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Convective heat transfer in planetary dynamo models
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[1] The magnetic fields of planets and stars are generated by the motions of electrically conducting fluids
within them. These fluid motions are thought to be driven by convective processes, as internal heat is trans-
ported outward. The efficiency with which heat is transferred by convection is integral in understanding
dynamo processes. Several heat transfer scaling laws have been proposed, but the range of parameter space
to which they apply has not been firmly established. Following the plane layer convection study by King
et al. (2009), we explore a broad range of buoyancy forcing (Ra) and rotation strength (E−1) to show that
heat transfer (Nu) in spherical dynamo simulations occurs in two distinct regimes. We argue that heat
transfer scales as Nu ∼ Ra6/5 in the rapidly rotating regime and Nu ∼ Ra2/7 in the weakly rotating regime.
The transition between these two regimes is controlled by the competition between the thermal and viscous
boundary layers. Boundary layer scaling theory allows us to predict that the transition between the regimes
occurs at a transitional Rayleigh number, Rat = E−7/4. Furthermore, boundary layer control of heat transfer
is shown to relate to the interior temperature profiles of the models. In the weakly rotating regime, the
interior fluid is nearly adiabatic. In the rapidly rotating regime, adverse mean temperature gradients abide,
irrespective of the Reynolds number (Re). Extrapolating our results to Earth’s core, we estimate that core
convection resides in the rapidly rotating regime, with Ra ≈ 2 × 1024 (Ra/Rat ≈ 0.02), corresponding to a
superadiabatic density variation of Dr/ro ≈ 10−7, which is significantly below the sensitivity of present
seismic observations.
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1. Introduction

[2] Many astrophysical and geophysical bodies
contain large quantities of electrically conducting
fluids: plasma in the Sun; liquid metal in the cores
of Earth and other terrestrial worlds; metallized
hydrogen gas in Jupiter and Saturn; and ionic fluids
in Uranus and Neptune [Gubbins and Roberts,
1987; Stevenson, 2003; Miesch, 2005]. Motions
within these fluids generate electrical current sys-
tems that power the magnetic fields we observe on
these bodies. The conversion of kinetic energy into
electromagnetic energy is known as dynamo
action. The kinetic energy needed to fuel dynamo
action is widely thought to be driven by convection
in Earth’s core, within the Sun, as well as within
the Giant Planets. Most planetary dynamo models
then consist of a spherical shell of conducting fluid,
with thermal energy deposited at the inner bound-
ary and extracted from the outer. Unstable to this
configuration, the fluid convects to transport heat
outward and generates electrical currents that can
produce self‐sustaining magnetic fields.

[3] Geophysical and astrophysical bodies rotate, and
this background rotation acts upon the convecting
fluid via the Coriolis force. Rapidly rotating con-
vection tends to produce well‐organized, axially
aligned flow structures. This organizational effect
of the Coriolis force constrains the efficiency of
heat transfer [e.g., Rossby, 1969; Liu and Ecke,
2009] and is thought to permit the generation of
large‐scale magnetic fields [Olson and Christensen,
2006; Käpylä et al., 2009]. When the system is
forced with sufficient strength, or when the system
rotates sufficiently slowly, convection can break
free of the constraints of rotation, and results in
more chaotic three dimensional turbulence [Gilman,
1977; Aurnou et al., 2007; King et al., 2009].
Such flows have been found to generate smaller‐
scale magnetic fields [Kutzner and Christensen,
2002; Olson and Christensen, 2006; Käpylä et al.,
2009].

[4] In this paper, we explore the limits of rotational
control of convection dynamics in planetary
dynamo models via measurements of heat transfer
efficiency in 200 numerical dynamos, spanning a
broad range of parameter space. In section 2 we
briefly review previous work on heat transfer in
rotating convection. In section 3 we detail our
numerical methodology. In section 4 we present
heat transfer results from the dynamo models. In
section 5 we discuss interior temperature profiles,

andwe apply these results to Earth’s core in section 6.
Last, a summary is given in section 7.

2. Previous Studies of Rotating
Convective Heat Transfer

2.1. Role of Boundary Layers

[5] The nondimensional parameters used in this
study are defined in Table 1. The five base input
parameters consist of buoyancy forcing, strength of
rotation, fluid properties, and shell geometry. The
strength of buoyancy forcing versus diffusive
effects is characterized by the Rayleigh number,
Ra. The strength of the Coriolis force versus vis-
cosity is characterized by the inverse of the Ekman
number, E−1. The relative values of the fluid’s
diffusivities are characterized by the thermal and
magnetic Prandtl numbers, Pr and Pm, respec-
tively. The spherical shell geometry is character-
ized by the ratio between inner and outer radii, c.
The key output parameter used in this study is the
Nusselt number, Nu. The Nusselt number char-
acterizes the efficiency of convective heat transfer
as the ratio of total (superadiabatic) heat transfer to
that transferred by diffusion alone.

[6] Our goal is to describe heat transfer behavior by
assessing howNu depends on the control parameters
Ra, E, Pr, and Pm. Studies of nonrotating (E = ∞),
turbulent convection often seek to fit empirical data
with power law scalings of heat transfer efficiency
versus thermal driving,

Nu / Ra�; ð1Þ

for a given fluid (fixed Pr, Pm). The influence of
rotation adds a new degree of freedom to the sys-
tem, spreading heat transfer data in two dimensions,
Ra and E. The goal of heat transfer scaling analysis
is to collapse these heat transfer data. This is typi-
cally done by invoking some physically motivated
combination of control parameters [e.g., Boubnov
and Golitsyn, 1990; Canuto and Dubovikov, 1998;
Schmitz and Tilgner, 2009; Liu and Ecke, 2009;
King et al., 2009]. The comparison between theo-
retically founded scaling arguments and empirical
data therefore allows us to test our understanding of
convection dynamics. Furthermore, these scalings
permit extrapolation of model behavior to the
extreme parameter values of planets and stars, at
which models cannot be directly evaluated.

[7] King et al. [2009] examine heat transfer behavior
in plane layer, nonmagnetic, rotating convection and
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find two distinct regimes (see Figure 1). In the
weakly rotating regime, heat transfer is independent
of the rotation rate, and scales as

Nu � Ra2=7; ð2Þ

similar to power law fits from the wealth of non-
rotating convection studies [e.g., Castaing et al.,
1989; Glazier et al., 1999]. This scaling is signified
by the solid line in Figure 1. In the rapidly rotating
regime, heat transfer data exhibits a steeper scaling

behavior. The transition between these two heat
transfer regimes is argued to be controlled by the
relative thicknesses of the boundary layers.
Boundary layers are thin regions of fluid immedi-
ately adjacent to the bounding surface where dif-
fusive effects become important. Two boundary
layers exist in the rotating convection system: the
thermal boundary layer; and the viscous boundary
layer, which is the so‐called Ekman layer in Cor-
iolis force‐dominated systems. King et al. [2009]

Figure 1. Convective heat transfer data, Nu, versus Ra in a rotating right cylinder of water with E ≈ 4 × 10−5

(adapted from King et al. [2009]). The dotted vertical line indicates the transitional Rayleigh number, Ra = Rat =
E−7/4. The dashed line represents the rapidly rotating scaling, Nu = (Ra/Rac)

6/5, and the solid line indicates the
nonrotating scaling, Nu ∼ Ra2/7. The rapidly rotating scaling is dependent on Rac ∼ E−4/3, which is the critical
Rayleigh number predicting the onset of hydrodynamic convective instability [e.g., Jones et al., 2000].

Table 1. Typical Nondimensional Parameters Used in Boussinesq Dynamo Models, With Comparative Estimates for Earth’s
Corea

Term Explanation Definition Earth’s Core Dynamo Factory Models Dynamo Subset

Ra buoyancy/diffusion �Tgo�TL3=�� ∼2 × 1024 3 × 105 ≤ Ra ≤ 2.2 × 109 2 × 106 < Ra < 5 × 108

E Coriolis/viscosity �=2�L2 ∼10−15 5 × 10−7 ≤ E ≤ 5 × 10−4 5 × 10−6 ≤ E ≤ 10−4

Pr viscous diffusion/thermal diffusion �=� ∼10−1 0.1 ≤ Pr ≤ 30 1 ≤ Pr ≤ 2

Pm viscous diffusion/magnetic diffusion �=� ∼10−6 0.06 ≤ Pm ≤ 20 1 ≤ Pm ≤ 2
c radius ratio Ri/Ro 0.35 0.35 0.40
Nu total heat flux/conductive heat flux qL=k�T ∼5 × 104 1 < Nu < 32 2.5 < Nu < 25

L Lorentz/Coriolis �B2
o=2�� ∼10−1 0.013 < L < 150 0.14 < L < 42

Rat boundary layer crossing E−7/4 Ra/Rat ≈ 2 × 10−2 0.013 < Ra/Rat < 40 0.042 ≤ Ra/Rat ≤ 42
Re inertia/viscosity UL=� ∼108 1 < Re < 3 × 103 30 < Re < 3 × 103

aHere aT is the coefficient of thermal expansion, go is gravitational acceleration on the outer boundary, DT is the (superadiabatic) temperature
drop from inner to outer boundary, L is the shell thickness, n is the viscous diffusivity, � is the thermal diffusivity, W is the background rotation rate,
h is magnetic diffusivity, q is the heat flow per unit area, k is the fluid’s thermal conductivity, s is the fluid’s electrical conductivity, Bo is the mean
magnetic field strength, r is the Boussinesq fluid density, and U is the mean fluid velocity. The Nusselt number, Nu, is the ratio between the total
and conductive aspects of superadiabatic heat flux.
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suggest that when the Ekman layer is thinner than
the thermal boundary layer, convective heat trans-
fer is inhibited by the influence of rotation.
Conversely, when the thermal boundary layer is
thinner, the constraining influence of rotation on
convection is lost, and so heat transfer conforms to
the nonrotating behavior.

[8] Theoretical scalings of the boundary layer
thicknesses permit a prediction of the transition
point between the two regimes. The Ekman and
thermal boundary layers have thicknesses

�E � E1=2 and �� � Nu�1; ð3Þ

respectively [Greenspan, 1968; Spiegel, 1971]. The
transition is predicted to occur where the boundary
layers cross, i.e., when dE = d�. The Nusselt
number at which the transition should occur is then

Nut � E�1=2: ð4Þ

The Nusselt number can be related to the Rayleigh
number using the heat transfer scaling law Nu ∼
Ra2/7. This allows us to solve for the Rayleigh
number at which the boundary layers are predicted
to cross:

Rat ¼ E�7=4; ð5Þ

which we call the transitional Rayleigh number.
Note that in the work by King et al. [2009], there is
a scaling prefactor on the right‐hand side of (5) of
1.4. Here we set this prefactor to unity.

[9] We predict a rapidly rotating heat transfer
scaling law using the boundary layer controlled
transition point. First, we assume a rapidly rotating
scaling law of the form Nu = (Ra/Rac)

g, where Rac
is the critical Rayleigh number for the onset of
convection, Rac / E−4/3 [Chandrasekhar, 1953]. In
order for this scaling law to intersect with the
weakly rotating power law (2) at the transitional
Rayleigh number (5), the rapidly rotating scaling
exponent must be g = 6/5, yielding

Nu ¼ Ra=Racð Þ6=5 ð6Þ

in the rotationally controlled convection regime.
This scaling is signified by the dashed line in
Figure 1. The introduction of the Coriolis force to
this scaling through the critical Rayleigh number
signifies the importance of rotation in this regime.

[10] The separation of rotating convection dynamics
into rapidly rotating and weakly rotating regimes

is not new [e.g., Gilman, 1977; Kutzner and
Christensen, 2002; Aurnou et al., 2007; Driscoll
and Olson, 2009]. Canuto and Dubovikov [1998],
for example, work to distinguish two such regimes
based on convective mixing length theory.
Christensen and Aubert [2006] and Olson and
Christensen [2006] use an a posteriori measure-
ment of a local Rossby number to differentiate the
two regimes in terms of magnetic field morphology
in dynamo models. Schmitz and Tilgner [2009]
separate the two regimes by comparing heat trans-
fer with measurements of a modified Peclet number
in plane layer rotating convection simulations. Here
we test whether the boundary layer controlled tran-
sition predicted by King et al. [2009] adequately
describes the transition between these two regimes
in planetary dynamo models.

2.2. Relevance to Dynamo Models

[11] We hypothesize that boundary layer control of
rotating convective heat transfer regimes applies to
planetary dynamo models. There are several rea-
sons why the plane layer results may fail to apply
to planetary and stellar dynamos. For instance, the
added complexity of a spherical geometry and the
additional dynamic influence of the magnetic field
via Lorentz forces were not present in the plane
layer study.

[12] In spherical geometries, Ekman boundary layers
have latitudinally varying thicknesses [Greenspan,
1968]. Here we treat the Ekman layer as a simple
linear boundary layer whose mean thickness is
given by (3), and do not consider the dependence
of this thickness on latitude. Furthermore, rotat-
ing convection in spherical shells is capable of
driving strong zonal flows [e.g., Christensen, 2002;
Heimpel et al., 2005]. Such flows are not typically
observed in plane layer convection. Strong shearing
in these zonal flows can influence heat transfer
from inner to outer boundary [Aurnou et al., 2008].
Despite these possible complications, a meta‐
analysis by Aurnou [2007] shows that heat transfer
scaling behavior may not strongly differ between
the plane layer and spherical shell geometries.

[13] The presence of magnetic fields may also call
into question the application of the plane layer,
hydrodynamic results to dynamo models. For
example, in studies with externally imposed mag-
netic fields, the Lorentz force acts to constrain fluid
motions and inhibits heat transfer [Cioni et al.,
2000; Aurnou and Olson, 2001]. However, in
fully self‐consistent dynamo models, heat transfer
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scaling behavior is not found to differ significantly
from that of comparable models without magnetic
fields [Christensen, 2002; Christensen and Aubert,
2006; Aurnou, 2007].

[14] Another complication in applying the results of
King et al. [2009] to dynamo models is introduced
by the fact that the Ekman layer may no longer be
an adequate representation of the viscous boundary
layer. Instead, flows in the presence of magnetic
fields and background rotation produce an Ekman‐
Hartmann layer [e.g., Desjardins et al., 2001]. This
boundary layer balances the viscous force at the
bounding surfaces with both Coriolis and Lorentz
forces, instead of with the Coriolis force alone as in
the case of the Ekman layer. The Ekman‐Hartmann
layer scales as [Gilman and Benton, 1968;Debnath,
1973]

�EH � �2 þ 1
� �1=2��
h i1=2

E1=2; ð7Þ

where L is the Elsasser number. The Elsasser
number characterizes the ratio of the strength of the
Lorentz force to that of the Coriolis force, and is
defined in Table 1. Figure 2 shows the ratio of the
theoretical Ekman‐Hartmann layer and Ekman
layer thicknesses versus L for a uniform imposed
transverse magnetic field in a plane fluid layer. The
dynamo models presented here have a mean
Elsasser number of 7.4, with extrema at 0.01] L]
150. Assuming the boundary layer dynamics do not
differ between flows with imposed magnetic fields
and those with self‐generated dynamo fields,
Figure 2 illustrates that the thickness of the Ekman‐
Hartmann layer scales differently than the Ekman
layer for the dynamo models with higher L values.

Therefore, the development of the transitional
Rayleigh number from the nonmagnetic [King et al.,
2009] study may not be appropriate for dynamo
models.

[15] We also assume that the Rayleigh number at
which convection onsets follows the theoretical
scaling for rapidly rotating, nonmagnetic convection
in a sphere, Rac / E−4/3 [Roberts, 1968; Busse,
1970; Jones et al., 2000; Dormy et al., 2004]. In
the presence of strong imposed magnetic fields (L^
O(1)), the critical Rayleigh number has been shown
to scale differently, as Rac / E−1 [Zhang, 1995;
Fearn, 1998]. Studies of convection dynamics in
the presence of imposed magnetic fields therefore
suggest a significant difference from that found in
hydrodynamic studies. For example, a critical
Rayleigh number difference of E1/3 between mag-
netoconvection and nonmagnetic convection stud-
ies predicts an order of magnitude difference in Rac
across our range of Ekman numbers. Assuming
the magnetoconvection results apply to dynamo
models, this may again invalidate the scalings
given by King et al. [2009].

[16] We hypothesize that the boundary layer control
of heat transfer regimes demonstrated in the non-
magnetic, plane layer convection study also applies
to planetary dynamo models. This hypothesis
makes the following two predictions. First, heat
transfer occurs in two separate regimes, rapidly
rotating and weakly rotating, with distinct empirical
heat transfer scalings in each regime, Nu = (Ra/Rac)

6/5

and Nu ∼ Ra2/7, respectively. Second, the transition
between regimes is determined by relative boundary
layer thicknesses and is described by the transitional
Rayleigh number, Rat = E−7/4. In this work, we test
these predictions using a broad array of numerical
dynamo models.

3. Numerical Method

[17] We consider three‐dimensional convection of
a Boussinesq, electrically conducting fluid in a
spherical shell rotating about the axial ẑ direction
with fixed angular velocity W. The shell has iso-
thermal boundaries with an imposed temperature
contrast of DT between inner and outer boundaries.
Absolute temperature values are therefore arbitrary,
as the temperature on the outer boundary is set to
T(r = Ro) = 0 for convenience. Gravity is assumed
to vary linearly with radius and has a value of go on
the outer boundary. Figure 3 shows a schematic
depiction of the dynamo model’s geometry.

Figure 2. The theoretical Ekman‐Hartmann layer thick-
ness normalized by that of the Ekman layer, dEH/dE, as
defined by equations (3) and (7), versus the Elsasser
number, L. The Ekman‐Hartmann layer thickness only
differs significantly from the Ekman layer thickness in
the presence of strong imposed magnetic fields.
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[18] The governing equations for this system are:

E
@u
@t

þ u � ru�r2u

� �
þ ẑ� uþ 1

2
rp ¼ RaE

Pr
Tr

þ 1

2Pm
r� Bð Þ � B; ð8Þ

@B
@t

¼ r� u� Bð Þ þ 1

Pm
r2B; ð9Þ

@T

@t
þ u � rT ¼ 1

Pr
r2T ; ð10Þ

r � u ¼ 0; r � B ¼ 0; ð11Þ

where u is the velocity vector, B is the magnetic
induction, T is the temperature, and p is the non-
hydrostatic pressure [Wicht, 2002]. The equations
have been nondimensionalized by shell thickness
L = Ro − Ri as length scale, DT as temperature
scale, tn = L2n−1 as time scale, nL−1 as velocity
scale, rnW as pressure scale, and

ffiffiffiffiffiffiffiffiffiffiffiffi
�	��

p
as mag-

netic induction scale. In these definitions, Ro (Ri) is
the outer (inner) shell radius, n is kinematic vis-
cosity, � is thermal diffusivity, and h is magnetic
diffusivity. As dictated by the Boussinesq approx-
imation, density variations are only considered in
the buoyancy term (the first term on the right‐hand
side of (8)), and the thermal expansion coefficient,
aT, the kinematic viscosity, the thermal diffusivity,

and the magnetic diffusivity are constant [Spiegel,
1971]. The nondimensional control parameters
Ra, E, Pr, and Pm are defined in Table 1.

[19] Equations (1)–(4) are solved simultaneously
for u, p, B, and T using the numerical model
MagIC version 3.38 [Wicht, 2002]. This code
makes use of the pseudospectral method first
developed by Glatzmaier [1984] with subsequent
modifications by Christensen et al. [1999] and
Wicht [2002]. The velocity and magnetic induction
vectors are decomposed into poloidal and toroidal
scalar potentials, which are expanded in Chebyshev
polynomials in the radial direction and in spherical
harmonic functions on spherical surfaces. MagIC
utilizes mixed implicit and explicit time stepping.
The Coriolis and nonlinear terms are treated
explicitly using a second‐order Adams‐Bashforth
scheme and the diffusion, pressure, and linear
terms are treated implicitly using a Crank‐Nicolson
time step. The implicit time step can vary over time
and is controlled by a modified MHD Courant
criterion which accounts for viscous and ohmic
damping of short‐wavelength Alfvén‐type oscilla-
tions [Christensen et al., 1999]. This damping
helps to stabilize the system and allows the use of a
slightly larger numerical time step compared to the
unmodified MHD Courant criterion. Hyperdiffu-
sion is used in our most extreme cases to increase
numerical stability by damping the small‐scale
components of the flow and magnetic fields. In
these cases, the viscous, thermal, and magnetic
diffusivities are multiplied by a factor d of the form

d lð Þ ¼ 1þ A
l þ 1� lHD

lmax þ 1� lHD

� �


ð12Þ

in the spherical harmonic domain. Here A is
the hyperdiffusion amplitude, l is the spherical
harmonic degree, lHD is the degree above which
hyperdiffusion starts to act, lmax is the maximum
harmonic degree, and b is the hyperdiffusion
exponent.

[20] We analyze a data set consisting of twenty‐
one new simulations, hereon called the dynamo
subset models; and one hundred seventy nine
additional dynamos referred to as the dynamo
factory models, most of which were previously
reported by Christensen and Aubert [2006], Olson
and Christensen [2006], and Christensen et al.
[2009]. To our knowledge, this is the broadest
array of planetary dynamo models currently avail-
able. The range of parameters explored by each is
given in Table 1, and Table 2 details each dynamo

Figure 3. A schematic illustration of the dynamo
model geometry. The convecting fluid is contained in
a spherical shell between a hot inner boundary and cold
outer boundary, Ti > To. Gravity points radially inward
and increases linearly with spherical radius. The rotation
axis is vertical with uniform nondimensional rotation
rate E−1.

Geochemistry
Geophysics
Geosystems G3G3 KING ET AL.: HEAT TRANSFER IN DYNAMOS 10.1029/2010GC003053

6 of 19



subset case, for which we have more comprehen-
sive diagnostic capabilities. All simulations have an
Earth core‐like geometry (c ≡ Ri/Ro = 0.4 for
dynamo subset models, and c = 0.35 for dynamo
factory models) and rigid, no‐slip, isothermal
boundary conditions. The dynamo subset cases
are full‐sphere calculations with no presumed
symmetries.

[21] The inner spheres of the models are either
electrically insulating or have the same electrical
conductivity as the outer fluid shell. The ratio of
conductivities between the two regions in the
dynamo subset is unity with one exception to test
the importance of inner core conductivity. Cases C
and IIC in Table 2 have identical input parameters
but with conducting and insulating inner cores,
respectively. The Nusselt numbers differ only by
about 0.2%, so we can conclude that the inner core
conductivity minimally effects the heat transfer
behavior.

[22] The four most strongly driven subset cases use
hyperdiffusion. For example, case H1 has A = 10,
lHD = 25, b = 2, lmax = 192, such that hyperdiffu-
sion acts on spherical harmonic degrees above 25,
increasing quadratically with degree. We test its
influence by comparing two cases, with and with-
out hyperdiffusion (cases H0 and H1, respectively,

in Table 2). The efficiency of convective heat
transfer (Nu) agrees within 0.2% between these two
cases.

4. Analysis of Heat Transfer in Dynamo
Models

4.1. Testing the Boundary Layer Control
Hypothesis

[23] Figure 4 shows heat transfer data, Nu versus
Ra, for all dynamo cases. The basic behavior of the
heat transfer data are similar to that observed in
plane layer studies [e.g., Rossby, 1969; King et al.,
2009; Schmitz and Tilgner, 2009]. Convective heat
transfer is strongly affected by the background
rotation, whose strength is characterized by E−1.
The stabilizing influence of the Coriolis force
requires models with higher rotation rates to be
driven harder in order to convect [Chandrasekhar,
1953]. Thus, the onset of convection is delayed by
the influence of rotation as E decreases. As in
Figure 1, the heat transfer data follows two basic
scaling behaviors. For sufficiently low E and Ra,
the data appear to follow the rapidly rotating Nu /
Ra6/5 scaling (dashed line). In contrast, cases with
higher E and Ra appear to transition to a weakly
rotating Nu ∼ Ra2/7 scaling (solid line). Thus,

Table 2. Input and Output Parameters for the Dynamo Subset Modelsa

Case Ra/Rat Ra E Pr Pm sOC
IC Nro Nri lmax D lHD b Nu Re hTi

0.04 8.04 × 107 5 × 10−6 1 1 1 65 25 128 ‐ ‐ ‐ 3.60 114 0.276
A 0.14 4.76 × 106 5 × 10−5 1 2 1 41 17 128 ‐ ‐ ‐ 2.64 59 0.257

0.14 4.76 × 106 5 × 10−5 2 1 1 41 17 128 ‐ ‐ ‐ 2.66 36 0.245
0.21 2.12 × 106 1 × 10−4 1 2 1 41 17 64 ‐ ‐ ‐ 2.54 52 0.244
0.28 2.83 × 106 1 × 10−4 1 2 1 41 17 64 ‐ ‐ ‐ 3.18 71 0.237
0.35 3.54 × 106 1 × 10−4 1 2 1 41 17 64 ‐ ‐ ‐ 3.78 91 0.229
0.36 3.68 × 106 1 × 10−4 1 2 1 41 17 64 ‐ ‐ ‐ 3.88 95 0.227
0.37 3.75 × 106 1 × 10−4 1 2 1 41 17 64 ‐ ‐ ‐ 3.94 98 0.225
0.38 3.82 × 106 1 × 10−4 1 2 1 41 17 64 ‐ ‐ ‐ 4.03 124 0.223
0.39 3.96 × 106 1 × 10−4 1 2 1 41 17 64 ‐ ‐ ‐ 4.16 127 0.219
0.41 4.11 × 106 1 × 10−4 1 2 1 41 17 64 ‐ ‐ ‐ 4.28 131 0.221

B 0.42 4.24 × 106 1 × 10−4 1 2 1 41 17 85 ‐ ‐ ‐ 4.38 135 0.217
0.85 8.50 × 106 1 × 10−4 1 2 1 41 17 128 ‐ ‐ ‐ 6.72 216 0.193

C 1.42 1.42 × 107 1 × 10−4 1 1 1 49 17 192 ‐ ‐ ‐ 8.50 340 0.189
IIC 1.42 1.42 × 107 1 × 10−4 1 1 0 49 17 192 ‐ ‐ ‐ 8.52 341 0.191
H0 2.10 2.10 × 107 1 × 10−4 1 1 1 49 17 192 ‐ ‐ ‐ 9.87 432 0.192
H1 2.10 2.10 × 107 1 × 10−4 1 1 1 49 17 192 10 25 2 9.89 420 0.191

4.24 4.24 × 107 1 × 10−4 1 1 1 49 17 192 ‐ ‐ ‐ 12.62 642 0.180
14.2 1.42 × 108 1 × 10−4 1 1 1 65 17 192 5 75 2 17.90 1239 0.162
14.2 4.76 × 108 5 × 10−5 1 1 1 65 17 192 10 20 2 24.18 1981 0.174

D 42.4 4.24 × 108 1 × 10−4 1 1 1 65 17 192 10 25 2 23.42 2113 0.162
aThe ratio of the inner to outer core electrical conductivities is denoted sOC

IC . The number of radial grid points in the outer and inner cores is
denoted Nro and Nri, respectively. The maximum spherical harmonic degree is denoted lmax. The hyperdiffusion amplitude, the harmonic
degree where hyperdiffusion begins to act, and the hyperdiffusion exponent are A, lHD, and b, respectively. Values in column 16, hT i, are
mean shell temperature calculations discussed in section 5. All other parameters are defined in Table 1. Cases A, B, C, and D are shown in
detail in Figures 8 and 9. Cases C, IIC, H0, and H1 are specifically discussed in section 3.
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within particular parameter ranges, the data are
described by either the rapidly rotating or nonro-
tating scaling exponents found in the plane layer
study (Figure 1).

[24] We aim to collapse the data in Figure 4 through
a combination of control parameters. Figure 5
shows Nu normalized by the nonrotating scaling
(Ra2/7) versus Ra normalized by its predicted
transitional value, Rat = E−7/4, for all dynamo
cases. The boundary layer transition scaling effec-
tively collapses the broad array of dynamo heat
transfer data. The scaling regimes hinted at by
Figure 4 are more clearly observed in this param-
eter space defined by the boundary layer controlled
transitional Rayleigh number.

[25] Well into the rapidly rotating regime (Ra ]
0.1Rat), heat transfer behavior are reasonably well
described by the Nu = (Ra/Rac)

6/5 scaling (dashed
line, (6)). In the weakly rotating regime (Ra ^ Rat),
heat transfer transitions to a Nu ∼ Ra2/7 scaling
(solid horizontal line). A transitional region appears
between the two scaling regimes, roughly in the
range 0.1 ] Ra/Rat ] 2.

[26] Despite the added complexities of the spherical
geometry and magnetohydrodynamic effects, the
heat transfer regimes identified in plane layer,
nonmagnetic convection (Figure 1) are also evident
in these planetary dynamo models (Figures 4 and 5).
The collapse of our data using Rat shows no strong
dependence on the Prandtl numbers, Pr and Pm.
Furthermore, our description of the heat transfer

behavior in these dynamo models lacks any explicit
dependence on the magnetic field strength; Rat and
Rac depend on the rotation rate, but are indepen-
dent of magnetic field intensity. Notably, this
independence is at odds with studies of rotating
convection of in the presence of imposed magnetic
fields [e.g., Chandrasekhar, 1954; Nakagawa,
1959; Eltayeb and Roberts, 1970; Zhang, 1995;
Aurnou and Olson, 2001; Fearn, 1998].

[27] In order to compare the heat transfer transition
to the boundary layers themselves, Figure 6 shows
the velocity and thermal boundary layer thick-
nesses from the dynamo subset models plotted
versus the transition parameter, Ra/Rat. The
velocity boundary layer thickness is defined as the
radial location of the first local maximum in RMS
velocity above (below) the model’s inner (outer)
boundary [Belmonte et al., 1994; King et al., 2009].
Similarly, the thermal boundary layer is defined as
the radial location of the first local maximum in
temperature variance away from the model’s
boundaries [Belmonte et al., 1994; King et al.,
2009]. The influence of magnetic fields does not
affect our evaluation of the velocity boundary layer
thicknesses, which are calculated directly from the
velocity field in each subset case. Figure 6 shows
that the two boundary layers cross where Ra ≈ Rat.
Thus, the transition from rapidly rotating to weakly
rotating heat transfer behavior in the dynamo sub-
set models corresponds well with the interchanging
of the two nested boundary layers.

Figure 4. Heat transfer behavior, Nu versus Ra, in planetary dynamo models (dynamo factory and subset models).
See Table 1 for parameter ranges. The nonrotating scaling, Nunonrotating = 0.075Ra2/7, is shown as a solid line. The
rapidly rotating scaling, Nu / Ra6/5, is shown as a dashed line.
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4.2. Asymptotic Scalings

[28] Boundary layer control of heat transfer behavior
in planetary dynamo models allows us to predict the
limits of applicability of the various heat transfer

scaling laws. In the weakly rotating regime, Ra >
Rat, the data conform to a

Nu ¼ 0:075Ra2=7 ð13Þ

Figure 6. Boundary layer thicknesses versus the transition parameter Ra/Rat from the dynamo subset on the (a) inner
boundary and (b) outer boundary. The velocity boundary layer (an Ekman‐Hartmann layer) thickness is shown as
downward pointing blue triangles, and the thermal boundary layer is shown as upward pointing red triangles. Bound-
ary layer thicknesses are normalized by the shell thickness, L = Ro − Ri. The distance between error bars represents the
local spatial resolution. The two boundary layers cross near Ra = Rat, as predicted.

Figure 5. Rescaled heat transfer data from planetary dynamo models (dynamo factory and subset models). Symbols
are the same as in Figure 4. The Nusselt number is normalized by the nonrotating scaling, NuRa−2/7, and the Rayleigh
number is normalized by the transitional Rayleigh number, Ra/Rat = RaE7/4. The solid horizontal line represents the
weakly rotating Nu = 0.075Ra2/7 scaling. The dashed line represents the rapidly rotating scaling (14), derived from
Nu = (Ra/Rac)6/5 with Rac / E−4/3.
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scaling, a result that is important for the convective
regions of slowly rotating stars and planets [e.g.,
Palacios et al., 2006; Aurnou et al., 2007]. This
result also implies that nonrotating, turbulent con-
vective heat transfer may follow a a ≈ 2/7 scaling
in the spherical geometry, like that found in plane
layer convection [e.g., Castaing et al., 1989;
Glazier et al., 1999]. Nonrotating, plane layer
convection has the advantage of being carried out
both numerically and in the laboratory. Laboratory
convection studies are historically capable of
achieving higher degrees of supercriticality than
numerical models [e.g., Niemela et al., 2000].
However, high Rayleigh number, nonrotating
convection has not been well explored in spherical
geometries because of the difficulty in producing a
spherically radial gravity field in the laboratory [cf.
Tilgner, 1996]. The weakly rotating, heat transfer
scaling prefactor in the spherical geometry, 0.075,
although not well constrained, is lower than that
found in the plane layer studies, 0.16. This differ-
ence likely is due to geometric effects.

[29] In the rapidly rotating regime, Ra ] Rat, heat
transfer data are fairly well described by the Nu =
(Ra/Rac)

6/5 scaling law (6). Assuming Rac =C1E
−4/3

[Jones et al., 2000; Dormy et al., 2004], this scal-
ing can be rewritten in terms of the axis parameters
in Figure 5 as

NuRa�2=7 ¼ Ra=Racð Þ6=5Ra�2=7 ¼ C�6=5
1 Ra32=35E8=5

¼ C2 Ra=Ratð Þ32=35; ð14Þ

which is represented by the dashed line in Figure 5.
The scaling prefactor C2 is determined by fitting the
NuRa−2/7 = C2(Ra/Rat)32/35 scaling to the dynamo
data, yieldingC2’ 0.225 and thusC1 =C2

−5/6’ 3.5.
This determination of C1 is empirical and based on
the assumptions that Nu = (Ra/Rac)

6/5 in the rapidly
rotating regime with Rac = C1E−4/3. We can com-
pare the prefactor C1 to theoretical values from
Jones et al. [2000], who find 1 ] C1 ] 8 for 0.1 ≤
Pr ≤ 10. Thus, although we ignore the Prandtl
number dependence of the critical Rayleigh num-
ber, the empirically determined prefactor C1 = 3.5 is
in first‐order agreement with that from the theo-
retical, asymptotic analysis of rotating convection.

[30] Previous work by Christensen and coworkers
developed a separate heat transfer scaling formula-
tion for rotating convection and dynamo models
[Christensen, 2002; Christensen and Aubert, 2006].
These scalings are independent of molecular dif-
fusivities following Kolmogorov’s second hypoth-
esis of similarity [Kolmogorov, 1941]. The authors

use the rotation period as the dominant time scale
to develop diffusivity‐free parameters

RaQ* ¼ RaNuE3Pr�2 and Nu* ¼ NuEPr�1; ð15Þ

and seek a scaling

Nu* / RaQ*

: ð16Þ

Empirically, they find b ≈ 6/11 [Christensen, 2002;
Christensen and Aubert, 2006; Aurnou, 2007]. The
range of parameter space in which the rotational
time scale should be dominant is not quantified,
however, and so the applicability of the diffusivity‐
free scaling is not well bounded.

[31] Figure 7 compares the goodness of fit of the
diffusivity free scaling law with that of the rapidly
rotating scaling (6) discussed above. The rapidly
rotating scaling law (6) and the diffusivity free
scaling law (16) can be rewritten in terms of base
parameters as

Nu ¼ Ra=Racð Þ6=5 ! Nu / Ra1:2E1:6; ð17Þ

Nu* / RaQ*
6=11 ! Nu / Ra1:2E1:4Pr�0:2; ð18Þ

respectively. Figure 7 shows heat transfer data from
the dynamo models normalized by the two scalings
given in (17) and (18). Rather than spreading
the data across many orders of magnitude, as in
Nu*−Ra*Q plots, here we collapse the data to
illustrate the limits of the scaling laws’ applicability.
The rapidly rotating scaling (17) appears to collapse
heat transfer data more effectively than the diffu-
sivity free scaling (18). However, the lack of any
clear convergence to a single scaling behavior in
Figure 7a (for Ra < Rat) illustrates that no unam-
biguous asymptotic behavior has been reached in
the rapidly rotating regime.

[32] This ambiguity in asymptotic behavior arises
from the limited range of Rayleigh numbers cur-
rently accessible within the rapidly rotating regime
(Rac < Ra < Rat). A significantly broader range of
supercritical (Ra > Rac), subtransitional (Ra < Rat)
Rayleigh numbers is needed to test the validity of
this scaling. The breadth of Rayleigh number
accessibility within the rapidly rotating regime
scales with the Ekman number as

Rat=Rac � E�5=12

3:5
: ð19Þ

For example, at an Ekman number of 10−5, the
range of Ra within the rapidly rotating regime is
only Rat /Rac ≈ 35. Thus, in order to produce a
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broader range of Rayleigh numbers within this
regime, lower Ekman number simulations must be
carried out. Until a clear asymptotic regime of
highly supercritical (Ra/Rac � 1), rapidly rotating
(Ra/Rat < 1) convection is reached, the veracity of
any such scaling law is questionable.

[33] The diffusivity‐free heat transfer scaling (18)
is one member of a suite of empirical, diffusivity‐
free scaling laws. Within the range of parameter
space currently accessible, this rotationally depen-
dent diffusivity‐free approach has produced scalings
for several other model outputs such as typical
velocities, length scales, and magnetic field strengths
[Christensen, 2002; Aubert, 2005; Olson and
Christensen, 2006; Christensen et al., 2009]. These
scaling laws implicitly take the rotation period as
their dominant time scale, replacing the typical
diffusion time scales present in the base parameters
(Table 1). We have demonstrated here that heat
transfer behavior is no longer controlled by rotation
rate when Ra ^ Rat (Figures 5 and 7). Therefore,
we postulate that Rat provides an upper bound for
the application of the other diffusivity‐free scaling
laws of Aubert [2005], Christensen and Aubert
[2006], Olson and Christensen [2006], and
Christensen et al. [2009].

5. Mean Temperature Profiles
and Thermal Mixing

[34] The rapidly rotating and weakly rotating heat
transfer regimes exhibit different global thermal

signatures. Figures 8 and 9 illustrate the transition
in the mean temperature structures between the
regimes. The rapidly rotating regime maintains
large‐scale mean internal temperature gradients
while the weakly rotating regime undergoes vigor-
ous mixing that produces an adiabatic interior fluid.
(Mixing is a scale‐dependent concept; here we
consider mixing on the largest length scales of the
system.) Since we consider Boussinesq convection,
an adiabatic profile corresponds to a statistically
isothermal interior fluid. This isothermalization of
bulk fluid by convection has been observed in
nonrotating [Belmonte et al., 1994; Camussi and
Verzicco, 1998] and weakly rotating convection
[Aurnou et al., 2007; King et al., 2009], and is
typically associated with chaotic, three dimensional
turbulence. In rapidly rotating convection, how-
ever, the persistence of coherent thermal structures
limits mixing, thereby permitting the establishment
of significant nonzero mean temperature gradients
within the bulk fluid [e.g., Julien et al., 1996; Gillet
and Jones, 2006; Sprague et al., 2006; King et al.,
2009]. Figure 8 also shows that mean, meridional
temperature structures exist in the rapidly rotating
regime. This implies that the influence of rotation
may promote large‐scale baroclinicity in convection
[cf. Kaspi et al., 2009; Jones and Kuzanyan, 2009].

[35] We quantify the internal temperature gradients
through calculations of the mean temperature lapse
rate (i.e., the radial gradient of the temporally
averaged temperature field, dT /dr) at midshell for
each of the dynamo subset models. A perfectly well
mixed Boussinesq fluid will have a zero mean

Figure 7. Goodness of fit tests for two rapidly rotating heat transfer scaling laws. Heat transfer data (Nu) normalized
by each scaling law are plotted versus the boundary layer transition parameter, Ra/Rat. Symbols are the same as in
Figure 4. (a) The Nusselt number normalized by the rapidly rotating scaling law (6). The horizontal line represents the
rapidly rotating scaling law, Nu = (Ra/Rac)

6/5 with Rac = 3.5E−4/3. (b) The Nusselt number normalized by the dif-
fusivity free scaling (18). The horizontal line represents the diffusivity free scaling, Nu* = 0.1RaQ*

6/11.
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Figure 8. Meridional slices of time‐averaged temperatures ((T − To)/DT) from the dynamo subset. (a) Conductive
end‐member case for convective mixing, from (20). Cases (b) A, (c) B, (d) C, and (e) D in Table 2. Figures 8b and 8c
show cases in the rapidly rotating regime (Ra < Rat); Figures 8d and 8e show cases in the weakly rotating regime
(Ra > Rat). (f) Isothermal end‐member case for convective mixing, from (28).

Figure 9. Mean radial temperature profiles from the dynamo subset cases shown in Figure 8. Temperature is
normalized as (T − To)/DT, and radial position is normalized by the outer boundary radius. The dotted line indicates
the conductive temperature profile from (20), and the dashed line represents the idealized isothermal temperature
profile, T = To + 0.14DT, from (28) with c = 0.4. Note that the internal temperature gradients approach zero as Ra/Rat
increases.
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temperature gradient in the interior fluid, dT /dr = 0,
such that the bulk fluid is isothermal. As the
influence of rotation grows (for decreasing Ra/Rat),
some rigidity is imparted on the flow via the Coriolis
force, and increasingly strong thermal gradients can
abide, as shown by King et al. [2009].

[36] Figure 10a shows measurements of midshell
lapse rates from the dynamo subset. We observe
a transformation from a nearly conductive thermal
signature in the rotationally controlled regime
(Ra < Rat) to a nearly isothermal interior fluid in the
weakly rotating regime (Ra > Rat). The transition to
the nonrotating heat transfer scaling, Nu ∼ Ra2/7, is
therefore linked to the elimination of mean interior
temperature gradients by efficient convective mix-
ing. In the rapidly rotating heat transfer regime,
however, the persistence of mean temperature
gradients indicates that strong thermal mixing is
inhibited by the influence of rotation.

[37] The lapse rate behavior in Figure 10a illustrates
the relationship between heat transfer regimes and
thermal mixing in a limited subset of our dynamo
model data. In order to investigate mixing more
systematically, we would like to quantify the
strength of mean thermal gradients in the broader
array of dynamo factory models. However, we do
not have lapse rate data for these models. Instead,
we use volume‐averaged temperature calculations
as a proximate measure of internal temperature
gradients.

[38] Figure 10b shows mean internal temperatures
from the dynamo subset models. The mean internal
temperature is the average temperature over the
volume of the shell, (hTi − To)/DT, where h·i

indicates volume averaging. A comparison of
Figures 10a and 10b shows that the lapse rates and
mean internal temperatures display qualitatively
similar behavior. In the following paragraphs, we
relate mean temperature to the efficiency of thermal
mixing by comparing model data against the two
idealized end‐member cases: a conductive and an
isothermal temperature profile.

[39] First, in an incompressible spherical shell with
isothermal boundaries, the conductive case will
have a temperature profile of the form [Kono and
Roberts, 2001]:

T rð Þ ¼ To þ RoRi

Ro � Ri

1

r
� 1

Ro

� �� �
�T ; ð20Þ

where Ro and Ri are the radii of the outer and inner
boundaries, respectively, and To and To + DT are
the imposed outer and inner boundary temperatures,
respectively. This expression can also be written in
terms of the shell’s radius ratio, c = Ro/Ri as

T rð Þ ¼ To þ �

�� 1
1� r=Roð Þ�1
h i� �

�T ; ð21Þ

We can integrate (20) over the volume of the shell to
solve for the mean temperature for a conductive
fluid:

hTconductivei ¼ To þ Ro þ 2Ri

R2
o þ RoRi þ R2

i

� �
�T

2
: ð22Þ

This expression can also be written in terms of the
shell’s radius ratio as

hTconductivei ¼ To þ � 1þ 2�ð Þ
1þ �þ �2

� �
�T

2
: ð23Þ

Figure 10. (a) Nondimensional temperature lapse rate, j dTdr Ro�Ri
�T j, at midshell (r = (Ri + Ro)/2) versus the boundary

layer transition parameter, Ra/Rat, for the dynamo subset. The dotted line represents the conductive lapse rate at mid-
shell (using (20) and c = 0.4): dTdr = −DT RoRi

Ro�Ri
r−2 = −0.82 �T

Ro�Ri
. (b) Mean internal temperature, (hTi − To)/DT, versus

the boundary layer transition parameter, Ra/Rat, from the dynamo subset models. The dotted line indicates the mean
temperature of a conductive shell, hTi = To + 0.23DT, from (21) with c = 0.4. The dashed line represents a mean
temperature estimate for well‐mixed convection, hTi = To + 0.14DT, from (28) with c = 0.4.
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With the dynamo factory model’s radius ratio of c =
0.35, we then predict an average temperature of

hTconductivei ¼ To þ 0:21�T ð24Þ

for the conductive case.

[40] Second, we can estimate the mean temperature
from a well‐mixed temperature profile. In this
configuration, we assume the fluid is composed of
two regions: the boundary layers (inner and outer),
and the interior fluid, also called the bulk fluid. The
interior fluid is isothermal and makes up the vast
majority of the fluid by volume. We also assume
that inner and outer thermal boundary layers have
equal thickness, which we qualitatively observe to
hold true in dynamo subset temperature profiles.
The temperature drop across the inner and outer
thermal boundary layers is dTi and dTo, respectively.
Conservation of outward heat flux through concen-
tric spherical surfaces dictates that

�Ti
�To

¼ Ro

Ri

� �2

¼ ��2: ð25Þ

An isothermal interior further implies the entirety of
the temperature drop occurs in the thin boundary
layers:

�Ti þ �To ¼ �T ; ð26Þ

and the interior temperature will be that at the bulk
edge of the thermal boundary layers:

Tinterior ¼ To þ �To ¼ To þ�Tð Þ � �Ti: ð27Þ

Manipulating equations (25)–(27) then gives tem-
perature of the interior fluid to be:

Tinterior ¼ To þ 1þ ��2
� ��1

�T : ð28Þ

Thus, shell aspect ratio of c = Ri/Ro = 0.35 gives an
interior fluid temperature of

Tinterior ¼ To þ 0:11�T : ð29Þ

If we ignore the contribution to the mean tempera-
ture by that within the thin boundary layers, the
mean shell temperature for this end case is the
temperature to which the interior isothermalizes:

hTisothermali ¼ Tinterior: ð30Þ

[41] Figure 11 illustrates how each of these two end
member predictions varies with the radius ratio, c.
The dotted line represents the mean conductive tem-
perature from (23); and the dashed line represents the
mean isothermal temperature from (28). The
dynamo models have c = 0.35 and c = 0.4, which
is indicated by the gray region.

[42] Figure 12a shows mean internal temperature
calculations from the dynamo factory models in
comparison with the end case predictions. Models
with Ra < Rat approach conductive (dotted line)
mean temperatures, which indicates the persistence
of strong, large‐scale thermal gradients in the bulk
fluid. The lowest Ra/Rat cases have warmer than
conductive mean temperatures. This is likely due to
the warming of the outer region of the shell, where
the bulk of the fluid volume resides, relative to a
conductive profile near the onset of convection (see
Ra/Rat = 0.14 case in Figure 9). When Ra > Rat,
the thermal signature appears to asymptotically
approach the well‐mixed, adiabatic end member
(dashed line). This illustrates the increasing effi-
ciency of thermal mixing as the influence of rota-
tion is diminished in planetary dynamo models.
Furthermore, the collapse of mean temperature data
by the boundary layer transition parameter, Ra/Rat,
indicates that boundary layer processes are directly
related to the interior temperature field.

[43] Convective regions in planets and stars are
typically assumed to be well mixed on account of
their strongly turbulent nature. The Reynolds
number, Re, compares inertial and viscous forces
on global length scales, and is thought of as a
parameterization of the degree of turbulence (see
Table 1 for definition). High Re fluids in the
absence of rotation are dispersive media wherein

Figure 11. Theoretical mean shell temperature versus
the radius ratio, c = Ri/Ro. The mean temperature is
the average temperature over the volume of the shell,
(hTi − To)/DT. The dotted and dashed lines represent
predicted mean temperature from (23) and (28),
respectively. The gray region indicates that occupied by
the present dynamo models.
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gradients of passive scalars are quickly smoothed
[McWilliams, 2006]. We may expect, then, that the
thermal mixing observed in the dynamo models
may be strongly influenced by Re.

[44] Figure 12b shows the mean temperature mea-
surements as in Figure 12a, but now plotted against
the Reynolds number. We observe no dependence
of thermal mixing on Re. Instead, a comparison of
Figures 12a and 12b shows that Ra/Rat, not the
Reynolds number, characterizes thermal mixing in
dynamo models.

6. Application to Earth’s Core

6.1. Convective Regime of the Core

[45] Assuming the empirical scaling laws derived
here apply to Earth’s core, we can estimate the
Rayleigh number and heat transfer regime of the
core. Estimates of the total superadiabatic heat flux
escaping the core mantle boundary (CMB) typi-
cally fall in the range 1–10 TW [e.g., Buffett,
2003]. We can use these heat flux estimates,
along with estimates of the thermophysical prop-
erties of core fluid, to determine the flux Rayleigh
number in the core. The flux Rayleigh number is
defined as

Rf ¼ RaNu ¼ �T g QL4

A � cP � �2
; ð31Þ

where Q is the total superadiabatic heat flux, A is
the surface area of the CMB, and cP is the specific

heat of the core fluid. The flux Rayleigh number
has the advantage of depending on Q, rather than
the superadiabatic temperature drop across the
core, DT, which is less well constrained from
geophysical observations.

[46] Estimates of core properties are listed in Table 3.
Given these properties, the flux Rayleigh number is
estimated to lie in the range

Rf � 2:4� 24ð Þ � 1028 ð32Þ

Table 3. Estimates of the Physical Properties of Earth’s
Corea

Property Core Estimate Reference

aT 10−5 K−1 Gubbins [2001]
g 10 m/s2 Dziewonski and Anderson

[1981]
Q (1–10) × 1012 W Buffett [2003]
L 2260 km Dziewonski and Anderson

[1981]
A 1.5 × 1014 m2 Dziewonski and Anderson

[1981]
r 104 kg/m3 Dziewonski and Anderson

[1981]
cP 700 J/kgK Gubbins [2001]
n 10−6 m2/s de Wijs et al. [1998]
� 10−5 m2/s Gubbins [2001]
W 7.3 × 10−5 rad/s McCarthy and Babcock

[1986]
aProperties are as follows: aT is the fluid’s coefficient of thermal

expansivity, g is gravitational acceleration, Q is total superadiabatic
heat flux, L is the distance between inner core boundary (ICB) and
core‐mantle boundary (CMB), A is the surface area of the CMB,
r is the density of the fluid, cP is the fluid’s specific heat, n is the
kinematic viscosity of the fluid, � is the fluid’s thermal diffusivity,
and W is the angular rotation rate.

Figure 12. Mean internal temperature, (hTi − To)/DT, from the dynamo factory data set. (a) Mean temperature plot-
ted versus the boundary layer transition parameter, Ra/Rat. (b) Mean temperature plotted versus the Reynolds number,
Re. Symbols are the same as in Figure 4. Mean temperatures near the conductive estimate (dotted line, T = To +
0.21DT ) are considered poorly mixed. Those near the isothermal estimate (dashed line, T = To + 0.11DT ) are
considered well mixed.
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in Earth’s core. We can also use these core property
estimates to determine an Ekman number for the
core:

E � 1:3� 10�15: ð33Þ

[47] The heat transfer regime of the core is deter-
mined by comparing the estimated core Rf value
with a transitional flux Rayleigh number, which
can be written as

Rft � Rat Nut � E�9=4; ð34Þ

and has an approximate value of Rft ≈ 2 × 1032 in
the core. The appropriate heat transfer scaling law
for Rf < Rft is Nu ≈ (Ra/Rac)

6/5, which, together
with our estimate of Rf, allows us to solve for the
range of Rayleigh and Nusselt numbers for core
convection:

Ra � 1� 3ð Þ � 1024 ; Nu � 2� 8ð Þ � 104: ð35Þ

Note that these values correspond to the diabatic
component of core thermodynamics. For example,
heat conducted down the core adiabat is estimated
to be on the same order as that transported by
convection, giving a different formulation of
the Nusselt number, a total Nusselt number, of
approximately 2 [e.g., Buffett, 2003].

[48] Using the estimate for E given above, the
transitional Rayleigh number in the core is Rat =
E−7/4 ≈ 1026. We then estimate that Ra/Rat in the
core is roughly in the range:

Ra=Rat � 1� 3ð Þ � 10�2: ð36Þ

Thus, our results suggest that core convection occurs
in the rapidly rotating regime, but only just barely.

[49] As mentioned in section 2.1, previous work
has sought to separate these two regimes based on
measurements of the vigor of convective flow in
various models [Olson and Christensen, 2006;
Schmitz and Tilgner, 2009]. Olson and Christensen
[2006] extrapolate scalings of local Rossby num‐
bers in planetary dynamo models to predict that
Earth’s core falls just before the transition from
rotationally dominated magnetic field morphology
to that nearly unaffected by rotation. Schmitz and
Tilgner [2009] extrapolate calculations of a modi-
fied Peclet number from rotating convection
simulations to Earth’s core using estimates of
convective speeds from geomagnetic secular vari-
ation inversions. The authors predict that core
convection lies within a transitional region between
rapidly rotating and weakly rotating regimes. Thus,

though by different means, the present work and
these previous studies all place core convection
near, but below, the nonrotating style convective
regime.

[50] We speculate that Earth’s proximity to the
transition is important for dynamics such as mag-
netic field morphology and polarity reversals. In
particular, the rough alignment of Earth’s dominant
dipole and rotation axis suggests that core flow is
strongly influenced by rotation. However, the indi-
rect observation of geomagnetic polarity reversals
from seafloor striping hints at strong nonlinearities
typical of more chaotic fluid dynamics. Our esti-
mate that core convection resides in the rapidly
rotating regime, but near the transition to weakly
rotating behavior, provides a possible explanation
of this dichotomy. Studies of polarity reversals in
dynamo models find that the generation of predom-
inantly dipolar, reversing magnetic fields typically
occurs in a relatively narrow range of parameters
between rotationally dominated and buoyancy
dominated dynamo regimes [e.g., Wicht et al.,
2009; Driscoll and Olson, 2009].

[51] Convection in Earth’s core is likely driven by
some combination of thermal and compositional
buoyancy [e.g., Braginsky and Roberts, 1995].
Compositional convection may arise as lighter,
alloy rich liquid metal is formed near the bottom of
the core from the solidification of the inner core.
Similarly, chemical reactions at the core mantle
boundary may generate compositionally heavy
fluid. The chemical diffusivities of these fluid
mixtures may be lower than that expected of ther-
mal diffusivity in the core by about three orders of
magnitude [e.g., Gubbins, 2001]. This would result
in larger estimates of the effective core Prandtl
number and Rayleigh number (and therefore Ra/
Rat). The simulations presented here consider only
thermal convection. It is unclear how the inclusion
of compositional convection dynamics would alter
our results [cf. Kutzner and Christensen, 2000],
especially in regard to the arguments derived from
boundary layer physics.

6.2. Convective Mixing in the Core

[52] We can also apply the analysis of thermal
mixing in dynamo models (section 5) to Earth’s
core. It is typically assumed that the strong turbu-
lence in the core, where Re ∼ 108 [Bloxham and
Jackson, 1991], effectively mixes the bulk core
fluid [e.g., Stacey, 1969; Stevenson, 1987; Braginsky
and Roberts, 1995; Jones, 2009]. Here we show that
thermal mixing is not strongly dependent on the
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degree of turbulence as characterized by the Reynolds
number. Instead, the efficiency of mixing by con-
vection is linked to the relative importance of
rotation. We estimate that Earth’s core lies in the
rapidly rotating regime, since Ra < Rat. Through
measurements of the mean temperature of dynamo
models, we have shown that significant super-
adiabatic density gradients persist in the rapidly
rotating regime, independent of the vigor of flow,
Re. This implies that large‐scale superadiabatic
density anomalies may survive in the core, which
would not be permitted by considerations of tur-
bulent mixing without rotation. That is, rapidly
rotating convection systems, like Earth’s core, may
not be strictly adiabatic.

[53] Interestingly, deviations from expected density
profiles have been inferred seismically in the core [e.g.,
Romanowicz and Breger, 2000; Soldati et al., 2003].
Notable features include thick (∼300–400 km)
regions of anomalous seismic wave velocities at the
top [Souriau and Poupinet, 1991] and bottom
[Kaneshima et al., 1994] of the core. Furthermore,
recent seismic studies have shown that observa-
tionally significant temporal fluctuations in density
occur in Earth’s outer core [Dai and Song, 2008]. It
has been argued that such observations may be due
to perturbations of geopotential surfaces in the core
by density heterogeneity in the mantle [Wahr and
de Vries, 1989]. However, it does not appear that
this argument can explain the decadal time scale
variations observed by Dai and Song [2008].

[54] We can estimate the total superadiabatic den-
sity drop across the core using our estimate of the
Rayleigh number (35) and the thermophysical
properties listed in Table 3. The superadiabatic
temperature drop across the outer core is then DT ≈
10−2 K, giving a total superadiabatic density change

ofDr/ro ≈ aTDT ≈ 10−7. This estimate represents a
rough upper bound for mean density anomalies that
may persist in the bulk of the outer core, and cannot
account for the amplitude of density variations
inferred from several of the seismic studies, which
may be as large asDr/ro ≈ 10−3 [Soldati et al., 2003;
Dai and Song, 2008].

7. Summary

[55] We hypothesize that heat transfer results found
in the nonmagnetic, plane layer convection study of
King et al. [2009] also applies to planetary dynamo
models. This hypothesis predicts that heat transfer
occurs in two separate regimes, rapidly rotating and
weakly rotating, with empirical heat transfer scal-
ings in each regime, Nu ∼ (Ra/Rac)

6/5 and Nu ∼
Ra2/7, respectively. Second, the transition between
regimes is determined by relative thicknesses of the
thermal and velocity boundary layers, and is described
by the transitional Rayleigh number, Rat = E−7/4.

[56] We test this hypothesis using a broad array of
numerical planetary dynamo models, and our heat
transfer scaling results are summarized in Table 4.
Heat transfer behavior in the dynamo models does
exist in two distinct regimes, which are adequately
separated by the transitional Rayleigh number
(Figure 5). In the rapidly rotating regime (Ra ]
Rat), heat transfer is described by the scaling Nu =
(Ra/Rac)

6/5, where Rac = 3.5E−4/3. In the weakly
rotating regime (Ra ^ Rat), heat transfer follows a
Nu = 0.075Ra2/7 scaling. The Nu ∼ Ra2/7 scaling
implies that heat transfer in weakly rotating
spherical systems is similar to that in nonrotating
planar convection. In the rapidly rotating regime,
Nu is significantly less than that expected for
nonrotating convection because the influence of
rotation inhibits convective heat transfer. Interest-
ingly, our collapse of the heat transfer behavior is
not explicitly dependent on magnetic field strength
of these dynamo models.

[57] Based on the boundary layer thickness calcu-
lations shown in Figure 6, we argue that the tran-
sition between these regimes is governed by the
relative thicknesses of the thermal and velocity
boundary layers. Thus, despite numerous differ-
ences between the convection system examined by
King et al. [2009] and the dynamo models analyzed
in this work, the basic heat transfer behavior of the
two studies is in agreement.

[58] Models in each of the two heat transfer
regimes produce different thermal profiles. The
rapidly rotating regime is distinguished by signifi-

Table 4. A Summary of Heat Transfer Resultsa

Rapidly
Rotating
Regime

Weakly
Rotating
Regime

Criterion Ra ] Rat = E−7/4 Ra ^ Rat = E−7/4

Heat transfer scaling Nu ≈ (Ra/Rac)
6/5 Nu ≈ C Ra2/7

Planar scaling
constant

Rac = 6E−4/3 C = 0.16

Spherical scaling
constant

Rac = 3.5E−4/3 C = 0.075

aScaling constants from the present analysis of spherical dynamo
models are compared with those from the plane layer, nonmagnetic
rotating convection study of King et al. [2009].
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cant, large‐scale thermal gradients. Therefore, the
strong influence of rotation on core convection may
imply that seismically observable density structures
can exist. In contrast, models residing in the weakly
rotating regime are well mixed, producing nearly
isothermal interiors. Thermal mixing is shown to
depend on the boundary layer controlled transition
parameter, Ra/Rat (Figure 12a), and is not observed
to depend on the Reynolds number (Figure 12b).
Our results appear to imply that rotational effects
on convective mixing may provide a dynamical
mechanism for the seismically inferred density
heterogeneities in the outer core [e.g., Romanowicz
and Breger, 2000; Soldati et al., 2003]. However,
when extrapolated to core conditions, our heat
transfer scalings predict a Rayleigh number of Ra ≈
2 × 1024 in the core, corresponding to a super-
adiabatic density variation of Dr/ro ≈ 10−7, which
cannot explain the seismically inferred anomalies.
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