
Lawrence Berkeley National Laboratory
LBL Publications

Title
Characterizing the Sample Selection for Supernova Cosmology

Permalink
https://escholarship.org/uc/item/4mt876rb

Journal
The Open Journal of Astrophysics, 4(1)

ISSN
2565-6120

Author
Kim, Alex G

Publication Date
2021

DOI
10.21105/astro.2007.11100
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4mt876rb
https://escholarship.org
http://www.cdlib.org/


Version February 17, 2021
Preprint typeset using LATEX style openjournal v. 09/06/15

CHARACTERIZING THE SAMPLE SELECTION FOR SUPERNOVA COSMOLOGY

Alex G. Kim, for the LSST Dark Energy Science Collaboration
Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Version February 17, 2021

ABSTRACT

Type Ia supernovae (SNe Ia) are used as distance indicators to infer the cosmological parameters
that specify the expansion history of the universe. Parameter inference depends on the criteria by
which the analysis SN sample is selected. Only for the simplest selection criteria and population
models can the likelihood be calculated analytically, otherwise it needs to be determined numerically,
a process that inherently has error. Numerical errors in the likelihood lead to errors in parameter
inference. This article presents toy examples where the distance modulus is inferred given a set of
SNe at a single redshift. Parameter estimators and their uncertainties are calculated using Monte
Carlo techniques. The relationship between the number of Monte Carlo realizations and numerical
errors is presented. The procedure can be applied to more realistic models and used to determine the
computational and data management requirements of the transient analysis pipeline.

1. INTRODUCTION

In the early days of supernova cosmology, hard redshift cuts were applied to spectroscopically classified Type Ia
supernovae (SNe Ia) in order to mitigate against Malmquist bias and biases due to non-Ia contamination (Riess et al.
1998; Perlmutter et al. 1999). Malmquist bias arises because SN Ia peak magnitudes have an intrinsic dispersion;
if in a magnitude-limited survey intrinsically faint undetected SNe are unaccounted for, inferred distances can be
underestimated. Most other transients discovered in imaging surveys are intrinsically fainter than SNe Ia, and including
these objects in an analysis as if they were SNe Ia would lead to overestimated inferred distances. In the past, strict
sample-selection cuts made these sources of bias negligible, though at the expense of reducing the sample size.

A motivation for relaxing the sample-selection criteria is to extend the redshift range of the SN Ia Hubble diagram
and to take advantage of the large number of SN discoveries from modern supernova surveys. SNe at higher redshift
have fainter observed magnitude, making them more susceptible to Malmquist bias and more difficult to classify
spectroscopically; given finite follow-up resources we will have to rely on photometric classification (Campbell et al.
2013; Jones et al. 2018) in order to consider all discoveries. Analysis models then need to accommodate not only SNe Ia
but also a contaminant population (Kunz et al. 2007). Under these circumstances, the effect of sample selection cannot
be ignored (Rubin et al. 2015; Hinton et al. 2017, 2019).

The criteria for sample selection are becoming more sophisticated. Certain criteria, such as those based on signal-to-
noise, color, and data quality, are simply expressed as a function of the observed data. Machine learning classifiers are
being developed to select likely SNe Ia (Richards et al. 2012; Lochner et al. 2016; Charnock & Moss 2017; Revsbech et
al. 2018; Villar et al. 2019; Boone 2019; Muthukrishna et al. 2019; Pasquet et al. 2019; Gabruseva et al. 2020; Möller
& de Boissière 2020), but their inner workings can be opaque and not easily modeled as a simple function of data.
Determining whether a supernova enters the sample requires nothing short of running its data through the black box
classifier. Without an analytic expression for the sample selection, the volume of classifications required to characterize
the classifier to achieve a targeted precision in parameter inference could be computationally non-trivial.

An added complication in modern surveys is that sample selection may not entirely defined by the cosmology analysis
team. For example, the transients discovered by the Vera C. Rubin Legacy Survey of Space and Time (LSST) are
expected to undergo a series of pipelines, each the separate responsibility of either the Project, Broker teams, or
Science Collaborations. The LSST Project plans to identify transients in cadenced imaging surveys, triggering alerts
that will be distributed to a small number of third-party brokers who will distribute filtered subsets to the community
in near-real-time. In addition, all alerts and objects will be available within 24 hours of shutter close through the
Project’s Prompt Data Products databases.1 Science teams that use these products to define their samples may find
that they need to understand the sample-selection efficiencies of antecedent processes that are the responsibility of
other parties.

Supernova cosmology analysis for a contaminated sample has been described in the literature. Hierarchical models
for the supernova populations, observations, and the sample selection are used to derive the likelihoods needed for
parameter inference (Rubin et al. 2015; Hinton et al. 2019). There are a number of analyses in progress using this
approach, though they have yet to be published. BEAMS and its extensions (Hlozek et al. 2012; Knights et al.
2013; Roberts et al. 2017) present a likelihood given the known probabilities of type. However, this likelihood is not
necessarily applicable in practice as only an estimator, and not the true probabilities, are known, which for efficient
classifiers that use brightness and color information are covariant with the inferred distances. In Hlozek et al. (2012)
the impact of using incorrect probabilities is explored, but such tests on simulated data do not translate to validation of

1 Relevant LSST documents are available at https://lse-163.lsst.io/, https://ldm-612.lsst.io/.

ar
X

iv
:2

00
7.

11
10

0v
3 

 [
as

tr
o-

ph
.C

O
] 

 1
5 

Fe
b 

20
21

https://lse-163.lsst.io/
https://ldm-612.lsst.io/


2

real data. The models underlying the simulation may not represent the astrophysics of the real Universe to high fidelity.
This problem is not unique to BEAMS and affects all model inference. The difficulty is that proper interpretation of
BEAMS cosmology results depends on understanding a simulation whose inner tunings are subtle and not necessarily
known by the bulk of the community. The cosmology analyses of PanSTARRS and DES (Jones et al. 2018; Brout et al.
2019), based on “BEAMS with Bias Corrections” (Kessler & Scolnic 2017), add systematic effects and bias corrections
in an ad hoc manner, not from first principles. The resulting “likelihood” is not a likelihood, as it does not include the
probabilities of detection. This is readily apparent in that the probability distribution function (pdf) of observables
of an experiment with sample selection is in general not normal, whereas their pdf’s are normal; the implication is
that the confidence regions are not based on a likelihood. Note that the confidence-region test in (Brout et al. 2019)
quantifies the range of data possible from one point in parameter space, not the range of parameter space consistent
with a single data realization upon which frequentist confidence intervals are based.

Apparent in the hierarchical models is the sensitivity of the likelihood to the physics model and the choices made for
sample selection. By the time LSST SN discoveries are used for cosmology analysis, SNe of all types should be better
understood and modeled than they are today. In addition, the algorithms that will be used for triggered follow-up
and cosmology sample selection are currently being evaluated. Indeed, a motivation for the current work is to identify
important metrics that describe the computing load engendered by different sample selection pipelines. For these
reasons, this article focuses on the methodology and for clarity uses simple models as examples. Implementing this
methodology for use on a suite of models and sample-selection (e.g., classifier) pipelines is planned.

This article presents a procedure to determine errors in parameter inference due to numerical errors that naturally
arise when taking into account sample selection. Up until now, the sample selection in SN Ia cosmology analysis
could be effectively characterized by the properties of the measurement from a single observation or visit (e.g., signal-
to-noise, percent flux increase, magnitude) or be otherwise due to processes independent of the source properties
(e.g., mis-subtractions, lack of spectroscopy follow-up time). Now that new surveys discover large numbers of non-
SN Ia transients, the sophisticated classifiers now included as part of analysis pipelines complicate sample-selection
characterization. The motivation of this work is to determine how often classifiers have to be queried in order to
achieve precise distance inference. Though we are motivated by LSST, the procedure is of general applicability. In §2
we present a generic model, its likelihood, and the best-fit parameters and uncertainties calculated from the likelihood,
for a survey with sample selection. Monte Carlo integration is introduced to calculate the numerical integrals involved.
For toy examples, in §3 we propagate numerical-integration errors into those of the best-fit parameters and parameter
uncertainties, as a function of the number of Monte Carlo samples. A discussion on those results and their implications
on computing resources are given in §4. Conclusions are given in §5.

2. DISTANCES FROM A CONTAMINATED SAMPLE OF STANDARD CANDLES

2.1. The model

This article considers a simple model that captures the main complications of future SN cosmology analyses. We
consider standard candles each with a measured distance estimate, without reference to the processes of getting that
estimate from observables. All the objects have the same distance, which is the limit of considering a subset of SNe
that lie within a narrow redshift bin. There are two populations of objects, one brighter candle with tight intrinsic
magnitude dispersion and a second fainter “candle” with a broad magnitude dispersion. The observed sample of
objects is magnitude limited, replicating a detection threshold in their discovery. The discovered sample undergoes
further classification filtering, using supplemental data and potentially the distance measurement, in an effort to use
only objects from the bright population. The classifier may not be perfect, filtering out some of the desired population
while leaking in some of the undesired fainter population. The model has two top-level parameters: the distance of
the objects and the underlying ratio in the numbers of the two populations.

Here we summarize the assumptions, parameters, parameter dependencies, and notation for the model.

• All objects are at the same distance denoted by their distance modulus µ.

• There are two populations labeled as T = 0, 1. The T = 0 population is of primary interest, being bright and
precise distance indicators (e.g., SNe Ia) while the T = 1 population represents the background (e.g., core-collapse
supernovae). The underlying fraction of type T = 0 is given by p0, such that P (T |p0) = p0δT0 + (1 − p0)δT1,
where δ is the Kronecker δ.

• All objects have a magnitude observable m. The magnitude datum from a candle of population T is drawn from
a Normal distribution

p(m|T, µ) = N (m− µ−MT , σT ), (1)

where µ is the distance modulus, MT the candle’s absolute magnitude, and σT the standard deviation, which
is due to a combination of intrinsic dispersion and measurement noise. Objects may also have additional data
x that are not sensitive to µ but are used in object detection and classification, e.g., colors, light-curve shape,
spectra, host-galaxy properties.

The above model for perfect standard candles does not apply to SNe Ia, which are considered to be a family of
similar objects where the absolute magnitude MT of each individual SN is a parameter that can be inferred from
data. The intrinsic magnitude dispersion of SNe is not necessarily Gaussian. In addition, foreground effects e.g.,
dust extinction and, gravitational lensing, also affect observed magnitudes.
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• The data from different objects are independent.

• Candles entering the sample must exceed a brightness threshold mlim. Each candle has a parameter S = 1, 0
indicating whether it does or does not meet the brightness criterion. P (S|m) = δSS(m) where S(m) = H(mlim−m)
and H is the Heaviside function. In terms of LSST, this is akin to saying that the Project will efficiently generate
magnitude-limited transient alerts.

• Candles entering the sample are typically classified as having a high probability of being T = 0. A classifier
ingests data and outputs results used to decide whether to include an object in the final sample. The classification
decision is given by τ(m,x) = 1, 0 for an object included/excluded from the sample. P (τ |m,x) = δττ(m,x). For
LSST the classification process may be composed of several distinct components including live Public Broker
assessments, real-time observing decisions, and a posteriori classifications based on the full light curve.

The performance of the classifier is described by its efficiency ε0 that a candle of T = 0 has τ = 1, and its
false-positive probability ε1 that a candle of T = 1 has τ = 1. The probability of object of type T being classified
as τ is P (τ |T ) = (ε0δ0T + ε1δ1T )δτ1 + (1− ε0δ0T − ε1δ1T )δτ0.

In place of a real classifier, in the examples presented in this article the classifier efficiency and false-positive
probability are taken to be random, hence completely uncorrelated with m. In this case the classifier itself does
not induce a bias in distance modulus. Most classifiers, however, are expected to use magnitude information and
the presented methodology corrects for any potential bias.

2.2. Parameter estimators and uncertainties

In this work, the likelihood and its calculation are split into two more basic building blocks. The first is the expected
fraction of all objects that pass both detection and classification criteria to make it into the analysis sample

S̄(µ, p0) = p(S = 1, τ = 1|µ, p0). (2)

As will be shown shortly, it is the calculation of this term and its partial derivatives with respect to the parameters
that can require a large number of evaluations of the sample selection function to consider all objects that could have
entered the sample. The second is the probability of an object with magnitude m making it into the analysis sample.

R(m,µ, p0) = p(m,S = 1, τ = 1|µ, p0). (3)

This term requires calculating the sample selection probability of only those objects that are in the sample.
The likelihood is the probability given by the model for the sample-selected data, which is predicated on the detection

and classification selection criteria being satisfied. Recalling the independence of the data across objects

L(µ, p0; {m}) =

N∏

i=1

p(mi|Si = 1, τi = 1, µ, p0) (4)

=

N∏

i=1

p(mi, Si = 1, τi = 1|µ, p0)

p(Si = 1, τi = 1|µ, p0)
(5)

= S̄(µ, p0)−N
N∏

i=1

R(mi, µ, p0). (6)

where the index i runs over the N objects in the final sample. All objects contribute a common term for the probability
of an arbitrary object making into the sample S̄ and an individual term of its own probability of discovery R.

The estimators for parameters θ̂, θ ∈ {µ, p0}, solve ∂ lnL
∂θ = 0, i.e.

0 = − 1

S̄

∂S̄

∂θ
+

1

N

N∑

i=1

1

R(mi)

∂R(mi)

∂θ
. (7)

The Hessian of the likelihood surface is
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Hij = −∂
2 lnL

∂θi∂θj

= −
N∑

k=1

(
1

R(mk)

∂2R(mk)

∂θi∂θj
− 1

R2(mk)

∂R(mk)

∂θi

∂R(mk)

∂θj

)

+N

(
1

S̄

∂2S̄

∂θi∂θj
− 1

S̄2

∂S̄

∂θi

∂S̄

∂θj

)
. (8)

Its value at the extremum provides an estimate of the parameter uncertainty. In this article, the statistical uncertainty

in µ is given by σµ ≈
√
H−1
µµ . The estimators and their uncertainties are subject to error when there are uncertainties in

the logarithmic derivatives of S̄. The estimator depends on the average value of ∂ lnR/∂θ, but is otherwise independent
of N . The Hessian similarly scales with N . The errors in the parameter estimators and the fractional errors in the
parameter uncertainties presented in this article are thus independent of the sample size.

Given the model parameters and their probabilities, the functions S̄, R, and their partials can be expressed including
the latent variables T and m as

S̄(µ, p0) =

∫ 1∑

T=0

p(S = 1, τ = 1,m, T |µ, p0)dm

∂S̄

∂µ
=

∫ 1∑

T=0

m−MT − µ
σ2
T

p(S = 1, τ = 1,m, T |µ, p0)dm

∂S̄

∂p0
=

∫ 1∑

T=0

δT0 − δT1

p0δT0 + (1− p0)δT1
p(S = 1, τ = 1,m, T |µ, p0)dm

∂2S̄

∂µ2
=

∫ 1∑

T=0

((
m−MT − µ

σ2
T

)2

− 1

σ2
T

)
p(S = 1, τ = 1,m, T |µ, p0)dm

∂2S̄

∂µ∂p0
=

∫ 1∑

T=0

(
m−MT − µ

σ2
T

)(
δT0 − δT1

p0δT0 + (1− p0)δT1

)
p(S = 1, τ = 1,m, T |µ, p0)dm (9)

and

R(m,µ, p0) =

1∑

T=0

p(m,S = 1, τ = 1, T |µ, p0)

∂R

∂µ
=

1∑

T=0

m−MT − µ
σ2
T

p(m,S = 1, τ = 1, T |µ, p0)

∂R

∂p0
=

1∑

T=0

δT0 − δT1

p0δT0 + (1− p0)δT1
p(m,S = 1, τ = 1, T |µ, p0)

∂2R

∂µ2
=

1∑

T=0

((
m−MT − µ

σ2
T

)2

− 1

σ2
T

)
p(m,S = 1, τ = 1, T |µ, p0)

∂2R

∂µ∂p0
=

1∑

T=0

(
m−MT − µ

σ2
T

)(
δT0 − δT1

p0δT0 + (1− p0)δT1

)
p(m,S = 1, τ = 1, T |µ, p0). (10)

The second derivatives with respect to p0 are zero. Although not denoted explicitly, the supplement data x used only
for detection and classification enter S̄ and R implicitly through P (τ |m,x).

2.3. Monte Carlo integration and its errors

S̄ and its derivatives involve an integral whose integrands depend on the classifier through τ(m,x) and the detection
selection S(m,x). In general these functions are challenging to express analytically with precision. Even if the
integrands were analytic, the integrals themselves are generally non-analytic. The integrals are solved numerically
through Monte Carlo integration, with the integrand evaluated at randomly drawn sets of {m,x} values. The precision
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of the integration is dependent on the number of times the integrand is sampled. Therein lies the technical motivation
of this work, the requirements on the number of evaluations of S(m,x) and τ(m,x) necessary to achieve precise distance
inference.

In our model, the detection threshold S(m) is simply described by a step function while the classifier is treated as
a black box for which τ(m,x) can’t be written analytically. Efficient integration focuses on sampling magnitudes that
already satisfy the detection criterion without reference to the classifier, drawn from

p(m|S = 1, µ, p0) =
∑

T

p(m,T |S = 1, µ, p0)

=

∑
T p(S = 1|m,T, µ, p0)p(m|T, µ, p0)p(T |µ, p0)

p(S = 1|µ, p0)
. (11)

This pdf enters the integrand of S̄ (and its derivatives) as

p(S = 1, τ = 1,m, T |µ, p0) = p(τ = 1|S = 1,m, T, µ, p0)p(T |S = 1,m, µ, p0)

× p(m|S = 1, µ, p0)p(S = 1|µ, p0). (12)

Monte Carlo integration draws NMC realizations from a fiducial distribution with fixed parameters µ0, p00 (in the
calculations that follow, we optimistically set µ0 and p00 to their input values),

m ∼ p(m|Sm = 1, µ0, p00). (13)

Then the Monte Carlo integration of S̄ is

S̄(µ, p0) ≈ p(S = 1|µ, p0)

NMC

NMC∑

i=1

1∑

T=0

p(τ = 1|Si = 1,mi, T, µ, p0)p(T |Si = 1,mi, µ, p0)

× p(mi|Si = 1, µ, p0)

p(mi|Si = 1, µ0, p00)
. (14)

The partial derivatives of S̄ are calculated similarly.
The calculated values of S̄ are used to deduce the estimator and uncertainty of µ. An independent calculation of

S̄, using different realizations for the Monte Carlo integration, produces different values of µ̂ and σµ. The standard
deviations of the distributions of µ̂ and σµ from many sets of Monte Carlo realizations represent the error of interest
in this article.

3. EXAMPLES

3.1. Pure sample

Before continuing with the general model, we take a short detour to consider the special case of a Pure sample,
where there are no false positives (ε1 = 0) and all objects are of type T = 0. The classifier nevertheless may not be
efficient, ε0 6= 1, so that the effect of the classifier must be accounted for. This example corresponds to an analysis of a
spectroscopically pure sample. This case is useful to review, as the estimator and uncertainty simplify into expressions
that may be more easily recognized by the non-specialist.

There are a few minor changes to the equations shown in the previous section.

• The likelihood is now predicated on the sample data satisfying both the detection and classification selection
criteria

L(µ, p0; {m}) = S̄(µ, p0)−N
N∏

i=1

R(mi, µ, p0) (15)

where now

S̄(µ, p0) =

∫
p(S = 1, τ = 1, T = 0,m|µ, p0)dm

R(m,µ, p0) = p(m,S = 1, τ = 1, T = 0|µ, p0). (16)

The change from the general case is that T is no longer a latent parameter, being replaced by T = 0 and the
summation over the two types is removed.
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• Efficient Monte Carlo integration draws from p(m|S = 1, T = 0, µ, p0), in terms of which the integrand of S̄ is

p(m,S = 1, τ = 1, T = 0|µ, p0) = p(τ = 1|S = 1, T = 0,m, µ, p0)p(S = 1|T = 0, µ, p0)

× p(T = 0|µ, p0)p(m|S = 1, T = 0, µ, p0). (17)

• The pure sample gives no information on the relative rates, so that partial derivative of the likelihood with
respect to p0 is zero.

• The partial derivatives of R simplify to

∂ lnR

∂µ
=
m−M0 − µ

σ2
0

∂2 lnR

∂µ2
= − 1

σ2
0

. (18)

resulting in an estimator for µ̂ that solves

N

S̄

∂S̄

∂µ

/
N∑

i=1

1

σ2
0

+M0 + µ̂ =

N∑

i=1

mi

σ2
0

/
N∑

i=1

1

σ2
0

(19)

and uncertainty estimated from

−∂
2 lnL

∂µ∂µ
= −N

S̄2

(
∂S̄

∂µ

)2

+

N∑

i=1

1

σ2
0

(20)

evaluated at µ̂. If the sampler were complete, then ∂S̄/∂µ = 0 and the estimator in Eq. 19 would simplify to

being the weighted mean of the measurements with statistical uncertainty σ0/
√
N from Eq. 20.

The estimator µ̂ and its statistical uncertainty σµ are calculated from Eqs. 19 and 20 respectively for many instan-
tiations of Monte Carlo draws. The standard deviations in these calculated values represent their errors due to MC
integration.

To illustrate, we take an example setting the absolute magnitude to M0 = 0, the magnitude dispersion to σ0 =
0.1 mag, the classifier efficiency to ε0 = 0.95, and no false positives ε1 = 0. The input model parameters for the
distance modulus and Population-0 fraction are µ = 0 and p0 = 0.5 respectively.

Both µ̂ and σµ depend on the sample data through R. In place of instantiating a simulated data set for these
calculations, we adopt a “typical” dataset that satisfies

N∑

i=1

mi

σ2
0

=

〈 N∑

i=1

mi

σ2
0

〉
= − N (mlim −M0 − µ0, σ0)

cdf(mlim −M0 − µ0, σ0)
, (21)

where “cdf” is the cumulative distribution function of a Normal distribution. (Recall that the examples adopt clas-
sification probabilities uncorrelated with m.) This choice eliminates bias in the best-fit parameter values due to the
statistical noise in a single realization of data, allowing us to focus on the errors due to MC integration.

The errors due to Monte Carlo integration in the calculation of S̄ and its partials are shown in Figure 1, which plots
the 16, 50, and 84%-iles of the calculated values S̄, ∂S̄/∂µ, and ∂ ln S̄/∂µ for mlim = −0.1 mag and independent draws
of NMC =10,000. Several instantiations of these functions are overplotted, showing that the errors in the function
values at different µ are correlated. The curves are linear given the choice of a classifier that is uncorrelated with
magnitude; classifier output that are correlated with magnitude would imprint µ-dependent structure in these curves.

The estimator µ̂ is the value of µ where the term on the left of Eq. 19 is equal to the data-dependent, µ-independent
term on the right. Figure 2 plots the left-hand term for a number of instantiations of the MC integration, and the
the constant values of the right-hand terms as horizontal lines. The estimators, where the sloped curves intersect the
horizontal line, are different for each MC realization, and the estimator errors are given by the standard deviations of
these intercepts.

We call attention to several interesting features seen in Figure 2. The intercepts are centered around the input
µ = 0, confirming that the ∂ ln S̄/∂µ term in Eq. 19 properly accounts for the Malmquist bias in the magnitude-
limited sample. Within the range of the plot, the sloped curves are nearly parallel, meaning that the Monte Carlo
errors are not so sensitive to the data, i.e. a different value of the right-hand term and location of the horizontal line.
The slope of the left-hand term varies with the magnitude limit mlim, from 1 when ∂S̄/∂µ = 0, decreasing to 0 as the
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µ

−16.0

−15.5

−15.0

−14.5

∂
ln
S̄

∂
µ

Fig. 1.— Points with error bars are the 16, 50, and 84%-iles of the calculated values of S̄, ∂S̄/∂µ, and ∂ ln S̄/∂µ for mlim = −0.1 mag
and independent draws of NMC = 10, 000. Several instantiations of these functions are overplotted as solid lines.

threshold gets more severe. Shallower slopes are responsible for larger errors in the intersection of the horizontal line
and hence in µ̂. We again emphasize that lack of structure in the left-hand term is a feature of the classifier considered.
A classifier that has ∂ ln S̄/∂µ+ µ that is not monotonic in µ can have a likelihood with multiple local maxima whose
characterization requires more detailed analysis than used here.

The errors in the estimators, written as s.d.(µ̂) as a function of NMC are calculated for several scenarios. The
fractional errors in the µ uncertainty derived from the Hessian, written as s.d.(σµ)/σµ, are also calculated. Results for

a range of mlim are shown in Figure 3. For a given NMC, errors are proportional to N
−1/2
MC as expected from Monte

Carlo integration.
As a function of limiting magnitude, the more complete the sample (large limiting magnitude), the smaller the error

in the estimators. As the sample reaches completeness, the S̄ terms and their errors become relatively unimportant.

Recall that the relevant statistic is 1
S̄
∂S̄
∂θ whose uncertainty is the integration error in ∂S̄

∂θ further weighted by S̄−1.

The Monte Carlo integration draws from p(m|S = 1, µ, p0) with variance
∫mlim

−∞ (m2 − m̄)N (m−M0 − µ0, σ0)dm that

steadily drops with decreasing (more severe) mlim. At the same time S̄ =
∫mlim

−∞ N (m −M0 − µ0, σ0)dm also drops
with decreasing mlim. Although the narrower magnitude dispersion of a truncated dispersion gives lower integration
errors for ∂S̄/∂µ, the weighting by S̄ in fact leads to the larger errors seen in Fig. 2.)

While the same trend is true for the error in the uncertainty s.d.(σµ), s.d.(σµ)/σµ does not monotonically decrease
with increasing limiting magnitude because σµ decreases even faster with limiting magnitude.

For a survey with a target precision in µ, the required number of Monte Carlo samples NMC can be read from Figure 3.
For example, the uncertainty is < 0.01 mag for NMC = 1, 000 with limiting magnitude as bright as mlim = −0.2 mag.
Correct calculation of parameter uncertainties is as important as the estimators themselves. A 1% error fractional
uncertainty is obtained with NMC =10,000.

3.2. General example

We now return to the general case of a Two-Population model with sample contamination. The true type of each
object is uncertain, so the latent parameter T comes into play. The data can longer be isolated into a parameter-
independent term as was the case for Pure sample. The relative rate of the two populations p0 must now be considered.
This example corresponds to an analysis that would be undertaken when the sample is selected using an imperfect
photometric classifier.

The example considered here is similar to that of the Pure sample. Population 0 has absolute magnitude M0 = 0
and magnitude dispersion of σ0 = 0.1 mag. The contaminating population has M1 = 1 and magnitude dispersion of
σ1 = 0.5 mag. The classifier efficiency remains ε0 = 0.95, but now the outlier population can pass the classification
criteria with probability ε1 = 0.05. The fiducial model parameters are µ = 0 and p0 = 0.5.

Results are presented for one realization of the data. They yield a best-fit values that are not precisely the fiducial
parameter values but are within statistical uncertainties. The sample data are selected from 10,000 objects from both
populations that satisfy the magnitude-detection threshold, which are subsequently filtered by the classifier.

The estimator µ̂ solves Eq. 7, and is calculated for many different instantiations of Monte Carlo integrals with
NMC =10,000 and plotted in Figure 4. The average solution is centered near the fiducial µ = 0. The population-ratio
parameter p0 has to be accounted for and the distribution of its estimator p̂0 for the instantiations of Monte Carlo
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(where the sloped curves intersect the horizontal line in the left-hand plots) for a number of independent MC realizations.

integrals is plotted in Figure 5. The average solution is centered near the fiducial p0. (Recall that results depend
on the draw of the data, which induces a small bias relative to the input parameters.) The dispersion in the p̂0 is
relatively large; in fact for NMC =1,000, a significant fraction of the calculated partial derivatives of the log-likelihood
do not have a root within the allowed range [0, 1]. The error in p̂0 is smaller for mlim = −0.1 than it is for 0.1, a result
of having a larger fraction of Population 1 objects that pass the magnitude cut (the broad bright tail of Population 1
contributes relatively more than the narrow tail of Population 0), which leak into the classified sample.

The estimators µ̂ and p̂0 are calculated for many instantiations of the Monte Carlo integrals and their distribution
is shown in Figure 6. The contour is not centered at the input value due to the statistical noise inherent in the data
realization for which the calculation is performed. The fit parameters are correlated, as seen in the rotated shape of
the ellipses.

The errors in the estimators and their uncertainties, s.d.(µ̂) and s.d.(σµ)/σµ, are calculated for a range of scenarios
as a function of NMC and presented in Figure 7. Qualitatively the results are similar to those for the Pure sample in
§3.1. They span similar ranges of uncertainty, and have the same dependency on NMC. Both examples share the same
sequence of mlim when ordering error sizes, though they do differ somewhat in their quantitative details.

In this case with two populations with different magnitude distributions and different probabilities of being classified
as Population 1, the fraction of Population 1 and 2 objects entering the sample changes as a function of mlim.

Comparison of the Two-Population scenario of this section and the pure sample in §3.1 shows that the former requires
an order-of-magnitude larger NMC in order to achieve the same precisions. The mlim-dependence of the variance of
the MC sampling distribution p(m|S = 1, µ, p0) is quite different than before, decreasing as the magnitude limit is
turned on, reaching a minimum, and then increasing with increasing brightness cutoff when the sample predominantly
consists of the bright tail of the second population. At mlim = 0 mag, the variance of the two-population distribution
is 1.4× larger than that of the pure distribution. Given that a significant fraction of the faint population does not
pass sample selection, the S̄ is ≈ 0.475 that of the pure distribution. Together these factors would account for a 6.2×
larger NMC for the two-population model to match the parameter precision of a pure model. Of course a complete
accounting of the comparison of the NMC of the two models depends on the integrands that appear in the partial
derivatives of S̄.

4. DISCUSSION

Model inference and parameter constraints require the evaluation of an integral, which generally is not analytic and
so is solved numerically. The integrand contains the terms S(m) and τ(m,x), which represent sample and classification
selections respectively. At the time of analysis (say after the conclusion of the LSST survey), these functions whose
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, whose root is the estimator p̂0, plotted for

a number of realizations of the Monte Carlo integration with NMC = 10, 000. The dotted horizontal lines are at zero, and are shown to
help indicate the locations of the roots from the different realizations. Right: Histograms of the estimators of p̂0 (where the sloped curves
intersect the horizontal line in the left-hand plots) for a number of independent MC realizations.

properties will have been set long previous (say Year 1 of LSST), need to be evaluated many times. Understanding
the computational implications for this aspect of the analysis and consequently the requirements for Brokers was the
prime motivation of this work.

Conservatively speaking, both software and data states that influence sample and classification selections non-
trivially, be they from the Project, third-party Brokers, or in-house pipelines, should be available for execution ∼ 10
years after real-time usage to feed cosmology analysis. We thus advocate the packaging of software in containers and
the tracking data state histories, so that the processing at any given moment can be rerun at a later date on a different
computer.

In the examples fitting for a single µ considered in §3, the number of function evaluations needed to get per-mil
precisions is on the order of millions. Expanding the analysis by splitting the sample into ten independent redshift
bins gets the number of evaluations up to the ten million real alerts per night expected from LSST. Nevertheless, the
rich dataset from LSST can lead to more ambitious analysis and complex models to accommodate considerations such
as photometric redshifts, non-Gaussian magnitude distributions of backgrounds that mimic SNe Ia, SN Ia subtypes.

5. CONCLUSIONS

The likelihood of an experiment that has sample selection includes an integral over all possible objects that could have
but did not enter the sample. Monte Carlo integration is a viable way to numerically evaluate that integral. Being
in the integrand, the sample-selection and classification efficiencies are represented by their values at the random
points generated by the Monte Carlo. The precision of the integration depends on the number of points at which the
integrand, and hence the efficiency, is sampled. Integration errors propagate into errors in the parameter estimators
and the fractional errors in the parameter uncertainties; these uncertainties are independent of the number of objects
in the analysis sample. Requirements of parameter estimation thus set the minimum number of points at which the
efficiency must be evaluated.

For several example scenarios for measuring distances with SNe Ia, the sample selection efficiency must be evaluated
for a number of simulated supernovae that far exceeds that of the sample itself. Otherwise the uncertainty in the
distance estimator µ̂ due to the miscalculated likelihood can be a significant fraction of the overall µ uncertainty.

The number of Monte Carlo evaluations needed to meet precision requirements is sensitive to the model. The

numerical evaluation of the integral needed to calculate the optimal estimator (e.g., Eq. 7) has variance ∝ σ2
N

N ,

where σ2
N is the variance of the drawn values of the integrand. When the underlying model includes multiple source

populations, the pdf of the observables py broadens, the pdf of the draws of the integrand broadens, and the variance
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of S̄ gets larger, leading to an increase in the error of µ found in the root solution.
A survey’s statistical performance improves when an informative classifier is used; in this way classifiers indirectly

affect the required number of evaluations of the selection function. Characterizing the classifier itself requires simulated
SNe, though in the formalism we present here their sample selection need not be assessed. Determining the required
precision on classifier performance is beyond the scope of this study.
Further Work: More work is necessary to create a realistic LSST SN analysis needed to produce sample-selection

requirements that will be used for classifier evaluations. The toy models presented in this note are extreme simpli-
fications of the one that will eventually be used to describe the LSST sample. Here we treated SNe Ia as standard
candles but they are in fact standardizable candles with their own internal subparametrization. While we used a
classification selection that is m-independent, the first and second moments of the sample and underlying population
magnitudes will probably differ and induce biased sample magnitudes. It is important to consider selection bias as
it enters through redshift measurements: typically redshifts are obtained from the host galaxy, but when the host is
too faint a redshift may be inferred from the supernova itself or the supernova may be excluded from the sample.
Given that SN models correlate intrinsic supernova and host-galaxy properties, proper accounting for redshift sample
selection should be implemented in these methods. The sample supernovae were taken to have the same observables
whereas it is expected that there will be a subset of spectroscopically typed objects (with its own sample selection func-
tion) analyzed together with the photometric set. The magnitude distribution of supernovae was taken to be Normal,
whereas the parameter-distributions of SNe Ia are not Normal and indeed must be modeled in the fit. The observed
SN Ia magnitude dispersion (before color and light-curve shape corrections) relevant for a magnitude-limited survey
is ∼ 0.4 mag, larger than the 0.1 mag considered in our model that omits the details of SN magnitude corrections.
An implication is that SN Ia subpopulations must also be included in the model. The true sample selection will be
date-dependent, depending on the conditions of actual observing, and may be stochastic (i.e. 0 < S(m) < 1). Multiple
sample selections may enter a single analysis, for example a training set of follow-up supernovae can be identified
using only early data whereas the larger sample of supernovae would use data covering the full light-curve evolution.
Here we considered the distance µ as the parameter of interest, whereas many experiments are evaluated based on
the physically relevant dark energy equation of state parameters w0 and wa. The more diverse the model for the
underlying supernova populations, the more possible realizations there are to integrate over, which should increase the
Monte Carlo sampling requirements to maintain precision in the likelihood. As the community continues to develop
future analyses, the implications for characterizing the sample selection should be kept in mind.
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