for the individual night.
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Fig. 3.— The overall flux distribution of Sgr A* from the VLT data set presented in Witzel

et al. (2012, solid line) and our single state baseline model (dashed line). Concretely, the

log log of the flux after a constant value of 1.25 mJy has been added is shown. The observed

distribution closely resembles a Gaussian, which shows that our assumptions about the

baseline model are accurate.
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Fig. 4.— Decomposition of the VLT data into the best-fit two state model (see Table 1,

row 4). Upper panel: All flux points of the time series that are with probability > 0.5 in

the log-OU state (83% of all points). Lower panel: All flux points that are with probability

> 0.5 in the log log-OU state (17% of all points). This visualizes the differences in the two

states: the log log-OU state is quickly reverting to a rather low mean, while the log-OU state

is more slowly mean-reverting and the mean is higher. The log log-OU state represents the

state where the changes in flux are dominated by measurement noise, and the log-OU state

represents the changes in flux that are source-dominated.
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