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ABSTRACT OF THE DISSERTATION 

 

 

Exploring Three Membered Rings: Synthesis, Opening, Rearrangements 

and 

Progress Towards the Synthesis of Morphine 

 

 

by 

 

 

Daniel Lui Sun 

Doctor of Philosophy in Chemistry 
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2016 

 

Professor Michael E. Jung, Chair 

 

 

 

 

 

 Potential strategies toward the synthesis of rifampicin were investigated. Previous studies 

in the laboratory of Yamamoto described the rearrangement of terminal epoxy alcohols to yield 

silyl protected aldol products. The stereospecific synthesis of aldol products begin with the 

Horner-Wadsworth-Emmons olefination of an aldehyde followed by DIBAL reduction. The 

allylic alcohol was subjected to a Sharpless asymmetric epoxidation reaction. The epoxyalcohol 

was subjected to a Payne rearrangement followed by trapping with an aryl selenide. Using our 



iii 
 

developed methodology, we were able to synthesize a library of aryl selenyl diols. The addition 

of Meerwein salt to aryl selenides followed by base mediated cyclization provided epoxides for 

the Yamamoto rearrangement. The Yamamoto rearrangement provided aldol products in modest 

yield and may be used in the future for the synthesis of rifampicin. 

 

Chapter 2 

 

 Progress towards the synthesis of morphine is described via cyclopropyl ketone based 

intermediates. From simple lactones we were able to easily synthesize the starting material, 

aroyloxy arylketones in two to four steps. The ketones were then subjected to either Tsuji-Trost 

π-allyl chemistry followed base mediated cyclopropanation or simple base-mediated 

cyclopropanation, the former providing better yields. Upon addition of base, the starting 

aroyloxy arylketones exchange their aryl groups and generally provide two different cyclopropyl 

aryl ketones. 
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Introduction 

 Polyketides are ubiquitous components of natural products and commercially available 

drugs. These structural motifs play an important role as pharmacophores in numerous antibiotics, 

statins, and therapeutics.
1
 Despite being studied since near the birth of organic chemistry, 

polyketides have been a long-standing synthetic challenge due to a diverse number of possible 

stereoisomers. Antibiotic-resistant bacteria have become more prevalent in recent years, and the 

development of new effective antibiotics has been an object of interest to the scientific 

community.
2
 

 

          

 

Scheme 1. Prominent polyketide-derived drugs. 
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 Rifampicin (Rif) 1 (Scheme 1) is an antibiotic used as a first line drug for the treatment of 

tuberculosis.
 
 Rif is currently on the World Health Organization’s List of Essential Medicines 

which highlights the importance of this effective tuberculosis (TB) drug.
3
 The first production of 

Rif as a drug was in 1959 and then in 1971 Rif became widely used as a medication.
4
 The 

antibacterial properties of Rif allow the drug to treat multiple diseases such as those caused by 

mycobacterium and gram-positive bacteria. Rif is a potent bactericidal drug which requires a 

dose of approximately 0.01-2.0 µg/ml (50% effective dose). Bacterial RNA polymerase is 

inactivated by Rif for many bacterial organisms including Mycobacterium tuberculosis, M. 

leprae, staphylococci, streptococci, and pneumococci. The bactericidal properties of Rif are 

attributed to its ability to form a stable enzyme-drug complex with bacterial RNA polymerase. 

The stable enzyme-drug complex impedes the initiation of bacterial RNA chain formation. 

Mammalian RNA is unlike bacterial RNA and is unaffected at low Rif concentrations.
5
 

 According to the CDC a total of 9.6 million new cases of TB were reported along with 

1.5 million deaths in 2014 worldwide.
6
 Four-fifths of the worlds’ active TB cases are reportedly 

in 22 low-income and middle-income countries. Most cases of active TB lie in sub-Saharan 

Africa, eastern Europe, and Asia disproportionally compared to the rest of the world. The top 

five countries with the most TB incidence include India, China, South Africa, Nigeria, and 

Indonesia in 2009. The likelihood of acquiring a TB infection increases significantly on external 

immunosuppressive factors such as alcoholism, smoking, and other diseases. Individuals infected 

with HIV are 20 times more likely to contract a TB infection than people not infected with HIV. 

HIV-related tuberculosis has fueled the revival of TB into new strains of more robust and 

virulent forms of the mycobacterium.
7
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 Deadly forms of TB such as multidrug-resistant tuberculosis (MDR TB) and extensively 

drug-resistant tuberculosis (XDR TB) are forms of TB resistant to current drug regimens. MDR 

TB is a form of TB resistant to two of the first-line TB drugs, isoniazid (INH) and rifampicin 

(RMP), regularly used in TB treatment. XDR TB is a more advanced form of MDR TB and is 

resistant to the most powerful first-line and second-line drugs used for TB.
6 

 TB is inherently a deadly disease based on its resistance to drugs and its mode of 

infection. TB is an intracellular pathogen that thrives in areas with high oxygen content such as 

the lungs of its hosts. TB is an acid-fast bacterium with a capacity to evade therapeutic drugs due 

to several reasons, one being its ability to shelter itself inside host cells. Another reason is that 

TB carries a difficult to penetrate physically thick lipid-rich mycolic acid cell wall.
7 

Kishi Rifamycin S Polyketide Synthesis 

 Structurally Rif is a complex molecule consisting of a polyketide backbone containing 

eight contiguous stereogenic centers and a heavily substituted fused phenyl benzofuranone 

heterocyclic core. The rifamycin series show structural similarity to rifampicin and many of its 

members show activity against tuberculosis. The first commercial synthesis of rifampicin relied 

on starting from the natural product intermediate rifamycin S. A number of rifamycin S total 

syntheses have been accomplished but one of the first and most notable linear syntheses was 

accomplished by Kishi (Scheme 2).
8
 The chiral aldehyde 4 was subjected to the Appel reaction 

forming a vinyl dibromide. Next lithiation and silylation formed a vinyl trimethylsilane which 

was then iodinated with DIBAL and iodide. Lithiation followed with esterification by methyl 

chloroformate produced a methyl ester intermediate for DIBAL reduction. Epoxidation of the 

allylic alcohol with mCPBA and silyl deprotection allowed for a chelation controlled methyl 

cuprate addition. Diol protection and debenzylation afforded the acetonide 5 in 35% yield over 
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10 steps. Formation of the benzyl ether 6 was accomplished through Swern oxidation, Wittig 

olefination, LiAlH4 reduction, benzyl protection, acetonide deprotection, hydroboration-

oxidation, pivaloylation, acetonide protection, and finally LiAlH4 deprotection of the pivaloyl 

group. The 9 step sequence to synthesize the 5 contiguous stereocenters of benzyl ether 6 from 

acetonide 5 was accomplished in 41% yield. The next sequence mirrored the previous set of 

reactions up to the acetonide step, with the exception that the benzylation and pivaloylation step 

were removed. The debenzylation in the final step of the sequence produced the diacetonide 7 in 

36% yield over 7 steps. Swern oxidation, zinc chelation controlled allyl addition, and 

methylation afforded the desired allylic methyl ether 8. Methyl ether 8 was cyclized to pyran 9 

through deprotection, pivaloylation, oxidative cleavage, thiolation, acetonide protection, and 

LiAlH4 reduction in 64% yield over 6 steps. The following sequence strategy with pyran 9 

involved a PDC oxidation, Wittig olefination, DIBAL reduction, reoxidation with PDC, Horner-

Wadsworth-Emmons (HWE) olefination; DIBAL reduction, and esterification to give the diene 

10 in 45% yield over 7 steps. The synthesis was completed with the dethiolation of diene 10, 

NaBH4 reduction, silyl protection, acetylation, silyl deprotection, mesylation, and finally 

rethiolation to form the polyketide 11 in 69% yield for the last 7 steps. The overall yield for the 

49 step sequence to synthesize the polyketide 11 from the aldehyde 4 was 0.7% yield.  

 In the early 80’s the Kishi synthesis was a respectable model to follow, starting from 

fairly easy to attain chiral starting material to furnish stereoselectively the polyketide 11. The 

Kishi synthesis has several disadvantages, the major one being the fact that the synthesis is low 

yielding and produces 28 carbons in 49 steps just for the polyketide backbone. We envisioned a 

more efficient synthesis using modern non-aldol aldol chemistry and epoxide rearrangements to  
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Scheme 2. Kishi synthesis of rifamycin S polyketide backbone. 
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accomplish the same feat. Although the synthesis would not reduce the step count considerably, 

the synthesis would be new and use novel chemistry. 

 Previously our lab discovered the Jung non-aldol aldol reaction as a method to synthesize 

polyketides stereospecifically (Scheme 3).
9
 The sequence started with the synthesis of an E-

allylic alcohol 12; subsequently a Sharpless asymmetric epoxidation forms the optically active 

trans-epoxy alcohol 13. The conversion of the epoxy alcohol 13 to the silyl protected aldol 

product 14 is mediated through the addition of TBSOTf and Hunig’s base. The same sequence of 

TBSOTf and Hunig’s base could be duplicated starting from the Z-allylic alcohol 15 to 

synthesize the anti-aldol product 17. Unfortunately, one of the shortcomings of the non-aldol 

aldol reaction was the ability to synthesize sterically hindered anti-aldol products. To overcome 

this synthetic challenge, we proposed a new but longer synthetic route.  

 

 

Scheme 3. The Jung non-aldol aldol reaction. 

 

 Yamamoto and coworkers have reported a Lewis acid assisted SN2-type epoxide 

rearrangement of triphenylsilyl protected epoxy alcohols to give the corresponding polyketides 

(Table 1).
10

 The Lewis acid Yamamoto and coworkers discovered, methylaluminum bis(4-

bromo-2,6-  
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Table 1. The Yamamoto epoxide rearrangement. 

 

Entry Substrate Conditions Major isomer Yield % (erythro/threo) 

1 

 

dichloromethane, –78 °C, 1 h; –40 °C, 1.5 h 

 

92 % (1:6) 

2 

 

PhMe, –78 °C, 1 h; –40 °C, 2 h 

 

88 % (1:100) 

3 

 

dichloromethane, –78 °C, 1 h; –40 °C, 0.5 h 

 

86 % (1:6) 

4 

 

PhMe, –78 °C, 2 h; –20 °C, 2 h 

 

82 % (1:30) 

5 

 

dichloromethane, –40 °C, 2 h; –20 °C, 0.5 h 

 

67 % (1:100) 

6 

 

dichloromethane, –40 °C, 2 h; –20 °C, 2 h 

 

47 % (4:1) 

7 

 

PhMe, –40 °C, 2 h; –20 °C, 2 h 

 

64 % (200:1) 

8 

 

dichloromethane, –78 °C, 0.5 h 

 

83 % (0:1) 

9 

 

PhMe, –40 °C, 2 h; –20 °C, 2 h 

 

85 % (1:0) 
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di-tert-butylphenoxide) (MABR) is a sterically hindered Lewis acid with the propensity to force 

a syn hydride or alkyl migration of an epoxy silyl ether to yield a silyl protected aldol product. 

The stereoselective reaction mainly produces the SN2 rearranged silyl protected aldol product, 

but in some cases an SN1 rearrangement can also occur to produce the other diastereomer. The 

solvent effect in entries 2 and 4, compared to entries 1 and 3, indicates the necessity for an aryl 

non-polar solvent to produce the desired threo (anti-aldol) product for a secondary R group. 

Although lower yielding, entry 5 retains stereoinversion to afford almost exclusively the threo 

product. Exemplifying that erythro products could also be obtained in this case by a syn ethyl 

shift, entries 6 and 7 yield the desired erythro quaternary centers. Both entries 8 and 9 produce 

exclusively the desired stereoinverted products through an alkyl shift. 

 The Payne rearrangement (Scheme 4) is a complex reaction that relies on a number of 

factors such as solvent, nucleophile, mixing time, and temperature.
11

 Payne explains his 

rearrangement as the equilibrium between epoxy alcohols to favor the thermodynamic product 

under basic conditions. Under polar aprotic solvents such as THF, the epoxy alcohol 20 converts 

to the epoxy alcohol 21 in poor conversion which illustrated the need for a different solvent 

system. When the solvent is changed to a polar protic solvent, such as water, the epoxy alcohol 

20 is converted to the epoxy alcohol 21 in excellent yield. Payne also demonstrated how both the 

Thorpe-Ingold effect and Zaitsev’s rule (most substituted epoxide) can predict the most stable 

epoxy alcohol. When comparing the mono-substituted epoxy alcohol 22 vs the trans-epoxy 

alcohol 23, the trans-epoxy alcohol 23 is much more thermodynamically favored as a 93:7 

mixture. The equilibrium between the trans-epoxy alcohol 24 and tri-substituted epoxy alcohol 

25 only slightly favors the more substituted epoxide, presumably due to strain relief as the trans-

epoxy alcohol 24. Comparing the mono-substituted epoxy alcohol 26 and the hindered cis-epoxy 
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alcohol 27, the equilibrium still shifts towards the more substituted epoxy alcohol 27, but less so 

when compared to the equilibrium between the epoxy alcohols 22 and 23. Lastly when 

comparing the very hindered cis-epoxy alcohol 28 with the trisubsituted epoxy alcohol 29, the 

trisubsituted epoxy alcohol is much more thermodynamically favored.
11

  

 

 

Scheme 4. The Payne rearrangement. 

 

 Sharpless and coworkers have extensively studied the reactivity of chiral epoxy alcohols 

under Payne rearrangement conditions. In one of the most significant studies, Sharpless probed 

the addition of sodium t-butylthiolate to 2,3-epoxy alcohols to access the latent C1 position 

(Table 2).
12

 The regioselectivity for the simple trans alkyl substrate 30a was poor with only a 

1.4:1 selectivity for 31a vs. the other regioisomers. The cis alkyl substrate 30b performed very 

poorly, giving low yields and a mixture of regioisomers likely due to reduced  
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Table 2. C1 addition of t-BuSNa.  

 

Entry Substrate Major isomer Regioselectivity 

(31: 32 + 33) 

Yield % 

 

1 

 

 

(1.4:1) 80 

2 

 

 

(2:1) 65 

3 

 
 

(20:1) 81 

4 

 
 

(20:1) 85 

5 

 
 

(20:1) 88 

6 

 
 

(20:1) 84 

7 

  

(15:1) 75 
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steric hindrance on one face of the molecule. Interestingly, the benzyloxy substrates 30c and 30d 

functioned well giving good yields and, in both cases, a 20:1 ratio of desired to undesired 

regioisomers. The results for the acetals 30e-g were in line with expectations where a large R 

group would steer nucleophilic addition to the C1 position. The experiments that Sharpless 

executed paved the way for 2,3-epoxy alcohol chemistry for numerous sub-divisions of epoxy 

alcohol chemistry.
12

 

 In an approach to synthesize alditol products, Sharpless reported under Payne 

rearrangement conditions that the epoxy alcohol 30c can equilibrate to the less hindered epoxy 

alcohol 34 (Scheme 5).
12

 The epoxy alcohol 34 can then be trapped with a thiol nucleophile to 

produce thioether 35 almost exclusively, in a greater than 50:1 ratio of regioisomers in 81% 

yield.  In a similar process, Boeckman demonstrated that under a different set of Payne 

rearrangement conditions, the methyl epoxy alcohol 36 could be trapped in the C1 position to 

give the diol 37 for the synthesis of (-)-kromycin.
13

 

 

 

Scheme 5. Selective trapping of the Payne rearrangement intermediates. 
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 Our synthetic approach towards the synthesis of the Rifampicin polyketide backbone 

relied on the reported Sharpless epoxidation, Payne rearrangement, protection, activation, 

cyclization, the Yamamoto rearrangement, and our groups’ previous findings on the Jung non-

aldol aldol rearrangement. We will now describe our efforts for the synthesis of the polyketide 

backbone of Rifampicin. 
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Results and Discussion 

 We proposed a partial synthesis of the polyketide segment of Rifampicin (Rif) 1, which 

could be further functionalized through the Kishi synthesis to yield Rif 1. Our original 

retrosynthetic analysis of the polyketide segment of Rif 1 is shown in Scheme 6. The 

retrosynthesis starts with the synthesis of the diene 38 from the polyketide 39 through a series of 

Wittig reactions and Horner-Wadsworth-Emmons (HWE) olefinations. The polyketide 39 would 

be synthesized from aldehydes 40 and 41 through two sequential Yamamoto rearrangement 

disconnections forming the right half of the polyketide. Following the Yamamoto rearrangement 

disconnections, the left half of the polyketide can be synthesized by two sequential Jung non-

aldol aldol rearrangements from the simple aldehyde 43 and from its derived more complex 

aldehyde 42. 

 

 

Scheme 6. Retrosynthetic analysis of Kishi polyketide. 
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 We envisioned a double inversion cyclization reaction and epoxide rearrangement to 

synthesize anti-aldol products for the Yamamoto retrosynthetic fragments (Scheme 7). 

Retrosynthetically starting from epoxide 44, a Yamamoto rearrangement can afford the anti-aldol 

product 17. Activation of the thioether 45 using Meerwein salt followed by base mediated 

cyclization gives epoxide 44. The key Payne rearrangement trapping of epoxy alcohol 13, and 

subsequent silyl protection, provides the thioether 45. The Sharpless asymmetric epoxidation of 

allylic alcohol 12 sets the stereochemistry of the epoxy alcohol 13. Lastly allylic alcohol 12 can 

be derived from the aldehyde 46 from a one-pot HWE reaction and DIBAL reduction. 

 

 

Scheme 7. The Jung non-aldol aldol reaction. 

 

 Our forward synthesis launched with testing our hypothesis about the Payne 

rearrangement (Scheme 8). We started our synthesis from butyraldehyde 47 with a one-pot HWE 

olefination and DIBAL reduction to generate the allylic alcohol 48, a modification of a 

procedure previously established in the Jung lab.
9
 Chirality was induced through a Sharpless 

asymmetric epoxidation to form the optically active epoxy alcohol 48 from the allylic alcohol 49. 

This epoxy alcohol was a central test substrate for our epoxide studies. 
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Scheme 8. The synthesis of epoxy alcohol 49. 

 

 The epoxy alcohol 49 was subjected to the Payne rearrangement followed by trapping 

with thiols similar to the Sharpless and Boeckman methods using thiol nucleophiles. Attempts at 

thiophenolate addition are given in Table 3. Through the basic biphasic mixture of tert-butanol 

and water, we were able to trap at the C1 position in modest yield, the highest being 54% yield 

(entry 1). Although the reaction of sodium thiophenolate at 100 °C provided low yields of the 

desired product, the reaction at lower temperature and longer time provided higher yields of the 

product (entry 3). Solvents such as tBuOH or 1,4-dioxane (entries 4 and 5) provided either low 

yields or no reaction presumably due to lessened ability of the base to deprotonate in these 

solvents. 

 According to Sharpless, poor nucleophiles, such as sterically hindered thiols or 

trialkylamines, are prone to C1 addition.
12

 Although the yields were low (Table 4, entries 1 and 

2), the results with sodium tert-butylthiolate were promising. Nucleophilic addition at the C1 

carbon increased as the temperature was reduced (entry 4) although the product was formed in 

only modest yield (58%).  
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Table 3. Trapping of Payne rearrangement intermediates using thiophenolate. 

 

Entry Conditions Solvent Time Results Nucleophile 

1 Reflux 2:3 tBuOH:H2O 2.5 h 54% t-BuSH 

2 100 °C 1:1 tBuOH:H2O 2.0 h 1% t-BuNa 

3 55 °C 1:1 tBuOH:H2O Overnight 33% t-BuNa 

4 80 °C tBuOH Overnight 2% t-BuNa 

5 22 °C 1,4-Dioxane Overnight SM Rec t-BuNa 

Thiol nucleophile was added over 0.5 h. 

 

Table 4. Trapping of Payne rearrangement intermediates using t-BuSH. 

 

Entry Conditions Solvent Time Results Nucleophile 

1 85 °C 1:1 tBuOH:H2O Overnight 24% t-BuSH 

2 85 °C 1:1 tBuOH:H2O 7.0 h 27% t-BuNa 

3 85 °C 1:2 tBuOH:H2O 1.0 h 45% t-BuSH 

4 55 °C 1:1 tBuOH:H2O 2.0 h 58% t-BuSH 

Thiol nucleophile was added over 0.5 h. 
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 Treatment of the thioether 51 with either imidazole or sodium hydride and triphenyl silyl 

chloride (TPSCl) gave no reaction (Table 5, entries 1 and 2). The reaction using imidazole and 

TIPSCl was repeated to probe the reactivity of the substrate as a control reaction; in this case 

there was no reaction (entry 3). We decided to use a more reactive form of the silylating reagent, 

namely the triflate TPSOTf, which provided the modest yield of 67% of the triphenylsilyl ether 

52 (entry 4). A slight modification using diisopropylethylamine (DIEA) and a shorter reaction 

time afforded the desired triphenylsilyl ether 52 in 74% yield.
14

 With these satisfactory yields 

achieved we decided to test the activation cyclization step.  

 

Table 5. Silyl protection of thioether 51. 

 

 

 

Entry Conditions Solvent Time Temp. Results 

1 Imidazole, TPSCl DMF Overnight 22 °C No Rxn 

2 NaH, TPSCl THF Overnight 22 °C No Rxn 

3 Imidazole, TIPSCl dichloromethane Overnight 22 °C No Rxn 

4 AgOTf, TPSCl 6:1 dichloromethane:Pyr Overnight 22 °C 67% 

5 AgOTf, TPSCl, 

diisopropylethylamine 

6:1 dichloromethane:Pyr 0.5 h 22 °C 74% 
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 A number of conditions were attempted to synthesize the silyloxy epoxide 54 (Table 6).
12

 

Methylation of the thioether, to form a sulfonium salt, followed by base facilitated cyclization 

should produce the silyloxy epoxide 54, following Sharpless’ work.
14

 Subjection of the 

compounds to Meerwein salt and then sodium hydride addition afforded the silyloxy epoxide 54 

in 35% yield (entry 1). Methylation by methyl iodide and sodium hydride provided only the O-

methylation product (entry 2). The addition of methyl triflate and subsequent addition of sodium 

hydride yielded 23% of the desired silyloxy epoxide 54 (entry 3). 

 

Table 6. Activation-cyclization of thioether 54. 

 

 

 

Entry Conditions Solvent Time Temp. Results 

1 Me3OBF4, NaH dichloromethane 2.0 h 22 °C 35% 

2 MeI, NaH dichloromethane 1.0 h 22 °C Methylation 

3 MeOTf, NaH dichloromethane Overnight 22 °C 23% 

 

 We turned our attention to a different set of nucleophiles containing selenium, a 

nucleophile similar to sulfur but more nucleophilic and when activated a better leaving group. 

We synthesized diphenyl diselenide and obtained sodium phenylselenide after sodium 

borohydride reduction (Scheme 9).
15

 Addition of sodium phenylselenide to our test substrate 49 

provided valuable material for our anti-aldol synthesis. After screening solvent conditions, we  
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Scheme 9. Synthesis of sodium phenyl selenide 56. 

 

observed that the biphasic mixture of t-BuOH:H2O performed poorly, providing an overall 50% 

yield of an approximately 1:1.8 ratio of C1 to C3 addition product (Table 7, entry 1). Since the 

Sharpless biphasic reaction did not proceed well, even with the addition of phase transfer 

reagents, we chose to pursue non-biphasic reactions for our studies. Using methanol as a solvent, 

we observed competition between sodium methoxide and the phenylselenide nucleophiles and 

obtained poor yields of our desired C1 addition product namely 24% yield (entry 3). The optimal 

solvent was found to be ethanol which provided a 44% yield of the desired C1 addition product 

and an overall yield of 80% of both regioisomers (entry 4). A peculiar finding showed that in 

isopropanol the phenylselenide adds primarily at the C3 position and not at the C1 position in a 

5.6:1 ratio (entry 5). Phenylselenide did not add to the epoxy alcohol 49 in t-BuOH as the 

solvent, possibly due to the hydrophobicity of the solvent inhibiting the free anion from forming.  

 The secondary alcohol of the phenylseleno ether 57 was selectively protected using 

TPSOTf and diisopropylethylamine to afford the mono-silyl protected triphenylsilyl ether 59 in 

69% yield (Scheme 10). The yield for the silylation of the seleno ether 57 was slightly lower 

compared to the TPS protection of the thioether 51 due to partial decomposition of the product.   
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Table 7. Trapping of Payne rearrangement intermediates using phenyl selenide. 

 

 

 

Entry Conditions Solvent Time Temp Results C1:C3 addition 

1 NaSePh 2:1 t-BuOH:H2O 4.0 h 0 °C 18%:32% 

2 NaSePh, Bu₄NOH 2:1 t-BuOH:H2O Overnight 22 °C Low C1 yields 

3 NaSePh MeOH Overnight 22 °C 24%:40% 

4 NaSePh  EtOH Overnight 22 °C 44%:36% 

5 NaSePh iPrOH Overnight 22 °C 12%:67% 

6 NaSePh t-BuOH Overnight 22 °C SM recovered 

Selenide nucleophile was added over 2 h. 

 

 

Scheme 10. Synthesis of triphenylsilyl ether 46. 

 

 The triphenylsilyl ether 59 was activated by methylation of the selenophenyl unit to give 

the selenium salt, and then base mediated cyclization produced the epoxide 54 in 60% yield. 

Arylselenium groups are known to be converted into good leaving groups via an oxidation to the 

selenone. There is little literature precedence of their activation with an alkylating agent. Using 
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mCPBA and mild basic conditions, we were able to form the epoxide 54 in a very clean reaction 

but in regrettably very low yields.
16

 We attempted the cyclization of the phenylseleno ether 57 

directly to the epoxy alcohol 60 without protection of the secondary alcohol; although successful, 

the yields were somewhat low. Compound 60 was unstable, as described by Sharpless, and 

decomposes when purified by flash column chromatography. 

 

 

Scheme 11. Synthesis of epoxides 54 and 60. 

 

 Before attempting the reaction on the valuable epoxide 54, we decided to test the 

Yamamoto rearrangement on the test substrate, trans-stilbene oxide 66 (Scheme 12). While 

hydrogen has a great aptitude for migration in the case of epoxide rearrangements, phenyl groups 

have the highest propensity for migration partially due to its ability to stabilize unstable 

intermediates. The phenonium ion was postulated by Donald Cram at UCLA. He proposed that a 

phenonium ion such as the spirocyclic phenonium ion 61, is an overall resonance form of the 

three resonance structures 61a-c (Scheme 13).
17

 The resonance structures help stabilize the 

phenonium ion allowing phenyl groups to migrate more efficiently compared to non-stabilized 

groups. Synthesis of the trans-stilbene oxide 63 was carried out by the epoxidation of trans-
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stilbene 62 with the addition of peracetic acid and a buffered mixture of sodium acetate and 

acetic acid. As a positive control, we decided to attempt the rearrangement using the BF3OEt2, a 

Lewis acid well-known for the rearrangement of trans-stilbene oxide 62 to the aldehyde 63. The 

rearrangement of trans-stilbene oxide 62 to aldehyde 63 proceeded in diethyl ether as a solvent 

and provided the aldehyde 63 since a carbonyl was observed in the crude NMR. The same 

rearrangement was also observed using a non-polar benzene solvent. Subjecting the trans-

stilbene oxide 62 to MABR was also successful, since an aldehyde peak was observed in the 

proton NMR. 

 

Scheme 12. Phenyl migration of trans-stilbene oxide 62. 

 

 

Scheme 13. Cram Phenonium resonance structures. 
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 Our first attempt at the Yamamoto rearrangement of our epoxide 54 used the bulky 

MABR reagent (Scheme 14). The product of the reaction seemed to be a deprotected aldehyde of 

some sort, possibly aldehyde 63. Formation of a baseline spot was also observed, but the product 

appeared to be a complex mixture. While yields were low for this reaction, we viewed it as an 

exciting result. 

 

 

Scheme 14. Synthesis of aldol product 64 using MABR. 

 

 

 We decided to synthesize the much more sterically hindered mesityl selenide 66 to try to 

steer nucleophilic addition away from the more hindered C3 position. The mesityl selenide 66 

was prepared as shown in Scheme 15, namely by making the diselenide from mesityl bromide 65 

and subsequent reduction of the diselenide. We first used 66 for a temperature study on the 

rearrangement-trapping of the epoxy alcohol 49 (Table 8).
18

 Since the Payne rearrangement 

requires a polar protic solvent, we decided to focus our solvent scope on alcohols. We observed 

that iPrOH and aq. t-BuOH provided poor overall yields of addition for both seleno ethers 67 and 

68 (entries 6 and 7). The C1 addition of thiols to the equilibriating epoxy alcohol as described by 

Sharpless and coworkers requires that the nucleophile be added slowly over 30 min to allow full 

equilibriation of the system. Curiously we observe the best yield when we add our nucleophile to 

the substrate right away (entry 5). Also, as the temperature increases, the yield of our desired C-1 

addition product increases with our best result being at 85 °C (Table 8, entry 4). Our temperature 

studies correlated very closely with the temperatures Sharpless employed for his thiol additions. 
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The boiling point of our solution was 85 °C and so we needed to explore methods of adding 

more energy to our reaction flask and decided to test using microwave energy to heat our 

reaction.  

 

 

 

Scheme 15. Synthesis of sodium mesityl selenide 66. 

 

Table 8. Trapping of Payne rearrangement intermediates using mesityl selenide. 

 

 

Entry Temp (°C) Solvent 67 (%) 68 (%) Overall yield (%) 

1 0 EtOH 13 45 58 

2 22 EtOH 31 53 84 

3 45 EtOH 40 23 63 

4 85 EtOH 48 34 82 

5
a
 22 EtOH 44 35 79 

6
b
 100 iPrOH 30 13 43 

7
b
 100 aq. t-BuOH 10 10 20 
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Thiol nucleophiles were added over 2 h unless noted otherwise. a) Added all at once. B) 0.5 M 

NaOH was used. 

 Subjecting our reaction to microwave conditions (Table 9), we were able to improve our 

yields. Heating at 100 °C for 48 h seemed to give slightly lower yield than for 12 h. Our results 

seemed to indicate there was a possible conversion of the seleno ether 67 to its isomer 68 (Table 

9, entries 1 and 2). A similar effect was also observed at 85 °C for reactions at 48 h and 12 h 

(entries 3 and 4). Microwaving at higher temperatures for 12 h gave reduced yields of the desired 

C1 addition (entry 2 vs. entry 4). We also subjected the mesityl selenide 66 and epoxy alcohol 49 

to a sealed tube reaction over 60 h, which was effective providing a 56% yield of our desired 

product 67 and complete consumption of starting materials.  

 

Table 9. Trapping of Payne rearrangement intermediates using mesityl selenide under 

microwave conditions. 

 

 

Entry Time (h) Temp (°C) 67 (%) 68 (%) Overall yield (%) 

1 48 100 51 10 61 

2 12 100 46 23 69 

3 48 85 41 0 41 

4 12 85 60 17 77 

5
a
 60 80 56 0 56 

a) Not microwave; sealed tube. 
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 We observed that longer reaction times seemed to provide higher yields of the desired C1 

addition product with respect to the C3 addition product; we postulated that formation of the 

seleno ethers might be a reversible reaction. To probe this hypothesis, we microwaved the seleno 

ether 68 at 85 °C for 18 h in the presence of base and to our delight, our hypothesis was shown to 

be correct. We observed the formation of the seleno ether 67 in 23% yield while we recovered 

74% of the starting seleno ether 68. We also subjected the primary seleno ether 67 to sodium 

mesityl selenide at 85 °C over 18 h, but we were unable to detect the formation of the seleno 

ether 68. Finally we reacted the seleno ether 68 in a basic ethanol solution and we observe some 

formation of the seleno ether 67 but mostly side products, which presumably arises by addition 

of ethoxide to the epoxy alcohols. 

 

 

Scheme 16. Equilibrium conversion of seleno ethers 67 and 68. 
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 Our proposed mechanism for this rearrangement starts from the epoxy alcohol 49 

(Scheme 17). Starting from 49 via path a, the selenide attacks the C3 position in the most 

prevalent form of equilibrating epoxy alcohol 49 to produce the seleno ether 68. The seleno ether 

68 can eject the mesityl selenide via the reverse of path a to reform the epoxy alcohol 49. The 

epoxy alcohol 49 has another option to deprotonate and equilibrate, to give the epoxy alcohol 60, 

namely the less sterically hindered epoxy alcohol. The selenide cannot attack the C2 tertiary 

epoxide center of either epoxy alcohols 49 or 60, but the primary epoxide center has no steric 

hindrance and is attacked by the selenide via path c to form the seleno ether 67. Although there is 

an equilibrium between the epoxy alcohol 60 and seleno ether 67, via the inverse of path c, we 

believe the equilibrium lies far to the right. 

 

 

Scheme 17. Equilibrium mechanism of seleno ether 68 and 67. 

 

 To compare the reactivity of selenium nucleophiles and thiol nucleophiles, we decided to 

synthesize Sharpless’ disubstituted epoxy alcohol. The synthesis of the epoxy alcohol 30a was 

fairly routine starting from the aldehyde 69 via a one-pot HWE reaction and DIBAL reduction to 

give the allylic alcohol 70. A Sharpless asymmetric epoxidation yielded the epoxy alcohol 30a.  
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Scheme 18. Synthesis of epoxy alcohol 30a. 

 

 The synthesis of alkyl cis-epoxy alcohol 30b was somewhat of a challenge. We attempted 

using the Ando-Wittig modification followed by DIBAL reduction but were unable to obtain any 

of the cis-allylic alcohol 72. Unexpectedly we obtained the trans-allylic alcohol 73.
19

 In another 

attempt, we used the Still modification of the Wittig reaction but unfortunately we were still 

unable to attain our desired cis-allylic alcohol 72.
20

 

 

 

Scheme 19. Failed synthesis of epoxy alcohol 30b. 

 

 We designed a longer but better known route to establish the cis stereochemistry in the 

allylic alcohol 72. Starting from propargyl alcohol 74, THP protection using DHP and catalytic 

acid proceeded smoothly, producing a mixture of products that were subjected to the next two 

following reactions. Deprotonation of the alkyne 75 by methyllithium and nucleophilic addition 

to bromodecane afforded the disubstituted alkyne 76 as a mixture of protected propargyl 

alcohols.
21

 The cis-stereochemistry of allylic alcohol 72 was established using reduction over 



30 
 

Lindlar’s catalyst. Acidic workup of the crude product deprotected the THP ether and yielded the 

single product 72 from the previous mixture of starting materials.
22

 Lastly a Sharpless 

asymmetric epoxidation of the cis-allylic alcohol 72 yielded the cis-epoxy alcohol 30b. 

 

 

Scheme 20. Synthesis of epoxy alcohol 30b. 

 

 Selective mono-benzyl protection of cis-butene-1,4-diol 77 proved to be a reliable 

method to synthesize the cis-allylic alcohol 78, which we utilized for subsequent epoxidation 

reactions. Asymmetric epoxidation of the cis-allylic alcohol 78 furnished the cis-epoxy alcohol 

30c.
21, 23

 

 

 

Scheme 21. Synthesis of epoxy alcohol 30c. 

 

 Following the previous procedure to synthesize the cis-epoxy alcohol 30c, we were able 

to synthesize the trans-epoxy alcohol 30d from diethyl fumarate 79 (Scheme 22).
23

 DIBAL 

reduction of diethyl fumarate 79 formed trans-2-butene-1,4-diol 80. The benzylation of the trans-
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butenediol 80 by benzyl bromide and base afforded the trans-allylic alcohol 81. The epoxidation 

of the trans-allylic alcohol 81 was the same as in the previous synthesis of the cis-epoxy alcohol 

30c, in this case to form the trans-epoxy alcohol 30d. 

 

 

Scheme 22. Synthesis of epoxy alcohol 30d. 

 

 The more complex epoxy alcohols 30e and 30f were assembled from the intermediate 

allylic alcohol 86, which originates from D-mannitol 82. Formation of the diacetal 83 was 

achieved through addition of 2,2-dimethoxypropane and catalytic tosic acid to D-mannitol 82 

(Scheme 23). The oxidative cleavage of the diacetal 83 with sodium bicarbonate and sodium 

periodate afforded the aldehyde 84 with retention of chirality as shown after the epoxidation 

step.
24

 Wittig olefination of aldehyde 84 formed the trans-enal 85 and subsequent DIBAL 

reduction yielded the allylic alcohol 86 in 54% yield over 4 steps.
12 

From the allylic alcohol 86, 

two different products were prepared through the Sharpless epoxidation using D-DIPT and L-

DIPT to form the epoxides 30e and 30f. 
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Scheme 23. Synthesis of epoxy alcohols 91 and 92. 

 

 The final substrate we prepared to test the selenide nucleophilic addition was the epoxy 

alcohol 30g (Scheme 24). L-Diethyl tartrate was efficiently protected using dimethoxypropane in 

refluxing chloroform to give the acetonide 88 in 83% yield. Both esters of the acetonide 88 were 

reduced with sodium borohydride to give the diol 89. The C2 symmetric alcohol 89 can be 

selectively mono-benzylated to produce the alcohol 90.
18

 Oxidation of the alcohol 90 under 

Swern conditions afforded the aldehyde 91. HWE reaction of 91 furnished the ester 92 again 

without epimerization. A smooth DIBAL reduction of the ester 92 produced the allylic alcohol 
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93 in 36% yield over four steps. Finally asymmetric epoxidation of the allylic alcohol 93 

furnished our desired benzyl epoxy alcohol 30g in 60% yield.  

 

 

Scheme 24. Synthesis of epoxy alcohol 100. 

 

 In our attempt to validate aryl selenides as nucleophiles for the trapping of Payne 

rearrangement intermediates, we tested mesityl selenide on this series of epoxy alcohols (Scheme 

25).
18

 We demonstrated that epoxide opening occurs in both E and Z epoxy alcohols. Mesityl 

selenide addition to the simple trans-epoxy alcohol 30a provided the least complex mixture 

among the alkyl epoxy alcohols. The C1 addition product, the trans-epoxy alcohol 30a, was 
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isolated in 39% yield as the minor product where the major product, the C3 addition product 

seleno ether 95, was isolated in 46% yield. The results from the mesityl selenide addition to the 

trans-epoxy alcohol 30a were expected since our test substrate epoxy alcohol 49 was more 

sterically hindered towards the C3 position and so it is not surprising that this case provided a 

ratio comparable with our previous results. For the cis-epoxy alcohols 30b and 30c, we observed 

a mixture of all three stereoisomers when we added mesityl selenide to the system. The 

regioselectivity of this reaction with the cis-epoxy alcohols seems somewhat unpredictable since 

the cis-alkyl epoxy alcohol 30b provides the C2 addition seleno ether 97, while the cis-

benzyloxy epoxy alcohol 30c affords the major product as the C1 addition seleno ether 99. The 

unpredictable reactivity of the cis-epoxy alcohol substrates are likely due to the uncontrollable 

reactivity and stability of the equilibrating epoxy alcohols. Surprisingly the trans-benzyloxy 

epoxy alcohol 30d had no regioselective similarity with the trans-alkyl epoxy alcohol 30a in this 

reaction. The trans-benzyloxy epoxy alcohol 30d delivered a fairly even distribution of C1, C2, 

and C3 addition regioproducts. This may be attributed to the benzyloxy group participating in a 5 

or 6 membered cyclic transition state. Once the R group is sufficiently large, addition to the C3 

position does not occur and regioselectivity shifts towards the C1 addition products. Thus in the 

case of epoxy alcohols 30e, 30f, and 30g, which all contain acetonides, we observe the C1 

addition products as the major regioisomeric product in all three cases. The addition to the C3 

position in epoxy alcohols 30e, 30f, and 30g is quite hindered and nucleophilic addition towards 

C1 and C2 sites are kinetically favorable. The latent C1 position is the least hindered site for the 

epoxy alcohols 30e, 30f, and 30g, where we find the primary mesityl selenide preferentially 

attacks. Sterics seem to play a vital role in nucleophilic attack opening epoxides in the C1, C2, 

and C3 positions. Substrates containing acetonide functionality fared well and provided 
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Scheme 25. Epoxy alcohol substrate scope. 
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reasonable yields of the 1-seleno products. 

 

Conclusion 

 In conclusion, we have shown that selenium nucleophiles prefer C1 addition to sterically 

hindered 2,3-epoxy alcohols. A variety of cis and trans epoxy alcohols were studied where cis 

epoxy alcohols seem to have more promiscuous reactivity. The seleno ethers could be further 

derived into terminal epoxy silyl ethers for the Yamamoto rearrangement. Many of these results 

have been published recently.
18
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Experimental 

 

Materials and Methods   

All NMR spectra were recorded on Bruker spectrometers at 400 or 500 MHz for proton and 100 

or 125 MHz for carbon.  High resolution mass spectra were obtained from the UCLA Molecular 

Instrumentation Center. Reagents were purchased through Fischer Scientific, Sigma-Aldrich, or 

Oakwood Chemicals.  ACS grade solvents were purchased from Fischer Scientific. Toluene, 

benzene, THF, and diethyl ether solvents were dried prior to use by distilling over  sodium metal 

and benzophenone. Dichloromethane was distilled over calcium hydride.  Methanol was distilled 

over magnesium turnings.  Ethanol (190 proof) was purchased from Fischer Scientific and was 

used without further drying.  Silica gel P60 was purchased from Silicycle. All oxygen or 

moisture sensitive reactions were performed under an inert argon atmosphere unless otherwise 

noted.  

 

Experimental Procedures 

 

(E)-2-Methylhex-2-en-1-ol, 48. 

Method 1 

To a suspension of 60% sodium hydride in mineral oil (3.06 g, 75.6 mmol) (washed three times 

with hexanes) in benzene (40 mL) was added triethyl 2-phosphonopropionate (10.74 g, 44.2 

mmol) dropwise. Butanal was added to the solution dropwise at 0 °C and it was stirred for 5 h. 

The reaction solvent was concentrated in vacuo, and then filtered through Celite. The gummy 

layer was dissolved in water then extracted with dichloromethane (3 X 20 mL) and the combined 
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organic extracts were washed with water (5 mL), then brine (5 mL), dried with MgSO4, and 

filtered. The dried organic extract was then concentrated in vacuo and the crude oil was taken 

directly to the next reaction. The crude oil was dissolved in dichloromethane (50 mL) and 

DIBAL (1.0 M in dichloromethane, 130 mL, 130.0 mmol) was added dropwise at -78 °C. The 

solution was allowed to warm to 22 °C and continued to stir overnight. The solution was slowly 

quenched with a mixture of MeOH (165 mL) and Rochelle’s salt solution (165 mL) at 0 °C. The 

layers were separated and then the aqueous solution was extracted with dichloromethane (5 X 

130 mL). The combined organic layers were dried with MgSO4, filtered, and then concentrated 

in vacuo. The crude residue was purified by flash column chromatography on silica gel (2:3 

Et2O:hexanes). The allylic alcohol 48 was obtained as a colorless oil (3.75 g, 32.8 mmol) in 74% 

yield. 

 

Method 2 

To a suspension of 60% sodium hydride in mineral oil (6.17 g, 154 mmol) (washed three times 

with hexanes) in THF (500 mL) was added triethyl 2-phosphonopropionate (10.74 g, 44.2 mmol) 

dropwise at  0 °C. Butanal was added to the solution dropwise at 0 °C and it was stirred at 22 °C 

for 2 h. DIBAL (1.0 M in Et2O, 250 mL, 250.0 mmol) was added dropwise at -78 °C. The 

solution was allowed to warm to 22 °C and continued to stir overnight. The solution was slowly 

quenched with MeOH (10 mL) at 0 °C followed by an aqueous solution of KOH (50 mL) at 0 

°C. The layers were separated and then the aqueous solution was extracted with dichloromethane 

(3 X 50 mL). The combined organic layers were dried with MgSO4, filtered, and then 

concentrated in vacuo. The crude residue was purified by flash column chromatography on silica 
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gel (2:3 Et2O:hexanes). The allylic alcohol 48 was obtained as a colorless oil (4.29 g, 37.6 mmol) 

in 36% yield. 

 

1
H NMR (400 MHz, CDCl3) δ: 

5.41 (tq, J = 7.2, 1.2 Hz, 1H) 

4.00 (s, 2H) 

2.03-1.98 (m, 2H) 

1.66 (s, 3H) 

1.41-1.33 (m, 2H) 

0.90 (t, J = 7.4 Hz, 3H). 

13
C NMR (100 MHz, CDCl3) δ: 134.9, 126.5, 69.2, 29.8, 22.8, 14.0, 13.8. 

 

((2S,3S)-2-(Methyl-3-propyloxiran-2-yl)methanol, 49. 

To a solution of D-(-)-DIPT (0.46 mL, 2.2 mmol) and 4Å molecular sieves (150 mg) in 

dichloromethane (30 mL) was added Ti(OiPr)4 (0.6005g, 2.12 mmol) and tBuOOH (5 M in 

decane, 3.5 mL, 17.5 mmol) dropwise at -10 °C. The solution was stirred for 10 min at -10 °C 

and then cooled to -30 °C. The allylic alcohol 49 (0.8345 g, 7.31 mmol) in dichloromethane (10 

mL) was added dropwise to the previous solution over 20 min. The reaction was stirred for 3 h 

until the reaction was complete, and then the reaction was filtered through Celite. A buffer 

solution (18 mL, 7.0 pH) was added and the layers were separated. The aqueous layer was 

extracted with dichloromethane (3 X 30 mL), dried with MgSO4, then concentrated in vacuo. 

The crude residue was purified by flash column chromatography on silica gel (1:1 
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EtOAc:pentane). The epoxy alcohol 49 was obtained as a colorless oil (0.9213 g, 7.08 mmol) in 

97% yield. 

 

1
H NMR (400 MHz, CDCl3) δ: 

3.66 (dd, J = 12.1, 4.4 Hz, 1H) 

3.54 (d, J = 12.1, 8.8 Hz, 1H) 

3.02 (t, J = 5.3 Hz, 1H) 

2.06 (dd, J = 8.3, 4.8 Hz, 1H) 

1.60–1.43 (m, 4H) 

1.26 (s, 3H) 

0.96 (t, J = 7.1 Hz, 3H). 

13
C NMR (100 MHz, CDCl3) δ: 65.4, 60.8, 60.0, 30.1, 19.7, 14.2, 13.9. 

 

General procedure for the formation of thioethers. 

Formation of (2S,3S)-2-methyl-1-thiophenylhexane-2,3-diol, 50. 

To a refluxing solution of the epoxy alcohol 49 (29.2 g, 0.224 mmol) in a 1:1 mixture of aqueous 

NaOH (0.5M, 1.5 mL) and tBuOH (1.5 mL) was added benzenethiol (0.5 mL, 0.49 mmol) in 

tBuOH (0.3 mL) dropwise over 30 min. The reaction was refluxed for another 2 h and then the 

reaction was cooled to 22 °C and the layers were separated. The aqueous layer was extracted 

with dichloromethane (3 X 2 mL), the combined organic layers were dried over MgSO4, and 

then concentrated in vacuo. The crude residue was purified by flash column chromatography on 

silica gel (2:1 EtOAc:hexanes). The thioether 50 was obtained as a yellow oil (0.0287 g, 0.12 

mmol) in 54% yield. 
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1
H NMR (400 MHz, CDCl3) δ: 

7.43-7.40 (m, 2H) 

7.30-7.26 (m, 2H) 

7.22-7.17 (m, 1H) 

3.57 (d, J = 9.2 Hz, 1H) 

3.36 (d, J = 13.1 Hz, 1H) 

3.08 (d, J = 13.1 Hz, 1H) 

2.70 (s, 1H) 

2.26 (s, 1H) 

1.66-1.35 (m, 4H) 

1.21 (s, 3H) 

0.95 (t, J = 6.4 Hz, 3H). 

13
C NMR (100 MHz, CDCl3) δ: 136.68, 129.63, 129.07, 126.44, 77.12, 74.39, 42.46, 33.14, 

23.61, 20.00, 14.02.  

 

(2S,3S)-1-(tert-Butylthio)-2-methylhexane-2,3-diol, 51. 

1
H NMR (500 MHz, CDCl3) δ: 

3.53-3.50 (m, 1H) 

3.00 (s, 1H) 

2.86 (d, J = 12.4 Hz, 1H) 

2.63 (d, J = 12.4 Hz, 1H) 

2.52 (br d, J = 3.6 Hz, 1H) 
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1.66-1.57 (m, 1H) 

1.46-1.34 (m, 3H) 

1.31 (s, 9H) 

1.15 (s, 3H) 

0.94 (t, J = 7.2 Hz, 3H). 

13
C NMR (125 MHz, CDCl3) δ: 77.3, 73.3, 42.6, 36.0, 33.1, 31.0, 24.1, 20.2, 14.2. 

 

(2S,3S)-1-(tert-Butylthio)-2-methyl-3-((triphenylsilyl)oxy)hexan-2-ol, 53. 

To the thioether 51 (116.4 mg, 0.528 mmol) was added a premixed solution of triphenylsilyl 

chloride (TPSCl, 194.3 mg, 0.634 mmol) and AgOTf (162.5 mg, 0.634 mmol) in 

dichloromethane (6 mL) at -78 °C followed by addition of pyridine (1.1 mL). The reaction was 

stirred overnight and then concentrated directly in vacuo. The crude residue was purified by flash 

column chromatography on silica gel (5% Et2O:pentane). The thioether 53 was obtained as a 

yellow oil (158.9 g, 0.354 mmol) in 67% yield. 

 

1
H NMR (500 MHz, CDCl3) δ: 

7.67-7.65 (m, 6H) 

7.44-7.36 (m, 9H) 

3.63 (dd, J = 8.0, 2.9 Hz, 1H) 

2.76 (d, J = 12.1 Hz, 1H) 

2.68 (d, J = 12.1 Hz, 1H) 

2.43 (s, 1H) 

1.63-1.52 (m, 2H) 
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1.41-1.25 (m, 1H) 

1.22 (s, 3H) 

1.21 (s, 9H) 

1.12-0.97 (m, 1H) 

0.64 (t, J = 7.3 Hz, 3H). 

13
C NMR (125 MHz, CDCl3) δ 135.8, 134.8, 130.0, 128.0, 80.4, 73.9, 42.0, 38.1, 35.0, 31.0, 

22.7, 20.3, 14.1. 

 

General procedure for the formation of terminal epoxides. 

Formation of (2R)-(1S-triphenylsilyoxylbutyl)-2-methyloxirane. 

To a solution of the thioether 53 (11.3 mg, 0.0252 mmol) in dichloromethane (5 mL) was added 

trimethyloxonium tetrafluoroborate (4.4 mg, 0.0279 mmol). After the reaction stirred for 2 h, 

60% sodium hydride in mineral oil (3.5 mg, 0.0875 mmol) was added and the reaction was 

stirred overnight. The reaction was quenched with water (1 mL), the layers were separated, and 

the aqueous layer was extracted with dichloromethane (3 X 5 mL). The combined organic layers 

were washed with brine (1 mL) and then dried with Na2SO4, filtered, and then concentrated in 

vacuo. The crude residue was purified by flash column chromatography on silica gel (gradient: 

2%-40% Et2O:hexanes). The epoxide 54 was obtained as a colorless oil (3.2 mg, 0.00893 mmol) 

in 35% yield. 

 

1
H NMR (500 MHz, CDCl3) δ: 

7.62 (dd, J = 8.0, 1.5 Hz, 6H) 

7.45-7.36 (m, 9H) 
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3.35 (dd, J = 7.8, 4.5 Hz, 1H) 

2.34 (d, J = 4.9 Hz, 1H) 

2.20 (d, J = 4.9 Hz, 1H) 

1.74-1.57 (m, 2H) 

1.45-1.38 (m, 1H) 

1.36 (s, 3H) 

1.25-1.16 (m, 1H) 

0.77 (t, J = 7.4 Hz, 3H). 

13
C NMR (125 MHz, CDCl3) δ: 135.6, 134.7, 130.2, 128.0, 77.0, 58.4, 54.4, 36.3, 18.8, 15.9, 

14.2. 

 

General procedure for the formation of seleno ethers. 

Formation of (2S,3S)-2-methyl-1-(phenylselanyl)hexane-2,3-diol, 57. 

To a solution of the epoxy alcohol 49 (99.5 mg, 0.76 mmol) in EtOH (1 M NaOH, 4 mL) was 

added a premixed solution of diphenyl diselenide (179.3 mg, 0.57 mmol) and sodium 

borohydride in 12 M aqueous NaOH (4.35 M, 0.27 mL, 1.2 mmol) in EtOH (1 M NaOH, 1 mL) 

to the reaction at -30 °C. The reaction was allowed to warm to 22 °C overnight and then the 

reaction was quenched with a saturated aqueous solution of NH4Cl (1 mL). The layers were 

separated and the aqueous layer was extracted with Et2O (3 X 3 mL). The combined organic 

layers were dried with MgSO4, filtered, and then concentrated in vacuo. The crude residue was 

purified by flash column chromatography on silica gel (gradient: 10%-33% Et2O:hexanes). The 

seleno ether 57 was obtained as a yellow oil (95.8 mg, 0.334 mmol) in 44% yield. 
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1
H NMR (500 MHz, CDCl3) δ: 

7.57-7.55 (m, 2H) 

7.28-7.23 (m, 3H) 

3.57 (dd, J = 10.2, 2.2 Hz, 1H) 

3.39 (d, J = 12.6 Hz, 1H) 

3.07 (d, J = 12.6 Hz, 1H) 

2.74 (s, 1H) 

2.34 (s, 1H) 

1.67-1.24 (m, 4H) 

1.22 (s, 3H) 

0.95 (t, J = 7.2 Hz, 3H). 

13
C NMR (125 MHz, CDCl3) δ 132.7, 130.8, 129.3, 127.3, 77.3, 74.2, 38.4, 33.4, 24.3, 20.1, 

14.2. 

 

(2S,3S)-2-Methyl-1-(phenylselanyl)-3-((triphenylsilyl)oxy)hexan-2-ol, 59. 

To the seleno ether 57 (363.7 mg, 1.27 mmol) was added a premixed solution of TPSCl (357.8 

mg, 1.39 mmol) and AgOTf (427.8 mg, 1.39 mmol) in dichloromethane (10 mL) at -78 °C 

followed by addition of (diisopropylethylamine, 0.66 mL). The reaction was stirred overnight 

and then the reaction was quenched with water (1 mL). The layers were separated and the 

aqueous layer was extracted with dichloromethane (3 X 10 mL). The combined organic layers 

were dried with Na2SO4, filtered, and then concentrated in vacuo. The crude residue was purified 

by flash column chromatography on silica gel (gradient: 3%-15% Et2O:hexanes). The 

triphenylsilyl ether 59 was obtained as a yellow oil (476.6 mg, 0.873 mmol) in 69% yield. 
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1
H NMR (500 MHz, CDCl3) δ: 

7.68 (m, 8H) 

7.43 (t, J = 7.4 Hz, 4H) 

7.40-7.36 (m, 5H) 

7.22-7.18 (m, 3H) 

3.70 (dd, J = 8.1, 2.9 Hz, 1H) 

3.39 (d, J = 12.2 Hz, 1H) 

3.08 (d, J = 12.1 Hz, 1H) 

2.39 (s, 1H) 

1.63-1.26 (m, 2H) 

1.23 (s, 3H) 

1.01-0.84 (m, 2H) 

0.62 (t, J = 7.3 Hz, 3H). 

13
C NMR (125 MHz, CDCl3) δ 135.9, 135.8, 134.5, 132.7, 130.2, 129.2, 128.1, 126.9, 80.6, 74.8, 

39.5, 35.4, 23.5, 20.2, 14.0.  

 

Preparation of sodium mesitylselenolate in EtOH: To a solution of dimesityl diselenide (3.98 

g, 10.0 mmol) in 50 mL of 1.0 M NaOH in 95% EtOH was added sodium borohydride (0.7864 g, 

20.0 mmol) and the reaction was refluxed at 85 °C for 2 h until the reaction turned translucent 

forming a 0.4 M solution of sodium mesitylselenolate.  

Preparation of sodium mesitylselenolate in iPrOH: To a solution of dimesityl diselenide (3.98 

g, 10.0 mmol) in 50 mL of 0.5 M NaOH in iPrOH was added sodium borohydride (0.7864 g, 
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20.0 mmol) and the reaction was refluxed at 100 °C for 2 h until the reaction turned translucent 

forming a 0.4 M solution of sodium mesitylselenolate.  

Preparation of sodium mesitylselenolate in tBuOH:H2O mixture: To a solution of dimesityl 

diselenide (3.98 g, 10.0 mmol) in 50 mL of 0.5 M NaOH in 1:1 mixture of tBuOH:H2O was 

added sodium borohydride (0.7864 g, 20.0 mmol) and the reaction was refluxed at 100 °C for 2 h 

until the reaction turned translucent forming a 0.4 M solution of sodium mesitylselenolate.  

 

Temperature Study on Epoxide Opening Reactions. 

General Procedure 1.  

A solution of the epoxy alcohol 49 (99.0 mg, 0.760 mmol) was pre-stirred for 1 h in 7.6 mL of 

1.0 M NaOH in 95% EtOH. To this was added sodium mesitylselenolate in EtOH (3.04 mmol, 

7.6 mL, 4.0 equiv) over 2 h at 85 °C and the reaction mixture stirred for 18 h. It was quenched 

with 5 mL of brine and the layers were separated. The aqueous layer was extracted with Et2O (3 

x 20 mL) and the combined organic layers were dried with MgSO4. After the removal of solvent 

in vacuo, purification by silica gel column chromatography using EtOAc:hexanes (1:20 to 1:5) 

afforded the seleno ether 66 (120.0 mg, 0.365 mmol) 48% in yield and the seleno ether 67 (85.0 

mg, 0.258) in 34% yield. 

 

General Procedure 2. 

To a solution of the epoxy alcohol 49 (99.0 mg, 0.760 mmol) in 7.6 mL of 1.0 M NaOH in 95% 

EtOH was added sodium mesitylselenolate in EtOH (3.04 mmol, 7.6 mL, 4.0 equiv) in one 

portion at 85 °C and the reaction mixture was stirred for 18 h. It was quenched with 5 mL of 

brine and the layers were separated. The aqueous layer was extracted with Et2O (3 x 20 mL) and 
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the combined organic layers were dried with MgSO4. After the removal of the solvent in vacuo, 

purification by silica gel column chromatography using EtOAc:hexanes (1:20 to 1:5) afforded 

the seleno ether 66  (110.0 mg, 0.334 mmol) in 44% yield and the seleno ether 67 (85.9 mg, 

0.258) in 34% yield. 

 

General Procedure 3. 

A solution of the epoxy alcohol 49 (99.0 mg, 0.760 mmol) was pre-stirred for 1 h in 7.6 mL of 

0.5 M NaOH in iPrOH. To this solution was added sodium mesitylselenolate in iPrOH (3.04 

mmol, 7.6 mL, 4.0 equiv) over 2 h at 100 °C and the reaction mixture was stirred for 18 h.  The 

reaction mixture was quenched with 5 mL of brine and the layers were separated. The aqueous 

layer was extracted with Et2O (3 x 20 mL) and the combined organic layers were dried with 

MgSO4. After the removal of the solvent in vacuo, purification by silica gel column 

chromatography using EtOAc:hexanes (1:20 to 1:5) afforded the seleno ether 66 (75.9 mg, 0.228 

mmol) 30% in yield and the seleno ether 67 (85.0 mg, 0.0988) in 15% yield. 

 

General Procedure 4. 

To a solution of the epoxy alcohol 49 (33.0 mg, 0.253 mmol) in 2.5 mL of 1.0 M NaOH in 95% 

EtOH was added sodium mesitylselenolate in EtOH (1.00 mmol, 2.5 mL, 4.0 equiv) in one 

portion and the reaction mixture was microwaved at 85 °C with stirring for 12 h. The reaction 

mixture was quenched with 2 mL of brine and the layers were separated. The aqueous layer was 

extracted with Et2O (3 x 10 mL) and the combined organic layers were dried with MgSO4. After 

the removal of the solvent in vacuo, purification by silica gel column chromatography using 
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EtOAc:hexanes (1:20 to 1:5) afforded the seleno ether 66 (150.2 mg, 0.152 mmol) 60% in yield 

and the seleno ether 67 (42.5 mg, 0.0430) in 17% yield. 

 

(2S,3S)-1-(Mesitylselanyl)-2-methylhexane-2,3-diol, 67. 

1
H NMR (400 MHz, CDCl3) δ  

6.92 (s, 2H) 

3.50-3.54 (m, 1H) 

3.09 (d, J = 12.0 Hz, 1H) 

2.79 (d, J = 12.0 Hz, 1H) 

2.75 (s, 1H) 

2.56 (s, 6H) 

2.26 (s, 3H) 

2.21 (d, J = 3.6 Hz, 1H) 

1.26-1.63 (m, 4H) 

1.30 (s, 3H) 

0.93 (t, J = 7.0 Hz, 3H). 

13
C NMR (100 MHz, CDCl3) δ: 142.6, 138.4, 128.8, 128.0, 77.3, 74.1, 38.1, 33.3, 24.4, 23.9, 

20.9, 20.0, 14.0. 

(EI) m/z: [M]+ Calcd. For C16H26O2Se 330.1093; found: 330.1081. 

 

(2S,3R)-3-(Mesitylselanyl)-2-methylhexane-1,2-diol, 68. 

1
H NMR (400 MHz, CDCl3) δ: 

6.93 (s, 2H) 
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3.53 (d, J = 11.2 Hz, 1H) 

3.29 (d, J = 11.2 Hz, 1H) 

3.25 (dd, J = 9.4, 2.6 Hz, 1H) 

2.55 (s, 6H) 

2.45 (br s, 1H) 

2.24 (s, 3H) 

1.39-1.97 (m, 5H) 

1.24 (s, 3H) 

0.91 (t, J = 6.8 Hz, 3H). 

13
C NMR (100 MHz, CDCl3) δ: 142.4, 138.3, 129.1, 128.4, 68.9, 52.1, 33.6, 24.6, 24.5, 22.3, 

20.9, 20.0, 14.2.  

(EI) m/z: [M]+ Calcd. For C16H26O2Se 330.1093; found: 330.1082. 

 

(2S,3S)-(3-Heptyloxiran-2-yl)methanol, 30a. 

To a suspension of 60% sodium hydride in mineral oil (1.17 g, 29.3 mmol) (washed three times 

with hexanes) in Et2O (12 mL) was added triethyl phosphonoacetate (3.2625 g, 25.2 mmol) 

dropwise at 0 °C and the solution was stirred for 30 min. Octanal was added to the solution 

dropwise at 0 °C and the mixture was stirred at 0 °C for 1 h. DIBAL (1.0 M in THF, 60.5 mL, 

60.5 mmol) was added dropwise at 0 °C and the mixture was stirred for 1 h. The solution was 

slowly quenched with MeOH (3 mL) at 0 °C followed by a saturated Rochelle’s salt solution 

(100 mL) at 0 °C. The layers were separated then the aqueous solution was extracted with EtOAc 

(3 X 50 mL). The combined organic layers were dried with MgSO4, filtered, and then 

concentrated in vacuo. The crude residue was purified by flash column chromatography on silica 
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gel (5%-20% EtOAc:hexanes). The allylic alcohol 70 was obtained as a 1:1 mixture with the cis-

allylic alcohol and was taken as such into the next reaction. To a solution of L-(+)-DIPT (0.2290 

g, 1.1 mmol) and 4Å molecular sieves (195 mg) in dichloromethane (19.5 mL) was added 

Ti(OiPr)4 (0.1992 g, 0.701 mmol) and tBuOOH (5 M in decane, 1.7 mL, 8.5 mmol) dropwise at 

0 °C. The solution was stirred for 20 min at -20 °C then cooled to -25 °C for the following 

addition. The allylic alcohol mixture in dichloromethane (10 mL) was added dropwise to the 

previous solution over 30 min at -25 °C. The reaction mixture was stirred for 26 h until the 

reaction was complete. Then the reaction was quenched with water (20 mL) and 30% NaOH 

brine solution (6 mL). The layers were separated and the aqueous layer was extracted with 

dichloromethane (4 X 10 mL). The organic layers were combined, dried over MgSO4, filtered, 

and then concentrated in vacuo. The crude residue was purified by flash column chromatography 

on silica gel (gradient: 2%-10% Et2O:hexanes). The epoxy alcohol 30a was obtained as a white 

solid, which was recrystallized from petroleum ether to yield white crystals (688.5 mg, 4.00 

mmol) in 16% yield. 

 

1
H NMR (400 MHz, CDCl3) δ: 

3.90 (ddd, J = 12.6, 5.2, 2.6 Hz, 1H) 

3.62 (ddd, J = 12.1, 6.7, 4.3 Hz, 1H) 

2.95 (m, 1H) 

2.91 (m, 1H) 

1.78-1.88 (m, 1H) 

1.70-1.18 (m, 12H) 

0.88 (t, J = 6.9 Hz, 3H). 
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13
C NMR (100 MHz, CDCl3) δ 61.9, 58.6, 56.2, 31.9, 31.7, 29.5, 29.3, 26.1, 22.8, 14.2. 

 

(2R,3S)-(3-Decyloxiran-2-yl)methanol, 30b. 

To a solution of propargyl alcohol 74 (8.86 mL, 150 mmol) in dichloromethane (300 mL) was 

added TsOH·H2O (300.0 mg, 1.5 mmol) and 3,4-dihydro-2H-pyran at 0 °C. The reaction was 

stirred at 22 °C for 1 h and then the reaction was quenched with a saturated aqueous solution of 

NaHCO3. The layers were separated and the aqueous layer was extracted with dichloromethane 

(3 X 100 mL), dried with MgSO4, filtered, and then concentrated in vacuo yielding the crude 

alkyne product 77. To a solution of crude alkyne product 77 in THF (65 mL) was added 

methyllithium in Et2O (1.6 M, 81.5 mL, 130 mmol) was added at 0 °C and the reaction was 

stirred for 15 min at 0 °C. A solution of 1-bromodecane (28.75g, 130 mmol) in DMSO (300 mL) 

was added to the previous solution at 0 °C. The reaction was warmed to 22 °C and stirred for 3 h, 

at which point the reaction was quenched with water (300 mL) and diluted with Et2O (300 mL). 

The layers were separated, then the organic layer was washed with brine (4 X 100 mL), dried 

over MgSO4, then concentrated in vacuo. The crude residue was purified by passing it through a 

pad of silica gel (20:1 petroleum ether:Et2O) yielding a crude yellow oil. To a solution of this 

crude yellow oil and Lindlar’s catalyst (317.3 mg) in EtOAc (60 mL) and MeOH (10 mL) was 

added two balloons of hydrogen. The reaction was kept for 23 h and then the reaction was 

filtered through a pad of silica gel eluting with EtOAc and the solution was concentrated in 

vacuo. The crude mixture was then diluted with MeOH (120 mL) and TsOH·H2O (1.60 g, 42.0 

mmol) was added and stirred for 4 h. The reaction was concentrated in vacuo and the crude 

residue was purified by flash column chromatography on silica gel (gradient: 2%-10% 

Et2O:hexanes). The allylic alcohol 72 was obtained as a white solid (8.36 g, 42.1 mmol) in 28% 
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yield. To a solution of D-(-)-DIPT (1.86 mL, 9.22 mmol) and 4Å molecular sieves (7.4 g) in 

dichloromethane (110 mL) was added Ti(OiPr)4 (4.00 mL, 6.66 mmol) and tBuOOH (5 M in 

decane, 6.66 mL, 33.3 mmol) dropwise at -23 °C and the reaction was stirred for an additional 

hour. The allylic alcohol 72 in dichloromethane (15 mL) was added dropwise to the previous 

solution over 1 h at -23 °C. The reaction was stirred for 12 h until the reaction was complete. 

Then the reaction was quenched with water (40 mL) and 30% NaOH brine solution (12 mL). The 

layers were separated and the aqueous layer was extracted with dichloromethane (4 X 100 mL), 

the organic layers were combined, dried over MgSO4, filtered, and then concentrated in vacuo. 

The crude residue was purified by flash column chromatography on silica gel (gradient: 2%-10% 

EtOAc:hexanes). The epoxy alcohol 30b was isolated as a white solid (771.6 mg, 3.60 mmol) in 

2% yield over 4 steps. 

 

1
H NMR (400 MHz, CDCl3) δ: 

3.85 (dd, J = 12.2, 4.0 Hz, 1H) 

3.67 (dd, J = 12.1, 6.9 Hz, 1H) 

3.15 (ddd, J = 6.9, 4.2, 4.2 Hz, 1H) 

3.03 (ddd, J = 6.8, 5.5, 4.3 Hz, 1H) 

1.71-1.26 (m, 18H) 

0.88 (t, J = 6.9 Hz, 3H). 

13
C NMR (100 MHz, CDCl3) δ: 61.1, 57.5, 56.9, 32.0, 29.7, 29.7, 29.7, 29.6, 29.5, 28.1, 26.8, 

22.8, 14.3. 
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(Z)-4-(Phenylmethoxy)but-2-en-1-ol, 78. 

To a suspension of 60% sodium hydride in mineral oil (4.40 g, 110 mmol) (washed three times 

with pentane) in THF (400 mL) and DMSO (100 mL) was added Z-butene-1,4-diol 77 (9.26 g, 

100 mmol) in THF (250 mL). The reaction was stirred for 30 min and a solution of benzyl 

bromide (18.9 g, 110 mmol) in THF (250 mL) was added dropwise followed by the addition of 

tetrabutylammonium iodide (TBAI, 18.9 g, 50 mmol). The reaction was stirred overnight at 60 

°C. The reaction was quenched with water (1 L), the layers were separated, and the aqueous 

layer was extracted with Et2O (3 X 200 mL). The combined organic layers were then washed 

with brine (10 mL), dried with Na2SO4, filtered, and concentrated in vacuo. The crude residue 

was purified by flash column chromatography on silica gel (25% EtOAc:hexanes). The allylic 

alcohol 78 was obtained as a yellow oil (8.4754 g, 47.6 mmol) in 48% yield. 

 

1
H NMR (400 MHz, CDCl3) δ: 

7.38-7.27 (m, 5H) 

5.85-5.70 (m, 2H) 

4.52 (s, 2H) 

4.17-4.15 (m, 2H) 

4.10-4.08 (m, 2H) 

2.32 (s, 1H). 

13
C NMR (100 MHz, CDCl3) δ: 137.9, 132.5, 128.6, 128.3, 128.0, 127.9, 72.6, 65.8, 58.7. 

 

General Procedure for 30% NaOH brine solution. 

NaOH (30 g) was dissolved into a solution of brine (100 mL). 
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(2R,3S)-3-(((Phenylmethoxy)methyl)oxiran-2-yl)methanol, 30c. 

To a solution of L-(+)-DET (20 μL, 0.116 mmol) and 4Å molecular sieves (100 mg) in 

dichloromethane (6 mL) was added Ti(OiPr)4 (25 μL, 0.116 mmol) and tBuOOH (5 M in decane, 

0.5 mL, 2.5 mmol) dropwise at -23 °C and stirred for an additional hour. The allylic alcohol 78 

(152.4 mg, 0.855 mmol) in dichloromethane (2 mL) was added dropwise to the previous solution 

over 1 h at -23 °C. The reaction was stirred for 12 h until the reaction was complete. Then the 

reaction was quenched with 30% NaOH brine solution (40 mL). The layers were separated and 

the aqueous layer was extracted with dichloromethane (3 X 6 mL), the organic layers were 

combined, dried over Na2SO4, filtered, and then concentrated in vacuo. The crude residue was 

purified by flash column chromatography on silica gel (gradient: 5%-20% EtOAc:hexanes). The 

epoxy alcohol 30c was isolated as a colorless oil (45.9 mg, 0.236 mmol) in 27% yield. 

 

1
H NMR (400 MHz, CDCl3) δ: 

7.39-7.29 (m, 5H) 

4.62 (d, J = 11.8 Hz, 1H) 

4.53 (d, J = 11.8 Hz, 1H) 

3.80-3.71 (m, 3H) 

3.66 (dd, J = 11.0, 5.0 Hz, 1H) 

3.32-3.21 (m, 2H) 

1.93 (br s, 1H). 

13
C NMR (100 MHz, CDCl3) δ: 137.5, 128.8, 128.2, 128.0, 73.7, 68.3, 60.9, 55.7, 54.9. 
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(E)-4-(Phenylmethoxy)but-2-en-1-ol, 81. 

To a solution of dimethyl fumarate 79 (3.7018 g, 31.5 mmol) in toluene (21.7 mL) was added 

DIBAL in toluene (1.5M, 109.5 mL, 164.5 mmol) at -78 °C. The reaction was stirred overnight 

and then quenched with an aqueous solution of 30% NaOH (10 mL). The layers were separated, 

and the aqueous layer was extracted with Et2O (3 X 20 mL). The combined organic layers were 

dried with MgSO4, filtered, and concentrated in vacuo. The crude residue was purified by flash 

column chromatography on silica gel (1:1 Et2O:hexanes). The (E)-but-2-ene-1,4-diol 80 was 

used directly in the next reaction. To a suspension of 60% sodium hydride in mineral oil (1.15 g, 

38.0 mmol) (washed three times with pentane) in THF (160 mL) and DMSO (40 mL) was added 

the butenediol 80 (2.77 g, 31.46 mmol) in THF (85 mL). The reaction was stirred for 30 min and 

a solution of benzyl bromide (6.48 g, 38 mmol) in THF (85 mL) was added dropwise followed 

by the addition of TBAI (5.78 g, 15.2 mmol). The reaction was stirred overnight at 60 °C. It was 

then quenched with water (330 mL), the layers were separated, and the aqueous layer was 

extracted with Et2O (3 X 68 mL). The combined organic layers were then washed with brine (10 

mL), dried with Na2SO4, filtered, and concentrated in vacuo. The crude residue was purified by 

flash column chromatography on silica gel (25% EtOAc:hexanes). The allylic alcohol 81 was 

obtained as a yellow oil (2.51 g, 14.1 mmol) in 41% yield. 

 

1
H NMR (400 MHz, CDCl3) δ: 

7.35-7.27 (m, 5H) 

5.95-5.81 (m, 2H) 

4.53 (s, 2H) 

4.16 (dq, J = 4.8, 1.2 Hz, 2H) 
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4.04 (d, J = 5.2, 1.1 Hz, 2H) 

1.74 (s, 1H). 

13
C NMR (100 MHz, CDCl3) δ: 138.3, 132.3, 128.5, 127.9, 127.9, 127.8, 72.4, 70.2, 63.1. 

 

(2R,3S)-3-(((Phenylmethoxy)methyl)oxiran-2-yl)methanol, 30d. 

To a solution of L-(+)-DET (20 μL, 0.116 mmol) and 4Å molecular sieves (100 mg) in 

dichloromethane (6 mL) was added Ti(OiPr)4 (25 μL, 0.116 mmol) and tBuOOH (5 M in decane, 

0.5 mL, 2.5 mmol) dropwise at -23 °C and the reaction was stirred for an additional hour. The 

allylic alcohol 80 (150.1 mg, 0.842 mmol) in dichloromethane (2 mL) was added dropwise to the 

previous solution over 1 h at -23 °C. The reaction was stirred for 12 h until the reaction was 

complete, and then the reaction was quenched with 30% NaOH brine solution (40 μL). The 

layers were separated and the aqueous layer was extracted with dichloromethane (3 X 6 mL), the 

organic layers were combined, dried over Na2SO4, filtered, and then concentrated in vacuo. The 

crude residue was purified by flash column chromatography on silica gel (gradient: 5%-20% 

EtOAc:hexanes). The epoxy alcohol 30d was isolated as a colorless oil (110.4 mg, 0.568 mmol) 

in 68% yield. 

 

1
H NMR (400 MHz, CDCl3) δ: 

7.38-7.27 (m, 5H) 

4.60 (d, J = 12.0 Hz, 1H) 

4.56 (d, J = 11.9 Hz, 1H) 

3.94 (dd, J = 12.7, 2.5 Hz, 1H) 

3.77 (dd, J = 11.5, 3.1 Hz, 1H) 
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3.65 (dd, J = 12.7, 4.1 Hz, 1H) 

3.53 (dd, J = 11.6, 5.5 Hz, 1H) 

3.24 (ddd, J = 5.5, 2.7, 2.7 Hz, 1H) 

3.10 (ddd, J = 4.1, 2.4, 2.4 Hz, 1H) 

1.70 (br s, 1H). 

13
C NMR (100 MHz, CDCl3) δ: 137.9, 128.6, 128.0, 128.0, 73.5, 69.8, 61.3, 55.8, 54.4. 

 

(S,E)-3-(2,2-Dimethyl-1,3-dioxolan-4-(S)-yl)prop-2-en-1-ol, 87. 

To a solution of D-mannitol 82 (36.43 g, 200 mmol) in DMSO (100 mL) was added 1,1-

dimethoxyacetone (62.0 mL, 500 mmol) and TsOH (0.57 g, 3.0 mmol). The reaction was stirred 

for 48 h and quenched with a solution of saturated aqueous sodium bicarbonate (200 mL). The 

layers were separated and then the aqueous layer was extracted with EtOAc (3 X 300 mL). The 

combined organic layers were washed with brine (20 mL), dried with Na2SO4, filtered, and then 

concentrated in vacuo. The crude diacetal 83 was isolated as a white solid (42.62 g, 160 mmol) 

in 81% yield and was used directly in the next reaction. To a solution of the crude diacetal 83 

(6.56 g, 25.0 mmol) in dichloromethane (50 mL) was added a solution of saturated aqueous 

sodium bicarbonate (3 mL) and NaIO4 (8.02 g, 37.5 mmol). The solution was stirred vigorously 

for 2 h then quenched with MgSO4, filtered, and then the solvent was concentrated in vacuo. The 

crude aldehyde 84 was used directly in the next reaction without further purification. To a 

solution of the aldehyde 84 in toluene (250 mL) was added 

(triphenylphosphoranylidene)acetaldehyde (15.85 g, 60 mmol) at 0 °C. The solution was filtered 

and then the filtrate was concentrated in vacuo. The crude enal 85 was used directly in the next 

reaction. To a solution of the enal 85 in dichloromethane (250 mL) was added DIBAL in 
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hexanes (1 M, 37.5 mL, 37.5 mmol) at 0 °C. The reaction was stirred at 0 °C for 5 h and 

quenched with MeOH (10 mL) followed by a saturated Rochelle’s salt solution (50 mL). The 

layers were separated and the aqueous layer was extracted with dichloromethane (3 X 100 mL). 

The organic layers were combined, dried over Na2SO4, filtered, then concentrated in vacuo. The 

crude residue was purified by flash column chromatography on silica gel (gradient: 10%-40% 

EtOAc:hexanes). The allylic alcohol 86 was isolated as a yellow oil (2.54 g, 16.0 mmol) in 52% 

yield. 

 

1
H NMR (400 MHz, CDCl3) δ: 

5.94 (dt, J = 15.5, 5.1 Hz, 1H) 

5.70 (ddd, J = 15.5, 7.5, 1.5 Hz, 1H) 

4.52 (ddd, J = 7.2, 7.2, 7.2 Hz, 1H) 

4.14 (d, J = 5.1 Hz, 2H) 

4.08 (dd, J = 8.2, 6.2 Hz, 1H) 

3.58 (ddd, J = 8.0, 8.0, 1.0 Hz, 1H) 

2.05 (br s, 1H) 

1.41 (s, 3H) 

1.37 (s, 3H). 

13
C NMR (100 MHz, CDCl3) δ: 133.6, 128.5, 109.5, 76.6, 69.5, 62.7, 26.8, 26.0. 

 

(2S,3R)-3-(((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)oxiran-2-yl)methanol, 30e. 

To a solution of L-(+)-DET (96 μL, 0.565 mmol) and 4Å molecular sieves (425 mg) in 

dichloromethane (25.5 mL) was added Ti(OiPr)4 (100 μL, 0.404 mmol) and tBuOOH (5 M in 
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decane, 1.21 mL, 6.05 mmol) dropwise at -23 °C and stirred for an additional hour. The allylic 

alcohol 86 (638.8 mg, 4.04 mmol) in dichloromethane (8 mL) was added dropwise to the 

previous solution over 1 h at -23 °C. The reaction was stirred for 12 h until the reaction was 

complete. Then the reaction was quenched with 30% NaOH brine solution (40 mL). The layers 

were separated and the aqueous layer was extracted with dichloromethane (3 X 25 mL). The 

organic layers were combined, dried over Na2SO4, filtered, and then concentrated in vacuo. The 

crude residue was purified by flash column chromatography on silica gel (gradient: 5%-20% 

EtOAc:hexanes). The epoxy alcohol 30e was isolated as a yellow oil (239.1 mg, 1.37 mmol) in 

34% yield. 

 

1
H NMR (400 MHz, CDCl3) δ:  

4.12-4.07 (m, 2H) 

3.95 (br d, J = 11.6 Hz, 1H) 

3.85 (ddd, J = 10.6, 7.0, 1.4 Hz, 1H) 

3.68 (d, J = 12.4 Hz, 1H) 

3.14-3.16 (m, 1H) 

3.11-3.09 (m, 1H) 

1.78 (br s, 1H) 

1.42 (s, 3H) 

1.36 (s, 3H). 

13
C NMR (100 MHz, CDCl3) δ: 110.1, 75.1, 66.0, 60.8, 55.3, 55.0, 26.3, 25.6. 
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(2R,3S)-3-(((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)oxiran-2-yl)methanol, 30f. 

To a solution of D-(-)-DET (96 μL, 0.565 mmol) and 4Å molecular sieves (425 mg) in 

dichloromethane (25.5 mL) was added Ti(OiPr)4 (100 μL, 0.404 mmol) and tBuOOH (5 M in 

decane, 1.21 mL, 6.05 mmol) dropwise at -23 °C and stirred for an additional hour. The allylic 

alcohol 86 (638.8 mg, 4.04 mmol) in dichloromethane (8 mL) was added dropwise to the 

previous solution over 1 h at -23 °C. The reaction was stirred for 12 h until the reaction was 

complete. Then it was quenched with 30% NaOH brine solution (40 mL). The layers were 

separated and the aqueous layer was extracted with dichloromethane (3 X 25 mL). The organic 

layers were combined, dried over Na2SO4, filtered, and then concentrated in vacuo. The crude 

residue was purified by flash column chromatography on silica gel (gradient: 5%-20% 

EtOAc:hexanes). The epoxy alcohol 30f was isolated as a yellow oil (151.8 mg, 0.872 mmol) in 

22% yield. 

 

1
H NMR (400 MHz , CDCl3) δ:  

4.13 (dd, J = 8.0, 6.0 Hz, 1H) 

3.89-4.00 (m, 3H)  

3.69 (ddd, J = 11.6, 7.6, 4.0 Hz, 1H) 

3.08-3.12 (m, 2H) 

1.65 (dd, J = 5.6, 7.6 Hz, 1H)  

1.45 (s, 3H) 

1.37 (s, 3H). 

13
C NMR (100 MHz, CDCl3) δ: 109.9, 75.3, 66.9, 61.0, 57.1, 55.2, 26.5, 25.3. 
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(4S,5S)-(2,2-Dimethyl-1,3-dioxolane-4,5-diyl)dimethanol, 89. 

To a solution of L-(+)-DET (88.35 g, 428.0 mmol) in chloroform (400 mL) was added 2,2-

dimethoxyacetone (44.99 g, 480.0 mmol) and TsOH (0.4 g, 2.10 mmol). The reaction was stirred 

for 24 h and then quenched with a saturated aqueous solution of sodium carbonate (25 mL), 

filtered, dried over MgSO4, and concentrated in vacuo. The crude residue was vacuum distilled 

at 1 torr and 135 °C yielding a crude yellow oil of the acetonide 88. To a solution of the crude 

acetonide 88 (63.90 g, 292.7 mmol) in MeOH (1 L) was slowly added NaBH4 (22.60 g, 585.4 

mmol). The reaction was stirred overnight and then quenched with water (50 mL) at 0 °C. The 

solution was concentrated in vacuo and filtered through Celite with EtOAc. The resulting 

solution was concentrated in vacuo yielding diol 89 (20.67 g, 127.5 mmol) in 44% yield. 

 

1
H NMR (400 MHz , CDCl3) δ:  

4.03-3.99 (m, 2H) 

3.80 (ddd, J = 11.9, 2.5, 1.3 Hz, 2H) 

3.69 (ddd, J = 11.9, 2.5, 1.3 Hz, 2H) 

2.17-2.08 (m, 2H) 

1.43 (s, 6H) 

13
C NMR (100 MHz, CDCl3) δ: 109.4, 78.0, 62.1, 27.2. 

 

(4S,5S)-5-(((Phenylmethoxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol, 90. 

To a solution of the diol 89 (12.47 g, 76.9 mmol) in DMF (250 mL) was added 60% sodium 

hydride in mineral oil (6.61 g, 80.75 mmol). The solution was cooled to -22 °C and then benzyl 

bromide was added. The reaction was then stirred at 0 °C for 2 h and then the reaction was 

quenched with brine (200 mL). The layers were separated and the aqueous layer was extracted 
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with dichloromethane (4 X 200 mL). The organic layers were combined, dried over MgSO4, 

filtered, and then concentrated in vacuo. The crude residue was purified by flash column 

chromatography on silica gel (30% EtOAc:hexanes). The alcohol 90 was isolated as a yellow oil 

(12.58 g, 49.8 mmol) in 65% yield. 

 

1
H NMR (400 MHz, CDCl3) δ:  

7.34-7.27 (m, 5H) 

4.58 (s, 2H) 

4.05 (dt, J = 8.2, 5.4 Hz, 1H) 

3.94 (dt, J = 8.4, 4.4 Hz, 1H) 

3.76 (dd, J = 11.7, 4.4 Hz, 1H) 

3.69-3.66 (m, 2H) 

3.56 (dd, J = 9.9, 5.7 Hz, 1H) 

2.34 (br s, 1H) 

1.41 (s, 3H) 

1.41 (s, 3H). 

13
C NMR (100 MHz, CDCl3) δ: 137.7, 128.6, 128.0, 127.9, 109.5, 79.8, 76.7, 73.8, 70.5, 62.5, 

27.10, 27.07.  

 

(E)-3-(4S,5S)-5-(((Phenylmethoxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)prop-2-en-1-ol, 

93. 

To a solution of oxalyl chloride (1.5 mL, 17.1 mmol) in dichloromethane (50 mL) was added 

DMSO (2.67 mL, 34.2 mmol) in dichloromethane (20 mL) dropwise at -60 °C. The reaction was 

stirred for 15 min and the alcohol 90 (2.88 g, 11.4 mmol) in dichloromethane (30 mL) was added 
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dropwise at -60 °C. The reaction was stirred for 1 h and triethylamine (11 mL) was added. The 

reaction was then warmed to 22 °C over 30 min and quenched with wet Et2O (100 mL). The 

reaction was washed with brine (2 X 50 mL), dried over MgSO4, filtered, and concentrated in 

vacuo. The crude residue was passed through a pad of silica gel (1:1 EtOAc:hexanes). The 

resulting solution was concentrated in vacuo and the resulting crude mixture was used directly in 

the next reaction. To a solution of triethyl phosphonoacetate (2.56g, 11.4 mmol) in THF (16.3 

mL) was added 60% sodium hydride in mineral oil (0.46g, 11.4 mmol) at 0 °C. After stirring for 

30 min the crude mixture of the aldehyde in THF (8 mL) was added dropwise. The reaction was 

stirred for 5 h and then it was filtered and concentrated in vacuo. The residue was diluted with 

water (15 mL) and hexanes (15 mL), the layers were separated, and the aqueous layer was 

extracted with hexanes (3 X 15 mL). The combined organic layers were washed with water (1 

mL) and then brine (1 mL), dried over Na2SO4, filtered, and then concentrated in vacuo. The 

crude was diluted with dichloromethane (60 mL) and DIBAL in dichloromethane (1M, 27.3 mL, 

27.3 mmol) was added at -78 °C. The reaction was warmed to 22 °C and stirred for 1 h. Then the 

reaction was quenched with MeOH (1 mL) and a saturated aqueous solution of Rochelle’s salt 

(10 mL) at 0 °C. The layers were separated and the aqueous layer was extracted with 

dichloromethane (3 X 50 mL). The organic layers were combined, dried over Na2SO4, filtered, 

and then concentrated in vacuo. The crude residue was purified by flash column chromatography 

on silica gel (gradient: 10%-30% EtOAc:hexanes). The alcohol 93 was isolated as a yellow oil 

(1.14 g, 4.11 mmol) in 36% yield. 

 

1
H NMR (400 MHz, CDCl3) δ:  

7.36-7.27 (m, 5H) 

5.93 (dtd, J = 15.5, 5.1, 0.9 Hz, 1H) 
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5.72 (ddt, J = 15.5, 7.5, 1.7 Hz, 1H) 

4.60 (d, J = 9.6 Hz, 1H) 

4.59 (d, J = 9.6 Hz, 1H) 

4.27 (dd, J = 7.9, 7.9 Hz, 1H) 

4.15 (dd, J = 5.1, 1.0 Hz, 2H) 

3.92 (ddd, J = 8.7, 5.4, 3.6 Hz, 1H) 

3.63-3.56 (m, 2H) 

1.44 (s, 6H). 

13
C NMR (100 MHz, CDCl3) δ: 139.1, 135.3, 128.5, 127.9, 127.8, 127.8, 109.6, 80.2, 78.6, 73.7, 

69.5, 62.8, 27.1, 27.1.  

 

(2S,3S)-1-(Mesitylselanyl)decane-2,3-diol, 94. 

Prepared according to general procedure 1 starting with the epoxy alcohol 30a, purified by flash 

column chromatography (gradient: 3%-9% EtOAc:hexanes). The seleno ether 94 was isolated as 

a white solid (108.9 mg, 0.293 mmol) in 39% yield and the seleno ether 95 was isolated as a 

white solid (130.6 mg, 0.351 mmol) in 46% yield. 

 

1
H NMR (400 MHz, CDCl3) δ 

6.93 (s, 2H) 

3.64-3.67 (m, 1H) 

3.46 (ddd, J = 9.7, 9.7, 3.6 Hz, 1H) 

2.89 (dd, J = 12.6, 3.0 Hz, 1H) 

2.78 (dd, J = 12.8, 9.6 Hz, 1H) 

2.54 (s, 6H) 
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2.26 (s, 3H) 

1.91 (br s, 1H) 

1.18-1.47 (m, 13H) 

0.87 (t, J = 7.0 Hz, 3H). 

13
C NMR (100 MHz, CDCl3) δ: 142.8, 138.4, 128.7, 126.5, 73.5, 72.9, 32.0, 31.7, 31.4, 29.4, 

29.1, 25.7, 24.3, 22.5, 20.8, 13.9. 

HRMS (EI) m/z: [M]+ Calcd. For C19H32O2Se 372.1562; found: 372.1549. 

 

(2S,3R)-3-(Mesitylselanyl)decane-1,2-diol, 95. 

1
H NMR (400 MHz, CDCl3) δ: 

6.93 (s, 2H) 

3.57-3.68 (m, 3H) 

3.13-3.17 (m, 1H) 

2.54 (s, 6H) 

2.26 (s, 3H) 

1.20-1.74 (m, 14H) 

0.88 (t, J = 6.8 Hz, 3H). 

13
C NMR (100 MHz, CDCl3) δ: 142.9, 138.4, 128.8, 126.8, 73.5, 64.5, 49.4, 31.7, 30.3, 29.5, 

29.0, 28.1, 24.4, 22.5, 20.8, 14.0. 

HRMS (EI) m/z: [M]+ Calcd. For C19H32O2Se 372.1562; found: 372.1551. 
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(2R,3S)-1-(Mesitylselanyl)tridecane-2,3-diol, 96. 

Prepared according to general procedure 1 starting with the epoxy alcohol 30b, purified by flash 

column chromatography (gradient: 2%-9% EtOAc:hexanes). The seleno ether 96 was isolated as 

a white solid (74.7 mg, 0.180 mmol) in 24% yield, the seleno ether 97 was isolated as a white 

solid (158.7 mg, 0.384 mmol) in 51% yield, and the seleno ether 97 was isolated as a white solid 

(76.8 mg, 0.186 mmol) in 24% yield. 

 

1
H NMR (400 MHz, CDCl3) δ: 

6.93 (s, 2H) 

3.46-3.52 (m, 1H) 

3.44-3.38 (m, 1H) 

2.87 (dd, J = 12.4, 4.4 Hz, 1H) 

2.80 (dd, J = 12.4, 4.0 Hz, 1H) 

2.59 (d, J = 4.0 Hz, 1H) 

2.54 (s, 6H) 

2.26 (s, 3H) 

2.05 (d, J = 6.0 Hz, 1H) 

1.18-1.48 (m, 18H) 

0.88 (t, J = 6.8 Hz, 3H). 

13
C NMR (100 MHz, CDCl3) δ: 142.9, 138.5, 128.8, 126.9, 73.6, 73.0, 33.9, 33.1, 31.9, 29.65, 

29.62, 29.60, 29.58, 29.3, 25.6, 24.5, 22.7, 20.9, 14.1. 

HRMS (EI) m/z: [M]+ Calcd. For C22H38O2Se 414.2032; found: 414.2019. 
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(2S,3S)-2-(Mesitylselanyl)tridecane-1,3-diol, 97. 

1
H NMR (400 MHz, CDCl3) δ: 

6.93 (s, 2H) 

3.75 (ddd, J = 7.9, 3.9, 3.9 Hz, 1H) 

3.61 (dd, J = 11.2, 4.0 Hz, 1H) 

3.54 (dd, J = 11.2, 3.6 Hz, 1H) 

3.20 (ddd, J = 6.4, 4.4, 4.4 Hz, 1H) 

2.54 (s, 6H) 

2.26 (s, 3H) 

1.96 (br s, 1H) 

1.73-1.82 (m, 1H) 

1.20-1.60 (m, 18H) 

0.88 (t, J = 6.7 Hz, 3H). 

13
C NMR (100 MHz, CDCl3) δ: 142.9, 138.4, 128.9, 127.1, 74.0, 64.8, 49.4, 32.2, 31.9, 29.60, 

29.58, 29.5, 29.3, 27.8, 24.6 (C2), 22.7, 20.9, 14.1. 

HRMS (EI) m/z: [M]+ Calcd. For C22H38O2Se 414.2032; found: 414.2016. 

 

(2R,3R)-3-(Mesitylselanyl)tridecane-1,2-diol , 98. 

1
H NMR (400 MHz, CDCl3) δ: 

6.93 (s, 2H) 

3.92-3.97 (m, 1H) 

3.81-3.78 (m, 2H) 

3.16 (ddd, J = 4.8, 2.7, 2.7 Hz, 1H) 
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2.59 (d, J = 5.2 Hz, 1H) 

2.55 (s, 6H) 

2.43 (dd, J = 6.0, 6.0 Hz, 1H) 

2.26 (s, 3H) 

1.17-1.76 (m, 18H) 

0.88 (t, J = 6.8 Hz, 3H). 

13
C NMR (100 MHz, CDCl3) δ: 143.3, 138.5, 128.8, 126.2, 74.3, 65.1, 53.9, 35.3, 31.9, 29.62, 

29.61, 29.59, 29.56, 29.4, 26.2, 24.6, 22.7, 20.9, 14.1. 

HRMS (EI) m/z: [M]+ Calcd. For C22H38O2Se 414.2032; found: 414.2019. 

 

(2S,3R)-1-(Phenylmethoxy)-4-(mesitylselanyl)butane-2,3-diol, 99. 

Prepared according to general procedure 1 starting with the epoxy alcohol 30c, purified by flash 

column chromatography (gradient: 10%-33% EtOAc:hexanes). The seleno ether 99 was isolated 

as a colorless oil (126.4 mg, 0.321 mmol) in 42% yield, the seleno ether 100 was isolated as a 

colorless oil (80.4 mg, 0.204 mmol) in 27% yield, and the seleno ether 101 was isolated as a 

colorless oil (89.5 mg, 0.228 mmol) in 30% yield. 

 

1
H NMR (400 MHz, CDCl3) δ: 

7.27-7.36 (m, 5H) 

6.92 (s, 2H) 

4.54 (d, J = 12.0 Hz, 1H) 

4.50 (d, J = 11.8 Hz, 1H) 

3.84-3.80 (m, 1H) 
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3.69-3.63 (m, 1H) 

3.60-3.53 (m, J = 1.2 Hz, 2H) 

2.84 (d, J = 6.4 Hz, 2H) 

2.77 (d, J = 4.4 Hz, 1H) 

2.52 (s, 6H) 

2.50 (s, 1H) 

2.26 (s, 3H). 

13
C NMR (100 MHz, CDCl3) δ: 143.0, 138.4, 137.6, 128.7, 128.5, 127.9, 127.8, 127.1, 73.6, 

72.5, 71.5, 71.4, 32.1, 24.5, 20.9. 

HRMS (EI) m/z: [M]+ Calcd. For C20H26O3Se 394.1042; found: 394.1029. 

 

(2S,3S)-4-(Phenylmethoxy)-2-(mesitylselanyl)butane-1,3-diol, 100. 

1
H NMR (400 MHz, CDCl3) δ: 

7.28-7.38 (m, 5H) 

6.92 (s, 2H) 

4.52 (s, 2H) 

4.16-4.21 (m, 1H) 

3.76-3.81 (m, 3H) 

3.67 (dd, J = 9.2, 5.2 Hz, 1H) 

3.27 (ddd, J = 5.2, 4.4, 3.2 Hz, 1H) 

2.89 (d, J = 4.0 Hz, 1H) 

2.51-2.56 (m, 7H) 

2.26 (s, 3H). 
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13
C NMR (100 MHz, CDCl3) δ: 143.3, 138.6, 137.7, 128.8, 128.5, 127.9, 127.8, 126.2, 73.6, 

72.4, 72.3, 64.3, 50.4, 24.6, 20.9. 

HRMS (EI) m/z: [M]+ Calcd. For C20H26O3Se 394.1042; found: 394.1027. 

 

(2R,3R)-4-(Phenylmethoxy)-3-(mesitylselanyl)butane-1,2-diol, 101. 

1
H NMR (400 MHz, CDCl3) δ: 

7.27-7.36 (m, 5H) 

6.93 (s, 2H) 

4.50 (d, J = 12.0 Hz, 1H) 

4.47 (d, J = 12.0 Hz, 1H) 

3.96-4.01 (m, 1H) 

3.87-3.92 (m, 1H) 

3.70-3.76 (m, 3H) 

3.22 (td, J = 6.8, 4.0 Hz, 1H) 

3.14 (d, J = 4.8 Hz, 1H) 

2.52 (s, 7H) 

2.27 (s, 3H). 

13
C NMR (100 MHz, CDCl3) δ: 143.3, 138.6, 137.3, 128.8, 128.6, 128.0, 127.9, 126.6, 73.5, 

73.3, 71.1, 64.5, 47.2, 24.6, 21.0. 

 HRMS (EI) m/z: [M]+ Calcd. For C20H26O3Se 394.1042; found: 394.1028. 

 

 

 



72 
 

(2S,3S)-1-(Phenylmethoxy)-4-(mesitylselanyl)butane-2,3-diol, 102. 

Prepared according to general procedure 1 starting with the epoxy alcohol 30d, purified by flash 

column chromatography (gradient: 10%-33% EtOAc:hexanes). The seleno ether 102 was 

isolated as a colorless oil (84.3 mg, 0.214 mmol) in 28% yield, the seleno ether 103 was isolated 

as a colorless oil (85.9 mg, 0.218 mmol) in 29% yield, and the seleno ether 104 was isolated as a 

colorless oil (106.8 mg, 0.271 mmol) in 36% yield. 

 

1
H NMR (400 MHz, CDCl3) δ 

7.28-7.37 (m, 5H) 

6.92 (s, 2H) 

4.52 (s, 2H) 

3.66-3.75 (m, 1H) 

3.66-3.61 (m, 2H) 

3.57 (dd, J = 9.8, 6.2 Hz, 1H) 

2.95 (dd, J = 12.4, 4.0 Hz, 1H) 

2.82 (dd, J = 12.6, 8.6 Hz, 1H) 

2.71 (d, J = 4.8 Hz, 1H) 

2.54 (s, 7H) 

2.26 (s, 3H). 

13
C NMR (100 MHz, CDCl3) δ: 142.9, 138.5, 137.7, 128.7, 128.5, 127.9, 127.8, 126.8, 73.6, 

72.3, 71.7, 71.2, 32.7, 24.5, 20.9. 

HRMS (EI) m/z: [M]+ Calcd. For C20H26O3Se 394.1042; found: 394.1028. 
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(2R,3S)-4-(Phenylmethoxy)-2-(mesitylselanyl)butane-1,3-diol, 103. 

1
H NMR (400 MHz, CDCl3) δ: 

7.29-7.38 (m, 5H) 

6.93 (s, 2H) 

4.53 (s, 2H) 

4.03-4.08 (m, 1H) 

3.75-3.80 (m, 3H) 

3.64 (dd, J = 9.6, 6.0 Hz, 1H) 

3.20 (ddd, J = 7.2, 6.0, 4.0 Hz, 1H) 

2.98 (br s, 2H) 

2.52 (s, 6H) 

2.26 (s, 3H). 

13
C NMR (100 MHz, CDCl3) δ: 143.3, 138.7, 137.5, 128.9, 128.5, 128.0, 127.9, 126.1, 73.6, 

73.2, 72.6, 63.8, 48.2, 24.6, 20.9. 

HRMS (EI) m/z: [M]+ Calcd. For C20H26O3Se 394.1042; found: 394.1027. 

 

 

(2S,3R)-4-(Phenylmethoxy)-3-(mesitylselanyl)butane-1,2-diol, 104. 

1
H NMR (400 MHz, CDCl3) δ:  

7.23-7.35 (m, 5H) 

6.93 (s, 2H) 

4.47 (d, J = 11.5 Hz, 1H) 
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4.44 (d, J = 11.5 Hz, 1H) 

3.92-3.97 (m, 1H) 

3.81 (dd, J = 10.0, 8.2 Hz, 1H) 

3.70-3.77 (m, 2H) 

3.66 (dd, J = 9.8, 3.4 Hz, 1H) 

3.37 (d, J = 4.8 Hz, 1H) 

3.26 (ddd, J = 8.6, 6.0, 3.6 Hz, 1H) 

2.52 (s, 6H) 

2.44 (br s, 1H) 

2.27 (s, 3H). 

13
C NMR (100 MHz, CDCl3) δ: 143.4, 138.7, 137.1, 128.8, 128.6, 128.1, 127.9, 126.4, 73.9, 

73.4, 71.1, 65.1, 45.4, 24.6, 21.0. 

HRMS (EI) m/z: [M]+ Calcd. For C20H26O3Se 394.1042; found: 394.1026.  

 

(1R,2S)-1-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-3-(mesitylselanyl)propane-1,2-diol, 105. 

Prepared according to general procedure 1 starting with the epoxy alcohol 30e, purified by flash 

column chromatography (gradient: 10%-33% EtOAc:hexanes). The seleno ether 105 was 

isolated as a colorless oil (184.8 mg, 0.495 mmol) in 65% yield, and seleno ether 106 was 

isolated as a colorless oil (80.8 mg, 0.216 mmol) in 29% yield. 

 

1
H NMR (400 MHz, CDCl3) δ:  

6.93 (s, 2H) 

4.24 (ddd, J = 6.8, 4.4, 4.4 Hz, 1H) 



75 
 

4.01 (dd, J = 8.4, 6.4 1H) 

3.86 (dd, J = 8.4, 7.2 Hz, 1H) 

3.50-3.46 (m, 1H) 

3.44-3.39 (m, 1H) 

3.09 (dd, J = 12.6, 3.8 Hz, 1H) 

2.84 (dd, J = 12.4, 8.4 Hz, 1H) 

2.71 (br s, 1H) 

2.55 (s, 6H) 

2.46 (br s, 1H) 

2.26 (s, 3H) 

1.40 (s, 3H) 

1.36 (s, 3H). 

13
C NMR (100 MHz, CDCl3) δ: 142.9, 138.5, 128.8, 126.8, 109.3, 75.9, 73.2, 72.1, 66.4, 33.6, 

26.4, 25.3, 24.5, 20.9. 

HRMS (EI) m/z: [M]+ Calcd. For C17H26O4Se 374.0991; found: 374.0978. 

 

 

(1S,2R)-1-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2-(mesitylselanyl)propane-1,3-diol, 106. 

1
H NMR (400 MHz, CDCl3) δ:  

6.94 (s, 2H) 

4.46 (ddd, J = 6.8, 2.8, 2.8 Hz, 1H) 

4.07 (dd, J = 8.2, 6.8 Hz, 1H) 

3.78-3.87 (m, 4H) 
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3.12-3.16 (m, 1H) 

2.95 (br s, 1H) 

2.73 (br s, 1H) 

2.54 (s, 6H) 

2.26 (s, 3H) 

1.44 (s, 3H) 

1.35 (s, 3H). 

13
C NMR (100 MHz, CDCl3) δ: 143.3, 138.8, 128.9, 126.2, 109.8, 76.8, 72.8, 66.5, 63.1, 49.8, 

26.3, 25.2, 24.6, 20.9. 

HRMS (EI) m/z: [M]+ Calcd. For C17H26O4Se 374.0991; found: 374.0975. 

 

(1S,2R)-1-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-3-(mesitylselanyl)propane-1,2-diol, 107 and 

(1R,2S)-1-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2-(mesitylselanyl)propane-1,3-diol, 108. 

Prepared according to general procedure 1 starting with the epoxy alcohol 30f, purified by flash 

column chromatography (gradient: 10%-33% EtOAc:hexanes). The seleno ethers 107 and 108 

were isolated as an inseparable colorless oil (265.0 mg, 0.710 mmol in total, 53% yield of 107, 

40% yield of 108). 

 

(1S,2R)-1-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-3-(mesitylselanyl)propane-1,2-diol, 107 

1
H NMR (400 MHz, CDCl3) δ:  

6.93 (s, 2H) 

4.17 (ddd, J = 6.3, 6.3, 6.3 Hz, 1H) 

4.02-4.06 (m, 2H) 
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3.92-3.86 (m, 1H) 

3.72 (t, J = 5.8 Hz, 1H) 

3.61-3.65 (m, 1H) 

3.07-3.01 (m, 1H) 

2.86-2.81 (m, 1H) 

2.55 (s, 6H) 

2.39-2.35 (m, 1H) 

2.26 (s, 3H) 

1.38 (s, 3H) 

1.33 (s, 3H) 

13
C NMR (100 MHz, CDCl3) δ: 142.8, 138.4, 128.7, 126.6, 109.4, 75.9, 73.2, 71.4, 66.4, 32.3, 

26.4, 25.1, 24.5, 24.4 (C2), 20.8. 

HRMS (EI) m/z: [M]+ Calcd. For C17H26O4Se 374.0991; found: 374.0978. 

 

(1R,2S)-1-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2-(mesitylselanyl)propane-1,3-diol, 108. 

1
H NMR (400 MHz, CDCl3) δ: 

6.94 (s, 2H) 

4.26 (ddd, J = 6.3, 6.3, 6.3 Hz, 1H) 

4.02-4.06 (m, 2H) 

3.90 (dd, J = 6.8, 8.4 Hz, 1H) 

3.85 (brs, 1H) 

3.81 (dd, J = 5.2, 12.0 Hz, 1H) 

3.61-3.65 (m, 1H) 
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3.23 (td, J = 3.2, 5.2 Hz, 1H) 

3.04 (dd, J = 3.2, 12.4 Hz, 1H) 

2.84 (dd, J = 8.8, 12.4 Hz, 2H) 

2.53 (s, 7H) 

2.36 (brs, 1H) 

2.26 (s, 3H) 

1.33 (s, 3H) 

1.32 (s, 3H). 

13
C NMR (100 MHz, CDCl3) δ: 143.1, 138.7, 128.8, 125.9, 109.0, 76.5, 75.2, 65.8, 63.1, 48.5, 

26.5, 25.1, 25.0, 24.4 (C2), 20.8 (C2). 

HRMS (EI) m/z: [M]+ Calcd. For C17H26O4Se 374.0991; found: 374.0978. 

 

(1R,2S)-1-((4S,5S)-5-((Phenylmethoxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-3-

(mesitylselanyl)propane-1,2-diol, 109.  

Prepared according to general procedure 1 starting with the epoxy alcohol 30g, purified by flash 

column chromatography (gradient: 10%-33% EtOAc:hexanes). The seleno ether 109 was 

isolated as a colorless oil (196.4 mg, 0.398 mmol) in 52% yield, and the seleno ether 110 was 

isolated as a colorless oil (90.5 mg, 0.183 mmol) in 24% yield. 

 

1
H NMR (400 MHz, CDCl3) δ:  

7.27-7.36 (m, 5H) 

6.92 (s, 2H) 

4.57 (s, 2H) 
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4.26 (ddd, J = 8.4, 8.4, 5.2 Hz, 1H) 

4.07 (dd, J = 8.2, 2.0 Hz, 1H) 

3.58-3.65 (m, 2H) 

3.54 (dd, J = 10.4, 4.8 Hz, 1H) 

3.49-3.45 (m, 1H) 

3.05 (dd, J = 12.6, 4.2 Hz, 1H) 

2.86 (dd, J = 12.4, 8.0 Hz, 1H) 

2.74 (br s, 1H) 

2.54 (s, 6H)  

2.41 (br s, 1H) 

2.26 (s, 3H) 

1.41 (s, 6H). 

13
C NMR (100 MHz, CDCl3) δ: 142.8, 138.3, 137.7, 128.6, 128.3, 127.62, 127.60, 126.9, 109.6, 

78.0, 76.0, 73.5, 72.4, 71.3, 70.1, 33.2, 27.1, 26.8, 24.4, 20.8. 

HRMS (EI) m/z: [M]+ Calcd. For C25H34O5Se 494.1566; found: 494.1549. 

 

(1S,2R)-1-((4S,5S)-5-((Phenylmethoxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-2-

(mesitylselanyl)propane-1,3-diol  

1
H NMR (400 MHz, CDCl3) δ:  

7.27-7.37 (m, 5H) 

6.92 (s, 2H) 

4.57 (s, 2H) 

4.25 (dd, J = 8.2, 1.4 Hz, 1H) 

4.17-4.22 (m, 1H) 
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3.82-3.87 (m, 2H) 

3.78 (dd, J = 12.0, 6.8 Hz, 1H) 

3.64 (dd, J = 10.0, 4.8 Hz, 1H) 

3.56 (dd, J = 10.2, 5.0 Hz, 1H) 

3.19 (ddd, J = 6.8, 6.8, 3.3 Hz, 1H) 

2.52 (s, 6H) 

2.25 (s, 3H) 

1.43 (s, 3H) 

1.36 (s, 3H). 

13
C NMR (100 MHz, CDCl3) δ: 143.2, 138.6, 137.7, 128.7, 128.3, 127.7, 127.6, 126.4, 109.7, 

79.5, 75.9, 73.5, 71.2, 70.1, 63.1, 50.2, 26.9, 26.7, 24.4, 20.8.  

HRMS (EI) m/z: [M]+ Calcd; For C25H34O5Se 494.1566; found: 494.1547. 
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Progress Towards the Synthesis of Morphine 
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Introduction 

 

 Morphine is a potent μ-opioid receptor agonist and has been used for its analgesic and 

sleep-inducing properties throughout human history. The primary source of morphine is from the 

opium poppy Papaver somniferum which also contains large opium content of codeine as well as 

of thebaine.
1
 First isolated by Friederich Serturner in 1804, morphine was named after the god of 

dreams, Morpheus, for its sleep inducing properties.
2 

The most common use for morphine is as a 

pain medication but it is also commonly used as an illicit drug. The structure of natural (-)-

morphine was elucidated based on the Gates total synthesis in 1952 as well as X-ray diffraction 

data by Mackay and Hodgkin in 1955.
3,4,5

 

 The demand of opiates for therapeutic purposes has increased significantly over the 

years. The production for morphine alone has more than doubled from 247.1 tons in 1994 to 

522.6 tons in 2013.
6
 To supply the world demand for opiates, raw opiate materials are extracted 

from opium, poppy straw, and concentrate of poppy straw. These raw opiate materials are then 

purified and often semi-synthetically converted into other opiates. Opiates extracted from these 

raw materials are fairly high-yielding, producing approximately 9.5-12.0% morphine, 2.5% 

codeine, and 1.0-1.5% thebaine by weight.
7
 

 The convergent biosynthesis of morphine is known for two separate pathways both 

starting from dopamine 111 and 4-hydroxyphenylacetaldehyde 112 (Scheme 26 and 27).
6,8,9

 The 

L-tyrosine derived dopamine 111 and 4-hydroxyphenylacetaldehyde 112 form (S)-Norcoclaurine 

113; through the enzyme norcoclaurine synthase (NCS) a Pictet-Spengler reaction occurs to 

close the tetrahydroisoquinoline ring of (S)-Norcoclaurine 113. A series of methylation and 

oxidation reactions occur through the enzymes 6-O-methyltransferase (6OMT), (S)-coclaurine N-

methyltransferase (CNMT), N-methylcoclaurine 3’-hydroxylase (NMCH), and 3’-hydroxy N- 
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Scheme 26. Biosynthesis of morphine intermediate salutaridinol-7-O-acetate. 
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Scheme 27. Biosynthesis of morphine from salutaridinol-7-O-acetate. 

 

methylcoclaurine 4’-O-methyltransferase (4’OMT) to provide (S)-Reticuline 117. Epimerization 

occurs at the stereogenic carbon of (S)-Reticuline 117 inverting the S enantiomer to the (R)-

Reticuline 119 enantiomer. The cytochrome p450 enzyme saltaridine synthase (SalSyn) cyclizes 

(R)-Reticuline 119 to the morphinan pentacyclic core of salutaridine 120 by a diradical type 



87 
 

mechanism.
10,11

 Reduction and acylation proceed through the enzymes salutaridine reductase 

(SalR) and salutaridinol 7-O-acetyltransferase (SalAt) to provide Salutaridinol 7-O-acetate 122 

which spontaneously attacks the cyclohexadiene in an SN2’-like manner to form thebaine 123. 

The biosynthetic paths fork at thebaine 123 which can be demethylated by either 6-O-

demethylase (T6ODM) to spontaneously enolize to codeinone 124, or it can be demethylated via 

codeine-O-demethylase (CODM) to provide oripavine 126. From codeinone 124, the NADPH-

dependant codeinone reductase (COR) reduces codeinone 124 to codeine 125, which undergoes 

demethylation by codeine-O-demethylase (CODM) to yield morphine 128. On the other side of 

the fork, oripavine 126 undergoes the skipped set of reactions being demethylated first by 

T6ODM giving morphinone 127 then reduction by COR converts morphinone 127 to morphine 

128. Understanding the biosynthetic pathway is an opportunity for synthetic organic chemists to 

extract useful transformations for the synthesis of morphine often which is fairly convergent. 

 The Gates synthesis is one of the most noteworthy syntheses of morphine 128 as it was 

important to elucidate the structure of the molecule (Scheme 28).
3,4,5

 The synthesis commences 

with 2,6-dihydroxynaphthalene and the nitrile intermediate 130 is synthesized through a series of 

redox reactions. The C-ring of morphine 128 is formed through a Diels-Alder reaction with 

butadiene to give the nitrile 131. Under rigorous pressure, the nitrile 131 undergoes amidation 

with hydrogen and copper chromite to stitch the D-ring of morphine yielding the amide 132. 

Morphine 128 is ultimately synthesized and resolved using dibenzoyl tartaric acid. The Gates 

synthesis provided morphine in 0.6% over 31 steps as the first total synthesis of morphine 128.
11

 

Although the Gates synthesis was low yielding, it was a tremendous advancement for the bridge 

between chemistry and biology.  
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Scheme 28. Gates synthesis of (-)-morphine. 

 

 The synthesis of morphine 128 or its immediate precursors have been successfully 

accomplished more than 26 times over half a century.
12

 The highest yielding formal synthesis to 

date is the Rice synthesis of racemic dihydrocodeinone in 30% yield over 13 steps (Scheme 

29).
13

 The synthesis begins with the formation of the amide between the amine 133 and the 

carboxylic acid 134 at 200 °C, a process which afforded the amide 135 in 95% yield. The 

following steps resemble the biosynthetic pathway, starting with a Bischler-Napieralski reaction 

to produce a dihydroisoquinoline intermediate which can be further reduced to a 

tetrahydroisoquinoline with sodium cyanoborohydride. Subjecting the crude 

tetrahydroisoquinoline to Birch reduction conditions afforded the amine 136 as an essentially 

pure material in 77% yield over 3 steps. Refluxing the amine 136 with PhOCHO displaces the 
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phenol allowing the formation of the formamide 137 in excellent yield (94%). The demethylation 

of the formamide 137 ensued under acidic acetal protection conditions. The para-bromination of 

the phenolic functionality was carefully selected to induce higher selectivity for the following 

Grewe cyclization. Acidic deprotection of the acetal and Grewe cyclization elegantly afforded 

the quaternary center in the intermediate ketone 138. The methanolic HCl deformylation of 

formamide 138 was followed by a palladium catalyzed reductive amination to reduce both the 

bromine and the iminium salt. The cyclization to (±)-dihydrocodeinone 139 was simple through 

α-bromination of the ketone and treatment with base to give the desired cyclization. The 

synthesis is the most efficient racemic synthesis so far.  

 

 

Scheme 29. Rice formal synthesis of morphine.  

 



90 
 

 We envisioned a synthetic approach towards morphine which would proceed through the 

rearrangement of a cyclopropane intermediate to form the C-ring of morphine followed by the 

tandem formation of the B- and D-rings of morphine 128 via a metal-mediated aza-Heck 

reaction. The synthesis of the cyclopropane intermediate was done previously by Timothy 

Dwight of the Jung group. We will now describe our efforts for the synthesis of morphine 128 

through novel cyclopropanation chemistry.   

 

Results and Discussion 

 

 Our original retrosynthetic analysis of morphine 128 focused on the formation of C ring 

(Scheme 30). Morphine could be synthesized from the amine 140 through either a transition 

metal catalyzed cross-coupling/amination sequence or through an oxidative cyclization. Amine 

140 could arise from the tricycle 141 through the 1,4-addition of methyl cyanoacetate followed 

by decarboxylation and reduction. A homo-Nazarov cyclization of the cyclopropane 142 could 

produce the tricycle 141 upon treatment with Lewis or Bronsted acid. A curious reaction arises 

when benzofuryl ketone 143 is treated with base and palladium to produce the benzofuryl 

cyclopropyl ketone 142. This reaction was the key component of our studies towards the 

synthesis of morphine 128. Addition of 2-lithiobenzofuran to the lactone 144 and subsequent 

benzoylation would give the ketone 143. 
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Scheme 30. Initial retrosynthetic analysis of morphine. 

 

 Initially we envisioned that the Tsuji-Trost reaction could be used to synthesize the 

benzofuryl cyclopropyl ketone 142, a process Timothy Dwight found during his work towards 

the synthesis of morphine 128 (Scheme 31). The Tsuji-Trost reaction is formally an allylation 

method that generally utilizes catalytic palladium and an allylic leaving group. Intramolecular 

Tsuji-Trost cyclopropanation reactions are well-established reactions, known for several decades 

involving malonic ester type bis electron-withdrawing groups. The electron-withdrawing 

functionalities can range from esters to nitriles to sulfones, where oxygen containing 

functionalities can potentially cyclize via oxygen. The SN2’ like reactions of benzoates and 

carbonates have previously been observed using sulfonyl ester 145 and carbonate 147.
14,15

 The 

stability of the enolate is likely a critical factor in the formation of the cyclopropane species.  
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Scheme 31. Palladium catalyzed base mediated cyclopropanations. 

 

Forward Synthesis 

 

 The proposed forward synthesis of morphine involves the addition of 2-lithio-7-

methoxybenzofuran to the lactone 144 to give an allylic alcohol, which can be benzoylated to 

give the aroyloxy ketone 143 (Scheme 32). As mentioned earlier, Timothy Dwight discovered 

the cyclization of the ketone 143 to give the cyclopropane 142 using palladium(0) and base. We 

envisioned this discovery could help us in the synthesis of morphine by using a subsequent 

homo-Nazarov cyclization reaction to form the tricycle 141 and thereby the C-ring of morphine. 

We proposed that resolution of enantiomers followed by a nucleophilic 1,4-addition of an ethyl 
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amine could give the amine 140 with the formation of cis 5-6 ring juncture. The last steps to 

finish the  

 

 

Scheme 32. Forward synthesis of morphine. 

 

synthesis of morphine 128 would involve reductive amination, followed by redox chemistry to 

install the allylic alcohol forming alcohol 150. The transition metal catalyzed cross-

coupling/amination sequence or an oxidative cyclization of the amine 150 would produce the B 
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and D-rings of codeine 151. Finally O-demethylation would complete the total synthesis of 

morphine 128. 

 The synthesis of the lactone 144 has previously been established starting from 5-hexenoic 

acid 152. An oxidative cyclization can occur in the presence of palladium(II) and oxygen to form 

the lactone 144 (Scheme 33).
16

 This process is high yielding, with the yield of 96% reported in 

the literature. But the reaction itself is extremely costly. Since 5-hexenoic acid 152 costs 

approximately $60/g this cost and the fact that palladium was required made this route 

unfavorable.
17

 We searched for alternative methods to make the starting lactone 144 without the 

need for palladium catalysis.  

 

 

Scheme 33. Literature synthesis of lactone 144. 

 

 One of the most common and inexpensive syntheses of lactone 144 relied on the addition 

of vinylmagnesium chloride or bromide to the aldehyde 154.
18

 We attempted the synthesis of 

lactone 144 with commercially available lactone 153. The addition of triethylamine (TEA) and 

MeOH provided the methyl ester as well as the starting material due to equilibrating 

relactonization (Scheme 144). The primary alcohol was then oxidized with PCC to form the ester 

aldehyde 154 in 46% crude yield. The ester was then subjected to the literature organometallic 

addition conditions at 0 °C, but failed to produce lactone 144. However, when the reaction was 

repeated at -78 °C, to our delight, the lactone 144 was isolated in 18% yield. Although some 
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lactone 144 was isolated, the yields were poor and the synthesis of lactone 144 was difficult to 

reproduce by this route. 

 

Scheme 34. Initial attempts to synthesize lactone. 

 

 We set our sights on a slight modification using a Gilman-like reagent to synthesize 

lactone 144 from the ester aldehyde 154 (Scheme 35). Addition of the vinyl cuprate to the ester 

aldehyde 154 did not provide the desired lactone 144, but instead seemed to add twice. Other 

vinyl metal reagents seemed to react violently with simple substrates such as ester 154, providing 

a myriad of undesired side products. This disappointing result caused us to look at simpler 

methods for the synthesis of lactone 144.  

 

 

Scheme 35. Gilman vinyl cuprate addition. 

 

 The lactonization of 1,4-diols is well known and has been used for numerous total 

synthesis such as the total synthesis of the anti-inflammatory (±)-bukittinggine and the antibiotic 
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(±)-macbecin I.
19,20

 The synthesis of the diol 155 was known in the literature. The addition of 

DIBAL to the lactone 153 at –78 °C followed by vinylmagnesium bromide provided the diol 155 

in an excellent yield of 95% (Scheme 36).
21

 Although silver carbonate is a relatively expensive 

reagent, we decided to test it for the lactonization of diol 155 to lactone 144. The lactonization of 

diol 155 afforded the lactone 144 in 42% yield at room temperature, which was a good result 

compared to our previous findings. The same reaction at refluxing temperatures provided mostly 

decomposition product, during which silver is clearly consumed because a silver mirror coating 

forms on the reaction vessel. The results for silver carbonate lactonization surpassed our 

expectations at first glance but the yields were only modest and the costly silver reagent had to 

be used in excess, so again we looked for a reaction that would provide the lactone 144 in a cost-

effective manner.  

 

 

Scheme 36. Silver carbonate lactonization of diol. 

 

 Focusing on reactions that are relatively mild and economical, we looked into TEMPO 

reactions with diacetoxyiodobenzene (BAIB) as the ultimate oxidant (Scheme 37).
22

 Employing 

catalytic TEMPO with BAIB we were able to synthesize lactone 144 in an excellent yield of 

82% from diol 155 in not only a cost-effective manner, but also in a rapid process. With these 

results in hand we moved forward with our synthesis of cyclopropanes.  
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Scheme 37. TEMPO mediated lactonization of diol. 

 

 The synthesis of our desired starting ketone followed the route of aryllithium addition, 

ring opening, and subsequent acylation (Scheme 38). Treatment of the lactone 144 with 

phenyllithium provided excellent yields of the allylic alcohol 156 with a minor side product, 

namely the double phenyl addition to the lactone. Acylation of allylic alcohol 156 was performed 

using acetyl chloride which afforded the ketoester 157 in 80% yield.  

 

 

Scheme 38. Synthesis of acylated starting ketone. 

 

 As a positive control we repeated Timothy Dwight’s previous work on the 

cyclopropanation of the phenyl ketone 157 (Scheme 39). With higher palladium loading, we 

were able to repeat the experiment in virtually the same low yields. The phenyl cyclopropyl 

ketone 158 isolated was solely the trans-isomer which was demonstrated by comparison to 

literature spectra from multiple sources.
23,24

 In addition, we performed a NOESY experiment to 
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confirm the trans stereochemistry (Scheme 40).
26

 We found a NOE correlation between the 

proton α to the ketone and the 2-vinyl proton, as shown. We believed that the acetate was 

participating as a proton source for the base, causing side reactions to occur. One of the main 

side products of concern was enolate 159, since the acetate is incapable of leaving for any 

cyclopropanation to proceed.  

 

 

Scheme 39. Palladium catalyzed cyclopropanation reactions. 
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Scheme 40. NOESY proton correlations of proton α to the ketone with 2-vinyl proton.  

 

 Understanding the mechanism of this reaction was a vital part of selecting the optimal 

conditions and substrate for the cyclopropanation reaction. The addition of palladium to the 

phenyl ketone 157 would allow for the palladium π-allyl species 160 to exist transiently (Scheme 

41).
27

 The deprotonation of the proton α to the ketone would form the intermediate ketone 

enolate 161, which can follow one of three paths. The intramolecular cyclopropanation event 

could occur via path a forming our desired cyclopropane 158. Alternatively the enolate 161 

could react via path b, where the oxygen of the enolate would attack and cyclize to the 

dihydrofuran 162. Path c is the least likely event to occur since the palladium π-allyl species 163 

is linear; the alpha carbon cannot approach the terminal end of the π-allyl species and therefore 

should not form the cyclopentenyl ketone 164. 
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Scheme 41. Plausable palladium catalysis mechanism. 

 

 By replacing the acetate with a benzoate group, we were able to reduce the complexity of 

the reaction by eliminating the additional acidic proton of the acetate. The addition of 

phenyllithium to the lactone 144 allowed us to form the previous allylic alcohol 156 this time as 

a crude oil (Scheme 42). Benzoylation of the allylic alcohol 156 afforded the phenyl ketone 165 

in 25% yield over two steps. We decided next to screen various bases and palladium species for 

optimal reaction conditions. 
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Scheme 42. Esterification of phenyl ketone.  

 

 We looked at both inorganic and organic bases with the palladium guanidine catalysts. 

The palladium guanidine complexes were thought to serve a dual purpose, where the tetramethyl 

guanidine could act as both a ligand for palladium and potentially a base for deprotonation 

(Table 10). Suprisingly our first attempt (entry 1) showed a trace amount of the phenyl 

cyclopropyl ketone 158 even though the conditions caused mostly simple benzoate cleavage. 

Changing the solvent to acetonitrile caused the reaction to stall altogether and no reaction was 

observed (entry 2). Using conditions similar to the original cyclopropanation reaction, we 

substituted Pd(PPh3)4 with the palladium guanidine complex, but only a trace amount of phenyl 

cyclopropyl ketone 158 was detected (entry 3). The palladium tetramethylguanidine complex 

seemed to inhibit the reaction. Dissatisfied with these results, we decided to revisit DBU as the 

base. 
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Table 10. Palladium and tetramethylguanidine catalyzed cyclopropanations.  

 

 

Entry Base Catalyst Solvent Time Temp. Results 

1 K2CO3 10 mol % Pd(OAc)2, 

Tetramethylguanidine 

H2O/EtOH 2h 80 °C Trace 

2 K2CO3 10 mol % Pd(OAc)2, 

Tetramethylguanidine 

Acetonitrile 2h 80 °C No Rxn 

3 DBU 10 mol % Pd(OAc)2, 

Tetramethylguanidine 

dichloromethane Overnight 22 °C Trace 

 

 Using Pd(dppf)Cl2 as the catalyst, we explored both DBU and TEA as bases (Table 11). 

With DBU alone, there was no reaction (entry 1). The addition of TEA was essential for the 

reaction to proceed. As the amount of TEA was increased, the yield clearly increased (entries 2 

and 3) up to a maximum of 53% yield (entry 4). The unfortunate decrease in yield for entry 5 

was probably due to an acidic workup, where 30% of the debenzylated starting material was 

recovered. With these promising results in hand, we revisited the mechanism of this process. 
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Table 11. Pd(dppf)Cl2 catalyzed cyclopropanation reactions. 

 

 

Entry Base Catalyst Solvent Time Temp. Results 

1 DBU 10 mol % Pd(dppf)Cl2 dichloromethane 12h 22 °C No Rxn 

2 1.2 eq. TEA 10 mol % Pd(dppf)Cl2 1:10 DBU: 

dichloromethane 

2h 22 °C 18% yield 

3 2.4 eq. TEA 10 mol % Pd(dppf)Cl2 1:10 DBU: 

dichloromethane 

2h 22 °C 40% yield 

4 3.6 eq. TEA 10 mol % Pd(dppf)Cl2 1:10 DBU: 

dichloromethane 

2h 22 °C 53% yield 

5* 20 eq. TEA 10 mol % Pd(dppf)Cl2 1:10 DBU: 

dichloromethane 

2h 22 °C 27% yield 

* Acidic workup. 

 

 We questioned whether the nucleophlilicity of the phenyl ketone 165 could be elevated to 

eject the benzoate leaving group (Scheme 43). The additive of choice was pyrrolidine, which we 

hoped would form an enamine for nucleophilic attack on the benzoate carbon.
28

 No reaction was 

observed and only starting material was recovered during this reaction. We learned that basicity 

was a key component of the reaction over nucleophilicity.  
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Scheme 43. Pyrrolidine mediated cyclopropanation reaction. 

 

 Next we explained 1,2-bis(diphenylphosphino)ethane (dppe) as a ligand for palladium 

and LiHMDS as the base (Table 12).
14,15

 We were able to synthesize our desired phenyl 

cyclopropyl ketone 158 in a very good yield of 84% under these new conditions (entry 1). In the 

absence of palladium catalyst, the reaction seemed to stall under these conditions but some 

product was formed (entry 2). The reaction worked fairly well with Pd(dppf)Cl2 with the highest 

yield being 54% (entry 4).  

 

Table 12. Palladium screening reactions for the synthesis of cyclopropyl ketones. 

 

Entry Base Catalyst Solvent Time Temp. Results 

1 2.2 eq. 

LiHMDS 

5 mol % Pd2(dba)3, 2 eq. dppe THF 24h -78 to 50 °C 84% yield 

2 2.2 eq. 

LiHMDS 

No Catalyst THF 24h -78 to 50 °C 25% yield 

3 2.2 eq. 

LiHMDS 

5 mol % Pd(dppf)Cl2 THF 24h -78 to 50 °C 18% yield 

4 2.2 eq. 

LiHMDS 

5 mol % Pd(dppf)Cl2, 1 eq. dppe  THF 1h -78 to 50 °C 52% yield 

5* 2.2 eq. 

LiHMDS 

5 mol % Pd(dppf)Cl2, 2 eq. dppe THF 1h -78 to 50 °C 37% yield 
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 Our rational for the next experiment was simple, we decided to use Pd(dppe)2 directly 

which should simplify the reaction. We were able to synthesize the target phenyl cyclopropyl 

ketone 158 in a very good yield of 85% (Scheme 44). Satisfied with this result, we continued to 

look at various substrates for this newly found cyclopropanation reaction. 

 

 

Scheme 44. Pd(dppe)2 catalyzed cyclopropanation reaction. 

 

 The synthesis of the benzofuryl ketone 166 followed the earlier method developed for the 

synthesis of the phenyl ketone 165. The benzofuryl ketone 166 performed exceptionally well 

under these conditions affording the benzofuryl cyclopropyl ketone 167 in 89% yield (Scheme 

45).  

 

 

Scheme 45. Synthesis of benzofuryl cyclopropyl ketone. 

 

 We wondered whether the selection of base or palladium was playing a larger role in our 

experiments (Scheme 46). Stirring the phenyl ketone 165 with Pd(PPh3)4 or Pd(dppe)2, we 
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observed no reaction in either case, showing that the base was an essential part of the reaction. 

The carbonate species 168 was synthesized from the alcohol 156 because it could act as both a 

leaving group for the Tsuji-Trost reaction as well as generating a strong base. Subjecting 

carbonate 168 to the palladium conditions unfortunately generated no product, thereby putting 

the necessity of palladium into question. Palladium was eliminated in the following reaction and 

to our amazement the reaction proceeded in a very good yield of 84%. The implications of our 

findings were significant, since typically a benzoate leaving group would require addition of an 

activator to induce its latent leaving group ability. Although there are examples in the literature 

of using benzoate leaving groups for the synthesis of chrysanthemic acid, the nucleophilic 

component was an ester and so to our knowledge no aryl ketone nucleophiles have been 

examined.
25

 

 

 

Scheme 46. Control reactions of cyclopropanation studies. 



107 
 

 To confirm these observations, we sought another substrate to test. We synthesized the p-

anisoyl ketone 170 with an anisole group by the standard procedure from lactone 144 (Scheme 

47). Treating the anisoyl ketone 170 with Pd(dppe)2 and LiHMDS afforded a mixture of the 

cyclopropanes, the expected anisoyl cyclopropyl ketone 171 (37% yield) as well as the phenyl 

cyclopropyl ketone 158 (54% yield). Once more we subjected the anisoyl ketone 170 to 

LiHMDS with a fresh reaction vessel and stir bar that had never seen palladium. The reaction 

outcome was fairly similar to the palladium catalyzed reaction where the anisoyl cyclopropyl 

ketone 171 was isolated in 20% yield and the phenyl cyclopropyl ketone 158 was obtained in 

58% yield.  

  

 

Scheme 47. Control reactions of cyclopropanation studies. 
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 The found that a mixture of cyclopropyl ketone products was formed in this reaction had 

to be confronted at this point. We proposed the following mechanism (Scheme 48). Starting from 

the anisoyl ketone 170, the addition of LiHMDS would deprotonate the ketone, to form the 

enolate 170a. The enolate 170a can also react via path a affording the expected anisoyl 

cyclopropyl ketone 171. However the enolate 170a can react via path b forming the hemi-acetal 

anion 170b. Ejection of the alkoxide from 170b would produce the β-diketone alkoxide 170c. 

The pseudosymmetrical alkoxide from the β-diketone 170c can revert back to the original ketone 

(reverse of the forward reaction) or it could choose to attack the other ketone. If the latter event 

occurs, the rearranged hemi-acetal 170d would form. The overall process up to this point is the 

exchange of the carbonyl and ester groups. Under these conditions, the new enolate can eject the 

p-methoxybenzoate leaving group and form the phenyl cyclopropyl ketone 158.  

 To test our mechanistic hypothesis we used a DCC coupling to synthesize the opposite 

keto ester (Scheme 49). Addition of LiHMDS to the phenyl ketone 172 gave a mixure of 

products like that of the previous experiment. In this case, the anisoyl cyclopropyl ketone 171 

was isolated in 31% yield and the phenyl cyclopropyl ketone 158 was obtained in 49% yield.
23 
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Scheme 48. Carbonyl ester exchange mechanism. 
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Scheme 49. Cyclization experiments. 

 

 We decided to perform a few more control studies to better understand which conditions 

were optimal for this reaction before we started with a substrate scope. The temperature control 

study in Table 13 illustrates both the suboptimal and optimal temperatures for our 

cyclopropanation reaction. At temperatures below 0 °C, no reaction was observed while at 0 °C 

we observed a small conversion of starting material to product. The best results occurred at 22 

°C with complete conversion of starting material and an isolated yield of 80% of the benzofuryl 

cyclopropyl ketone 167. At higher temperatures, the yields of the benzofuryl cyclopropyl ketone 

167 were reduced and a small amount of the side product the phenyl cyclopropyl ketone 158 

appeared.  
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Table 13. Temperature studies of cyclopropanation reaction. 

 

 

Entry Starting 

Temp. 

(°C) 

Rxn  

Temp. 

(°C) 

Product 

yield (%) 

Rearranged 

product 

yield (%) 

RSM  

yield (%) 

1 -78 -78 0 0 95 

2 -78 -40 0 0 95 

3 -78 0 34 0 60 

4 -78 22 80 0 0 

5 -78 50 74 2 0 

 

 Next we carried out solvent studies (Table 14). Non-polar solvents performed very 

poorly, in general affording single digit yields of product (entries 1 and 2). As the solvent 

became increasingly polar, the yields rose to a maxiumum in THF of 80%. Clearly a polar 

solvent is essential for the reaction to proceed well. 
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Table 14. Solvent studies of cyclopropanation reaction. 

 

 

Entry Solvent Product yield 

(%) 

RSM yield 

(%) 

1 hexanes 3 89 

2 benzene 8 86 

3 diethyl ether 17 65 

4 dichloromethane 29 71 

5 THF 80 0 

 

 Finally we tested various bases to see which worked best (Table 15). We chose LDA, 

being similar to LiHMDS, but oddly that base gave poor yields of only 20%. LDA seemed to 

produce the product of benzoate cleavage and therefore was probably too nucleophilic for this 

reaction. Potassium tert-butoxide was unexpectedly good, giving 68% yield of desired product. 

Finally the sodium hexamethyldisilamide gave similar yields to our original base.  
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Table 15. Base studies of cyclopropanation reaction. 

 

 

Entry Base R Product yield (%) RSM yield (%) 

1 LDA 20 17 

2 NaH 15 49 

3 t-BuOK 68 5 

4 NaHMDS 78 8 

5 LiHMDS 80 0 

 

 The substrates for this reaction were synthesized using the standard procedure of 

aryllithium addition to the lactone 144 followed by benzoylation. The substrate scope is 

summarized below for substrates containing amide, ester, alkyl, and aryl carbonyl functionality 

(Table 16). The Weinreb amide 173 was made for the purpose of a potential divergent synthesis, 

since the Weinreb amide 173 can theoretically be converted into many different carbonyl 

functionalities. The Weinreb amide 173 was either unreactive to LiHMDS or, if deprotonated, 

the anion of the Weinreb amide did not cyclize. The choice of the ester 175 followed the same 

logic as the Weinreb amide since esters can also be converted into a series of carbonyl 

derivatives. Since the Weinreb amide failed to react, we were hopeful that ester 175 might 

produce the cyclopropane but that did not occur. Instead the ester produced a complex mixture of 

products the structures of which we were unable to elucidate. The methyl ketone substrate 177 

produced a complex mixture of polymeric material and various cyclized products that could not 
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be isolated cleanly. In an attempt to block the acidic protons on the methyl substrate we tried to 

synthesize the tert-butyl substrate but we were unsuccessful in forming the tert-butyl ketone 

cleanly by either addition of tert-butylmagnesium chloride or tert-butyllithium to the lactone. As 

shown before, the phenyl ketone 158 performed well with no rearrangement products because 

the phenyl group is the same on both the ketone and ester. The benzofuryl ketone 166 gave only 

the expected cyclopropyl ketone product, a preference that will be discussed later. The main 

compound of interest was the 7-methoxybenzofuranyl substrate, the benzofuryl ketone 143, for 

progress towards the total synthesis of morphine 128. The cyclopropanation of this morphine 

intermediate went well and 75% of benzofuryl cyclopropyl ketone 142 was isolated without any 

isolation of the side product, the phenyl cyclopropyl ketone 158. Exposing the furyl ketone 179 

to LiHMDS provided the expected furyl cyclopropyl ketone 180 in 70% yield as the major 

product and the unexpected phenyl cyclopropyl ketone 158 in 13% yield. The reactions of the 

tolyl, fluoro, and aniline substrates performed very well, with yields of 85 to 95% total yield, 

generally as a 1:1 mixture of expected and rearranged cyclopropanation products. As substitution 

changed from the para and ortho positions in entries 10 and 11 to the meta position in entry 12, 

the tendency for the rearranged product diminished possibly due to steric hindrance. Strangely 

enough the anisole substrate in entry 13 gave more of the rearranged aryl product than the 

expected anisoyl cyclopropyl ketone 171, 58% to 20%. 
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Table 16. Substrate scope for cyclopropanation reactions. 

 

 

Entry Substrate  R R Product  R Product 

yield (%) 

Cyclopropane  

yield (%) 

Time 

(h) 

1 173 N(Me)OMe 174 0 0 24 

2 175 OEt 176 0 0 24 

3 177 Me 178 0 0 24 

4 156 Ph 158 84 0 1.5 

5 166 benzofuryl 167 80 0 2.5 

6 143 7-(OMe)benzofuryl 142 75 0 5.0 

7 179 furyl 180 70 13 2.0 

8 181 4-CH3C6H4 182 49 46 3.0 

9 183 4-FC6H4 184 47 43 1.0 

10 185 4-CF3C6H4 186 60 20 1.75 

11 187 3-CF3C6H4 188 60 23 1.5 

12 189 2-CF3C6H4 190 70 5 1.5 

13 170 4-MeOC6H4 171 20 58 2.5 

14 191 4-Me2NC6H4 192 43 42 3.5 

 

 We looked at a series of aryl ester substrates and, found that the anisoyloxy phenyl 

ketone 172 favored the benzofuryl cyclopropyl ketone product 167 (Table 17). Interestingly, the 

p-trifluoromethyl substrate afforded a nearly 1:1 mixture of the trifluoromethyl cyclopropyl 

ketone 186 and the expected phenyl cyclopropyl ketone 158 product. The keto substrate with the 

benzofuryl ester 193 gave mostly the expected product 167 (73%) with only a small amount of 

the rearranged product 158 (11%). 
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Table 17. Cyclopropanation reactions of the aroyloxy ketones. 

 

Entry 

Substrate  R R Product  R Product 

yield (%) 

Cyclopropane  

yield (%) 

Time 

(h) 

1 

193 benzofuryl 167 73 11 3.0 

2 

172 4-MeOC6H4 171 31 49 2.5 

3 

194 4-CF3C6H4 186 49 43 2.5 

 

  

 To expand our substrate scope, the vinyl substitution was replaced for hydrogen and 

methyl. Treatment of the simple phenyl ketone 195 afforded the simple cyclopropyl ketone 196 

in 38% yield. The phenyl ketone 197 furnished the cyclopropyl ketone 198 in 49% yield. The 

trans-stereochemistry of 198 was determined by comparing the proton NMR data with that 

reported in the literature.
24,25

  

 

 

Scheme 50. Cyclopropanation reactions of simple phenyl ketone substrates. 
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 In order to understand the energetics and the mechanism of this rearrangement-

cyclization manifold, the Houk group performed density functional theory (DFT) calculations at 

the SMD
THF

/B3LYP-D3/6-31+G(d) level of theory using the Gaussian09 program.
30

 The free 

energy diagram for the reaction of benzofuryl ketone 166 is shown in Figure 1. Deprotonation of 

benzofuryl ketone 166 forms the enolate 199 (the relative energy of which is set as 0.0), which 

can either undergo an intramolecular SN2-like reaction to generate the benzofuryl cyclopropyl 

ketone 167 or attack the ester. Attack of the enolate 199 the ester forms the cyclic hemiacetal 200 

and after the alkoxide ejects the allylic alkoxide the diketo alkoxide can form. The intermediate 

diketone is relatively high in energy at 15.8 kcal/mol and is 1.7 kcal/mol higher in energy than 

the TS-1 barrier. From the diketone, the allylic alkoxide can attack the other carbonyl forming 

the rearranged cyclic acetal 201. From the cyclic acetal 201, ejection of the enolate gives the 

enolate 202 which can cyclize and generate the rearranged phenyl cyclopropyl ketone 158. The 

transition state barrier for TS-4 is 17.1 kcal/mol much higher than the TS-1 of 14.1 kcal/mol. 

This larger energy difference – 3 kcal/mol - explains why no rearranged phenyl cyclopropyl 

ketone 158 is observed.  



118 
 

        

 
Figure 1. Free energy profile for the reaction of benzofuryl ketone 166. Energies are in kcal/mol. 

 

 The predicted ratios of the normal to the rearranged cyclopropane products are very 

similar to the experimental ratios (Table 18). Comparing the related anisoyl ketone 170 the TS-1 

is 0.5 kcal/mol higher in energy than of TS-4. The energy difference corresponds to a 1:2 ratio of 

the anisole to phenyl aryl product and correlates closely with the 1:3 experimental ratio. Starting 

from the opposite ketone ester 172 the ratio is predicted to be 2:1, phenyl ketone to anisole 

ketone product, which is what we observe. For the ketone containing 4-trifluoromethylphenyl, 

the diketone intermediate is higher in energy than TS-1 or TS-4 by 0.9 and 0.3 kcal/mol 

respectively. In entry 5, the trifluoromethylphenyl substitution is predicted to be the major 

product by a 5:1 ratio and experimentally the ratio was found to be 3:1. The opposite 
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trifluoromethylphenyl substitution was expected to predominately give the phenyl substitution in 

a 2:1 ratio, but experimentally we observed a 1:1 ratio of products.  

 

Table 18. Comparison of computational and experimental data. 

 

 

Entry Substrate  Ar1 Ar2 Predicted ratio 

(Ar1: Ar2) 

Experimental 

ratio (Ar1: Ar2) 

1 166 benzofuryl Ph 159:1 >20:1 

2 193 Ph benzofuryl 1:9 1:7 

3 170 4-MeOC6H4 Ph 1:2 1:3 

4 172 Ph 4-MeOC6H4 2:1 2:1 

5 185 4-CF3OC6H4 Ph 5:1 3:1 

6 194 Ph 4-CF3OC6H4 2:1 1:1 

 

 As indicated in Figure 1, the reaction is a complex equilibrating mixture of enolates, 

hemiacetals, and diketone species. The relative ratio of product may not be based on Curtin-

Hammett conditions depending on the intermediate energies relative to TS-1 or TS-4, since an 

intermediate was higher in energy than TS-1 or TS-4, then the reaction would be influenced by 

the reactant identity. Computational and experimental data are in good agreement in our studies 

as shown in Table 18. 

 With the benzofuryl cyclopropyl ketone 142 intermediate in hand, we proceeded to the 

next step in our forward synthesis, the homo-Nazarov cyclization. Homo-Nazarov cyclizations 
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are well-known cationic rearrangement reactions that require resonance or electron-donating 

functionalities to stabilize the cationic intermediates.
31

 The proposed mechanism for the homo-

Nazarov cyclization of the benzofuryl cyclopropyl ketone 142 is illustrated below (Scheme 51). 

The Lewis acid would coordinate to the carbonyl oxygen, and facilitate opening of the 

cyclopropane to give the allyic cation intermediate 203. The benzofuran could attack the allylic 

carbocation at C3 and possibly form a 6-membered ring 205 via the intermediate 204. 

Rearomatization of the benzofuran would occur and tautomerization would give the desired 

tricycle 141. 

 Attempts were made to transform the benzofuryl cyclopropyl ketone 142 to the tricycle 

141 through the originally proposed homo-Nazarov reaction (Scheme 52). Addition of tin(IV) 

chloride to the benzofuryl cyclopropyl ketone 142 caused decomposition of the substrate at both 

ambient and elevated temperatures. The reactions with indium(III) chloride and scandium(III) 

triflate led to recovery of starting materials. Catalytic tosic acid was also too reactive for the 

benzofuryl cyclopropyl ketone 142 and decomposed the substrate. The cyclopropane vinyl 

moiety may be incompatible with the reaction conditions since it could potentially polymerize 

under the acidic conditions. 
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Scheme 51. Mechanism of homo-Nazarov cyclization of benzofuryl cyclopropyl ketone 142. 
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Scheme 52. Homo-Nazarov cyclization of benzofuryl cyclopropyl ketone 142. 

 

 After the completion of this work, we became aware of the work of Yates, who reported a 

related SN2-like displacement of an ester and subsequent 1,5-acyl shift.
31

 The Baran group 

reported the synthesis of (+)-phorbol with an intermediate Lewis acid assisted cyclopropanation 

step.
32

 Others have also reported SN2-like displacements of ester leaving groups to furnish 

cyclopropane products.
33
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Conclusion 

 

 In conclusion, we have shown that cyclopropanes reactions can be formed from a series 

of ketones with an appended benzoate unit. Carbonyl exchange is a common side product in this 

series of reactions, in some cases the exchanged product is the major product. Computational 

studies have given us a better understanding of this reaction where Curtin-Hammett conditions 

may not apply in some cases. In our attempts to synthesize morphine, we have achieved the 

synthesis of the intermediate benzofuryl cyclopropyl ketone 142. The homo-Nazarov cyclization 

reaction failed to produce the expectedtricycle 141, but may still be a plausible method using the 

appropriate Lewis acid or Bronsted for the transformation. 
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Experimental 

 

Materials and Methods   

 

Unless stated otherwise, reactions were conducted in flame-dried glassware under an atmosphere 

of argon using anhydrous solvents (freshly distilled). All commercially isolated reagents were 

used as received unless otherwise specified. Lithium bis(trimethylsilyl)amide (1 M in 

THF/ethylbenzene) and benzoic anhydride were purchased from Acros Organics. 4-

Dimethylaminopyridine (DMAP) and (diacetoxyiodo)benzene (BAIB) were purchased from 

Oakwood Chemical. 2,2,6,6-Tetramethylpiperidine 1-oxyl (TEMPO) and n-butyllithium (2.5 M 

in hexanes) were purchased from Sigma-Aldrich. Reaction temperatures were controlled using 

an IKAmag temperature modulator. Silicycle Siliaflash P60 (particle size 0.040–0.063 mm) was 

used for flash column chromatography. 
1
H NMR spectra were recorded on Bruker spectrometers 

at 500 MHz and are reported relative to deuterated solvent signals. Data for 
1
H NMR spectra are 

reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz) and integration. 

13
C NMR spectra were recorded on Bruker spectrometers at 125 MHz and are reported relative 

to deuterated solvent signals. Data for 
13

C NMR spectra are reported in terms of chemical shift 

and, when necessary, multiplicity, and coupling constant (Hz). For mixtures of regioisomers, the 

major regioisomer is reported with the minor regioisomer for both 
1
H NMR and 

13
C NMR 

spectra. High-resolution mass spectra were obtained on Thermo Scientific
TM

 Exactive Mass 

Spectrometers with DART ID-CUBE. 
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A. Synthesis of Ester Precursors 

5-Ethenyldihydrofuran-2(3H)-one, 144. 

This compound was prepared following a modified procedure starting from hex-5-ene-1,4-diol.
22

 

To a solution of hex-5-ene-1,4-diol
21

 (8.46 g, 72.8 mmol, 1.0 equiv) and (diacetoxyiodo)benzene 

(BAIB, 75.0 g, 233.0 mmol, 3.2 equiv) in dry dichloromethane (250 mL), 2,2,6,6-

tetramethylpiperidine 1-oxyl (TEMPO, 2.27 g, 14.6 mmol, 0.2 equiv) was added at 22 °C. The 

reaction was exothermic and it was stirred for 2 h at which point starting material was consumed. 

The reaction was quenched with 1 L of a 1:1 of a saturated aqueous solution of sodium 

thiosulfate and Et2O solution. The organic layer was separated and the aqueous layer was 

extracted with Et2O (3 × 250 mL). The combined organic layers were washed with a saturated 

aqueous solution of NaHCO3 (15 mL) and then water (15 mL). The organic layers were dried 

with Na2SO4, filtered, and then concentrated in vacuo. The crude residue was purified by flash 

column chromatography (gradient, 10–30% EtOAc:hexanes) to give the lactone 144 as a pale 

yellow oil (6.68 g, 59.6 mmol, 82%).  

 

1
H NMR (500 MHz, CDCl3) δ: 

5.88 (ddd, J = 16.9, 10.5, 6.0 Hz, 1H) 

5.37 (d, J = 17.1 Hz, 1H)  

5.26 (d, J = 10.5 Hz, 1H) 

4.96-4.92 (m, 1H) 

2.59-2.50 (m, 2H) 

2.44-2.38 (m, 1H) 

2.04-1.97 (m, 1H). 
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13
C NMR (125 MHz, CDCl3) δ: 177.1, 135.7, 117.6, 80.6, 28.43, 28.40.  

HRMS (m/z) [M + H]
+
 calcd for C6H9O2, 113.0597; found 113.05954. Spectroscopic data for 

144 match those previously reported in the literature.
34

 

 

4-Hydroxy-1-phenylhex-5-en-1-one, 156. 

To a solution of the lactone 144 (1.7362 g, 15.5 mmol, 1.0 equiv) in dry THF (50 mL), was 

added phenyllithium in dibutyl ether (1.9 M, 9.4 mL, 17.9 mmol, 1.15 equiv) dropwise at –78 

°C. After stirring for 1 h at –78 °C, the reaction was warmed to 22 °C and stirred for 1 h. The 

reaction was quenched with an aqueous solution of NaOH (1 M, 10 mL) and the layers were 

separated. The aqueous solution was extracted with Et2O (3 × 50 mL) and the combined organic 

layers were dried with MgSO4, filtered, and then concentrated in vacuo. The crude residue was 

purified by flash column chromatography (gradient, 10–25% EtOAc:hexanes) to give the allylic 

alcohol 156 as a pale yellow oil (2.6221 g, 13.8 mmol, 89%).  

 

1
H NMR (500 MHz, CDCl3) δ: 

7.98 (dd, J = 8.4, 1.4 Hz, 2H) 

7.56 (t, J = 7.4 Hz, 1H) 

7.46 (t, J = 7.7 Hz, 2H) 

5.91 (ddd, J = 17.1, 10.4, 6.0 Hz, 1H) 

5.28 (dt, J = 17.2, 1.4 Hz, 1H) 

5.15 (dt, J = 10.4, 1.2 Hz, 1H) 

4.27-4.24 (m, 1H) 

3.14 (t, J = 7.02 Hz, 2H) 
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2.10-1.92 (m, 2H). 

13
C NMR (125 MHz, CDCl3) δ: 200.6, 140.8, 137.0, 133.3, 128.7 (2 C), 128.2 (2 C), 115.1, 72.4, 

34.5, 31.0.  

HRMS (m/z) [M + H]
+
 calcd for C12H14O2, 191.1067; found 191.1063. Spectroscopic data for 

156 match those previously reported in the literature.
36

 

 

B. Synthesis of Aryl Keto Esters 

 

6-(Benzofuran-2-yl)-6-oxohex-1-en-3-yl benzoate, 157.  

To a solution of the allylic alcohol 156 (316.0 mg, 1.66 mmol, 1.0 equiv)  and pyridine (0.40 

mL, 4.97 mmol, 3.0 equiv), in 6 mL of dichloromethane was added acetyl chloride (0.17 mL, 

2.32 mmol) dropwise. The solution was stirred for 1 h before being quenched with a saturated 

aqueous solution of NaHCO3 (1 mL). The organic layer was removed and the aqueous layer was 

further extracted with dichloromethane (5 × 6 mL). The combined organic layers were dried over 

MgSO4, filtered, and then concentrated in vacuo. The crude residue was purified by flash column 

chromatography on silica gel (20% EtOAc:hexanes). The phenyl ketone 157 was isolated as a 

colorless oil (309.0 mg, 1.33 mmol, 80% yield).  

 

1
H NMR (500 MHz, CDCl3) δ: 

7.94 (dd, J = 8.2, 1.4 Hz, 2H) 

7.56 (t, J = 7.4 Hz, 1H) 

7.46 (t, J = 7.7 Hz, 2H) 

5.81 (ddd, J = 17.1, 10.6, 6.2 Hz, 1H) 
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5.36 (ddd, J = 6.2, 6.2, 6.2 Hz, 1H) 

5.28 (d, J = 17.3 Hz, 1H) 

5.21 (d, J = 10.6 Hz, 1H) 

3.02 (t, J = 7.5 Hz, 2H) 

2.18-2.06 (m, 2H) 

2.05 (s, 3H). 

13
C NMR (125 MHz, CDCl3) δ: 199.2, 170.4, 136.9, 136.1, 133.2, 128.7 (2 C), 128.1 (2 C), 

117.3, 74.1, 34.1, 28.5, 21.3.  

 

General Procedure 1 for the synthesis of Aryl Keto Esters.  

6-Oxo-6-phenylhex-1-en-3-yl acetate, 165. 

The following general procedure is a modification of a known procedure.
37

 To a solution of the 

lactone 144 (1.7362 g, 15.5 mmol, 1.0 equiv) in dry THF (50 mL), was added phenyllithium in 

dibutyl ether (1.9 M, 9.4 mL, 17.9 mmol, 1.15 equiv) dropwise at –78 °C. After stirring for 1 h at 

–78 °C, the reaction was warmed to 22 °C and stirred for 1 h. The reaction was quenched with an 

aqueous solution of NaOH (1 M, 10 mL) and the layers were separated. The aqueous solution 

was extracted with Et2O (3 × 50 mL) and the combined organic layers were dried with MgSO4, 

filtered, and then concentrated in vacuo. The residue was passed through a pad of silica gel 

eluting with 25% ethyl acetate in hexanes. The solution was concentrated in vacuo and the crude 

oil was used directly for the next reaction. To the crude oil was added DMAP (378.7 mg, 3.1 

mmol, 0.2 equiv), triethylamine (2.8 mL, 20.2 mmol, 1.3 equiv) and dichloromethane (20 mL). 

The crude solution was cooled to 0 °C and benzoic anhydride (5.26 g, 23.3 mmol, 1.5 equiv), 

which was dissolved in dichloromethane (2.0 mL), was then added dropwise. The mixture was 
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allowed to warm to 22 °C and was stirred overnight. The solution was quenched with a saturated 

aqueous solution of NH4Cl (20 mL) and then extracted with dichloromethane (3 × 20 mL). The 

combined organic layers were then dried over Na2SO4, filtered, and concentrated in vacuo. The 

crude residue was purified by flash column chromatography (gradient, 1–5% EtOAc:hexanes) to 

give the phenyl ketone 165 as a yellow oil (1.14 g, 3.87 mmol, 25% yield).  

 

1
H NMR (500 MHz, CDCl3) δ: 

8.05 (dd, J = 8.4, 1.1 Hz, 2H) 

7.94 (dd, J = 8.4, 1.3 Hz, 2H) 

7.58-7.53 (m, 2H) 

7.46-7.42 (m, 4H) 

5.94 (ddd, J = 17.3, 10.6, 6.1 Hz, 1H) 

5.65-5.61 (m, 1H) 

5.39 (dt, J = 17.2, 1.3 Hz, 1H) 

5.26 (dt, J = 10.6, 1.2 Hz, 1H) 

3.13-3.10 (m, 2H) 

2.28-2.24 (m, 2H).
 

13
C NMR (125 MHz, CDCl3) δ: 199.2, 165.9, 136.9, 136.1, 133.2, 133.1, 130.4, 129.7 (2 C), 

128.7 (2 C), 128.5 (2 C), 128.1 (2 C), 117.4, 74.7, 34.2, 28.7.  

HRMS (m/z) [M + H]
+
 calcd for C19H19O3, 295.1329; found 295.1326. 
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6-(Benzofuran-2-yl)-6-oxohex-1-en-3-yl benzoate, 166. 

Prepared according to the general procedure 1, purified by flash column chromatography 

(gradient, 1–5% EtOAc:hexanes), the benzofuryl ketone 166 was isolated as white crystals 

(485.3 mg, 1.451 mmol, 65% yield).  

 

1
H NMR (500 MHz, CDCl3) δ: 

8.05-8.02 (dd, J = 8.3, 1.4 Hz, 2H) 

7.67 (dt, J = 7.9, 1.0 Hz, 1H) 

7.56-7.53 (m, 2H) 

7.48-7.40 (m, 4H) 

7.31-7.28 (m, 1H) 

5.95 (ddd, J = 17.2, 10.6, 6.0 Hz, 1H) 

5.64 (ddd, J = 6.2, 6.2, 6.2 Hz, 1H) 

5.40 (dt, J = 17.2, 1.3 Hz, 1H) 

5.27 (dt, J = 10.6, 1.2 Hz, 1H) 

3.12-3.09 (m, 2H) 

2.32-2.27 (m, 2H). 

13
C NMR (125 MHz, CDCl3) δ: 190.4, 165.9, 155.7, 152.5, 136.0, 133.2, 130.3, 129.7 (2 C), 

128.5 (2 C), 128.4, 127.1, 124.0, 123.4, 117.5, 112.9, 112.6, 74.6, 34.6, 28.6.  

HRMS (m/z) [M + H]
+
 calcd for C21H19O4, 335.1278; found 335.1291. 
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6-(4-Methoxyphenyl)-6-oxohex-1-en-3-yl benzoate, 170.  

Prepared according to the general procedure 1, purified by flash column chromatography 

(gradient, 3–10% EtOAc:hexanes), the 4-anisoyl ketone 170 was isolated as a yellow oil (139.1 

mg, 0.429 mmol, 19% yield).  

 

1
H NMR (500 MHz, CDCl3) δ: 

8.05 (dd, J = 8.4, 1.3 Hz, 2H) 

7.92 (d, J = 8.9 Hz, 2H) 

7.58-7.54 (m, 1H) 

7.46-7.42 (m, 2H) 

6.90 (d, J = 8.9 Hz, 2H) 

5.94 (ddd, J = 17.2, 10.6, 6.1 Hz, 1H) 

5.64-5.60 (m, 1H) 

5.38 (dt, J = 17.2, 1.3 Hz, 1H) 

5.25 (dt, J = 10.6, 1.2 Hz, 1H) 

3.86 (s, 3H) 

3.07-3.04 (m, 2H) 

2.26-2.22 (m, 2H). 

13
C NMR (125 MHz, CDCl3) δ: 197.8, 165.9, 163.6, 136.2, 133.1, 130.4 (3 C), 130.0, 129.8 (2 

C), 128.5 (2 C), 117.3, 113.9 (2 C), 74.8, 55.6, 33.9, 28.9.  

HRMS (m/z) [M + H]
+
 calcd for C20H21O4, 325.1434; found 325.1426. 
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6-Oxo-6-phenylhex-1-en-3-yl 4-methoxybenzoate, 171.  

To the allylic alcohol 156 (101.5 mg, 0.534 mmol, 1.0 equiv) was added DMAP (13.0 mg, 0.107 

mmol, 0.2 equiv), triethylamine (97.2 μL, 0.694 mmol, 1.3 equiv), and dichloromethane (5.3 

mL). The solution was cooled to 0 °C, and p-anisoyl chloride (136.5 mg, 0.800 mmol, 1.5 

equiv), dissolved in dichloromethane (1.0 mL), and then dicyclohexyl carbodiimide (DCC, 121.2 

mg, 0.587 mmol, 1.1 equiv), were added dropwise. The mixture was allowed to warm to 22 °C 

and was stirred overnight. The solution was then quenched with a saturated aqueous solution of 

NH4Cl (5.3 mL) and then extracted with dichloromethane (3 × 5.3 mL). The combined organic 

layers were dried over Na2SO4, filtered, and concentrated in vacuo. The crude residue was 

purified by silica gel flash column chromatography (gradient, 3–10% EtOAc:hexanes) and the 

phenyl ketone 171 was isolated as a colorless oil (39.1 mg, 0.121 mmol, 23% yield).  

 

1
H NMR (500 MHz, CDCl3) δ: 

8.02-7.99 (m, 2H) 

7.95-7.93 (m, 2H) 

7.56-7.53 (m, 1H) 

7.45-7.42 (m, 2H) 

6.93-6.90 (m, 2H) 

5.93 (ddd, J = 17.2, 10.6, 6.0 Hz, 1H) 

5.62-5.58 (m, 1H) 

5.36 (dt, J = 17.2, 1.3 Hz, 1H) 

5.24 (dt, J = 10.6, 1.2 Hz, 1H) 

3.86 (s, 3H) 
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3.12-3.08 (m, 2H) 

2.26-2.21 (m, 2H). 

13
C NMR (125 MHz, CDCl3) δ: 199.3, 165.7, 163.6, 136.9, 136.4, 133.2, 131.8 (2 C), 128.7 (2 

C), 128.2 (2 C), 122.8, 117.1, 113.8 (2 C), 74.3, 55.6, 34.3, 28.7.  

HRMS (m/z) [M + H]
+
 calcd for C20H21O4, 325.1434; found 325.1425. 

 

6-(7-Methoxybenzofuran-2-yl)-6-oxohex-1-en-3-yl benzoate, 143.  

Prepared according to the general procedure 1, purified by flash column chromatography 

(gradient, 1–5% EtOAc:hexanes), the benzofuryl ketone 143 was isolated as white crystals 

(168.2 mg, 0.462 mmol, 21% yield).  

 

1
H NMR (500 MHz, CDCl3) δ: 

8.04 (dd, J = 8.4, 1.3 Hz, 2H) 

7.56-7.52 (m, 1H) 

7.46 (s, 1H) 

7.40-7.43 (m, 2H) 

7.24 (dd, J = 7.9, 1.2 Hz, 1H) 

7.20 (t, J = 7.8 Hz, 1H) 

6.93 (dd, J = 7.6, 1.2 Hz, 1H) 

5.94 (ddd, J = 17.2, 10.6, 6.1 Hz, 1H) 

5.63 (ddd, J = 6.2, 6.2, 6.2 Hz, 1H) 

5.39 (dt, J = 17.2, 1.3 Hz, 1H) 

5.26 (dt, J = 10.5, 1.2 Hz, 1H) 
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4.00 (s, 3H) 

3.16-3.12 (m, 2H) 

2.29 (ddd, J = 7.1, 7.1, 7.1 Hz, 2H). 

13
C NMR (125 MHz, CDCl3) δ: 190.4, 165.9, 152.9, 146.1, 145.4, 136.0, 133.1, 130.3, 129.8 (2 

C), 128.8, 128.5 (2 C), 124.7, 117.5, 115.2, 112.7, 109.5, 74.6, 56.2, 34.7, 28.4.  

HRMS (m/z) [M + H]
+
 calcd for C22H21O5, 365.1389; found 365.1377. 

 

6-(Furan-2-yl)-6-oxohex-1-en-3-yl benzoate, 179.  

Prepared according to the general procedure 1, purified by flash column chromatography 

(gradient, 3–10% EtOAc:hexanes), the furyl ketone 179 was isolated as a colorless oil (174.7 

mg, 0.614 mmol, 28% yield).  

 

1
H NMR (500 MHz, CDCl3) δ: 

8.04 (dd, J = 8.4, 1.3 Hz, 2H) 

7.58-7.54 (m, 1H) 

7.53 (dd, J = 1.7, 0.8 Hz, 1H) 

7.46-7.42 (m, 2H) 

7.16 (dd, J = 3.5, 0.8 Hz, 1H) 

6.49 (dd, J = 3.6, 1.7 Hz, 1H) 

5.92 (ddd, J = 17.3, 10.6, 6.1 Hz, 1H) 

5.61-5.57 (m, 1H) 

5.37 (dt, J = 17.2, 1.3 Hz, 1H) 

5.25 (dt, J = 10.7, 1.2 Hz, 1H) 
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2.98-2.95 (m, 2H) 

2.25-2.21 (m, 2H). 

13
C NMR (125 MHz, CDCl3) δ: 188.5, 165.9, 152.7, 146.4, 136.0, 133.1, 130.3, 129.8 (2 C), 

128.5 (2 C), 117.4, 117.1, 112.3, 74.6, 34.1, 28.5.  

HRMS (m/z) [M + H]
+
 calcd for C17H17O4, 285.1121; found 285.1118. 

 

6-Oxo-6-(4-methylphenyl)hex-1-en-3-yl benzoate, 181.  

Prepared according to the general procedure 1, purified by flash column chromatography 

(gradient, 1–5% EtOAc:hexanes), the 4-tolyl ketone 181 was isolated as a colorless oil (262.2 

mg, 0.850 mmol, 38% yield).  

 

1
H NMR (500 MHz, CDCl3) δ: 

8.05 (dd, J = 8.4, 1.4 Hz, 2H) 

7.85-7.83 (d, J = 8.2 Hz, 2H) 

7.58-7.55 (m, 1H) 

7.46-7.42 (m, 2H) 

7.23 (d, J = 7.8 Hz, 2H) 

5.94 (ddd, J = 17.2, 10.5, 6.1 Hz, 1H) 

5.64-5.60 (m, 1H) 

5.38 (dt, J = 17.3, 1.3 Hz, 1H) 

5.25 (dt, J = 10.6, 1.2 Hz, 1H) 

3.09-3.06 (m, 2H) 

2.40 (s, 3H) 
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2.27-2.22 (m, 2H).
  

13
C NMR (125 MHz, CDCl3) δ: 198.9, 165.9, 144.0, 136.2, 134.5, 133.1, 130.4, 129.8 (2 C), 

129.4 (2 C), 128.5 (2 C), 128.3 (2 C), 117.3, 74.7, 34.1, 28.8, 21.8.  

HRMS (m/z) [M + H]
+
 calcd for C20H21O3, 309.1485; found 309.1479. 

 

6-(4-Fluorophenyl)-6-oxohex-1-en-3-yl benzoate, 183.  

Prepared according to the general procedure 1, purified by flash column chromatography 

(gradient, 1–5% EtOAc:hexanes), the 4-fluorophenyl ketone 183 was isolated as a white solid 

(124.8 mg, 0.400 mmol, 18% yield).  

 

1
H NMR (500 MHz, CDCl3) δ: 

8.04 (dd, J = 8.4, 1.3 Hz, 2H) 

7.98-7.94 (m, 2H) 

7.58-7.55 (m, 1H) 

7.46-7.43 (m, 2H) 

7.12-7.08 (m, 2H) 

5.94 (ddd, J = 17.2, 10.6, 6.1 Hz, 1H) 

5.64-5.60 (m, 1H) 

5.38 (dt, J = 17.2, 1.3 Hz, 1H) 

5.26 (dt, J = 10.5, 1.2 Hz, 1H) 

3.09-3.06 (m, 2H) 

2.30-2.20 (m, 2H).
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13
C NMR (125 MHz, CDCl3) δ: 197.6, 165.9, 165.9 (d, 

1
JC-F = 255.3 Hz), 136.1, 133.3 (d, 

4
JC-F = 

3.0 Hz), 133.2, 130.8 (d, 
3
JC-F = 9.2 Hz, 2 C), 130.4, 129.8 (2 C), 128.5 (2 C), 117.4, 115.8 (d, 

2
JC-F = 21.9 Hz, 2 C), 74.6, 34.1, 28.7.  

HRMS (m/z) [M + H]
+
 calcd for C19H18FO3, 313.1235; found 313.1223. 

 

6-Oxo-6-(4-(trifluoromethyl)phenyl)hex-1-en-3-yl benzoate, 185.  

Prepared according to the general procedure 1, purified by flash column chromatography 

(gradient, 1–5% EtOAc:hexanes), the 4-trifluoromethylphenyl ketone 185 was isolated as a 

colorless oil (363.2 mg, 1.002 mmol, 45% yield).  

  

1
H NMR (500 MHz, CDCl3) δ: 

8.04-8.02 (m, 4H) 

7.70 (d, J = 8.2 Hz, 2H) 

7.58-7.55 (m, 1H) 

7.45-7.42 (m, 2H) 

5.94 (ddd, J = 17.0, 10.6, 6.0 Hz, 1H) 

5.66-5.62 (m, 1H) 

5.39 (dt, J = 17.2, 1.3 Hz, 1H) 

5.27 (dt, J = 10.6, 1.3 Hz, 1H) 

3.14-3.11 (m, 2H) 

2.33-2.22 (m, 2H).
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13
C NMR (125 MHz, CDCl3) δ: 198.2, 165.9, 139.5, 136.0, 134.5 (q, 

2
JC-F = 32.6 Hz), 133.2, 

130.3, 129.7 (2 C), 128.6 (2 C), 128.5 (2 C), 125.8 (q, 
3
JC-F = 3.8 Hz, 2 C), 123.7 (q, 

1
JC-F = 

272.6 Hz), 117.5, 74.4, 34.5, 28.5.  

HRMS (m/z) [M + H]
+
 calcd for C20H18F3O3, 363.1203; found 363.1185. 

 

6-Oxo-6-(3-(trifluoromethyl)phenyl)hex-1-en-3-yl benzoate, 187.  

Prepared according to the general procedure 1, purified by flash column chromatography 

(gradient, 1–5% EtOAc:hexanes), the 3-trifluoromethylphenyl ketone 187 was isolated as a 

colorless oil (475.1 mg, 1.311 mmol, 59% yield).  

 

1
H NMR (500 MHz, CDCl3) δ: 

8.18 (s, 1H) 

8.10 (d, J = 7.8 Hz, 1H) 

8.05-8.03 (m, 2H) 

7.79 (d, J = 7.8 Hz, 1H) 

7.59-7.54 (m, 2H) 

7.43 (m, 2H) 

5.94 (ddd, J = 17.2, 10.6, 6.0 Hz, 1H) 

5.66-5.62 (m, 1H) 

5.39 (dt, J = 17.2, 1.3 Hz, 1H) 

5.27 (dt, J = 10.5, 1.2 Hz, 1H) 

3.13 (t, J = 7.5 Hz, 2H) 

2.32-2.24 (m, 2H). 
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13
C NMR (125 MHz, CDCl3) δ: 197.8, 165.8, 137.4, 136.0, 133.2, 131.3 (q, 

2
JC-F = 32.9 Hz), 

131.3, 130.3, 129.7 (2 C), 129.6 (q, 
4
JC-F = 3.7 Hz), 129.4, 128.5 (2 C), 124.9 (q, 

3
JC-F = 3.8 Hz), 

123.8 (q, 
1
JC-F = 272.7 Hz), 117.5, 74.4, 34.3, 28.5.  

HRMS (m/z) [M + H]
+
 calcd for C20H18F3O3, 363.1203; found 363.1195. 

 

6-Oxo-6-(2-(trifluoromethyl)phenyl)hex-1-en-3-yl benzoate, 189. 

Prepared according to the general procedure 1, purified by flash column chromatography 

(gradient, 1–5% EtOAc:hexanes), the 2-trifluoromethylphenyl ketone 189 was isolated as a 

yellow oil (112.4 mg, 0.310 mmol, 14% yield). 

 

1
H NMR (500 MHz, CDCl3) δ: 

8.05 (dd, J = 8.3, 1.2 Hz, 2H) 

7.70 (d, J = 7.4 Hz, 1H) 

7.59-7.52 (m, 3H) 

7.45 (t, J = 7.7 Hz, 2H) 

7.39 (d, J = 7.3 Hz, 1H) 

5.92 (ddd, J = 16.9, 10.6, 6.0 Hz, 1H) 

5.62-5.58 (m, 1H) 

5.38 (dt, J = 17.3, 1.3 Hz, 1H) 

5.26 (dt, J = 10.5, 1.2 Hz, 1H) 

2.97 (t, J = 7.5 Hz, 2H) 

2.29-2.18 (m, 2H).  
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13
C NMR (125 MHz, CDCl3) δ: 203.4, 165.9, 140.3 (q, 

4
JC-F = 1.8 Hz), 135.9, 133.2, 132.0, 

130.3, 130.2, 129.8 (2 C), 128.6 (2 C), 127.0 (q, 
2
JC-F = 32.3 Hz), 127.0, 126.8 (q, 

3
JC-F = 5.0 

Hz), 123.7 (q, 
1
JC-F = 273.9 Hz), 117.5, 74.3, 39.0 (d, J = 1.5 Hz), 28.2. 

 

6-(4-(Dimethylamino)phenyl)-6-oxohex-1-en-3-yl benzoate, 191. 

Prepared according to the general procedure 1, purified by flash column chromatography 

(gradient, 3–10% EtOAc:hexanes), the 4-dimethylaniline ketone 191 was isolated as a white 

solid (194.5 mg, 0.576 mmol, 26% yield).  

 

1
H NMR (500 MHz, CDCl3) δ: 

8.07-8.05 (m, 2H) 

7.85 (d, J = 9.1 Hz, 2H) 

7.57-7.54 (m, 1H) 

7.46-7.42 (m, 2H) 

6.62 (d, J = 9.2 Hz, 2H) 

5.94 (ddd, J = 17.3, 10.6, 6.1 Hz, 1H) 

5.61 (ddd, J = 6.2, 6.2, 6.2 Hz, 1H) 

5.37 (dt, J = 17.2, 1.3 Hz, 1H) 

5.24 (dt, J = 10.6, 1.2 Hz, 1H) 

3.04 (s, 6H) 

3.01 (td, J = 7.2, 2.6 Hz, 2H) 

2.25-2.21 (m, 2H).  
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13
C NMR (125 MHz, CDCl3) δ: 197.3, 165.9, 153.5, 136.3, 133.0, 130.5, 130.3 (2C), 129.8 (2C), 

128.5 (2C), 124.9, 117.2, 110.7 (2C), 75.0, 40.1 (2C), 33.4, 29.2.  

HRMS (m/z) [M + H]
+
 calcd for C21H24NO3, 338.1751; found 338.1744. 

 

6-Oxo-6-phenylhex-1-en-3-yl benzofuran-2-carboxylate, 193.  

To the allylic alcohol 156 (95.1 mg, 0.500 mmol, 1.0 equiv) was added DMAP (6.0 mg, 0.050 

mmol, 0.1 equiv), benzofuran-2-carboxylic acid (81.0 mg, 0.500 mmol, 1.0 equiv), and 

dichloromethane (10.0 mL) was added. Dicyclohexyl carbodiimide (DCC, 113.5 mg, 0.550 

mmol, 1.1 equiv), dissolved in dichloromethane (1.0 mL), was then added dropwise at 0 °C. The 

mixture was allowed to warm to 22 °C and was stirred for 3.0 h. The solution was then quenched 

with a saturated aqueous solution of NH4Cl (0.5 mL) and the layers were separated. Then the 

organic layer was washed with a saturated aqueous solution of NaHCO3 (0.5 mL), dried over 

Na2SO4, filtered, and concentrated in vacuo. The product was purified by silica gel flash column 

chromatography (gradient, 1–5% EtOAc:hexanes),to give the phenyl ketone 193 as a yellow oil 

(48 mg, 0.144 mmol, 29% yield).  

 

1
H NMR (500 MHz, CDCl3) δ: 

7.97-7.95 (m, 2H) 

7.68 (dt, J = 7.9, 1.1 Hz, 1H) 

7.59 (dd, J = 8.4, 0.9 Hz, 1H) 

7.56-7.53 (m, 2H) 

7.47-7.43 (m, 3H) 

7.32-7.29 (m, 1H) 
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5.96 (ddd, J = 17.0, 10.5, 6.3 Hz, 1H) 

5.69-5.65 (m, 1H) 

5.43 (dt, J = 17.3, 1.3 Hz, 1H) 

5.30 (dt, J = 10.5, 1.2 Hz, 1H) 

3.15-3.12 (m, 2H) 

2.31-2.26 (m, 2H).  

13
C NMR (125 MHz, CDCl3) δ: 199.0, 159.0, 155.9, 145.6, 136.9, 135.6, 133.3, 128.8 (2 C), 

128.2 (2 C), 127.8, 127.1, 123.9, 123.0, 118.1, 114.2, 112.5, 75.4, 34.2, 28.6. 

 

6-Oxo-6-phenylhex-1-en-3-yl 4-(trifluoromethyl)benzoate, 194. 

To the allylic alcohol 156 (100.0 mg, 0.526 mmol, 1.0 equiv) was added DMAP (6.4 mg, 0.053 

mmol, 0.1 equiv), 4-(trifluoromethyl)benzoic acid (100.0 mg, 0.526 mmol, 1.0 equiv), and 

dichloromethane (10.0 mL) was added. DCC (119.4, 0.579 mmol, 1.1 equiv), dissolved in 

dichloromethane (1.0 mL), was then added dropwise at 0 °C. The mixture was allowed to warm 

to 22 °C and was stirred for 3.0 h. The solution was then quenched with sat. aq. NH4Cl (0.5 mL) 

and the layers were separated. Then the organic layer was washed with sat. NaHCO3 (0.5 mL), 

dried over Na2SO4, filtered, then concentrated in vacuo. The product was purified by silica gel 

flash column chromatography (gradient, 1–5% EtOAc:hexanes), to give the phenyl ketone 194 as 

a yellow oil (65.2 mg, 0.180 mmol, 34% yield).  

 

1
H NMR (500 MHz, CDCl3) δ: 

8.14 (d, J = 8.0 Hz, 2H) 

7.93 (dd, J = 8.4, 1.4 Hz, 2H) 
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7.70 (d, J = 8.2 Hz, 2H) 

7.57-7.53 (m, 1H) 

7.44 (t, J = 7.8 Hz, 2H) 

5.94 (ddd, J = 17.1, 10.6, 6.3 Hz, 1H) 

5.66-5.62 (m, 1H) 

5.39 (dt, J = 17.2, 1.3 Hz, 1H) 

5.29 (dt, J = 10.5, 1.2 Hz, 1H) 

3.10 (t, J = 7.2 Hz, 2H) 

2.28 (dt, J = 7.0, 7.0 Hz, 2H).  

13
C NMR (125 MHz, CDCl3) δ: 199.0, 164.7, 136.8, 135.7, 134.6 (q, 

2
JC-F = 32.7 Hz), 133.6, 

133.3, 130.1 (2 C), 128.8 (2 C), 128.1 (2 C), 125.6 (q, 
3
JC-F = 3.8 Hz, 2 C), 123.8 (q, 

1
JC-F = 

272.7 Hz), 117.9, 75.5, 34.1, 38.6.  

HRMS (m/z) [M + H]
+
 calcd for C20H18F3O3, 363.1203; found 363.1185. 

 

4-Oxo-4-phenylbutyl benzoate, 195.  

Prepared according to the general procedure 1, purified by flash column chromatography 

(gradient, 1–5% EtOAc:Hexanes),  the phenyl ketone 195 was isolated as white crystals (40.8 

mg, 0.152 mmol, 7% yield).  

 

1
H NMR (500 MHz, CDCl3) δ:    

8.04-8.02 (m, 2H) 

7.99-7.97 (m, 2H) 

7.58-7.54 (m, 2H) 
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7.48-7.42 (m, 4H) 

4.44 (t, J = 6.4 Hz, 2H) 

3.16 (t, J = 7.2 Hz, 2H) 

2.28-2.23 (m, 2H).  

13
C NMR (125 MHz, CDCl3) δ: 199.2, 166.7, 136.9, 133.3, 133.1, 130.4, 129.7 (2 C), 128.8 (2 

C), 128.5 (2 C), 128.2 (2 C), 64.5, 35.1, 23.5.  

HRMS (m/z) [M + H]
+
 calcd for C17H17O3, 269.1172; found 269.1164. 

 

5-Oxo-5-phenylpentan-2-yl benzoate, 197.  

Prepared according to the general procedure 1, purified by flash column chromatography 

(gradient, 1–5% EtOAc:hexanes), the phenyl ketone 197 was isolated as a colorless oil (66.5 mg, 

0.231 mmol, 23% yield).  

 

1
H NMR (500 MHz, CDCl3) δ:   

8.04-8.02 (m, 2H) 

7.95-7.93 (m, 2H) 

7.57-7.52 (m, 2H) 

7.45-7.41 (m, 4H) 

5.27 (tq, J = 6.4, 6.4 Hz, 1H) 

3.16-3.05 (m, 2H) 

2.19-2.15 (m, 2H) 

1.42 (d, J = 6.3 Hz, 3H).  
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13
C NMR (125 MHz, CDCl3) δ: 199.4, 166.3, 136.9, 133.2, 133.0, 130.7, 129.7 (2 C), 128.7 (2 

C), 128.5 (2 C), 128.2 (2 C), 71.3, 34.8, 30.5, 20.5.
  

HRMS (m/z) [M + H]
+
 calcd for C18H19O3, 283.1329; found 283.1322. 

 

C. Synthesis of Aryl Cyclopropanes 

 

trans (2-Ethenylcyclopropyl)phenylmethanone, 158.  

To a solution of the phenyl ketone 165 (23.2 mg, 0.10 mmol, 1.0 equiv) and bis[1,2-

bis(diphenylphosphino)ethane]palladium(0) (4.5 mg, 0.005 mmol, 0.05 equiv) in THF (4 mL) 

was added LiHMDS (1.0 M in THF, 110 μL, 0.11 mmol, 1.1 equiv) at –78 °C. The solution was 

stirred at –78 °C for 30 min, and then the reaction was gradually warmed to 22 °C over 30 min. 

The reaction mixture was stirred at 22 °C for 1.5 h the reaction was then quenched with brine (1 

mL). The aqueous layer was separated and extracted with Et2O (3 x 4 mL). The combined 

organic layers were dried over MgSO4. Evaporation of the solvent under reduced pressure 

afforded the crude product, which was further purified by flash column chromatography 

(gradient, 1–5% EtOAc:hexanes) to give the cyclopropyl phenyl ketone 158 as a colorless oil 

(14.6 mg, 0.0848 mmol, 85% yield). The structure of 158 and the trans stereochemistry was 

elucidated based on previously reported spectroscopic data as well as 2D NMR results (see end 

of this experimental section for the 2D NMR experiments).
26

 

 

1
H NMR (500 MHz, CDCl3) δ:   

7.99 (dd, J = 8.4, 1.3 Hz, 2H) 

7.59-7.55 (m, 1H) 
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7.48 (t, J = 7.6 Hz, 2H)  

5.55 (ddd, J = 17.0, 10.3, 8.5 Hz, 1H) 

5.21 (ddd, J = 17.0, 1.4, 0.7 Hz, 1H) 

5.04 (dd, J = 10.3, 1.4 Hz, 1H) 

2.69 (ddd, J = 8.0, 5.2, 3.8 Hz, 1H) 

2.21 (dddd, J = 8.6, 8.6, 6.4, 3.8 Hz, 1H) 

1.71 (ddd, J = 8.9, 5.2, 3.9 Hz, 1H) 

1.19 (ddd, J = 8.0, 6.4, 3.9 Hz, 1H).
 

13
C NMR (125 MHz, CDCl3) δ: 198.8, 138.6, 138.0, 133.0, 128.7 (2 C), 128.2 (2 C), 115.2, 29.6, 

26.8, 18.3.  

HRMS (m/z) [M + H]
+
 calcd for C12H13O, 173.0961; found 173.0959.  

 

trans Benzofuran-2-yl(2-ethenylcyclopropyl)methanone, 167.  

To a solution of the benzofuryl ketone 166 (23.2 mg, 0.10 mmol, 1.0 equiv) and bis[1,2-

bis(diphenylphosphino)ethane]palladium(0) (4.5 mg, 0.005 mmol, 0.05 equiv) in 4 mL of THF 

was added LiHMDS (1.0 M in THF/ethylbenzene, 110 μL, 0.11 mmol, 1.1 equiv) at –78 °C. The 

solution was stirred at –78 °C for 30 min and then was gradually warmed to 22 °C over 30 min. 

The reaction mixture was then stirred at 22 °C for 1.5 h at which time the reaction was quenched 

with 1 mL of brine. The aqueous layer was separated and extracted with Et2O (3 × 4 mL). The 

combined organic layers were dried over MgSO4, filtered, and then concentrated in vacuo. The 

crude residue was purified by flash column chromatography (gradient, 1–5% EtOAc:hexanes) to 

give the cyclopropyl benzofuryl ketone 167 as a colorless oil (18.9 mg, 0.0890 mmol, 89% 

yield).  
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1
H NMR (500 MHz, CDCl3) δ: 

7.72 (d, J = 7.8 Hz, 1H) 

7.59 (d, J = 8.4 Hz, 1H) 

7.55 (s, 1H) 

7.49-7.46 (m, 1H) 

7.32 (t, J = 7.5 Hz, 1H) 

5.56 (ddd, J = 17.0, 10.3, 8.5 Hz, 1H) 

5.23 (dd, J = 17.2, 1.4 Hz, 1H) 

5.06 (dd, J = 10.3, 1.3 Hz, 1H) 

2.78 (ddd, J = 8.5, 5.1, 3.8 Hz, 1H) 

2.32-2.27 (m, 1H) 

1.74 (ddd, J = 8.9, 5.1, 4.0 Hz, 1H) 

1.25 (ddd, J = 8.1, 6.5, 4.0 Hz, 1H). 

13
C NMR (125 MHz, CDCl3) δ: 189.4, 155.8, 153.2, 138.3, 128.2, 127.3, 124.0, 123.4, 115.4, 

112.6, 112.5, 29.8, 27.2, 18.6.  

HRMS (m/z) [M + H]
+
 calcd for C14H13O2, 213.0910; found 213.0904.  

 

General Procedure 2 for the synthesis of cyclopropanes.  

trans Benzofuran-2-yl(2-ethenylcyclopropyl)methanone, 167.  

To a solution of the benzofuryl ketone 166 (33.4 mg, 0.1 mmol, 1.0 equiv) in dry THF (4 mL) 

was added LiHMDS (1.0 M in THF, 110 μL, 0.11 mmol, 1.1 equiv) at –78 °C and after it had 

stirred for 30 min at –78 °C, the reaction mixture was then stirred at 22 °C for 2 h at which time 
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the reaction was quenched with brine (1 mL). The aqueous layer was separated and extracted 

with Et2O (3 × 4 mL). The combined organic layers were dried over MgSO4, filtered, and then 

concentrated in vacuo. The crude residue was purified by flash column chromatography 

(gradient, 1–5% EtOAc:hexanes) to give the cyclopropyl benzofuryl ketone 167 as a colorless oil 

(17.0 mg, 0.0801 mmol, 80% yield).  

 

 

 

trans Phenyl(2-ethenylcyclopropyl)methanone, 158.  

Prepared according to the general procedure 2 using the phenyl ketone 165, after addition of 

LiHMDS and stirring at –78 °C for 30 min, the reaction was then stirred at 22 °C for 1 h before 

quenching with brine. The crude residue was purified by flash column chromatography (gradient, 

1–5% EtOAc:hexanes) to give the cyclopropyl phenyl ketone 158 as a colorless oil (14.5 mg, 

0.0842 mmol, 84% yield).
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trans 4-Methoxyphenyl(2-ethenylcyclopropyl)methanone, 171. 

Prepared according to the general procedure 2 using the 4-anisoyl ketone 170, after addition of 

LiHMDS and stirring at –78 °C for 30 min, the reaction was then stirred at 22 °C for 2 h before 

quenching with brine. The crude residue was purified by flash column chromatography (gradient, 

2–10% EtOAc:hexanes) to give the cyclopropyl 4-anisoyl ketone 171 as a colorless oil (4.3 mg, 

0.0213 mmol, 21% yield) and the cyclopropyl phenyl ketone 158 as a colorless oil (9.9 mg, 

0.0575 mmol, 58% yield). 

 

1
H NMR (500 MHz, CDCl3) δ:  

7.93 (d, J = 9.0 Hz, 2H) 

6.67 (d, J = 9.0 Hz, 2H) 

5.54 (ddd, J = 17.0, 10.3, 8.5 Hz, 1H) 

5.20 (ddd, J = 17.1, 1.4, 0.6 Hz, 1H) 

5.02 (dd, J = 10.3, 1.2 Hz, 1H) 

3.88 (s, 3H) 

2.64 (ddd, J = 8.0, 5.2, 3.8 Hz, 1H) 

2.17 (dddd, J = 8.6, 8.6, 6.3, 3.8 Hz, 1H) 

1.67 (ddd, J = 8.9, 5.2, 3.9 Hz, 1H) 

1.15 (ddd, J = 8.0, 6.3, 3.9 Hz, 1H).  

13
C NMR (125 MHz, CDCl3) δ: 197.2, 163.5, 138.9, 131.0, 130.4 (2 C), 114.9, 113.8 (2 C), 55.6, 

29.1, 26.3, 17.9.  

HRMS (m/z) [M + H]
+
 calcd for C13H15O2, 203.1067; found 203.1061. 
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trans 4-Methoxyphenyl(2-ethenylcyclopropyl)methanone, 171.  

Prepared according to the general procedure 2 using the phenyl ketone 172, after addition of 

LiHMDS and stirring at –78 °C for 30 min, the reaction was then stirred at 22 °C for 2 h before 

quenching with brine. The crude residue was purified by flash column chromatography (gradient, 

2–10% EtOAc:hexanes) to give the cyclopropyl 4-anisoyl ketone 172 as a colorless oil (6.2 mg, 

0.0307 mmol, 31% yield) and the cyclopropyl phenyl ketone 158 as a colorless oil (8.5 mg, 

0.0494 mmol, 49% yield). 

 

 

 

trans 7-Methoxybenzofuran-2-yl(2-ethenylcyclopropyl)methanone, 142.  

Prepared according to the general procedure 2 using the benzofuryl ketone 143, after addition of 

LiHMDS and stirring at –78 °C for 30 min, the reaction was then stirred at 22 °C for 4.5 h before 

quenching with brine. The crude residue was purified by flash column chromatography (gradient, 

1–5% EtOAc:hexanes) to give the cyclopropyl benzofuryl ketone 142 as a colorless oil (18.1 mg, 

0.0750 mmol, 75% yield).  

 

1
H NMR (500 MHz, CDCl3) δ: 

7.51 (s, 1H) 
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7.28 (dd, J = 7.9, 1.1 Hz, 1H) 

7.22 (t, J = 7.9 Hz, 1H) 

6.94 (dd, J = 7.8, 1.1 Hz, 1H) 

5.54 (ddd, J = 17.1, 10.3, 8.5 Hz, 1H) 

5.22 (ddd, J = 17.0, 1.4, 0.7 Hz, 1H) 

5.04 (ddd, J = 10.3, 1.4, 0.5 Hz, 1H) 

4.03 (s, 3H) 

2.89 (ddd, J = 8.2, 5.1, 3.8 Hz, 1H) 

2.33-2.28 (m, 1H) 

1.71 (ddd, J = 9.0, 5.1, 4.0 Hz, 1H) 

1.25 (ddd, J = 8.2, 6.5, 4.0 Hz, 1H).
  

13
C NMR (125 MHz, CDCl3) δ: 189.6, 153.5, 146.2, 145.5, 138.4, 129.0, 124.7, 115.4, 115.2, 

112.2, 109.4, 56.2, 29.9, 27.0, 18.9.  

HRMS (m/z) [M + H]
+
 calcd for C15H15O3, 243.1016; found 243.1000.  

 

trans 2-Furanyl(2-ethenylcyclopropyl)methanone, 180. 

Prepared according to the general procedure 2 using the furyl ketone 179, after addition of 

LiHMDS and stirring at –78 °C for 30 min, the reaction was then stirred at 22 °C for 1.5 h before 

quenching with brine. The crude residue was purified by flash column chromatography (gradient, 

2–10% EtOAc:hexanes) to give the cyclopropyl furyl ketone 180 as a colorless oil (11.3  mg, 

0.0697 mmol, 70% yield) and the cyclopropyl phenyl ketone 158 as a colorless oil (2.3 mg, 

0.0134 mmol, 13% yield). 
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1
H NMR (500 MHz, CDCl3) δ: 

7.61 (d, J = 1.7, 0.8 Hz, 1H) 

7.22 (dd, J = 3.5, 0.8 Hz, 1H) 

6.55 (dd, J = 3.6, 1.7 Hz, 1H) 

5.51 (ddd, J = 17.0, 10.3, 8.5 Hz, 1H) 

5.20 (ddd, J = 17.1, 1.4, 0.7 Hz, 1H) 

5.03 (dd, J = 10.3, 1.0 Hz, 1H) 

2.62 (ddd, J = 8.1, 5.2, 3.8 Hz, 1H) 

2.24-2.19 (m, 1H) 

1.66 (ddd, J = 8.9, 5.2, 4.0 Hz, 1H) 

1.16 (ddd, J = 8.1, 6.4, 4.0 Hz, 1H).
  

13
C NMR (125 MHz, CDCl3) δ: 187.5, 153.4, 146.5, 138.5, 116.7, 115.2, 112.4, 29.1, 26.6, 18.0. 

HRMS (m/z) [M + H]
+
 calcd for C10H11O2, 163.0754; found 163.0754. 

 

trans 4-Methylphenyl(2-ethenylcyclopropyl)methanone, 182. 

Prepared according to the general procedure 2 using the 4-tolyl ketone 181, after addition of 

LiHMDS and stirring at –78 °C for 30 min, the reaction was then stirred at 22 °C for 2.5 h before 

quenching with brine. The crude residue was purified by flash column chromatography (gradient, 

1–5% EtOAc:hexanes) to give 17.0 mg of an inseparable mixture of the cyclopropyl tolyl ketone 

182 (49% yield) and the cyclopropyl phenyl ketone 158 (46% yield) as a colorless oil.  

 

Compound 182: 

1
H NMR (500 MHz, CDCl3) δ: 
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7.89 (d, J = 8.2 Hz, 2H) 

7.27 (d, J = 8.0 Hz, 2H) 

5.58-5.50 (m, 1H) 

5.20 (ddd, J = 17.0, 1.4, 0.7 Hz, 1H) 

5.03 (dd, J = 10.4, 1.4 Hz, 1H) 

2.71-2.65 (m, 1H) 

2.42 (s, 3H) 

2.23-2.15 (m, 1H) 

1.73-1.67 (m, 1H) 

1.21-1.15 (m, 1H). 

13
C NMR (125 MHz, CDCl3) δ: 198.4, 143.7, 138.8, 135.5, 129.4 (2 C), 128.3 (2 C), 115.0, 29.4, 

26.6, 21.8, 18.1.  

HRMS of mixture (m/z) [M + H]
+
 calcd for C13H15O, 187.1117; found 187.1113. 

 

trans 4-Fluorophenyl(2-ethenylcyclopropyl)methanone, 184.  

Prepared according to the general procedure 2 using the 4-fluorophenyl ketone 183, after 

addition of LiHMDS and stirring at –78 °C for 30 min, the reaction was then stirred at 22 °C for 

30 min before quenching with brine. The crude residue was purified by flash column 

chromatography (gradient, 1–5% EtOAc:hexanes) to give 16.3 mg of an inseparable mixture of 

the cyclopropyl 4-fluorophenyl ketone 184 (47% yield) and the cyclopropyl phenyl ketone 158 

(43% yield) as a colorless oil. 
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Compound 184: 

1
H NMR (500 MHz, CDCl3) δ: 

8.03-8.00 (m, 2H) 

7.17-7.12 (m, 2H) 

5.58-5.50 (m, 1H) 

5.21 (d, J = 17.0 Hz, 2H) 

5.06-5.03 (m, 1H) 

2.63 (ddd, J = 8.0, 5.2, 3.8 Hz, 1H) 

2.23-2.17 (m, 1H) 

1.73-1.68 (m, 1H) 

1.21-1.17 (m, 1H).
  

13
C NMR (125 MHz, CDCl3) δ: 197.2, 165.8 (d, 

1
JC-F = 254.2 Hz), 138.5, 134.4 (d, 

4
JC-F = 2.9 

Hz), 130.8 (d, 
3
JC-F = 9.4 Hz, 2 C), 115.8 (d, 

2
JC-F = 21.9 Hz, 2 C), 115.3, 29.6, 26.7, 18.3. 

HRMS of mixture (m/z) [M + H]
+
 calcd for C12H12FO, 191.0867; found 191.0862. 

 

trans 4-Trifluorophenyl(2-ethenylcyclopropyl)methanone, 186. 

Prepared according to the general procedure 2 using the 4-trifluoromethylphenyl ketone 185, 

after addition of LiHMDS and stirring at –78 °C for 30 min, the reaction was then stirred at 22 

°C for 1.25 h before quenching with brine. The crude residue was purified by flash column 

chromatography (gradient, 1–5% EtOAc:hexanes) to give the cyclopropyl 4-

trifluoromethylphenyl ketone 186 as a colorless oil (14.5 mg, 0.0604 mmol, 60% yield) and the 

cyclopropyl phenyl ketone 158 as a colorless oil (3.5 mg, 0.0203 mmol, 20% yield).  
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1
H NMR (500 MHz, CDCl3) δ: 

8.08 (d, J = 8.6 Hz, 2H) 

7.74 (d, J = 8.2 Hz, 2H) 

5.55 (ddd, J = 17.0, 10.3, 8.5 Hz, 1H) 

5.23 (dd, J = 17.0, 0.6 Hz, 1H) 

 5.07 (dd, J = 10.3, 0.9 Hz, 1H) 

2.67 (ddd, J = 8.0, 5.2, 3.7 Hz, 1H) 

2.23 (dddd, J = 8.6, 8.6, 6.3, 3.8 Hz, 1H) 

1.75 (ddd, J = 9.0, 5.2, 4.0 Hz, 1H) 

1.25 (ddd, J = 8.0, 6.4, 4.0 Hz, 1H).
  

13
C NMR (125 MHz, CDCl3) δ: 197.9, 140.7, 138.2, 134.3 (q, 

2
JC-F = 32.5 Hz), 128.5 (2 C), 

125.8 (q, 
3
JC-F = 3.8 Hz, 2 C), 123.8 (q, 

1
JC-F = 272.7 Hz), 115.7, 30.3, 27.2, 18.7.  

HRMS (m/z) [M + H]
+
 calcd for C13H12F3O, 241.0835; found 241.0828.  

 

trans 3-Trifluorophenyl(2-ethenylcyclopropyl)methanone, 188.  

Prepared according to the general procedure 2 using the 3-trifluoromethylphenyl ketone 187, 

after addition of LiHMDS and stirring at –78 °C for 30 min, the reaction was then stirred at 22 

°C for 1 h before quenching with brine. The crude residue was purified by flash column 

chromatography (gradient, 1–5% EtOAc:hexanes) to give 18.2 mg of an inseparable mixture of 

the cyclopropyl 3-trifluoromethylphenyl ketone 188 (60% yield) and the cyclopropyl phenyl 

ketone 158 (23% yield) as a colorless oil. 

 

1
H NMR (500 MHz, CDCl3) δ: 
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8.23 (s, 1H) 

8.16 (d, J = 7.8, 1H) 

7.82 (d, J = 7.8 Hz, 1H) 

7.62 (t, J = 7.8 Hz, 1H) 

5.59-5.51 (m, 1H) 

5.24 (ddd, J = 17.0, 1.2, 0.7 Hz, 1H) 

5.07 (dd, J = 10.3, 1.3 Hz, 1H) 

2.71-2.66 (m, 1H) 

2.28-2.17 (m, 1H) 

1.76-1.69 (m, 1H) 

1.26 (ddd, J = 8.0, 6.4, 4.0 Hz, 1H). 

13
C NMR (125 MHz, CDCl3) δ: 197.5, 138.5, 138.2, 131.3 (q, 

2
JC-F = 32.9 Hz), 131.3, 129.4 (q, 

4
JC-F = 3.5 Hz), 129.4, 125.1 (q, 

3
JC-F = 3.8 Hz), 123.9 (q, 

1
JC-F = 272.6 Hz), 115.7, 30.2, 26.9, 

18.8.  

HRMS of mixture (m/z) [M + H]
+
 calcd for C13H12F3O, 241.0835; found 241.0833. 

 

trans 2-Trifluorophenyl(2-ethenylcyclopropyl)methanone, 190.  

Prepared according to the general procedure 2 using the 2-trifluoromethylphenyl ketone 189, 

after addition of LiHMDS and stirring at –78 °C for 30 min, the reaction was then stirred at 22 

°C for 1 h before quenching with brine. The crude residue was purified by flash column 

chromatography (gradient, 1–5% EtOAc:hexanes) to give the cyclopropyl 2-

trifluoromethylphenyl ketone 190 as a colorless oil (16.8 mg, 0.0699 mmol, 70% yield) and the 

cyclopropyl phenyl ketone 158 as a colorless oil (0.9 mg, 0.00523 mmol, 5% yield). 
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1
H NMR (500 MHz, CDCl3) δ: 

7.71 (d, J = 7.8 Hz, 1H) 

7.63-7.51 (m, 3H) 

5.48 (ddd, J = 17.0, 10.3, 8.4 Hz, 1H) 

5.23 (dd, J = 16.9, 0.2 Hz, 1H) 

5.04 (dd, J = 10.2, 1.4 Hz, 1H) 

2.35 (ddd, J = 8.0, 5.2, 3.8 Hz, 1H) 

2.32-2.27 (m, 1H) 

1.76 (ddd, J = 8.9, 5.1, 4.0 Hz, 1H) 

1.26 (ddd, J = 7.9, 6.6, 4.0 Hz, 1H).
  

13
C NMR (125 MHz, CDCl3) δ: 202.7, 140.8 (q, 

4
JC-F = 1.9 Hz), 137.9, 132.0, 130.2, 127.6, 

127.1 (q, 
2
JC-F = 33.5 Hz), 126.7 (q, 

3
JC-F = 5.0 Hz), 123.7 (q, 

1
JC-F = 273.6 Hz), 115.6, 31.3, 31.1 

(q, J = 2.0 Hz), 19.6.  

HRMS (m/z) [M + H]
+
 calcd for C13H12F3O, 241.0835; found 241.0828. 

 

trans (4-N,N-Dimethylaminophenyl)(2-ethenylcyclopropyl)methanone, 192. 

Prepared according to the general procedure 2 using the 4-dimethylaniline ketone 191, after 

addition of LiHMDS and stirring at –78 °C for 30 min, the reaction was then stirred at 22 °C for 

2 h before quenching with brine. The crude residue was purified by flash column 

chromatography (gradient, 2–10% EtOAc:hexanes) to give the cyclopropyl dimethylaniline 

ketone 192 as a colorless oil (9.2 mg, 0.427 mmol, 43% yield) and the cyclopropyl phenyl ketone 

158 as a colorless oil (7.3 mg, 0.0424 mmol, 42% yield). 
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1
H NMR (500 MHz, CDCl3) δ: 

7.93 (d, J = 9.0 Hz, 2H) 

6.67 (d, J = 9.0 Hz, 2H) 

5.54 (ddd, J = 17.0, 10.3, 8.6 Hz, 1H) 

5.18 (dd, J = 17.1, 0.8 Hz, 1H) 

5.00 (dd, J = 10.2, 1.5 Hz, 1H) 

3.06 (s, 6H) 

2.63 (ddd, J = 8.0, 5.2, 3.8 Hz, 1H) 

2.14 (dddd, J = 8.6, 8.6, 6.2, 3.8 Hz, 1H) 

1.64 (ddd, J = 8.8, 5.2, 3.8 Hz, 1H) 

1.09 (ddd, J = 8.1, 6.2, 3.8 Hz, 1H).
  

13
C NMR (125 MHz, CDCl3) δ: 196.4, 153.5, 139.4, 130.4 (2 C), 125.9, 114.5, 110.8 (2 C), 40.2 

(2 C), 28.5, 25.9, 17.5.  

HRMS (m/z) [M + H]
+
 calcd for C14H18NO, 216.1383; found 216.1378. 

 

trans Benzofuran-2-yl(2-ethenylcyclopropyl)methanone, 167.  

Prepared according to the general procedure 2 using the phenyl ketone 193, after addition of 

LiHMDS and stirring at –78 °C for 30 min, the reaction was then stirred at 22 °C for 2.5 h before 

quenching with brine. The crude residue was purified by flash column chromatography (gradient, 

1–5% EtOAc:hexanes) to give the cyclopropyl benzofuryl ketone 167 as a colorless oil (15.5 mg, 

0.0730 mmol, 73% yield) and the cyclopropyl phenyl ketone 158 as a colorless oil (1.9 mg, 

0.0110 mmol, 11% yield). 
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trans 4-Trifluorophenyl(2-ethenylcyclopropyl)methanone, 186.  

Prepared according to the general procedure 2 using the phenyl ketone 194, after addition of 

LiHMDS and stirring at –78 °C for 30 min, the reaction was then stirred at 22 °C for 2 h before 

quenching with brine. The crude residue was purified by flash column chromatography (gradient, 

1–5% EtOAc:hexanes) to give the cyclopropyl 4-trifluoromethylphenyl ketone 186 as a colorless 

oil (10.4 mg, 0.0433 mmol, 43% yield) and the cyclopropyl phenyl ketone 158 as a colorless oil 

(8.4 mg, 0.488 mmol, 49% yield).  

 

Phenyl(cyclopropyl)methanone, 196.  

Prepared according to the general procedure 2 using the phenyl ketone 195, after addition of 

LiHMDS and stirring at –78 °C for 30 min, the reaction was then stirred at 22 °C for 2 h before 

quenching with brine. The crude residue was purified by flash column chromatography (gradient, 
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1–5% EtOAc:hexanes) to give the cyclopropyl phenyl ketone 196 as a colorless oil (5.5 mg, 38% 

yield).  

 

1
H NMR (500 MHz, CDCl3) δ:  

8.02 (d, J = 7.5 Hz, 2H) 

7.57 (t, J = 7.3 Hz, 1H) 

7.48 (t, J = 7.6 Hz, 2H) 

2.71-2.66 (m, 1H) 

1.26-1.24 (m, 2H) 

1.06-1.04 (m, 2H). 

13
C NMR (125 MHz, CDCl3) δ: 200.8, 138.2, 132.9, 128.6 (2 C), 128.2 (2 C), 17.3, 11.8 (2 C). 

HRMS (m/z) [M + H]
+
 calcd for C10H11O, 147.08044; found 147.08022. Spectroscopic data for 

196 match those previously reported in the literature.
24,25 

 

trans Phenyl(2-methylcyclopropyl)methanone, 198. 

Prepared according to the general procedure 2 using the phenyl ketone 197, after addition of 

LiHMDS and stirring at –78 °C for 30 min, the reaction was then stirred at 22 °C for 2 h before 

quenching with brine. The crude residue was purified by flash column chromatography (gradient, 

1–5% EtOAc:Hexanes) to give the cyclopropyl phenyl ketone 198 as a colorless oil (8.2 mg, 

51% yield). 

 
1
H NMR (500 MHz, CDCl3) δ: 

7.99 (d, J = 7.5 Hz, 2H) 
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7.56 (t, J = 7.3 Hz, 1H) 

7.47 (t, J = 7.6 Hz, 2H) 

2.40 (ddd, J = 8.2, 4.3, 4.3 Hz, 1H) 

1.63-1.58 (m, 1H) 

1.51-1.47 (m, 1H) 

1.23 (d, J = 6.0 Hz, 3H) 

0.90 (ddd, J = 7.0, 7.0, 3.3 Hz, 1H).  

13
C NMR (125 MHz, CDCl3) δ: 200.3, 138.3, 132.7, 128.6 (2 C), 128.1 (2 C), 26.6, 21.5, 20.3, 

18.5.  

HRMS (m/z) [M + H]
+
 calcd for C11H13O, 161.09609; found 161.09566.  
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Appendix: 

 

 

 

 

 

*The NOESY experiment was performed on compound 158 and showed a correlation between 

the proton alpha to the carbonyl and the 2-vinyl proton, designated by the arrow. 

 

 

 

* 



163 
 

References 

1. Frick, S.; Kramell, R.; Schmidt, J.; Fist, A. J.; Kutchan, T. M. J. Nat. Prod. 2005, 68, 

666. 

2. Courtwright, D. T. Forces of habit drugs and the making of the modern world. 2009; 

Cambridge, Mass.: Harvard University Press. p 36. 

3. Gates, M. D. J. Am. Chem. Soc. 1950, 72, 228.  

4. Gates, M. D.; Tschudi, G. J. Am. Chem. Soc. 1952, 74, 1109.  

5. Gates, M. D.; Tschudi, G. J. Am. Chem. Soc. 1956, 78, 1380. 

6. Hagel, J. M.; Facchini, P. J. Nat. Chem. Biol. 2010, 6, 273. 

7. International, T.; Control, N.; Incb, B. Comments on the reported statistics on narcotic 

drugs; New York, 2011; Vol. 2011, pp. 21. 

8. Novak, B.; Hudlicky, T.; Reed, J.; Mulzer, J.; Trauner, D. Curr. Org. Chem. 2000, 4, 

343. 

9. Onoyovwe, A.; Hagel, J. M.; Chen, X.; Khan, M. F.; Schriemer, D. C.; Facchini, P. J. 

Plant Cell 2013, 25, 4110. 

10. Gerardy, R.; Zenk, M. H. Phytochemistry 1992, 32, 79. 

11. Gesell, A.; Rolf, M.; Ziegler, J.; Díaz Chávez, M. L.; Huang, F.-C.; Kutchan, T. M. J. 

Biol. Chem. 2009, 284, 24432. 

12. Rinner, U.; Hudlicky, T. Top. Curr. Chem. 2012, 309, 33. 

13. Rice, K. C. J. Org. Chem. 1980, 45, 3135. 

14. Genet, J. P.; Gaudin, J. M. Tetrahedron 1987, 43, 5315. 

15. Trost, B. M.; Tometzki, G. B.; Hung, M-, H. J. Am. Chem. Soc. 1986, 109, 2176.  

16. Bischop, B.; Pietruszka, J. S. Synlett 2011, 18, 2689. 

17. Sigma-Aldrich Catalog. http://www.sigmaaldrich.com/catalog/product/aldrich/464929? 

http://www.sigmaaldrich.com/catalog/product/aldrich/464929


164 
 

  lang=en&region=US. (accessed July 29, 2015). Product Number – 464929 

18. Helmboldt, H.; Aho, J. E. Pihko, P. M. Org. Lett. 2008, 10, 4183. 

19. Heathcock, C. H.; Stafford, J. A.; Clark, D. L. J. Org. Chem. 1992, 57, 2575. 

20. Coutts, S. J.; Kallmerten, J. Tetrahedron Lett. 1990, 31, 4305. 

21. Niggemann, M.; Jelonek, A.; Biber, N.; Wuchrer, M.; Plietker, B. J. Org. Chem. 2008, 

73, 7028. 

22. Hansen, T. M.; Florence, G. J.; Lugo-Mas, P.; Chen, J.; Abrams, J. N.; Forsyth, C. J. 

Tetrahedron Lett. 2003, 44, 57. 

23. We thank Professor Craig Merlic for helpful discussions on the mechanism. 

24. Wessig, P.; Muehling, O. Helv. Chim. Acta 2003, 86, 865.  

25. Bahurel, Y.; Collonges, F.; Menet, A.; Pautet, F.; Poncet, A.; Descotes, G. Bull. Soc. 

Chim. Fr. 2006, 5, 123. 

26. The NOESY experiment was performed on compound 158 and showed a correlation 

between the proton alpha to the carbonyl and the 2-vinyl proton. 

27. Trost, B. M. Chem. Rev. 1996, 96, 395.  

28. Bihelovic, F.; Matovic, R.; Vulovic, B.; Saicic, R. N. Org. Lett. 2007, 9, 5063. 

29. Ficini, J.; d’Angelo, J; Tetrahedron Lett. 1976, 28, 2441. 

30. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, 

J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, 

M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; 

Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; 

Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; 

Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; 



165 
 

Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; 

Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; 

Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; 

Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; 

Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, 

A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, 

revision D.01; Gaussian, Inc.: Wallingford, CT, 2013. 

31. Yates, P.; Anderson, C. D. J. Am. Chem. Soc. 1963, 85, 2937. 

32. Kawamura, S.; Chu, H.; Felding, J.; Baran, P. S. Nature 2016, 532, 90. 

33. (a) Hicklin, R. W.; López-Silva, T. L.; Hergenrother, P. J. Angew. Chem. Int. Ed. 2014, 

53, 9880. (b) Brooks, G.; Burgess, W.; Colthurst, D.; Hinks, J. D.; Hunt, E.; Pearson, M. 

J.; Shea, B.; Takle, A. K.; Wilson, J. M.; Woodnutt, G. Bioorg. Med. Chem. 2001, 9, 

1221. (c) Trudeau, S.; Deslongchamps, P. J. Org. Chem. 2004, 69, 832. 

34. (a) Phun, L. H.; Patil, D. V.; Cavitt, M. A.; France, S. Org. Lett. 2011, 13, 1952. (b) 

Simone, F. D.; Andres, J.; Torosantucci, R.; Waser, J. Org. Lett. 2009, 11, 1023. 

35. Suzuki, Y.; Seki, T.; Tanaka, S.; Kitamura, M. J. Am. Chem. Soc. 2015, 137, 9539. 

36. Motiwala, H. F.; Gülgeze, B.; Aubé, J. J. Org. Chem. 2012, 77, 7005. 

37. DeLuca, R. J.; Sigman, M. S. Org. Lett. 2013, 15, 92. 

 

 

 

 

 

 




