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2 Oregon Heart and Vascular Institute, Sacred Heart Medical Center, Springfield, OR
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Abstract

Objective—We aimed to investigate if early revascularization in patients with suspected coronary 

artery disease (CAD) can be effectively predicted by integrating clinical data and quantitative 

image features derived from perfusion SPECT (MPS) by machine learning (ML) approach.

Methods—713 rest 201Thallium/stress 99mTechnetium MPS studies with correlating invasive 

angiography (372 revascularization events (275 PCI / 97 CABG) within 90 days after MPS (91% 

within 30 days) were considered. Transient ischemic dilation (TID), stress combined supine/prone 

total perfusion deficit (TPD), quantitative rest and stress TPD, exercise ejection fraction, and end-

systolic volume along with clinical parameters including patient gender, history of hypertension 

and diabetes mellitus, ST-depression on baseline ECG, ECG and clinical response during stress, 

and post-ECG probability by boosted ensemble ML algorithm (LogitBoost) to predict 

revascularization events. These features were selected using an automated feature selection 

algorithm from all available clinical and quantitative data (33 parameters). 10-fold cross-validation 

was utilized to train and test the prediction model. The prediction of revascularization by ML 

algorithm was compared to standalone measures of perfusion and visual analysis by two 

experienced readers utilizing all imaging, quantitative, and clinical data.

Results—The sensitivity of machine learning (73.6±4.3%) for prediction of revascularization 

was similar to one reader (73.9±4.6%) and standalone measures of perfusion (75.5±4.5%). The 

specificity of machine learning (74.7±4.2%) was also better than both expert readers (67.2±4.9% 

and 66.0±5.0%, P < 0.05), but was similar to ischemic TPD (68.3±4.9%, P < 0.05). The Receiver-

Operator-Characteristics areas-under-curve for machine learning (0.81±0.02) was similar to reader 

1 (0.81±0.02) but superior to reader 2 (0.72±0.02, P < 0.01) and standalone measure of perfusion 

(0.77±0.02, P < 0.01).
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Conclusion—ML approach is comparable or better than experienced reader in prediction of the 

early revascularization after MPS and is significantly better than standalone measures of perfusion 

derived from MPS.

Keywords

Machine Learning; Coronary Artery Disease; Myocardial Perfusion SPECT; Revascularization; 
Total Perfusion Deficit

Introduction

Over the last three decades, myocardial perfusion imaging with SPECT (MPS) has been the 

most commonly utilized noninvasive imaging technique in the low to intermediate risk 

population for assessing the presence of obstructive coronary artery disease (CAD)1. Prior 

studies have demonstrated that myocardial perfusion is reduced in the presence of a ≥70% 

epicardial luminal stenosis2, and MPS has excellent sensitivity and specificity for the 

detection of angiographically significant (defined as more than 70% stenosis) CAD1. 

Therefore, invasive coronary angiography is often used as the gold standard for assessing the 

diagnostic accuracy of MPS for predicting presence of obstructive coronary artery disease. 

However, the ability of MPS to predict revascularization has not been previously studied.

The interpretation of MPS is currently performed primarily by experienced clinicians who 

manually combine raw and perfusion images, incorporate quantitative, functional, and 

clinical data in a systematic fashion based on the American Society of Nuclear Cardiology 

(ASNC) recommendations3. However, the interpretation is mostly semi-quantitative, 

subjective, and heavily dependent on reader's experience level4. Prior studies have evaluated 

multiple MPS features, including semi-quantitative and quantitative perfusion and functional 

variables, for diagnosis of obstructive CAD5–9. In addition, prior studies have demonstrated 

that standalone quantitative perfusion parameters compare favorably to visual scoring for 

diagnosing obstructive CAD10. Furthermore, the use of machine learning (ML) algorithms 

for combining and integrating perfusion, functional, and clinical variables for diagnosis of 

obstructive CAD allows one to obtain results similar or better than those obtained by 

experienced readers11. However, combining these parameters by ML for predicting 

revascularization events has not been previously studied.

In this study, we aimed to investigate if early revascularization in patients with suspected 

coronary artery disease (CAD) can be effectively predicted by integrating clinical data and 

quantitative image features derived from perfusion SPECT (MPS) by boosting ML 

algorithm (LogitBoost), which is the modern ML method, based on additive modeling of 

maximum likelihood12.

Materials and Methods

Patient Population

The subjects with suspected CAD who were referred to the Nuclear Medicine Department of 

Cedars-Sinai Medical Center, Los Angeles, California, from November 1, 2001 to June 30, 

2005 for rest and stress electrocardiography (ECG)-gated, performed in both supine and 
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prone positions, were consecutively selected11. Consecutive patients in whom MPS and 

coronary angiography with or without revascularization were performed within 60 days, 

without a significant intervening event were studied. All patients with a prior history of 

CAD, known cardiomyopathy, left bundle branch block, pacemaker, or significant valve 

disease were excluded. Based on these criteria, 713 sequential studies were identified to 

form the patient population, which constituted approximately 5% of all consecutive MPS 

studies performed at that period. The clinical characteristics are listed in Table 1. The data 

analyzed in this study have been obtained retrospectively from the existing database at 

Cedars-Sinai Medical Center (Los Angeles, California). The retrospective use of clinical 

data in this study was approved by the Institutional Review Board at Cedars-Sinai and 

informed consent was obtained from all patients.

Image Acquisition and Reconstruction Protocols

All patients underwent separate-acquisition rest 201Tl/stress 99mTc-sestamibi dual-isotope 

MPS as previously described13. Images were acquired on a dual-detector camera (Forte or 

Vertex [Philips Medical Systems, Andover, Massachusetts] or e.cam [Siemens Medical 

Systems, Malvern, Pennsylvania]) equipped with a high-resolution collimator. The details of 

image acquisition and tomographic reconstruction have been previously described14.

Briefly, for rest imaging, weight- adjusted 201Tl (3.0-4.5 mCi) was injected intravenously 

and acquisition was performed 10 minutes after injection, with 35 seconds per projection. In 

patients able to exercise, a symptom limited exercise treadmill test with the standard Bruce 

protocol was performed. Treadmill exercise was continued at maximum workload for 1 

minute and at one stage lower for 2 additional minutes when possible, 99mTc-sestamibi MPS 

acquisition was started 15 to 30 minutes after radiopharmaceutical injection. In patients 

undergoing pharmacological stress testing, adenosine was infused at 140 μg · kg −1 · min−1 

for 5 minutes15. At the end of the second minute, 99mTc-sestamibi (25-40 mCi based on 

patient's weight) was injected. Whenever possible, during adenosine infusion, patients 

performed a low-level treadmill exercise, walking at 0% grade at 1 to 1.7 mph16. Post-

stress 99mTc-sestamibi acquisitions were performed beginning 15 to 60 minutes after 

injection, with 64 projections at 25 seconds per projection for supine 99mTc acquisition, 

followed immediately by 32 projections at 15 seconds per projection for prone 99mTc 

acquisition. No attenuation or scatter correction was applied.

Studies were reconstructed on the respective vendor platforms (Pegasys [Philips Medical 

Systems] or e.soft 2000 [Siemens Medical Systems]) by use of their commercial 

implementations of the iterative reconstruction. The reconstruction parameters were 12 

iterations with Butterworth prefiltering (cutoff, 0.66 cycles per pixel for supine 99mTc and 

0.55 cycles per pixel for prone 99mTc; order, 5). These parameters were optimized 

previously to provide optimal image quality for clinical scan reading17. Gated images were 

only obtained for the supine position. Short-axis images were automatically generated18. In 

certain cases when the software failed to detect left ventricular contours, manual and visual 

assessment was needed for the derivation of the automated results by an experienced 

technologist. In addition, if patient motion was noted during review of raw projections, 
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motion correction (MoCo) software was applied19. After reconstruction, the images were 

transferred for visual analysis using Cedars-Sinai QPS software20.

Clinical Parameters

We utilized multiple clinical features including age, gender, diabetes mellitus, 

hyperlipidemia, tobacco abuse, hypertension, claudication symptoms, family history of 

CAD, weight, body mass index, typicality of symptoms. We also calculated the probability 

of obstructive CAD using ECG Diamond-Forrester criteria based on the degree of ST-

depression on stress ECG21 as well as vital signs during stress. All these clinical features 

were considered as the input to the automated feature selection algorithm.

Image Parameters

Several quantitative perfusion and function parameters were obtained in a fully automated 

mode from the MPS images. These parameters were also considered as an input to the ML 

algorithm. Supine and prone images were quantified separately using their respective supine 

and prone normal limits and a previously developed simplified approach7. The combined 

supine/prone TPD parameter, based on the findings of abnormality on both supine and prone 

images was computed as previously described14. Briefly, an optimal normalization factor 

between the database case and test-case was established by an iterative search and an 

abnormality threshold of 3.0 average (mean absolute) deviations was applied, which is 

approximately equivalent to 2.5 SD, to estimate the extent of hypoperfusion. The total 

perfusion deficit (TPD) measure was computed as the integral of polar map severities below 

the abnormality threshold, reflecting both extent and severity of the defect. In addition to 

deriving separate TPD measures for supine and prone MPS, we computed the combined 

supine/prone TPD parameter, based on the findings of abnormality on both supine and prone 

images as previously described14. Briefly, combined supine/prone TPD is calculated by 

limiting the TPD computation from the supine polar map to pixels, which have been 

quantified as abnormal on prone images. The same average deviation threshold (3.0) is used 

for supine and prone images (as in the analysis of separate images). The combined supine/

prone parameter was expressed in the same units (percentage of the myocardium) as in the 

separate supine and prone TPD measures. A stress TPD+ value of > 3% and ischemic TPD+ 

value of >2% was considered abnormal. We refer to these combined TPD parameters as 

TPD in the remainder of this manuscript. Quantitative stress and rest perfusion deficits were 

derived as previously described6. Standard MPS processing was performed by the QPS/QGS 

software18,20. The TID ratio was derived from stress/rest supine MPS as previously 

defined23.

Visual Analysis

Visual interpretation of MPS images was based on short axis, horizontal and vertical long-

axis slices, as well as ability to utilize gated images. The myocardium was divided into 17 

segments using QPS interactive 17-segment graph20 according to the American Heart 

Association system24. MPS images were scored independently by two expert cardiologists 

using a five-point scoring system (0-normal; 1-mildly decreased uptake; 2-moderately 

decreased uptake; 3-severely decreased uptake; and 4-absence of segmental uptake). Visual 

reading was performed by expert readers with all data available including stress and rest 
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perfusion data, raw projection data, and gated functional data including gated images and 

stress plus rest ejection fraction (EF), quantitative computer results, and all clinical 

information including age, cardiac risk factors, type of stress, and clinical and ECG 

responses to stress. Subsequently, summed stress scores (SSS) and summed rest scores were 

calculated by summing the 17-segment stress and rest scores, respectively. A visual SSS 

score of ≥ 4 and a visual summed difference scores (SDS) of ≥ 2 was considered as a 

predictor or revascularization17.

Machine learning methods

Feature Selection

We utilized an automated feature selection algorithm, which evaluates the worth of an 

attribute by measuring the entropy gain with respect to the outcome and ranks the attributes 

by their individual evaluations25. The automated feature selection methods are a part of 

WEKA machine learning environment26. Only the attributes that were resulting in the 

information gain > 0 were subsequently used as an input for the Logitboost classification 

algorithm. This is a standard machine learning procedure performed to ensure appropriate 

performance of the classification algorithm. As input, we utilized all the clinical features 

mentioned above as well as imaging quantitative parameters including TID, rest and stress 

combined supine/prone TPD, ejection fraction, left ventricular volumes, and quantitative 

stress/rest summed scores.

Classification

We have employed an ensemble-boosting LogitBoost algorithm, which is a meta-algorithm 

technique. A higher classification performance is obtained by combining several simple 

classification schemes, which produce a strong ensemble classification scheme by iteratively 

adjusting appropriate weights for each of the base-level classifiers. We utilized a LogitBoost 

procedure12 with decision stumps as the base classifiers implemented in the Waikato 

Environment for Knowledge Analysis (WEKA)26. This method has previously been utilized 

for prediction of obstructive CAD from MPS11. A total of 33 attributes were utilized (Table 

2). Ten-fold cross-validation (CV) technique was used to assess and compare the 

performance of the prediction by logistic regression models which ensured that none of the 

image data used for creation of logistic regression models was used in subsequent evaluation 

of the diagnostic performance of the same model27. Therefore, 10 different models were 

used to derive the final test results28. The use of 10-fold CV allows for the construction of 

stable logistic regression models trained on 90% fractions of the population as well as allow 

us to evaluate the model variability. This technique has been shown to have the smaller bias 

for discriminant analysis than other methods such as split-sample (1). The classification 

output in the form of continuous probability estimates (from 0 to 1) was used to construct 

the receiver operator characteristic (ROC) curves, utilizing the 10-fold cross-validation 

results. The ML algorithm performance was compared to the expert visual readings and to 

the standalone perfusion parameters including stress TPD and ischemic TPD. Machine 

learning model without the features obtained from the resting scan (resting TPD, TID) was 

also considered to compare this approach to the visual and standard quantification prediction 

of the revascularization from stress-imaging alone combined with the clinical data.
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Conventional Coronary Angiography / Revascularization

Conventional invasive coronary angiography (ICA) was performed according to standard 

clinical protocols, within 60 days of the myocardial perfusion examination. Three-hundred 

and seventy-two out of 713 patients underwent revascularization also within the 60 days 

after the MPS, with 275 patients undergoing percutaneous coronary intervention (PCI) [75 

with multi-vessel PCI] and 97 patients undergoing coronary artery bypass graft (CABG) 

surgery (7 with single-vessel CABG).

Statistical Analysis

Continuous variables were expressed as the mean ± standard deviation, and categorical 

variables were expressed as percentages (%). Z-test for comparison of proportions and 

McNemar was performed to compare the sensitivity and specificity. The stress TPD was 

compared to SSS, while ischemic TPD was compared to SDS. For all analyses, P values <.

05 were considered statistically significant. ROC curves were analyzed to evaluate the 

ability of ML software vs. visual scoring and standalone perfusion parameters to predict the 

early revascularization procedure. The differences between the ROC areas under the curves 

(AUC) were compared using the Delong method29.

Results

Feature selection

Thirteen total parameters were selected using the information gain ranking criteria including 

quantitative parameters including TID, stress combined supine/prone TPD, quantitative rest 

and stress TPD, exercise ejection fraction, and end-systolic volume along with clinical 

parameters including patient gender, history of hypertension and diabetes mellitus, ST-

depression on baseline ECG, ECG and clinical response during stress (chest pain with 

exercise), and post-ECG probability of CAD based on Diamond-Forrester criteria21 [Table 

2]. The rankings in table 2 reflect the importance of each parameter.

Machine Learning Versus Stress Visual Scores and Stress Standalone Perfusion

The sensitivity of stress only machine learning for predicting revascularization (72.7±4.5%) 

was similar to both readers’ visual stress scores (76.3±4.6% and 72.3±4.6%) and stress TPD 

(77.7±4.5%) [Figure 1A]. The specificity of machine learning was similar to both readers’ 

visual, but was significantly better than stress TPD (74.5±4.1% vs. 67.4±5.0%, P < 0.05). 

The AUC for machine learning (0.81±0.02) was similar to reader 1 (0.81±0.02), but was 

significantly better than reader 2 and stress TPD (0.76±0.02 and 0.79±0.02, respectively (P < 

0.01)) [Figure 2A]. We also assessed the likelihood of revascularization if the stress only 

machine probability score was greater than 75% versus less than 25%. Eighty-four percent 

of patients (202) with a probability score of >75% underwent revascularization, while only 

16% of patients (171) with a probability score of <25% underwent revascularization (P < 

0.001).
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Machine Learning Versus Ischemic Visual Scores and Ischemic Standalone Perfusion

The sensitivity of machine learning for predicting revascularization was significantly lower 

than reader 1 (73.6±4.3% vs. 81.5±4.6%, P < 0.05), but was similar to reader 2 and ischemic 

TPD (Figure 1B). The specificity of machine learning was better than both readers 

(74.7±4.2% vs. 67.2±4.9% and 66.0+5.0%, P < 0.05), but was similar to ischemic TPD. The 

ROC-AUC for machine learning (0.81±0.02) was similar to reader 1 (0.81±0.02), but was 

significantly better than reader 2 and ischemic TPD (0.72±0.02 and 0.77±0.02, respectively 

(P < 0.01)) [Figure 2B]. We also assessed the likelihood of revascularization if stress/rest 

machine probability score was greater than 75% versus less than 25% (we selected quartiles 

for comparison). Eighty-four percent of patients (216) with probability score of >75% 

underwent revascularization, while only 17% of patients (174) with probability score of 

<25% underwent revascularization (P < 0.001).

Discussion

In our current study, we were able to show that the machine algorithm combining clinical 

and quantitative MPS features was superior to standalone perfusion methods and at least 

comparable to experienced readers from high volume center in identifying individuals who 

will need to undergo revascularization. Thus, such ML software may hypothetically enable 

the physician to identify individuals who might benefit from invasive coronary angiography 

(because they are likely to undergo PCI as a part of invasive angiography procedure) as 

opposed to undergo only medical therapy. To our knowledge, this is a first study to evaluate 

an ability to computationally predict which patients would undergo revascularization after 

MPS. A recent study by Patel et al. demonstrated that only a third of the 400,000 patients 

studied had obstructive CAD at the time of invasive angiography and patients with positive 

noninvasive test were moderately more likely to have obstructive CAD30. Given this 

transformative period in healthcare when clinicians are expected to consistently foster better 

health outcomes at a lower cost, such automated algorithms may have the potential to reduce 

the need for additional downstream invasive testing, thus assisting physicians to adapt to the 

changing industry.

It should additionally be noted that the two readers in our study were from high volume 

centers, and prior studies have demonstrated that the degree of variability in MPS 

interpretation is dependent on the reader's experience31,32. It is therefore feasible that ML 

algorithms, which can easily be incorporated into currently available MPS software, might 

be even more useful for less experienced readers. Another important aspect of the machine 

learning is that in addition to classifying MPS as normal versus abnormal it also provides 

probability scores. We demonstrated that patients were 5 times more likely to undergo 

revascularization if they were in the highest quartile versus lowest quartile. These probability 

scores could be also be implemented in the currently available software, and could be used 

to assist the clinician when deciding who should be referred for invasive coronary 

angiography as well as revascularization. As demonstrated in table 2, the model was 

dominated by perfusion parameters; however clinical parameters also contributed to the 

model which highlights the benefits of using ML algorithms.
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The importance of abnormal MPS for predicting who might benefit most from 

revascularization has previously been evaluated. Hachamovitch and colleagues compared the 

short-term survival benefits associated with revascularization compared with medical 

therapy in 10,627 patients with no prior CAD undergoing MPS33. They noted a greater 

survival benefit associated with revascularization in patients with moderate to large 

inducible ischemia on MPS studies (greater than 10%). In addition, the benefits of medical 

therapy and revascularization based on extent of ischemia and scar were compared in 13,969 

undergoing MPS34. Patients with significant ischemia and without extensive scar were more 

likely to benefit from early revascularization, while those with minimal ischemia had better 

outcomes with medical therapy. Although our study did not identify patients that might 

benefit most from revascularization, similar machine learning methodology could be used to 

compare the benefits of optimal medical therapy versus revascularization, if mortality is 

used as an outcome event as opposed to revascularization.

This study has several limitations. Revascularization was used as the gold standard for this 

study with its known limitations which were mentioned above. Attenuation correction was 

not used in this study; however, we used combined supine/prone analysis to guard against 

image artifacts. We have utilized supine-prone imaging protocols which is a clinical standard 

at our center but it is not routinely used in the majority of imaging centers, for both 

quantitative analysis and expert visual reading. Additionally, the MPS protocol was dual-

isotope imaging, which is limited by the difficulties in comparing rest and stress images due 

to differences in image resolution. This protocol has been employed less frequently recently 

due to the high amount radiation to the patient. Future studies using single-isotope protocols 

or low-dose MPS may be required to further analyze the ML algorithms for predicting 

revascularization. Nevertheless, we have studied patients with suspected CAD and also built 

the model utilizing only stress perfusion data, which demonstrated similar predictive 

performance to the model with stress and rest data. Thus, rest imaging data was not crucial 

in this analysis. The ML model was based on the global perfusion abnormalities rather than 

regional. In the future, we plan to apply these findings to individual coronary territories for 

assessment of localization of disease using ML. Another limitation of our current study is 

that it was conducted on retrospective fashion. It is difficult to assess how much the 

revascularization decision was biased by abnormal MPS studies, since the decision to 

revascularize could be affected by clinical MPS report. Nevertheless, the machine learning 

utilized objective quantitative parameters, which were not used in revascularization 

decisions. Furthermore, the visual analysis in our study was performed retrospectively in a 

blinded fashion and hence the obtained result would not affect the decision to vascularize. 

Finally, although we had a large patient population, the results were obtained in only one 

center. Further multicenter evaluations will be required to confirm these results.

Conclusion

A machine learning algorithm integrating clinical and quantitative MPS information is 

comparable or better than the experienced readers and is significantly better than standalone 

measures of perfusion derived from MPS, in predicting early revascularization following 

MPS. This methodology may allow reduction in unnecessary catheterization after MPS.
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New Knowledge Gained

Machine learning algorithms were used to integrate clinical and quantitative MPS imaging 

features and predict early revascularization events. This approach was evaluated in a large 

population of patients with suspected CAD undergoing MPS with correlative invasive 

coronary angiography. The automated computer algorithm was able to predict which patients 

would undergo revascularization better than standalone measures of perfusion derived from 

MPS and similar to experienced readers.
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Figure 1. 
A) Sensitivity and specificity of ML algorithm vs combined stress supine/prone TPD and 

expert visual summed stress scores (SSS) and B) ML algorithm vs combined ischemic 

supine/prone TPD and expert visual summed difference scores (SDS) for predicting 

revascularization.
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Figure 2. 
A) The ROC curves comparing the ML algorithm vs combined stress supine/prone TPD and 

expert visual summed stress scores (SSS) and B) ML algorithm vs combined ischemic 

supine/prone TPD and expert visual summed difference scores (SDS) for predicting 

revascularization.
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Table 1

Baseline characteristics of the patients.

Non-Revascularized Group Revascularized Group P - Value

Number 341 372 N/A

Age (Years) 62 ± 13 66 ± 11 <.01

Male % 55 % 72 % <.01

Female % 45 % 28 % <.01

Diabetes Mellitus % 16 % 27 % <.01

Hypertension % 57 % 63 % 0.10

Hyperlipidemia % 48 % 56 % 0.03

Smoking % 5 % 7 % 0.26

Family History % 11% 11 % 1.0

N/A = Not applicable.
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Table 2

Ranking of the features by the automated feature selection algorithm.

Features Ranking

Stress TPD+
* 0.1876

Quantitative Stress TPD
* 0.18

ST-Depression at Rest
* 0.0394

ECG Response During Exercise
* 0.0341

Quantitative Rest TPD
* 0.336

Post ECG likelihood of CAD
* 0.032

Clinical Response During Exercise
* 0.0305

Transient Ischemic Dilation (TID)
* 0.0265

Gender
* 0.232

Stress Ejection Fraction
* 0.0188

End-Systolic Volume (ESV) 0.018

Resting BP
* 0.0158

History of Diabetes Mellitus
* 0.0136

Age 0

Heart Rate / Peak Heart rate/Peak BP (3) 0

History of hypertension 0

Pretest likelihood of CAD (before ECG) 0

Clinical response 0

Family History of CAD 0

History of Hyperlipidemia 0

Smoking 0

Height/Weight/ Body Mass Index (3) 0

Exercise Duration 0

METs Achieved 0

Claudication 0

Symptoms at Rest 0

Rest TPD+ 0

Rest Ejection Fraction 0

End-Diastolic Volume 0

*
indicates selected features. CAD - Coronary Artery Disease, METs - Metabolic Equivalent of Task. BP – Blood pressure. (number of 

features given in brackets if multiple)
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