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ABSTRACT OF THE DISSERTATION

Essays on Foreign Direct Investment, Growth and the Environment

by

Waner Gu

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, June 2011

Dr. R. Robert Russell , Chairperson

This dissertation is composed of three essays on the impact of foreign direct invest-

ment (FDI) on productivity growth, convergence, and the environment. Chapter 2

decomposes labor productivity growth into components attributable to technological

change, technological catch-up, foreign capital deepening, domestic capital deepening,

and human capital accumulation, thus separating the effects of foreign and domestic

capital deepening on productivity growth and convergence. We apply nonparametric

production-frontier methods to a worldwide 1980–2005 panel and find that (1) foreign

capital accumulation, together with human capital accumulation, is the driving force for

productivity growth and increasing international dispersion of productivity, (2) techno-

logical change is decidedly non-neutral, with most technological advancement taking

place in foreign-capital-intensive countries, and (3) international polarization is brought

about primarily by efficiency changes.

Chapter 3 develops a statistical procedure to select the appropriate nonpara-

metric efficiency model in terms of its dimensionality. The change of dimensionality

is categorized into three cases: nested variable changes (expansion or contraction of a

variable set), additive variable changes (aggregation or disaggregation of a variable set)

vii



and other non-nested model changes. A bootstrapping method is proposed to measure

the size of the dimensionality effect. Potential bias in raw efficiency scores owing to the

dimensionality effect is corrected to reflect true efficient levels. An empirical illustration

is presented with the Hughes and Yaisawarng (2004) (hereafter HY) data set.

Using U.S. state-level panel data from 1980–1994, chapter 4 estimates the im-

pact of environmental stringency on the inflows of FDI in the U.S. The stringency of

environmental policy is an uncontrollable variable in the operating environment. A

three-stage model is proposed to evaluate state performance with environmental vari-

ables and reassess the pollution haven hypothesis. The three-stage model combines

both data envelopment analysis (DEA) and stochastic frontier analysis (SFA), and can

isolate the impact of luck (statistical noise) from those of managerial efficiency and en-

vironmental effect. This paper improves the second stage SFA evaluation by using the

Local Linear Least Squares (LLLS) estimator. The empirical result suggests a negative

relationship between state-level environment standards and the distribution of foreign

capital in the U.S.
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Chapter 1

Introduction

The resurgent interest in the studies of economic growth seeks to determine the

source of economic growth and the growth path of the world’s economies. The impact of

FDI on the growth process is usually considered to be positive, while the extent to which

it impacts productivity growth and convergence depends on its effective utilization. One

of the main objectives of this dissertation is to construct a model and employ worldwide

panel data to examine the role that FDI plays in economic growth and convergence.

Previous empirical studies are mainly model driven, requiring assumptions about the

technology, the market structure, and other relevant factors of the growth process. In

chapter 2, we use the DEA method to construct the worldwide production frontier and

derive associated country-level efficiency indexes. The DEA method requires no spec-

ification of the functional form for the technology and allows a more comprehensive

decomposition of productivity growth. Since the elasticity of output with respect to for-

eign capital is different from that with respect to domestic capital, foreign capital and

domestic capital are modeled as distinct factors of production. The labor productivity

growth is decomposed into components attributable to technological change, technolog-
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ical catch-up, foreign capital deepening, domestic capital deepening, and human capital

accumulation. The pent-partite decomposition can separate the effects of foreign and

domestic capital deepening on productivity growth and convergence.

Quah (1993, 1996a, 1997) argues that empirical convergence studies based on

parametric regressions and focusing on first moments of the distribution are not ade-

quate. In chapter 2, we examine economic convergence by analyzing the entire distri-

bution of labor productivity across countries and its dynamics over the sample period.

Several nonparametric tests are employed to analyze the role of each growth-accounting

component in the transformation of the productivity distribution. We are particularly

interested to check whether foreign capital deepening is the driving force for increased

international polarization and international dispersion of proclivity.

Measuring efficiencies of decision making unites (DMU’s) is an important as-

pect of productivity analysis. Nonparametric, deterministic frontier models have been

widely used to measure efficiency in production processes. These methods, including

DEA and free disposal hull (FDH) analysis, are particularly powerful when there is no

reliable price information in multiple input-output production processes. However, the

deterministic feature makes the estimated production frontier and its associated effi-

ciency scores sensitive to the choice of input and output variables included in the model

and to the curse of dimensionality. The magnitude (number of inputs and outputs) and

structure (choice of input and output variables) of the dimensionality may affect the

estimated production frontier and associated efficiencies dramatically. Thus, the selec-

tion of dimensions of inputs and outputs is vital in the setup of nonparametric frontier

models. Another objective of this dissertation is to develop a statistical procedure to

select appropriate nonparametric efficiency model in terms of its dimensionality.
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The change of dimensionality is categorized into three cases: nested variable

changes (expansion or contraction of variable set), additive variable changes (aggregation

or disaggregation of variable set) and other non-nested model changes. The nested case

addresses the issue of whether particular input and/or output variables are irrelevant; the

additive variable case addresses the issue of whether some of the input/output variables

can be aggregated; and non-nested model changes allows the comparison of two models

that both have distinct variables as input/output. In chapter 3, the dimensionality test

proposed is able to cover all the three categories. Efficiency change is decomposed into

two components when the dimensionality changes, with one component attributable

to the pure dimensionality effect and the other attributable to the net technological

efficiency effect.

In addition to the qualitative analysis provided in the change of efficiency mea-

sure, the problem of evaluating dimensionality change quantitatively remains unsolved

in existing literature. In chapter 3, a bootstrapping method is proposed to properly

measure the size of dimensionality effect, and the potential bias in raw efficiency scores

is corrected to reflect true efficient levels. Monte Carlo experiments provide proper size

and valid power of the test in finite sample. The dimensionality test proposed in chapter

3 can be applied to common nonparametric frontier methods, like DEA and FDH, as

well as regression-based SFA methods.

Following decades of liberalization of global capital markets, considerable de-

bate has arisen about its role in sustainable development of recipient economies. One

contentious issue of concern is its potential negative externalities on the environments of

host economies. The so-called pollution haven hypothesis (PHH) argues that multina-

tional firms in pollution-intensive industries seek to relocate to the places with weaker

3



environmental standards. The third objective of this dissertation is to analyze the re-

lationship between environmental policy and the distribution of foreign capital in the

U.S. The advantage of intra-country analysis is that different states are more comparable

than different countries on nongovernmental grounds.

The stringency of environmental policy is an uncontrollable environmental

valuable. Traditional DEA or SFA methods only consider inputs and outputs in the

evaluation of a DMU’s efficiency performance. The omission of environmental variables

is a big drawback. A three-stage model is developed to evaluate the impact of operational

environment on DMU’s performance. It combines both DEA and SFA methods, and can

completely decompose the variation in performance into the components attributable to

environmental effects, managerial inefficiency and statistical noise. Chapter 4 proposes

a three-stage model to evaluate state performance with environmental variables and

reassess the PHH. The stage 2 SFA evaluation is extended to a semiparametric panel

setting to capture the complicated feature of the underlaying technology. Compare

to parametric estimators, the LLLS estimator provides expected signs and consistent

results for the empirical example using U.S. state-level panel data from 1980–1994.

The remainder of this dissertation is organized as follows. Chapter 2 discusses

the methodology to examine the linkage between FDI and economic convergence, and

analyzes the empirical results of a worldwide panel. Chapter 3 proposes a dimensionality

test, assesses the size and power of the test by Monte Carlo experiments, and applies

the test to an economic example. Chapter 4 proposes a three-stage model to evaluate

the impact of state-level environmental regulation on the distribution of foreign capital

in the U.S. Chapter 5 summarizes and concludes the dissertation. Tables and figures

presenting the results of the analysis in chapters 2–4 are included in the Appendix A–C
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at the end of each chapter, respectively.
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Chapter 2

Foreign Direct Investment and

Convergence: A Nonparametric

Production Frontier Approach1

2.1 Introduction

Worldwide flows of FDI, abetted by increasing openness and integration of

global capital markets, grew substantially during the last three decades, at rates well

above those of global economic growth. The role that FDI plays in economic growth

has been studied extensively at both the theoretical and the empirical level. In the

1960s, exogenous growth analysis of FDI treated foreign and domestic capital as identical

inputs, which can therefore be aggregated to form a homogeneous input that enters the

production function as a whole. MacDougall (1960), Kemp (1966), and Jones (1967), for

example, maintain this assumption in their models of FDI and growth. Findlay (1978)

provides the first attempt to model foreign capital and domestic capital as distinct
1This chapter is taken from Gu and Russell (2011).
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factors of production, each with a separate rate of return. His work is inspired by earlier

research of Hymer (1960), which regards FDI as a transfer of a “package” combining

capital, management, and new technology.

Endogenous growth theory, pioneered by Romer (1986) and Lucas (1988) in

the 1980s, has emphasized the extent to which physical and human capital investment

are crucial to persistent economic growth. This theory has led to extensive empiri-

cal research on the role of heterogeneous capital inputs in the growth process, notably

regional and worldwide regressions using time-series or cross-sectional data. Using cross-

sectional data for 46 developing countries over the period 1970–1985, Balasubramanyam

et al. (1996) estimates a pooled regression of labor-productivity growth on the growth of

foreign capital per capita and the growth of other inputs. Their study indicates that the

elasticity of output with respect to FDI exceeds the elasticity with respect to domestic

capital investment, implying that FDI is the driving force in the growth process. Boren-

sztein et al. (1998) use seemingly unrelated regressions (SUR) to examine the inflow of

FDI from OECD countries to 69 developing countries over two decades (1970–1989).

The result shows that FDI contributes more to economic growth than does domestic

investment, but the effect of FDI depends on the level of human capital available in the

host economy. Ram and Zhang (2002) pool the data for 85 countries in the 1990s, and

the regression supports the hypothesis of a positive nexus between FDI and economic

growth in host countries. Makki and Somwaru (2004) test the effect of FDI on economic

growth in a framework of cross-country equations, utilizing data from 66 developing

countries over the last three decades (1971–2000). The results suggest that FDI is a

significant source of economic growth for developing countries and that its contribution

is enhanced by a positive interaction with human capital, sound macroeconomic policies,

7



and institutional stability. Much of the empirical literature on FDI-growth linkage is

summarized in De Mello Jr (1997).

Two limitations of the empirical studies outlined above are evident. First, those

studies are mainly model driven, requiring assumptions about the technology, the market

structure, and other relevant factors of the growth process. Second, Quah (1993, 1996a,

1997) argues that empirical convergence studies based on parametric regressions and fo-

cusing on first moments of the distribution are not adequate. Kumar and Russell (2002)

(hereafter KR) develop a nonparametric (deterministic) growth-accounting method to

overcome the shortcomings of the approach relying on parametric regressions. Inspired

partly by Färe et al. (1994), KR suggest a tripartite decomposition of labor-productivity

growth, with components attributable to technological change (expansion or contraction

of the world production frontier), technological catch-up (movements toward or away

from the frontier), and capital accumulation (movements along the frontier). Their Data

Envelopment Analysis (DEA) approach to constructing the worldwide production fron-

tier and its associated country-level efficiency indexes is based on Farrell (1957a) and

Afriat (1972). This method envelops the data in the “tightest fitting” convex cone, with

the upper boundary of the set representing the “best practice” production frontier. It

requires assumptions only on returns to scale of the technology and free disposability

of inputs and outputs. No specification of the functional form for the technology or

assumptions about market structure are needed. KR use a panel of 57 countries over

the period 1965-1990, and find that both growth and increased international dispersion

of productivity are driven primarily by capital deepening and that technological change

is decidedly non-neutral, with all technological advancement taking place at high levels

of capital intensity.
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The principal limitation of KR is the absence of human capital in the decom-

position. Henderson and Russell (2005) (hereafter HR) incorporate human capital into

the analysis and develop a quadripartite decomposition, with components attributable

to technological change, technological catch-up, and physical and human capital accu-

mulation. They employ a panel of 52 countries over the period 1965-1990 and find that

human capital accumulation, as well as physical capital accumulation, accounts for the

growth of productivity. They credit the increased international dispersion of produc-

tivity to physical capital accumulation and international polarization to technological

catch-up.

Numerous studies applying DEA production-frontier methods to the decom-

position of labor productivity growth into different components and to the analysis

of growth and convergence have followed up on KR and HR. None of these studies,

however, has extended the method to incorporate foreign capital as one of explana-

tory components. In this paper, we introduce foreign capital into the DEA growth-

accounting framework and decompose labor productivity growth into components at-

tributable to technological change, technological catch-up, foreign capital accumulation,

domestic capital accumulation, and human capital accumulation. This pent-partite de-

composition enables separation of the effect of foreign capital from other factors that

contribute to labor-productivity growth.

Another limitation of previous empirical studies of the FDI-growth linkage is

sample selection bias, since these studies either focus on developing countries or evaluate

the effects of FDI on developing countries and OECD countries separately. The limited

time span and the exclusion of OECD countries hampers analysis of the convergence of

the economies of the world as a whole. In our study, a broad worldwide panel with both

9



developing countries and OECD countries over last two decades is employed.

The remainder of the chapter is organized as follows. Section 2 describes the

DEA method of constructing production frontiers and the penta-partite decomposition

of the contribution of the different factors on labor productivity growth. Section 3

discusses the panel data. Section 4 summarizes the empirical results and analyzes the

shifts in the productivity distributions. Section 5 concludes.

2.2 Methodology

2.2.1 Data Envelopment Analysis

We follow the HR methodology to construct the worldwide production frontier

and concomitantly retrieve country-specific efficiency levels. To be specific, we use DEA

to envelop the data in the smallest convex cone and identify the upper boundary of the

set as the “best practice” production frontier. As capital is treated as heterogeneous,

separated into foreign capital (KF ) and domestic capital (KD), five macroeconomic

variables are needed to define the technology: aggregate output (Y ) and four aggregate

inputs—KF , KD, labor (L), and human capital (H). Let 〈Yjt,KFjt,KDjt, Ljt, Hjt〉,

t = 1, · · · , T and j = 1, · · · , J , represent T observations on the five variables for each

of the J countries. Following the standard approach in the macroeconomics literature,

human capital is assumed to be a multiplicative labor augmentation. Define L̂jt=HjtLjt

as the amount of labor input measured in efficiency units in country j at time t, so that

the JT observations are 〈Yjt,KFjt,KDjt, L̂jt〉, t = 1, · · · , T and j = 1, · · · , J .

We adopt the “sequential production set” formulation of Diewert (1980) to

preclude technological degradation (potential implosion of the frontier over time). The

constant-returns-to-scale reference technology for the world at time t, using all the data

10



up to t, is defined by

Tt =
{
〈Y,KF,KD, L̂〉 ∈ R4

+

∣∣∣ Y ≤∑
τ≤t

∑
j

zjτYjτ ∧ KF ≥
∑
τ≤t

∑
j

zjτKFjτ(2.1)

∧ KD ≥
∑
τ≤t

∑
j

zjτKDjτ ∧ L̂ ≥
∑
τ≤t

∑
j

zjτ L̂jτ , zjτ ≥ 0 ∀ j, τ
}
,

where zjτ is the level of operation of a linear process for the jt observation. Every point

in the technology set is a linear combination of observed input and output vectors or

a point dominated by such a combination. The constructed technology is a polyhedral

cone with piecewise linear isoquants, commonly referred to as a Farrell cone. The Farrell

output-based efficiency index for country j at time t is defined by

(2.2) E(Yjt,KFjt,KDjt, L̂jt) = min
{
λ
∣∣∣ 〈Yjt/λ,KFjt,KDjt, L̂jt

〉
∈ Tt

}
.

As the index is the inverse of the maximal proportional amount that output can be

expanded and remain technologically feasible, given the input quantities and the tech-

nology, it takes a value between zero and one and equals one if and only if the jt obser-

vation lies on the period t production frontier. As the aggregate output Yjt is a scalar,

the Farrell output-based efficiency index is the ratio of actual to potential (production

frontier) output, evaluated at the actual input levels.

2.2.2 Pent-Partite Decomposition of Labor Productivity

Define yt = Yt/Lt to be labor productivity at period t and ŷt = Yt/L̂t to be

the output per efficiency unit of labor at period t. The foreign and domestic capital

per efficiency unit of labor at period t are given by k̂f t = KFt/L̂t and k̂dt = KDt/L̂t,

respectively. As the technology is characterized by constant returns to scale, the poten-

tial outputs per efficiency unit of labor in the base period (b) and the current period

(c) are functions of foreign and domestic capital per efficiency unit of labor at the two
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time periods: yb(k̂f b, k̂db) = ŷb/eband yc(k̂f c, k̂dc) = ŷc/ec, respectively, where eb and

ec are the values of the efficiency indexes in the respective periods. Thus, the growth of

output per efficiency unit of labor is

(2.3)
ŷc
ŷb

=
ec · yc(k̂f c, k̂dc)
eb · yb(k̂f b, k̂db)

.

Denote yb(k̂f c, k̂dc) to be the potential output per efficiency unit of labor

at current capital intensity using the base-period technology and yc(k̂f b, k̂db) to be

the potential output per efficiency unit of labor at base-period capital intensity us-

ing the current technology. Define k̃f c = KFc/HbLc as the counterfactual ratio of

current-period foreign capital to labor measured in efficiency units assuming human

capital were still at its base-period level, and similarly, k̃f b = KFb/HcLb as the coun-

terfactual ratio of base-period foreign capital to efficient units of labor assuming hu-

man capital equals its current-period level. Similarly, we have the group of ratios for

domestic capital: k̃dc = KDc/HbLc and k̃db = KDb/HcLb. Let yb(k̃f c, k̃dc) be po-

tential output per efficiency unit of labor at k̃f c and k̃dc using base-period technolo-

gies, and similarly let yc(k̃f b, k̃db) be potential output per efficiency unit of labor at

k̃f b and k̃db using current technologies. Multiplying the top and bottom of (2.3) by

yb(k̃f c, k̃dc)yb(k̂f b, k̃dc)yb(k̂f c, k̂dc) decomposes the growth of ŷ to

(2.4)
yc
yb

=
ec
eb
· yc(k̂f c, k̂dc)
yb(k̂f c, k̂dc)

· yb(k̃f c, k̃dc)
yb(k̂f b, k̃dc)

· yb(k̂f b, k̃dc)
yb(k̂f b, k̂db)

· yb(k̂f c, k̂dc)
yb(k̃f c, k̃dc)

.

Multiplying the top and bottom of (2.3) by yc(k̃f b, k̃db)yc(k̂f c, k̃db)yc(k̂f b, k̂db) yields

an alternative decomposition:

(2.5)
yc
yb

=
ec
eb
· yc(k̂f b, k̂db)
yb(k̂f b, k̂db)

· yc(k̃f c, k̃db)
yc(k̂f b, k̃db)

· yc(k̂f c, k̃dc)
yc(k̂f c, k̂db)

· yc(k̂f b, k̂db)
yc(k̃f b, k̃db)

By definition, ŷt = Yt/L̂t = Yt/(HtLt) = (Yt/Lt)/Ht = yt/Ht. The growth of
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labor productivity can be decomposed as

(2.6)
yc
yb

=
Hc

Hb
· ŷc
ŷb
.

Combining (2.4) and (2.6), we get the pent-partite decomposition of the labor

productivity:

(2.7)
yc
yb

=
ec
eb
· yc(k̂f c, k̂dc)
yb(k̂f c, k̂dc)

· yb(k̃f c, k̃dc)
yb(k̂f b, k̃dc)

· yb(k̂f b, k̃dc)
yb(k̂f b, k̂db)

·

[
yb(k̂f c, k̂dc)

yb(k̃f c, k̃dc)
· Hc

Hb

]

=: EFF×TECHc×KFACCb×KDACCb×HACCb.

Similarly, combining (2.5) and (2.6) yields an alternative pent-partite decom-

position:

(2.8)
yc
yb

=
ec
eb
· yc(k̂f b, k̂db)
yb(k̂f b, k̂db)

· yc(k̃f c, k̃db)
yc(k̂f b, k̃db)

· yc(k̂f c, k̃dc)
yc(k̂f c, k̂db)

·

[
yc(k̂f b, k̂db)

yc(k̃f b, k̃db)
· Hc

Hb

]

=: EFF×TECHb×KFACCc×KDACCc×HACCc

The two decompositions, (2.7) and (2.8), do not yield the same result unless

technological change is Hicks neutral, in which case the proportional vertical shift in

the frontier is identical at all points in k̂f − k̂d space and the productivity change

is path independent.2 Solow (1957) maintains the assumption of Hicks neutrality in

his decomposition of productivity growth into components attributable to technological

change and capital deepening. Hicks neutrality, however, is a strong assumption, one

that we argue below is inconsistent with the facts. Following KR and HR, the ambiguity

is resolved by adopting the “Fisher ideal” decomposition, which is used in the earlier
2We should note that these two paths are not the only ones. In fact, there exist 12 possible paths: one

set of six measures movement along the base-period production surface and the other set of six measures
movement along the current-period surface. Each of these sets contains 3!=6 paths corresponding to
the three dimensions, k̂f , k̂d, and H. Exploratory calculations indicate, however, that the primary
sensitivity of the path is to the choice between the base or current period technology over which to
measure changes in productivity owing to input changes, and this path dependence is taken into account
in our decomposition. The outcome appears to be much less sensitive to the choice of path taken along
the surface. (We might also note that the two paths considered in HR also are not unique: there exist
two other possible paths. Our calculations indicate, however, that the HR results are not sensitive—even
country by country—to the omission of these two paths in their decomposition.
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works of Caves et al. (1982) and Färe et al. (1994). The “Fisher ideal” approach is

to take geometric averages of the two measures for each growth-accounting component.

Multiplying both sides of (2.7) and (2.8) together and taking the square root yields

yc
yb

= EFF × (TECHb × TECHc)1/2 × (KFACCb ×KFACCc)1/2(2.9)

×(KDACCb ×KDACCc)1/2 × (HACCb ×HACCc)1/2

=: EFF × TECH ×KFACC ×KDACC ×HACC

Thus, the growth of labor productivity between the base period and the current

period is decomposed into the effects of : (I) the change in efficiency (EFF ); (II) tech-

nological change (TECH); (III) foreign capital accumulation (KFACC); (IV) domestic

capital accumulation (KDACC); and (V) human capital accumulation (HACC). (I)

represents the change in the distance from the production frontier, (II) stands for the

shift in the frontier, and (III) to (V) represent movements along the frontier. Compo-

nent (III) deserves special attention in our study, as it separates the effect of foreign

capital accumulation on productivity growth from the other factors.

2.2.3 Construction of Counterfactual Potential Outputs

The calculations of shifts in the world production frontier (TECH) and move-

ments along the frontier (KACC andHACC) are handy in KR and HR. In these studies,

the production frontiers can be reduced to y−k (or ŷ−k̂) space under the assumptions of

constant returns to scale and labor augmentation of human capital. The empirically esti-

mated world production frontier is always piecewise linear with kinks at efficient points.

The piecewise linear function can be constructed after identifying all the efficient points

in the sample data. This step is crucial to the decomposition calculation, which then is

used to compute potential output levels given some counterfactual input combinations.
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This approach, however, is impractical in higher dimensional input-output space owing

to the difficulty of parameterizing the empirical production frontiers.

In our reduced model, after normalizing the labor into efficiency units, there

remain two inputs (k̂f and k̂d) and one output (ŷ), so that potential outputs must be

constructed in a three-dimensional input-output space. Our approach to calculating the

counterfactual potential outputs, which requires no direct estimation of the empirical

production frontiers, is as follows. Given any counterfactual input combination k̂f
′
jt and

k̂d
′
jt, the efficient output level yjt(k̂f

′
jt, k̂d

′
jt) on the frontier of technology Tt can be

obtained by solving the following linear program:

max
ŷ′

jt, z11,..., zJt

ŷ′jt subject to ŷ′jt ≤
∑
τ≤t

∑
j

zjτ ŷjτ ,(2.10)

k̂f
′
jt ≥

∑
τ≤t

∑
j

zjτ k̂f jτ ,

k̂d
′
jt ≥

∑
τ≤t

∑
j

zjτ k̂djτ ,

∑
τ≤t

∑
j

zjτ ≤ 1, ∀ j, τ.

This linear programming construction can be easily extended to technologies

with any dimensionality of inputs. If the input has only one dimension in reduced

form, we can still use this approach to locate any (counterfactual) efficient point on the

empirical production frontier, and the results would be the same as those of KR and

HR.

2.3 Data

The database employed for output, aggregate investment, and labor is the

PWT (version 6.3) (Heston et al. (2009)), which provides a panel across 79 countries over

the 1980–2005 period. The number of workers is computed as RGDPCH∗POP/RGDPWOK,
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where RGDPCH is per capita real GDP using the chain index, POP is the population,

and RGDPWOK is real GDP per worker. Aggregate output in international dollars is

RGDPCH∗POP. Real aggregate investment is calculated as RGDPL∗POP∗KI, where

RGDPL is the real GDP using the Laspeyres deflation rule, and KI is the investment

share of real GDP.3

For the foreign capital stocks, we convert the estimates of the annual World

Investment Report of the United Nations Conference on Trade and Development (UNC-

TAD) to constant 2005 international dollars using purchasing power parity indexes for

investment goods. The pricing index employed in the conversion is the Price Level of

Investment (PI) from the Penn World Table (PWT)(version 6.3), which is defined as

the PPP over investment divided by the exchange rate times 100.

To construct the domestic capital stock, we first subtract foreign investment

from aggregate gross investment to obtain an estimate of domestic gross investment.

We then use the Perpetual Inventory Method (PIM) to construct the domestic capital

stock.4

We adopt a single depreciation rate (δ) of 7%, as in Caselli and Feyrer (2007).5

3As explained below, use of the PIM method of constructing capital stocks necessitates use of a longer
time series, 1965–2005, for real aggregate investment.

4The implicit assumption underlying our empirical analysis—as well as the construc-
tion of foreign capital stocks by UNCTAD—is that accumulated foreign investment is
qualitatively different from accumulated domestic investment. As UNCTAD emphasizes
(http://www.unctad.org/Templates/Page.asp?intItemID=3146&lang=1), the ”most importnt charac-
teristic of FDI, which distinguishes it from foreign portfolio investment, is that it is undertaken with the
intention of exercising control over an enterprise” and most FDI takes place between “parent and affiliate
enterprises,” so that multinational corporations typically wholly own the foreign subsidiary/branch.

5We prefer to employ the UNCTAD capital stock data (converted to a common currency) rather
than to use PIM to construct the foreign capital stock ourselves because the UNCTAD approach, tak-
ing advantage of additional information and cross checking, is less mechanical and, we surmise, more
reliable. We have carried out a number of robustness tests involving alternative assumptions about
the depreciation rates for the two types of capital as well as alternative methods of constructing the
capital stocks. Our empirical results, outlined below, are not materially altered under these alternative
assumptions. These robustness tests are posted on our websites.
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Country j’s initial domestic capital stock (KDj0) is estimated as

(2.11) KDj0 = IDj0/(gj + δ), j = 1, · · · , J,

where IDi
0 is country j’s value of gross domestic investment flow in 1970, and g is its av-

erage geometric rate of growth in the first five years that data are available. Country j’s

domestic capital stocks in the following sample period can then be obtained recursively

by

(2.12) KDjt = (1− δ)KDj(t−1) + IDjt, t = 1, · · · , T ; j = 1, · · · , J.

For human capital, we adopt the Cohen and Soto (2007) education data, a

panel of years of schooling across 96 countries in the 1960–2010 period.6 The calculation

of return to education is based on Psacharopoulos (1994), which is adopted by Hall and

Jones (1999) and HR. Denote εjt to be the average number of years of education of

the adult population in country j at time t. Thus, the total labor in efficiency units in

country j at time t can be calculated as

(2.13) L̂jt = HjtLjt = h(εjt)Ljt = eφ(εjt)Ljt,

where h(0) = 1 and φ is a piecewise linear function intercepting the origin. Its slope is

0.134 for the first four years’ education, 0.101 for the next four years’, and 0.068 for all

years’ education above eight. The rate of return to education (where φ is differentiable)

is the slope of the function φ:

(2.14)
∂ lnh(εjt)
∂εjt

= φ′(εjt).

Thus, we have constructed a panel of four input variables and output variable

across 79 countries, a reasonably good representation of the world’s economy. Table 2.1
6The education data were collected for the beginning of each decade from 1960 to 2000 and were

projected to 2010.
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shows the distribution of our sample countries. Our panel data set contains 21 OECD

countries, which account for more than half of the world’s real GDP and inflows of FDI.

This data set also includes China, which has been excluded from previous inter-country

studies because of its incomplete record of foreign capital stocks.

2.4 Empirical Results

2.4.1 Production Frontier and Efficiency

Constant returns to scale and labor augmentation of human capital allow us to

construct the production frontiers in 3-D (ŷ − k̂f − k̂d) space. Figure 2.1 superimposes

the production frontier surfaces for 1980 and 2005. Thirteen countries are on the 1980

production frontier, while the remaining economies in the sample are inefficient and

produce below their potential output levels. The 2005 frontier is defined by Sweden,

USA, Norway, Ireland, and a collection of countries from earlier years.7

The first thing to note is the non-neutrality of technological change. Up to

a foreign-capital-to-labor ratio of approximately 900 (Jordan in 1980), the 1980 and

2005 production frontiers are coincident, but for higher foreign capital intensities, the

2005 frontier is dramatically higher. Similarly, the 2005 frontier is also coincident with

frontiers in other previous years (1985–2000) at low foreign capital intensity, indicating

that almost all technological change occurs at high levels of foreign capitalization. This

result confirms that of HR, where aggregate capital stock is not disaggregated.

Ireland experienced a 37% improvement in efficiency from 1980 to 2005 and

defines the frontier for high foreign-capital-to-labor countries in 2005. A similar finding

is found in Margaritis et al. (2007), and they explain the result by Ireland’s impressive
7Recall that we employ the sequential production set formulation of Diewert (1980), using all data

through 2005 to construct the 2005 frontier.
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performance in the high-tech manufacturing sector. FDI inflows into Ireland increased

continuously throughout the 1990s, mainly to high-tech computer and pharmaceutical

companies, and peaked in 2000. The decline in FDI inflows to Ireland started in 2001

owing to the dot-com bubble burst, but Ireland’s foreign capital stock per worker in

2005 still ranked as the second highest in the world.

Table 2.2 lists the efficiency scores of each of the 79 countries in our sample for

1980 and 2005. For comparison purposes, we report the efficiency levels using our model

and the HR model, respectively. Table 2.2 shows that efficient countries identified by

the HR model are nested in our model in both 1980 and 2005. The efficient economies

in 1980 under the HR model (Greece, Mozambique, Netherlands, South Africa, Syria,

United States, and Venezuela) are also on the empirical frontier constructed by our

model, while six efficient countries under our model (Argentina, Cameroon, Columbia,

Honduras, Italy, and Jordan) run below the frontier constructed by the HR model. A

similar result is found in 2005, but the efficiency scores of these non-nested countries for

2005 with and without capital disaggregation are almost identical, since the efficiencies

of non-nested efficient countries in our model are very close to 1 in the HR model.

We are primarily interested in comparisons of efficiency measurement with and

without the disaggregation of capital stock in the technology. Table 2.2 reports that

the mean efficiency score in 1980 increased from 0.63 to 0.70 by the disaggregation of

capital input, suggesting that a good deal of the 1980 inefficiency in HR is attributable

to misspecification of capital as a homogeneous input. The separation of foreign and

domestic capital moves economies toward the frontier, closing the gap by about 18%

on average. The biggest efficiency improvements emanating from the introduction of

heterogeneity into the measurement of capital inputs in 1980 occur in the economies with
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very low foreign-capital-to-labor ratios: India, Honduras, China, Sudan, and Burkina

Faso. The effect of separating capital input in the 2005 calculations is less pronounced.

The average improvement in efficiency is around 5%, with the most notable change

occurring for Haiti and India. Japan, with the lowest foreign capital per efficient unit of

labor among OECD countries, shows substantial movement toward the empirical frontier

under our model as compared to that of HR: by 40% in 1980 and by 20% in 2005.

Figure 2.2 plots the distributions of the efficiency index under our model in

1980 and 2005 on the left and under the HR model on the right. Both graphs suggest

that the large mass in the middle of the distribution shifted away from the frontier.

Such backward shifting is more prominent in our model, which is in accordance with

the fact that the set of efficient economies in the HR model nests that in our model.

2.4.2 Pent-partite Decomposition

Table 2.3 shows each of the components of the relevant decomposition of pro-

ductivity growth from 1980 to 2005, both with and without separation of the capital in-

put. The first row for each country shows the country’s productivity growth and the con-

tributions to productivity growth of the five factors, efficiency change ([EFF −1]×100),

technological change ([TECH − 1] × 100), foreign capital accumulation ([KFACC −

1] × 100), domestic capital accumulation ([KDACC − 1] × 100), and human capital

accumulation ([HACC − 1] × 100). The second row for each country shows the con-

tributions to productivity growth in the HR model, with foreign capital and domestic

capital aggregating to total capital in the decomposition. Table 2.3 suggests that the

ordering of average contributions is similar for the HR and our model. The means of

efficiency change, human capital accumulation, and physical capital accumulation are

not substantially different for the two models. In our heterogenous capital model, for-
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eign capital accumulation not only is the principal driving force in the mean growth of

worldwide productivity, but also contributes more than twice as much, on average, to

productivity growth as does domestic capital accumulation.

Table 2.4 reports mean changes in productivity and the five growth-accounting

components for seven groups of countries. The OECD and the original EU forma-

tion countries (EU-15) experienced significant productivity gains—well above the world

average—primarily because of faster rates of technological progress and positive effi-

ciency gains.

The miraculous growth rates of the Asian Tigers, which are more than five-

fold that of the world average, are attributable primarily to predominant contributions

of efficiency gains in Singapore and prominent foreign capital deepening in Japan and

Korea. The neighboring Asian economies, especially China and India, also experienced

large increases in productivity growth from 1980 to 2005. The HR model credits their

productivity growth mostly to aggregate capital accumulation, but the results from our

model suggest that the phenomenal contribution from foreign capital accumulation over-

whelms that from domestic capital accumulation. As the production frontier remained

the same at low foreign-capital-to-labor ratios, the extraordinary foreign capital deep-

ening of the remaining Asian countries without commensurate increases in output per

unit of labor moved them further away from the world frontier, which led to huge falls

in efficiency. The remaining Asian economies and Latin America are the two groups

that suffered the biggest efficiency losses over time.

Latin America is the only group that experienced a negative average growth

rate of labor productivity. The HR model explains its poor performance by the collapse

in efficiency and a lack of capital accumulation. Our results concur with HR regarding
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the contribution of the deterioration in efficiency but finds that foreign capital accumu-

lation is not so anemic and in fact is close to the average over this period. Domestic

capital accumulation for Latin American countries was actually slightly negative, sug-

gesting that gross domestic investment was not sufficient to replace depreciated domestic

capital.

Figure 2.3 contains plots of the six growth rates (of labor productivity and its

five components) against output per worker in 1980, along with GLS regression lines.

The positive but statistically insignificant slope of the regression slope coefficient in Fig-

ure 2.3a suggests (at least) that there is no absolute convergence in income per worker

over the 1980–2005 period. The statistically significant positive regression slope coef-

ficients in Figure 2.3b and Figure 2.3c indicate that relatively wealthy countries have

benefited more from technological catch-up and technological change than have less-

developed countries. Figure 2.3d reveals that, while foreign capital accumulation has

contributed positively to growth for most countries, the pattern is very dissimilar to that

of overall productivity growth, with some striking examples of foreign capital accumu-

lation for low-income countries. The negative regression slope coefficient is statistically

significant, indicating that the international pattern of foreign capital accumulation may

have been the primary driving force to convergence. Figure 2.3e and Figure 2.3f evince

a wide dispersion of contributions of domestic and human capital accumulation, but

the slopes are statistically insignificant, suggesting that domestic capital and human

capital deepening have done little to contribute to convergence. Each of these interpre-

tations is based on first-moment characterizations of the productivity distribution and

is therefore vulnerable to the Quah (1993, 1996a, 1997) critique. We therefore place

more emphasis on the analysis of the distribution dynamics of labor productivity in the
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next sub-section.

2.4.3 Analysis of Productivity Distributions

Figure 2.4 plots the distributions of output per worker across the 79 countries

in our sample in 1980 and 2005. The dashed and solid curves are, respectively, the

estimated 1980 and 2005 distributions of output per worker. One fact that emerges

immediately from Figure 2.4 is that the distributions in both periods are bimodal, with

the “poor mode” remaining relatively stagnant while the “rich mode” moved further

away from the poorer one. The rich mode, barely evident in 1980 and became more

apparent over the 25-year period. The increased distance between the two modes is

consistent with the finding from Figure 2.3a, supporting the view that relatively rich

countries have grown faster than relatively poor ones.

We employ two nonparametric statistical tests for changes in the distribution:

a test for multimodality and a test for the statistical significance of differences between

actual and counterfactual distributions. For the former, we use the calibrated Silverman

test; see Hall and York (2001) and Henderson et al. (2008b). Following HR, for the

latter we choose the test proposed by Li (1996) and further studied by Fan and Ullah

(1999) to test the null hypothesis, H0 : f(x) = g(x) for all x, against the alternative,

H1 : f(x) 6= g(x) for some x.

Table 2.5 reports the results of calibrated Silverman test for multimodality of

the counterfactual distributions by successive introduction of the five growth-accounting

components. The rejection of the null hypothesis of the first and second tests at the

5% level, suggesting bimodality in both 1980 and 2005, is consistent with the finding

from informal inspection of Figure 2.4. Note that the first test fails to reject the null

hypothesis at the 1% level, indicating that the “poor mode” had emerged but was not
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very apparent in 1980. Table 2.6 and Table 2.7 summarize the Fan-Li-Ullah test results

for comparisons of the counterfactual distributions and the actual 1980 and 2005 distri-

butions, respectively. The first test in each table rejects the hypothesis that the actual

1980 and 2005 productivity distributions are identical at the 5% level, reinforcing the

results of the multimodality test and reflecting the significantly increased international

dispersion of labor productivity.

We aim to explore the role of each of the five growth-accounting components

in the transformation of the productivity distribution from 1980 to 2005. Rewrite the

pent-partite decomposition of labor productivity changes in (2.9) as follows:

(2.15) yc = (EFF × TECH ×KFACC ×KDACC ×HACC)× yb.

The labor productivity distribution in 2005 can be constructed by consecutively multi-

plying labor productivity in 1980 by each of the five factors, which allows us to isolate

the effect of each component. For example, the counterfactual 2005 productivity distri-

bution of the variable

(2.16) yE = EFF × yb

isolates the impact on the distribution of changes in efficiency only, assuming a stationary

world production frontier without any movement along the frontier. This counterfactual

distribution is illustrated as a dotted curve in Figure 2.5a, along with the actual distri-

butions in 1980 and 2005. The moderate loss of probability mass in the middle and the

gains at the “poor” mode suggest that efficiency changes could be responsible for the

intensification of bimodality during the 25-year period. This suggestion is supported by

Row 3 of Table 2.5: introducing efficiency change into the 1980 productivity distribution

leads to rejection of the null hypothesis, even at the 1% level. Table 2.5 also shows that
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efficiency change is the only component that by itself leads to bimodality at the 1% level.

The result of the Li-Fan-Ullah test, however, listed in row 2 of Table 2.6, rejects the null

hypothesis that efficiency change is solely responsible for shifting the 1980 productivity

distribution to that of 2005.

The counterfactual 2005 productivity distribution of the variable

(2.17) yET = (EFF × TECH)× yb = TECH × yE

isolates the effects of efficiency and technology changes on productivity distribution,

assuming no movement along the frontier. Figure 2.5b illustrates that neither the shape

nor the mean of the distribution is obviously affected by the introduction of technology

change, which reinforces the result from Table 2.3 that technological change contributes

little to mean productivity growth. The results of the Li-Fan-Ullah test, presented in

row 7 of Table 2.6 and Table 2.7, also suggest that technological change had little effect

on the shift of the 1980 productivity distribution to that of 2005.

We are especially interested in the isolated impact of foreign capital deepening

on the productivity distribution, obtained by examining the counterfactual distribution

of the variable

(2.18) yETKF = (EFF × TECH ×KFACC)× yb = KFACC × yET .

The resulting counterfactual distribution is drawn in Figure 2.5c. The introduction

of foreign capital lowers the probability mass at the “poor mode” and increases it at

high productivity countries, rendering the counterfactual distribution very close to the

2005 distribution. The Li-Fan-Ullah test in Row 17 of Table 2.6 fails to reject the null

hypothesis, supporting the finding that the counterfactual distribution of yETKF and

the actual 2005 distribution are similar. Note that the distribution test is rejected in
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Row 17 of Table 2.7, suggesting that the counterfactual distribution, after introducing

foreign capital deepening, is still close to that of 1980, which means that supplements

from other factors are needed to complete the shift.

The additional effect of domestic capital accumulation on the distribution of

yETKF can be observed by multiplying yETKF by KDACC:

(2.19) yETKFKD = (EFF×TECH×KFACC×KDACC)×yb = KDACC×yETKF .

Figure 2.5d depicts the resulting counterfactual distribution, which is only slightly dif-

ferent from that in Figure 5c. Row 27 of Table 2.7 also shows that the Li-Fan-Ullah

test fails to reject the identity of the counterfactual distribution and the 1980 distribu-

tion. Thus, the supplement from human capital accumulation is needed to complete the

statistical shift of the distribution from 1980 and 2005.

We also examined other sequencing combinations. As illustrated in Figures

2.6–2.9, the results are not sensitive to changes in the sequencing order. The intro-

duction of efficiency change always leads to international polarization. Foreign capital

deepening, along with human capital accumulation, statistically brings the 1980 produc-

tivity distribution to that of 2005. With the absence of either foreign capital deepening

or human capital accumulation in the sequence, the counterfactual labor productivity

distribution is significantly different from that of 2005 (or significantly close to that of

1980.)

2.5 Conclusion

In this paper, we extend the HR decomposition of labor productivity growth

by breaking physical capital accumulation into foreign capital and domestic capital.

Thus, labor productivity growth is decomposed into components attributable to tech-
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nological change, technological catch-up, foreign capital accumulation, domestic capital

accumulation and human capital accumulation.

We employ the recently released PWT (version 6.3) to extend the HR panel to

include data up to 2005, thus increasing the HR sample of countries by half. Our set of

countries is a good representation of the world’s economy, comprising developed, newly

industrialized, developing, and transitional economies.

These extensions allow us to uncover the role foreign capital has played in

international macroeconomic growth and convergence over the 1980–2005 period. Our

principal conclusions are as follows:

1. The effects of foreign capital accumulation and domestic capital accumulation

on productivity growth are dramatically different. Foreign capital accumulation,

together with human capital accumulation, is the driving force of productivity

growth; the contribution of domestic capital accumulation is much smaller.

2. Technological change is decidedly nonneutral, with most technological advance-

ment taking place in countries that are highly foreign-capital intensive.

3. Foreign capital deepening and human capital accumulation are the primary driving

forces behind increased international dispersion of labor productivity.

4. International polarization (the shift to a more obvious bimodal distribution) during

the 1980–2005 period is brought about primarily by efficiency changes. Efficiency

deterioration contributes to regression rather than progress on labor productivity

in relatively low-productivity countries.

Of course, as in in any analysis, these conclusions are predicated on acceptance

of the underlying assumptions as reasonable reflections of reality. In presentations of
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this paper, some skepticism has been expressed about the assumption of a “common”

production frontier, or technology, for the entire world. For any economic entity—the

world economy, a national economy, an industry, or even a particular firm—the pro-

duction frontier is an abstraction, one that is fundamental to economic analysis but is

an elusive notion for practitioners in these economic entities. We view the worldwide

production frontier as the universal “state of knowledge,” encapsulating the view that

any technology could be adopted in any country if it is rich enough to afford the cap-

ital intensity associated with that technology. Of course, countries varying in capital

intensity have varying technological options; thus, in fact, the relevant frontier for each

country is a small subset of the worldwide frontier corresponding to a neighborhood of

its capital/labor ratio. We believe this conception of technology is at least as realistic

as the common macroeconomic assumption that each country faces a unique (global)

technological frontier that is independent of the technologies available in other countries.

Our view is that technologies, per se, are easily transferred, in principle, across nation

state boundaries, but only if the recipient country is rich enough to afford the capital

intensity associated with the transferable technology.
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2.6 Appendix A: Tables and Figures

Table 2.1: Sample Country Distributions

Country Group Number Percentage Percentage of FDI inflows (2005)
OECD 21 26.6% 57.4%

Africa 27 34.2 5.3
Non OECD* Asia 11 13.9 28.5

Latin America 19 24.1 8.8

* Fiji is not in any of the three sub-groups of non-OECD countries.

Table 2.2: Efficiency Indexes for 79 Countries, 1980 and 2005

(Heterogeneous vs. Homogeneous Capital)

Heterogeneous Capital Homogeneous Capital (HR Model)

Country 1980 2005 1980 2005

Algeria 0.75 0.38 0.73 0.34

Angola 0.49 0.38 0.35 0.38

Argentina 1.00 0.64 0.82 0.63

Australia 0.85 0.78 0.84 0.78

Austria 0.96 0.88 0.93 0.85

Bangladesh 0.47 0.33 0.43 0.28

Brazil 0.84 0.53 0.84 0.53

Burkina Faso 0.66 0.49 0.43 0.36

Burundi 0.66 0.32 0.66 0.31

Cameroon 1.00 0.65 0.91 0.64

Canada 0.97 0.81 0.96 0.79

Central African Rep. 0.56 0.24 0.39 0.22

Chile 0.59 0.61 0.58 0.60

China 0.48 0.34 0.21 0.32

continued
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TABLE 2.2

CONTINUED

Heterogeneous Capital Homogeneous Capital (HR Model)

Country 1980 2005 1980 2005

Colombia 1.00 0.52 0.74 0.50

Costa Rica 0.72 0.49 0.71 0.49

Côte d’Ivoire 0.92 0.67 0.80 0.67

Denmark 0.78 0.87 0.78 0.84

Ecuador 0.46 0.33 0.46 0.33

Egypt 0.70 0.74 0.63 0.71

El Salvador 0.48 0.42 0.48 0.41

Ethiopia 0.57 0.39 0.42 0.37

Fiji 0.67 0.45 0.66 0.44

Finland 0.78 0.80 0.68 0.79

France 0.93 0.90 0.93 0.89

Germany 0.77 0.78 0.77 0.78

Ghana 0.36 0.39 0.28 0.37

Greece 1.00 0.88 1.00 0.77

Guatemala 0.66 0.41 0.65 0.39

Guyana 0.19 0.11 0.18 0.10

Haiti 0.53 0.29 0.41 0.22

Honduras 1.00 0.28 0.40 0.28

India 0.92 0.43 0.36 0.34

Indonesia 0.45 0.32 0.37 0.30

Iran 0.71 0.71 0.68 0.64

Ireland 0.73 1.00 0.73 1.00

continued
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TABLE 2.2

CONTINUED

Heterogeneous Capital Homogeneous Capital (HR Model)

Country 1980 2005 1980 2005

Italy 1.00 0.96 0.97 0.85

Jamaica 0.31 0.28 0.31 0.27

Japan 0.96 0.86 0.68 0.72

Jordan 1.00 0.56 0.99 0.50

Kenya 0.48 0.35 0.40 0.32

Korea, Rep. of 0.49 0.58 0.37 0.50

Madagascar 0.56 0.47 0.48 0.46

Malawi 0.27 0.32 0.24 0.29

Malaysia 0.63 0.65 0.63 0.65

Mali 0.48 0.69 0.44 0.67

Mauritius 0.88 0.99 0.62 0.95

Morocco 0.82 0.57 0.76 0.56

Mozambique 1.00 0.71 1.00 0.70

Netherlands 1.00 0.89 1.00 0.84

New Zealand 0.76 0.71 0.75 0.71

Nicaragua 0.32 0.17 0.32 0.17

Niger 0.45 0.39 0.37 0.33

Nigeria 0.74 0.57 0.64 0.52

Norway 0.88 1.00 0.88 1.00

Panama 0.51 0.45 0.50 0.44

Paraguay 0.82 0.38 0.67 0.38

Peru 0.53 0.35 0.51 0.34

continued
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TABLE 2.2

CONTINUED

Heterogeneous Capital Homogeneous Capital (HR Model)

Country 1980 2005 1980 2005

Philippines 0.55 0.30 0.38 0.29

Portugal 0.69 0.63 0.69 0.59

Senegal 0.87 0.59 0.79 0.54

Sierra Leone 0.49 0.35 0.48 0.35

Singapore 0.75 0.92 0.75 0.92

South Africa 1.00 0.96 1.00 0.90

Spain 0.92 0.85 0.88 0.81

Sudan 0.81 0.25 0.39 0.25

Sweden 0.95 1.00 0.83 0.99

Syria 1.00 0.62 1.00 0.61

Tanzania 0.37 0.28 0.37 0.27

Thailand 0.31 0.29 0.24 0.29

Trinidad and Tobago 0.69 0.63 0.69 0.61

Tunisia 0.60 0.80 0.59 0.79

Turkey 0.60 0.55 0.54 0.54

United Kingdom 0.72 0.90 0.72 0.90

U.S.A. 1.00 1.00 1.00 0.97

Uruguay 0.71 0.56 0.66 0.55

Venezuela 1.00 0.69 1.00 0.68

Zambia 0.27 0.26 0.21 0.25

Zimbabwe 0.69 0.11 0.48 0.11

Mean 0.70 0.57 0.63 0.54
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Table 2.3: Percentage Change of Pent-partite Decomposition Indexes, 1980-2005

(Heterogeneous Vs. Homogeneous Capital)

Productivity Change

Country Change EFF TECH KFACC KDACC HACC

Algeria -26.3% -49.3 2.6 4.4 3.4 40.4

-53.4 27.2 -8.2 35.5

Angola 45.4 -22.2 3.8 49.9 7.0 12.2

9.1 5.4 9.5 15.5

Argentina -10.4 -36.3 5.3 33.8 -3.8 3.7

-23.7 11.1 0.1 5.5

Australia 51.8 -7.5 15.2 5.7 26.7 6.2

-7.4 16.8 31.9 6.4

Austria 35.4 -8.0 14.7 15.1 0.9 10.4

-8.7 31.0 4.3 8.5

Bangladesh 41.2 -30.9 2.4 8.8 62.4 13.0

-33.1 0.4 89.4 11.1

Brazil -22.2 -36.5 1.9 4.2 -8.4 25.9

-36.4 5.0 7.3 25.7

Burkina Faso 32.6 -25.6 0.0 36.3 21.2 7.9

-15.0 0.2 45.8 6.7

Burundi -21.5 -52.3 0.0 10.7 41.5 4.9

-53.9 0.0 63.1 4.3

Cameroon -8.2 -35.1 1.8 13.4 9.2 12.3

-29.6 0.1 15.4 13.0

Canada 43.8 -17.0 14.2 3.2 34.5 9.2

-17.6 14.4 40.1 8.8

continued
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TABLE 2.3

CONTINUED

Productivity Change

Country Change EFF TECH KFACC KDACC HACC

Central African -32.2 -56.8 0.4 36.4 0.2 14.2

Republic -42.7 0.1 1.1 16.8

Chile 73.6 4.1 15.8 4.9 25.9 9.1

3.2 16.2 32.7 9.1

China 393.8 -29.8 0.7 285.4 59.9 13.3

50.3 3.9 173.0 15.9

Colombia -8.7 -48.4 0.0 39.2 12.7 12.8

-32.6 0.8 19.5 12.4

Costa Rica 4.3 -31.9 11.7 4.3 11.2 18.2

-31.8 16.1 13.1 16.5

Côte d’Ivoire -11.4 -27.4 2.8 13.3 -11.5 18.3

-16.6 0.3 -11.1 19.1

Denmark 66.6 11.3 10.8 8.7 16.5 6.6

8.1 13.6 26.5 7.3

Ecuador -26.3 -27.7 3.3 4.1 -18.4 16.1

-28.5 12.1 -18.6 13.1

Egypt 112.9 5.5 5.0 17.2 30.6 25.6

13.5 0.8 47.9 25.8

El Salvador 0.3 -13.2 3.3 12.9 -9.2 9.2

-14.0 9.5 -5.1 12.3

Ethiopia -16.8 -31.6 0.0 17.1 -7.9 12.8

-12.5 0.0 -12.6 8.8

continued
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TABLE 2.3

CONTINUED

Productivity Change

Country Change EFF TECH KFACC KDACC HACC

Fiji 1.0 -32.2 0.6 2.2 30.3 11.1

-33.1 0.5 34.5 11.6

Finland 71.4 2.9 14.2 26.9 3.5 11.1

16.5 21.9 9.3 10.4

France 41.2 -3.4 14.5 10.5 6.2 8.7

-4.2 22.4 11.4 8.2

Germany 33.3 0.2 10.5 7.6 4.6 7.0

0.2 16.9 7.3 6.1

Ghana 13.8 9.8 0.0 15.5 -15.1 5.5

28.7 0.1 -17.3 6.7

Greece 23.2 -12.1 12.8 6.9 -0.8 17.1

-22.9 37.0 -1.4 18.3

Guatemala -11.0 -37.3 8.9 5.7 0.0 23.3

-39.7 22.5 0.7 19.7

Guyana -34.0 -44.0 5.4 11.2 -13.3 16.0

-42.9 21.7 -15.4 12.2

Haiti -31.4 -45.8 0.4 3.6 7.2 13.6

-45.5 0.9 12.1 11.3

Honduras -9.6 -71.6 3.4 173.0 5.3 7.1

-32.1 7.8 12.9 9.4

India 123.9 -53.0 1.5 227.3 25.6 14.2

-3.9 0.4 92.0 20.9

continued
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TABLE 2.3

CONTINUED

Productivity Change

Country Change EFF TECH KFACC KDACC HACC

Indonesia 72.2 -29.1 5.4 19.0 59.7 21.2

-18.1 1.3 63.7 26.8

Iran 39.7 0.5 0.4 1.6 -4.0 42.1

-6.1 24.9 -12.2 35.5

Ireland 111.9 36.9 38.8 1.7 2.2 7.3

37.8 37.6 3.5 8.0

Italy 45.7 -3.7 10.4 16.8 0.2 17.1

-12.5 36.8 6.8 14.0

Jamaica 30.0 -10.2 19.1 8.2 0.4 12.0

-13.6 31.7 2.9 11.0

Japan 46.7 -9.7 2.0 47.6 1.2 6.7

5.3 23.0 5.1 7.8

Jordan -43.1 -43.9 0.0 0.0 -6.8 8.9

-49.7 0.7 4.0 8.2

Kenya -6.8 -27.4 1.8 8.6 -1.8 18.1

-18.8 0.3 -2.1 16.9

Korea, Rep. of 209.5 18.4 8.9 40.7 47.6 15.5

35.6 20.4 60.0 18.5

Madagascar -14.0 -15.6 0.0 4.5 -14.4 13.9

-4.3 0.0 -19.7 11.9

Malawi 29.7 17.7 0.6 4.3 -14.4 22.7

23.6 0.2 -14.7 22.8

continued
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TABLE 2.3

CONTINUED

Productivity Change

Country Change EFF TECH KFACC KDACC HACC

Malaysia 133.2 3.4 8.5 0.6 71.6 20.4

3.5 7.8 73.4 20.5

Mali 79.0 41.6 2.0 6.7 10.7 4.9

53.5 0.1 11.1 4.9

Mauritius 146.2 12.4 2.9 31.3 43.8 12.8

53.2 5.5 33.3 14.2

Morocco 7.4 -30.8 4.7 4.4 15.2 23.3

-25.9 3.5 13.2 23.7

Mozambique 46.2 -29.3 0.0 38.7 43.8 3.7

-30.3 0.0 102.8 3.3

Netherlands 13.6 -11.2 15.9 11.0 -7.3 7.3

-15.5 25.4 0.5 6.7

New Zealand 26.1 -6.0 11.7 6.6 4.8 7.4

-6.1 11.9 11.2 7.9

Nicaragua -43.3 -46.5 2.4 8.2 -21.0 21.2

-46.8 10.1 -18.6 19.0

Niger -20.8 -13.7 0.5 -4.2 -10.5 6.7

-10.8 0.5 -16.6 6.1

Nigeria 15.7 -22.0 0.1 18.4 -4.0 30.3

-17.6 0.3 10.4 26.7

Norway 72.1 13.1 20.5 9.1 5.6 9.6

13.2 29.7 7.7 8.9

continued
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TABLE 2.3

CONTINUED

Productivity Change

Country Change EFF TECH KFACC KDACC HACC

Panama 13.0 -11.1 3.9 0.0 10.8 10.3

-12.9 3.1 12.7 11.6

Paraguay -24.0 -53.5 5.1 22.1 18.6 7.5

-43.3 0.9 24.1 7.0

Peru -33.0 -34.7 0.1 20.5 -22.6 10.0

-32.2 4.6 -16.4 13.0

Philippines 3.3 -45.7 2.5 45.6 17.5 8.6

-23.6 0.5 20.8 11.4

Portugal 49.7 -8.6 17.1 10.1 8.6 17.0

-13.6 31.3 15.1 14.6

Senegal -2.5 -31.2 0.3 1.1 24.2 12.7

-31.1 0.0 26.2 12.2

Sierra Leone -37.6 -29.4 3.5 -0.3 -23.2 11.5

-27.3 0.8 -24.0 12.0

Singapore 152.1 23.5 30.6 4.5 8.0 38.5

23.6 36.1 11.1 34.8

South Africa 4.5 -3.8 0.0 0.1 -2.8 11.6

-10.3 0.5 2.6 12.9

Spain 50.6 -7.8 15.2 20.6 0.0 17.5

-8.4 38.6 1.7 16.7

Sudan 73.3 -69.1 4.3 214.7 58.7 7.8

-37.1 5.1 142.6 8.1

continued
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TABLE 2.3

CONTINUED

Productivity Change

Country Change EFF TECH KFACC KDACC HACC

Sweden 58.9 5.0 9.7 22.9 7.7 4.1

18.8 9.4 16.5 5.0

Syria -14.2 -38.3 0.0 0.1 17.2 18.5

-39.1 0.0 18.6 18.7

Tanzania 28.2 -24.5 0.0 7.0 41.2 12.3

-25.2 0.0 54.3 11.1

Thailand 152.5 -4.7 6.9 38.3 42.4 25.7

20.0 11.3 43.5 31.8

Trinidad & Tobago 22.4 -8.9 22.8 7.2 -3.5 5.8

-11.4 28.5 1.3 6.1

Tunisia 68.5 34.2 14.0 2.7 -7.6 16.1

33.9 15.0 -4.5 14.7

Turkey 98.2 -7.9 11.0 0.6 69.1 13.9

1.1 5.2 63.6 13.9

U.S.A. 60.5 0.0 11.4 9.5 25.7 4.7

-3.3 18.0 32.7 5.9

United Kingdom 76.2 24.8 11.0 7.4 7.2 10.5

24.6 10.7 15.8 10.3

Uruguay 6.9 -21.0 3.6 11.3 8.0 8.6

-16.5 6.7 8.1 10.9

Venezuela -35.8 -31.0 3.7 18.2 -25.8 2.3

-31.9 10.2 -16.9 3.0

continued
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TABLE 2.3

CONTINUED

Productivity Change

Country Change EFF TECH KFACC KDACC HACC

Zambia -12.9 -4.3 0.0 30.9 -34.8 6.7

18.4 1.7 -33.1 8.2

Zimbabwe -57.1 -84.3 5.2 28.2 69.3 19.9

-78.0 5.4 55.8 18.6

Mean 33.4 -18.2 6.7 24.4 11.2 13.6

-11.5 10.8 18.9 13.5

Table 2.4: Mean Percentage Changes of the Pent-partite Decomposition Indices

(Country Groupings)

Country Change
Group Productivity EFF TECH KFACC KDACC HACC

OECD 61.3 0.5 13.8 13.8 12.6 10.2
1.9 22.5 17.6 10.1

EU 15 52.1 2.0 15.1 12.8 3.8 10.9
1.5 25.6 9.0 10.3

Asian Tigers* 136.1 10.7 13.8 30.9 18.9 20.3
21.5 26.5 25.4 20.4

Non-OECD 23.3 -25.0 4.1 28.2 10.7 14.8
-16.3 6.6 19.4 14.8

Asia 95.9 -22.6 5.3 57.4 32.1 20.4
-6.9 7.9 52.5 21.4

Africa 16.1 -20.9 2.1 22.6 9.8 14.4
-11.3 2.7 17.5 14.1

Latin America -7.3 -31.9 6.3 20.7 -1.4 12.3
-28.0 11.5 2.2 12.0

All Countries 33.4 -18.2 6.7 24.4 11.2 13.6
-11.5 10.8 18.9 13.5

* Japan, Korea and Singapore.
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Table 2.5: Modality Tests (p-values)

H0: One Mode Conclusion

Null Hypothesis (H0) HA: More than of testing

One Mode H0

1 f(y80) 0.044 Reject

2 f(y05) 0.001 Reject

3 f(y80 × EFF ) 0.003 Reject

4 f(y80 × TECH) 0.034 Reject

5 f(y80 ×KFACC) 0.018 Reject

6 f(y80 ×KDACC) 0.762 Fail to reject

7 f(y80 ×HACC) 0.223 Fail to reject

8 f(y80 × EFF × TECH) 0.003 Reject

9 f(y80 × EFF ×KFACC) 0.001 Reject

10 f(y80 × EFF ×KDACC) 0.016 Reject

11 f(y80 × EFF ×HACC) 0.005 Reject

12 f(y80 × TECH ×KFACC) 0.002 Reject

13 f(y80 × TECH ×KDACC) 0.355 Fail to reject

14 f(y80 × TECH ×HACC) 0.587 Fail to reject

15 f(y80 ×KFACC ×KDACC) 0.148 Fail to reject

16 f(y80 ×KFACC ×HACC) 0.276 Fail to reject

17 f(y80 ×KDACC ×HACC) 0.841 Fail to reject

18 f(y80 × EFF × TECH ×KFACC) 0.002 Reject

19 f(y80 × EFF × TECH ×KDACC) 0.009 Reject

20 f(y80 × EFF × TECH ×HACC) 0.012 Reject

21 f(y80 × EFF ×KFACC ×KDACC) 0.002 Reject

continued

41



TABLE 2.5

CONTINUED

H0: One Mode Conclusion

Null Hypothesis (H0) HA: More than of testing

One Mode H0

22 f(y80 × EFF ×KFACC ×HACC) 0.001 Reject

23 f(y80 × EFF ×KDACC ×HACC) 0.009 Reject

24 f(y80 × TECH ×KFACC ×KDACC) 0.079 Fail to reject

25 f(y80 × TECH ×KFACC ×HACC) 0.026 Reject

26 f(y80 × TECH ×KDACC ×HACC) 0.616 Fail to reject

27 f(y80 ×KFACC ×KDACC ×HACC) 0.175 Fail to reject

28 f(y80 × EFF × TECH ×KFACC ×KDACC) 0.002 Reject

29 f(y80 × EFF × TECH ×KFACC ×HACC) 0.002 Reject

30 f(y80 × EFF × TECH ×KDACC ×HACC) 0.026 Reject

31 f(y80 × EFF ×KFACC ×KDACC ×HACC) 0.000 Reject

32 f(y80 × TECH ×KFACC ×KDACC ×HACC) 0.091 Reject
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Table 2.6: Distribution Hypothesis Tests

(comparison year, 2005)

Distribution Boot p-value H0

1 f(y05) = g(y80) 0.039 Reject

2 f(y05) = g(y80 × EFF ) 0.019 Reject

3 f(y05) = g(y80 × TECH) 0.208 Fail to reject

4 f(y05) = g(y80 ×KFACC) 0.065 Fail to reject

5 f(y05) = g(y80 ×KDACC) 0.074 Fail to reject

6 f(y05) = g(y80 ×HACC) 0.058 Fail to reject

7 f(y05) = g(y80 × EFF × TECH) 0.027 Reject

8 f(y05) = g(y80 × EFF ×KFACC) 0.045 Reject

9 f(y05) = g(y80 × EFF ×KDACC) 0.037 Reject

10 f(y05) = g(y80 × EFF ×HACC) 0.034 Reject

11 f(y05) = g(y80 × TECH ×KFACC) 0.206 Fail to reject

12 f(y05) = g(y80 × TECH ×KDACC) 0.331 Fail to reject

13 f(y05) = g(y80 × TECH ×HACC) 0.651 Fail to reject

14 f(y05) = g(y80 ×KFACC ×KDACC) 0.046 Reject

15 f(y05) = g(y80 ×KFACC ×HACC) 0.082 Fail to reject

16 f(y05) = g(y80 ×KDACC ×HACC) 0.058 Fail to reject

17 f(y05) = g(y80 × EFF × TECH ×KFACC) 0.075 Fail to reject

18 f(y05) = g(y80 × EFF × TECH ×KDACC) 0.035 Reject

19 f(y05) = g(y80 × EFF × TECH ×HACC) 0.127 Fail to reject

20 f(y05) = g(y80 × EFF ×KFACC ×KDACC) 0.018 Reject

21 f(y05) = g(y80 × EFF ×KFACC ×HACC) 0.075 Fail to reject

22 f(y05) = g(y80 × EFF ×KDACC ×HACC) 0.034 Reject

continued
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TABLE 2.6

CONTINUED

Distribution Boot p-value H0

23 f(y05) = g(y80 × TECH ×KFACC ×KDACC) 0.108 Fail to reject

24 f(y05) = g(y80 × TECH ×KFACC ×HACC) 0.126 Fail to reject

25 f(y05) = g(y80 × TECH ×KDACC ×HACC) 0.293 Fail to reject

26 f(y05) = g(y80 ×KFACC ×KDACC ×HACC) 0.032 Reject

27 f(y05) = g(y80 × EFF × TECH ×KFACC ×KDACC) 0.219 Fail to reject

28 f(y05) = g(y80 × EFF × TECH ×KFACC ×HACC) 0.747 Fail to reject

29 f(y05) = g(y80 × EFF × TECH ×KDACC ×HACC) 0.310 Fail to reject

30 f(y05) = g(y80 × EFF ×KFACC ×KDACC ×HACC) 0.069 Fail to reject

31 f(y05) = g(y80 × TECH ×KFACC ×KDACC ×HACC) 0.044 Reject

Table 2.7: Distribution Hypothesis Tests

(comparison year, 1980)

Distribution Boot p-value H0

1 f(y05) = g(y80) 0.039 Reject

2 f(y80) = g(y80 × EFF ) 0.614 Fail to reject

3 f(y80) = g(y80 × TECH) 0.856 Fail to reject

4 f(y80) = g(y80 ×KFACC) 0.453 Fail to reject

5 f(y80) = g(y80 ×KDACC) 0.954 Fail to reject

6 f(y80) = g(y80 ×HACC) 0.952 Fail to reject

7 f(y80) = g(y80 × EFF × TECH) 0.183 Fail to reject

8 f(y80) = g(y80 × EFF ×KFACC) 0.597 Fail to reject

continued
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TABLE 2.7

CONTINUED

Distribution Boot p-value H0

9 f(y80) = g(y80 × EFF ×KDACC) 0.720 Fail to reject

10 f(y80) = g(y80 × EFF ×HACC) 0.496 Fail to reject

11 f(y80) = g(y80 × TECH ×KFACC) 0.076 Fail to reject

12 f(y80) = g(y80 × TECH ×KDACC) 0.828 Fail to reject

13 f(y80) = g(y80 × TECH ×HACC) 0.491 Fail to reject

14 f(y80) = g(y80 ×KFACC ×KDACC) 0.158 Fail to reject

15 f(y80) = g(y80 ×KFACC ×HACC) 0.117 Fail to reject

16 f(y80) = g(y80 ×KDACC ×HACC) 0.560 Fail to reject

17 f(y80) = g(y80 × EFF × TECH ×KFACC) 0.075 Fail to reject

18 f(y80) = g(y80 × EFF × TECH ×KDACC) 0.259 Fail to reject

19 f(y80) = g(y80 × EFF × TECH ×HACC) 0.129 Fail to reject

20 f(y80) = g(y80 × EFF ×KFACC ×KDACC) 0.351 Fail to reject

21 f(y80) = g(y80 × EFF ×KFACC ×HACC) 0.106 Fail to reject

22 f(y80) = g(y80 × EFF ×KDACC ×HACC) 0.479 Fail to reject

23 f(y80) = g(y80 × TECH ×KFACC ×KDACC) 0.076 Fail to reject

24 f(y80) = g(y80 × TECH ×KFACC ×HACC) 0.026 Reject

25 f(y80) = g(y80 × TECH ×KDACC ×HACC) 0.191 Fail to reject

26 f(y80) = g(y80 ×KFACC ×KDACC ×HACC) 0.042 Reject

27 f(y80) = g(y80 × EFF × TECH ×KFACC ×KDACC) 0.065 Fail to reject

28 f(y80) = g(y80 × EFF × TECH ×KFACC ×HACC) 0.050 Reject

29 f(y80) = g(y80 × EFF × TECH ×KDACC ×HACC) 0.134 Fail to reject

30 f(y80) = g(y80 × EFF ×KFACC ×KDACC ×HACC) 0.050 Reject

31 f(y80) = g(y80 × TECH ×KFACC ×KDACC ×HACC) 0.022 Reject
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Figure 2.1: World Production Frontiers, 1980 and 2005
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Figure 2.2: Distributions of Efficiency Indexes, 1980 and 2005

(Heterogeneous Vs. Homogenous Capital)
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Figure 2.3: Percentage Change in Output per Worker and Five Decomposition Idexes

(Plot against 1980 Output per Worker)
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Figure 2.4: Distributions of Output per Worker, 1980 and 2005
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(a) Effect of Efficiency Change
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(b) Effect of Technological Change
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(c) Effect of Foreign Capital Deepening
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(d) Effect of Domestic Capital Deepening

Figure 2.5: Counterfactual Distributions of Output per Worker

(sequence of introducing effects of decomposition: EFF, TECH, KFACC, and KDACC)
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(a) Effect of Foreign Capital Deepening
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(b) Effect of Domestic Capital Deepening
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(c) Effect of Human Capital Accumulation
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(d) Effect of Efficiency Change

Figure 2.6: Counterfactual Distributions of Output per Worker

(sequence of introducing effects of decomposition: KFACC, KDACC, HACC, and EFF)
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(a) Effect of Foreign Capital Deepening
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(b) Effect of Technological Change
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(c) Effect of Human Capital Accumulation
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(d) Effect of Domestic Capital Deepening

Figure 2.7: Counterfactual Distributions of Output per Worker

(sequence of introducing effects of decomposition: KFACC, TECH, HACC, and

KDACC)
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(a) Effect of Human Capital Accumulation
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(b) Effect of Domestic Capital Deepening
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(c) Effect of Foreign Capital Deepening
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(d) Effect of Technological Change

Figure 2.8: Counterfactual Distributions of Output per Worker

(sequence of introducing effects of decomposition: HACC, KDACC, KFACC, and

TECH)
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(c) Effect of Foreign Capital Accumulation
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(d) Effect of Domestic Capital Deepening

Figure 2.9: Counterfactual Distributions of Output per Worker

(sequence of introducing effects of decomposition: HACC, TECH, KFACC, and

KDACC)
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Chapter 3

Model Selection in Productivity

Efficiency Measurement with

Dimensionality Effect1

3.1 Introduction

Nonparametric technical efficiency methods, pioneered by Farrell (1957b) and

Charnes et al. (1978), have been widely employed over the last three decades in many

areas of economics and management science. These methods, especially the data en-

velopment analysis (DEA), serve as standard performance evaluation tools to identify

and quantify the efficiencies of the decision making units (DMU’s). The DEA is a

data-driven method that envelops the data in the ”tightest fitting” convex cone and

assigns efficiency scores to each DMU based on its performance relative to the ”best

practice” performers on the upper boundary of the set. It requires no specification of
1This chapter is taken from Gu and Tu (2011).
1See Emrouznejad et al. (2008) and Cooper et al. (2001) for extensive surveys of DEA literatures.
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the functional form for the technology, and is particularly powerful when price informa-

tion is unavailable or unreliable in multiple-dimensional production processes. As the

DEA method is capable to summarize comparative assessment into a single efficiency

measure, it is extensively used in public sector and nonprofit organizations involving

multiple performance criteria.

The efficiency scores derived by the DEA method is measured relative to a

nonparametric estimate of an unknown true frontier, and are subject to uncertainty

owing to sampling variation. Because of the nonparametric multidimensional nature

of the DEA estimators, statistical inference, like estimating the variance and construct

confidence intervals, often relies on bootstrap strategy. The bootstrap method was

introduced by Efron (1979) as a way to estimate the distribution of an estimator or test

statistic. The basic idea is to treat the original sample as if it was a population and then

create a bootstrap sample by resampling. If we repeat this many times and obtains lots

of bootstrap samples, we can use the mean of the computed quantities as an estimate

of the expected value of this bootstrapped quantity. The reliability of a bootstrap

test depends on how well the bootstrapped data generating process (DGP) mimics the

underlying features of the true DGP that matter for the distribution of the test statistics.

See Davision and Hinkley (1997) for a balanced account of resampling methods together

with their fruitful applications, and see Politis et al. (1999) for the recent development

in subsampling techniques. Grosskopf (1996) provides a brief reviews of early literatures

on statistical inference in DEA estimators. The drawback of a naive bootstrap is that

it yields inconsistent statistical inference in nonparametric frontier models. Simar and

Wilson (1998) develop a consistent bootstrap algorithm to analyze the sensitivity of the

efficiency measures to sampling variation, but restrict the efficiency distribution to be
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homogenetic. Simar and Wilson (2000a) extend the bootstrap to heterogenetic setting

by using subsampling. Kneip et al. (2008) use two bootstrap procedures, based on

subsampling and smoothing, to derive asymptotic distribution of the DEA estimators.

The raw efficiency scores estimated by DEA models not only reflect technical

inefficiency but also the dimensions of a variable set. For a fixed sample size, the

magnitude (total number of inputs and outputs) and structure (combination of input

and output variables) of the dimensionality may affect the estimated production frontier

and associated efficiencies dramatically. Nunamaker (1985) justifies that the expansion

of a variable set results in upward trend in efficiency scores. Thrall (1989) proposes

transition conditions to underpin Nunamaker (1985)’s assertion. HY generalize the

results that the increase in the dimensionality leads to higher efficiency scores and more

efficient DMU’s.

The difference of the dimensionality between two alternative variable sets can

be categorized into three cases: nested variable changes (expansion or contraction of the

variable set), additive variable changes (aggregation or disaggregation of the variable set)

and other non-nested variable changes. The nested case addresses the issue of whether

particular input and/or output variables are irrelevant. Tauer and Hanchar (1995) use

Monte Carlo simulation to show that efficiency scores inflate when the number of input

variables increase, and the dimensionality effect dominates the effect of sample size cut.

Smith (1997) applies simulated data to show the underestimation of efficiency scores

by the omission of relevant variables and the overestimation by the incorporation of

extraneous variables. The additive case is about whether some of the input and/or

output variables should be aggregated or disaggregate. The remaining non-nested cases

allow a comparison of two DEA models with distinct input and/or output variables.
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If the contribution of the added variables only reflects enlarged dimensionality,

these variables should not be considered as part of the underlying technology set. To

make the DEA results independent of the dimensionality effect, the bias in raw efficiency

scores should be properly measured and corrected before any reliable policy implemen-

tation. HY provide a diagnostic test by simulating data sets from a random normal

distribution with the same dimensions as the actual sample has. If the mean percentage

of efficient DMU’s from the observed sample is not statistically different from that of

1000 replications of simulated data, the dimensions of the DEA model are misspecified.

Their estimated dimensionality effect is determined by the number of input-output vari-

ables included in the model and is homogeneous across the structure of variable set.

Our paper concerns more about the marginal role of particular variables playing in the

production process and allows the partial dimensionality effect to be heterogeneous. Out

test utilizes the remaining observed variables and mimic the sampling distribution by

bootstrap method. The comparison confirms that the index of the dimensionality con-

structed by observation-based simulations is more credible than that by random number

generators.

In addition to measure the partial dimensionality effect caused by particular

variables, our paper answers a deeper question that how to incorporate the dimension-

ality effect in the DEA model selection procedure. Due to the deterministic feature of

nonparametric frontier model, statistical tests are not readily available. Simar and Wil-

son (2001) consider the nested and additive variables changes and use bootstrap method

to construct test statistics. The null hypotheses of the tests assume that efficiency scores

derived from correct specified model will not change if 1). irrelevant input and/or output

variables are added into the model; or 2). some of the input and/or output variables are
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combined to be one aggregated variable. These assumptions overlook the bias in raw

efficiency scores owing to the dimensionality effect. The non-zero efficiency difference

between correctly specified model and misspecified model is statistically significant and

reflects the partial dimensionality of the model. We follow Simar and Wilson (2001) to

apply the bootstrap method to construct test statistics and correct the bias caused by

the dimensionality effect. We also extend the tests to more general cases that allow for

the comparison of non-nested variable changes. Monte Carlo experiments show that our

tests have proper size and valid power in finite sample.

The structure of the chapter is as follows. Section 2 introduces nonparametric

production frontier models and shows the effect of dimensionality. Section 3 formally

states our null hypothesis and address the issue of the dimensionality change. Section 4

proposes a procedure to measure the dimensionality effect and to test change in efficiency

score in this setup. Section 5 illustrates the proposed tests with HY data set. Section 6

concludes with remarks.

3.2 Nonparametric Production Models

3.2.1 Preliminaries

Consider a set of J DMU’s, j = 1, . . . , J , using N inputs to produce M out-

puts with production vectors, denoted 〈x, y〉, contained in the 〈input, output〉 space

RM+N
+ . The technology of converting inputs x into outputs y for each DMU j, can be

characterized by the technology set

(3.1) T =
{
〈y, x〉 ∈ RM+N

+

∣∣∣ x can produce y
}
.
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Equivalently, the same technology can be characterized by the input requirement set

(3.2) L(y) =
{
x ∈ RN+

∣∣∣ 〈y, x〉 ∈ T },
or output possibility set

(3.3) P(y) =
{
y ∈ RM+

∣∣∣ 〈y, x〉 ∈ T }.
The theoretical literature on technical efficiency measurement puts loose reg-

ularity conditions to include a general class of technologies. We adopt assumptions by

Shephard et al. (1970) and Färe et al. (1994).

Assumtion 1 T is closed, convex, non-empty and bounded for all x ∈ RN+ .

Assumtion 2 〈x, y〉 ∈ T , y ∈ RM+ , and 〈x,−y〉 ∈ 〈x,−y〉 implies 〈x, y〉 ∈ T , that is,

both inputs and outputs are disposable.

Assumtion 3 y > 0[M ] =⇒ 〈0[N ], y〉 6∈ T .

3.2.2 Inefficiency Indexes

The reference technology is defined by

T =
{
〈x, y〉 ∈ RM+N

+

∣∣∣ Y ≤∑
j

zjYj ∧ x ≥
∑
j

zjxj ∧
∑
j

zj = 1, zj ≥ 0 ∀ j
}
.(3.4)

where zj is the level of operation of a linear process for the j-th observation. Every point

in the technology set is a linear combination of observed input and output vectors or

a point dominated by such a combination. The constructed technology is a polyhedral

cone with piecewise linear isoquants, commonly referred to as a Farrell cone. The Farrell

input-based efficiency index for j-th DMU is defined by

(3.5) δj(xj , yj) = min
{
δ
∣∣∣ 〈δxj , yj〉 ∈ T }.
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As the index is the minimal proportional amount that input can be saved and remain

technologically feasible, given the output quantities and the technology, it takes a value

between zero and one and equals one if and only if the j observation lies on the pro-

duction frontier. Similarly, The Farrell output-based efficiency index for j-th DMU is

derived by

(3.6) θj(xj , yj) = min
{
θ
∣∣∣ 〈xj , yj/θ〉 ∈ T }.

We will discuss only the input-oriented efficiencies, but the output-oriented case can be

done following straightforward translation of the notation.

3.3 Null Hypothesis

In this section, we lay out our test procedures and present the properties of our

test statistic. Consider a sample of observations for J DMU’s, {yj , xj}Jj=1 , where yj is

an M×1 vector of outputs and xj is an N×1 vector of inputs for the j-th DMU. Denote

δj (m,n) as the efficiency score of the j-th DMU calculated by efficiency measures, for

example, DEA, using m out of the M observed output variables and n out of the N

input variables. The value of δj (m,n) usually relies on the dimension parameters m

and n, which are denoted as m × n afterwards. Thus a generic question of interest

is to test that, when including or excluding some observed input/output variables in

the calculation of efficiency score δj , the change in δj is from the increase or decrease

in dimensionality or from the existence of inefficiency. This question is appealing for

theoretical concerns as well as practical reasons which, unless properly handled, usually

prevent a meaningful measure of productivity and thus jeopardize the credibility of the

DEA results in practical applications.

To proceed, we formulate our Null Hypothesis that the change of efficiency
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score of j-th DMU is owing to the change of dimensionality, but not the change in

inefficiency, as follows,

H0 : There is no efficiency change when m1 × n1 changes to be m2 × n2.

We test the above Null against the following Alternative,

H1 : There is efficiency change when m1 × n1 changes to be m2 × n2.

We comment on the formulation of the Null and Alternative in the following remarks.

Remark 1: The Null first states that there is a change in the dimensionality of the

model, from m1 × n1 to m2 × n2. The change in dimensionality is nondegenerate, that

is, 1 (m1 6= m2) + 1 (n1 6= n2) > 0, where 1 (A) is 1 when the event A is true and 0

otherwise. The change of dimensionality may arise in practice for several reasons, like

the availability of new observations on previously unobserved economic factors, and a

change of factor inputs owing to introduction of newly found economic resource or other

technical changes, etc.

Remark 2: The Null also implies that there would be a change in the value of efficiency

score as dimensionality varies. It should be the case due to the stochastic sample that

we observe, not to mention other reasons like dimensionality change or efficiency change.

However, this variation, accounted for randomness of the observed sample, is because

of the dimensionality change as stated in the Null and also the existence of efficiency

change as claimed in the Alternative.

3.4 Test Statistics

The HY test focuses on the change of number of efficient DMU’s. The di-

mension of the DEA model is misspecified if the mean percentage of efficient DMU’s
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from the observed sample is not statistically different from that of simulated data. Our

proposed test manages to use the efficiency information quantitatively from each DMU

in the data set. Not only is the classification of efficient DMU’s important, but also the

magnitude of inefficiency matters. The idea of our proposed test is that the change in

the efficiency scores dj = δj (m2, n2)− δj (m1, n1) (including other measures) should not

be large in absolute value under the Null. Otherwise it should be rejected.

To test the proposed Null, a test statistic is in need as well as its distribu-

tion properties. Because of the multi-dimensional nature of the DEA estimators, the

sampling distributions of the estimators are not handy, and the distributions of test

statistics is unknown. The difficulty is to find a reasonable estimate of the underling

DGP. HY simulates data sets from a random normal distribution, which eases the cal-

culation but puts severe constraint on the type of DGP’s that the test can be applied

to. We employ bootstrap method to investigate sampling properties of DEA estima-

tors. Bootstrap methodology, which assigns measures of accuracy to sample estimates

through repeatedly and randomly resampling of the original data set, can be used to

improve the finite-sample critical values for test statistics. There are different types of

bootstrapping can be applied to DEA estimators. The reliability of a bootstrap test

depends on how well the bootstrapped DGP mimics the underlying features of the true

DGP. Simar and Wilson (1998) develop a smoothed bootstrap algorithm to analyze the

sensitivity of the efficiency measures to sampling variation, but restrict the efficiency

distribution to be homogenetic. Simar and Wilson (2001) apply it to construct critical

values for the test statistics of various restrictions of a nonparametric efficiency model.

Our test releases the homogenetic constraint and uses subsampling in the bootstrap

algorithm to obtain consistent statistical inference.
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We consider using dj and its aggregated forms as our test statistics and boot-

strap their distribution function, as in the procedures below.

Bootstrap Algorithm 1: Evaluation of Dimensionality Effect:

Step 1: Denote the input-output vector in model 1 as
(
X1, Y 1

)
and that

in model 2 as
(
X2, Y 2

)
. Denote X̄ = X1 ∩ X2 as the common input variable and

Ȳ = Y 1 ∩Y 2 as the common output variable used in model 1 and model 2. For i = 1, 2,

define X̂i = Xi\X̄ and Ŷ i = Y i\Ȳ . Thus, we have Xi =
[
X̄, X̂i

]
and Y i =

[
Ȳ , Ŷ i

]
.

That is, we partitioned the input and output variables into two sets, with X̄ and Ȳ

representing the common input and output variables, while X̂i and Ŷ i denoting the

distinct input and output variables used for model i. If some X̂i and Ŷ i is empty, it is

the case of nested variable change. the variable set of model i is nested under that of

the other model.

Step 2: From the observed sample
{
X̂1
j

}J
j=1

, randomly draw a sample of size

J−1 with replacement and denote the sample as
{
X̂1∗
j

}J−1

j=1
. Combined the bootstrapped

sample with original observations of common inputs and denote X1∗ =
[
X̄, X̂1∗

]
Step 3: Bootstrap X2∗, Y 1∗, Y 2∗ similarly as been done in step 2.

Step 4: Compute the efficiency score di∗j by solving the linear programming

problem (3.5) using data
{
Xi∗
j , Y

i∗
j

}J
j=1

for i = 1, 2.

Step 5: Repeat step 2-4 B times. Compute the efficiency score d
i∗(b)
j , for

b = 1, . . . , B.

Step 6: Compute the bootstrapped dimensionality effect which is the difference

between the efficiency score under model 1 and model 2:

DEj (m1 × n1, m2 × n2) =
1
B

B∑
b=1

(
d

2∗(b)
j − d1∗(b)

j

)

Bootstrap Algorithm 2: p-value of the Test Statistic:

64



Step 1: Calculate the efficiency score δj (m2, n2) and δj (m1, n1) for the di-

mensionality given before and after the change. Calculate the difference of the dimen-

sionality effect using original and bootstrapped data: dj = δj (m2, n2) − δj (m1, n1) −

DEj (m1 × n1, m2 × n2) .

Step 2: Randomly draw a sample of size J without replacement from the

given J DMU’s and denote it as {y∗i , x∗i }
J
i=1 . Use this bootstrapped sample to calculate

the efficiency scores associated with the j-th DMU for both dimensionality m1×n1 and

m2 × n2, with each denoted by δ∗j (m2, n2) and δ∗j (m1, n1) respectively. Note that we

use the original observations, rather than the bootstrapped values, for the j-th DMU

to calculate its efficiency scores. Apply Algorithm 1 to compute the dimensionality

effect DE∗j (m1 × n1, m2 × n2). Calculate the distance d∗j = δ∗j (m2, n2)− δ∗j (m1, n1)−

DE∗j (m1 × n1, m2 × n2) .

Step 3: Repeat Step 2 for B times, with the distance in each run denoted as

d
∗(b)
j , b = 1, ..., B.

Step 4: Compute the test statistic value

θ̂ = θ (d1, . . . , dJ)

and bootstrapped test statistics value

θ̂(b) = θ
(
d

(b)
1 , . . . , d

(b)
J

)
Step 5: Calculate the P-value

P = 1− Fd (d∗) =
1
B

B∑
b=1

1
(
θ̂ > θ̂(b)

)
,

where 1 (·) is the indicator function as defined earlier. Reject the Null if P is less than

pre-specified significance level α. Otherwise, we fail to reject the Null and thus accept

the Alternative.
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Remark 3: In the computation of efficiency scores, it is possible to correct the bias at

Step 4 of Algorithm 1 and Step 2 of Algorithm 2, for example, as suggested by Simar and

Wilson (2000a). This will involve a further bootstrap loop every time when the linear

programming problem (**) is solved. This is very computationally time demanding

and is usually not performed in simulations. However, when computational cost is not

severe, this bias correction can be easily conducted.

Remark 4: Note that the proposed test is a global test. We need to test whether there

is a change in efficiency for DMU’s overall, after a change in dimensionality. However,

it is easy to adapt the proposed test to be an local/individual one. This is simply done

by taking θ̂ = dj when testing the efficiency change of j-th DMU.

Remark 5: The aggregate function θ (·, . . . , ·) can take many forms, such as

θ1 (d1, . . . , dJ) =
(∑

dpj

)1/p
for p ∈ N,

θ2 (d1, . . . , dJ) = median of {dj}Jj=1 ,

among others. The form of test statistic may affect the test result as noted by Simar and

Wilson (2001), but many test statistics can deliver equivalent test results. We adopt θ1

as the aggregate function in our empirical exercise.

3.5 Monte Carlo Simulation

We have discussed the procedures that describe our test of dimensionality for a

very general setting. This section performs Monte Carlo simulation to examine the size

and power of the test statistic. To compute the size of our test, we simulate data that is

consistent with our null hypothesis. To compute the power of our test, we simulate data

that is consistent with the alternative hypothesis. We consider the following DGPs.
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DGP 1 (irrelevant input variable) :

x1i = 1 + 8u1i

x2i = 1 + 8u2i

y1i = x
2/3
1i e

|−vi|

DGP 2 (additive input variables):

x1i = 1 + 8u1i

x2i = 1 + 8u2i

y1i = (x1i + x2i)
2/3 e|−vi|

where, xji(yji, uji) denote the jth element of xi (yi, ui) and uji and vi are

independent random variables. We assume uji ∼ U [0, 1] and vi ∼ N (0, 1). DGP 1 and

DGP 2 are kept the same as those used by Simar and Wilson (2001).

In DGP 1, the input variable x2 is irrelevant to the production of y1. This

design is used to study our proposed test statistic for irrelevant input variables. The

question we propose is that, should there be no efficiency change when we shift from

the model {x1, y1} to {x1, x2, y1} computing efficiency score? Since x2i is an irrelevant

variable, we expect that our test statistically delivers a positive answer. While for sure

there will be a change in the value of efficiency score, this difference should be resulted

from either of the following two sources: the randomness of the sample we observed and

the effect due to dimension change. We use bootstrap to account for the first effect and

factor out the dimensionality component in the efficiency score. Consequently, computed

efficiency score reflects the efficiency of units only. That is, the rejecting probability of

there is a difference in efficiency score, accounting for dimensionality effect, should be

close 1.
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DGP 2 provides a setting from which we investigate our test for additivity of

input variables. The input variable x1 and x2 are additive in the production of y1. The

efficiency of DMU’s is therefore expected to be the same in both the model that uses

{x1, x2, y1} and the one with {x1 + x2, y1}. The difference in efficiency score computed

from the linear programming problem should attribute to either the random sample or

the dimensionality difference in the two models. Accoutring for these two effects via our

proposed algorithms, the difference in efficiency score should not be significant.

We conduct 999 simulations and compute the probability of rejecting the null

as portion of number of times that our test statistic exceed the simulated critical values

corresponding to the significance level α (=0.01, 0.05, 0.10, 0.15). In each simulation,

we conduct 999 bootstrapped samples to simulate the distribution of our statistic. We

compute the dimensionality effect using 99 bootstrapped samples, given the availability

of computing facility.

3.6 Empirical Illustration with NSW Data

This section illustrates our proposed approach to evaluate dimensionality effect

and test changes in efficiencies with a data set that has been used in previous studies,

for instance, in HY. This sample contains 161 police patrols in the State of New South

Wales (NSW), Australia, in 1995 and 1996. We shortly describe the data set up to the

point for our analysis, while direct readers to HY for a full data description and summary

statistics. The sample is comprised of two groups of output variables, law enforcement

and crime prevention activities, and two groups of inputs, labor and capital resources,

which are used to deliver services to the community. Number of incidents, charges,

summons and major car accidents are measures of law enforcement activities, while
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prevention activities are indicated by distance traveled by police cars and the number

of intelligence reports prepared by front line police officers. Labor resources available

include police and civilian employees measured as annual-average, full time equivalent

staff and three measures of capital inputs are number of police cars, number of personal

computers and area of station accommodation.

We apply our proposed approach to two cases–irrelevant case and additive case.

In irrelevant case, we are concerned with the DEA modeling question that whether

a given input or output variable is relevant to the efficiency measurement model or

not. The result for the first case is presented in the following subsection, where three

alternative models with less input variables are contrasted with the full model. The

second case looks into the problem that whether two or more input or output variables

should be aggregated additively in the efficiency assessment.

3.6.1 Irrelevancy of Input Variables

3.6.1.1 Model Specification and Technical Efficiency

We follow HY and consider four model specifications as follows,

M1 : Include all input and output variables;

M2 : Include all input and output variables except the area of station accommodation;

M3 : Include all input and output variables except the number of personal computers;

M4 : Include all input and output variables except the area of station accommodation

and the number of personal computers.

Note that Model 1 is the largest model in terms of its dimensionality and

contains 11 series. Both Model 2 and 3 contain 10 series, while Model 4 is the smallest

model that only contains 9 variables. Theoretically, Model 1 should induce efficiency
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measures that are largest among all four models and Model 4 has smallest efficiency

measures. Noticeably, dimensionality effect resulting from including more variable(s) in

a larger model would seriously jeopardize efficiency measures.

Table 3.5 reproduce the results of HY (table 2, pp.416) on pure technical

efficiency scores for all the four models, which are presented for comparison purpose

later on. These efficiency measures were computed in R-language2 and the R code is

available upon request. We assume variable-returns-to-scale technology as formulated

in equation (3.4), with different numbers of model variables as specified above. The

average technical efficiency ranges from 0.901 to 0.933, while the minimum ranges from

0.518 to 0.606. The number of efficient patrol units varies from 67 to 89.

3.6.1.2 Dimensionality Effects

To account for dimensionality effect, we resort to our proposed bootstrap al-

gorithm 1 as described in Section 3. To compute the dimensionality effect on technical

efficiency score of unit j(= 1, 2, ..., 161) that results from including the area of station

accommodation in Model 2, we bootstrap a random sample of size m = 120 from the

original 161 patrol units. Combined it with the true observations of j-th DMU, we

compute technical efficiency score for unit j using the sample of 121 units. We repeat

the above process B = 999 times and compute efficiency score of unit j as the mean

efficiency score over B bootstrapped values. The dimensionality effect, as defined ear-

lier, is the difference between the mean efficiency score computed via bootstrapping and

that computed from the original smaller model. The summary of dimensionality effects

is presented in Table 3.6. The average dimensionality effect from Model 2 to Model
2R Development Core Team (2010), R: A Language and Environment for Statistical Computing,

R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. URL: http://www.r-
project.org/
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1 is quite close to that from Model 3 to Model 1. However, the dimensionality effect

from Model 4 to Model 1 is relatively large. This finding is consistent with pre-existing

concern that the larger the difference in the dimensions of two models, the greater the

dimensionality effect is. The same finding applies to the maximum of dimensionality ef-

fect in these models. A closer look at the dimensionality effects computed for individual

units reveals that, except for efficient units in smaller model, dimensionality effects are

all positive.

We compute the corrected technical efficiencies by removing the dimensionality

effect and the results are reported in Table 3.7. It is notable that the average values

of technical efficiency in Model 1 after correcting the dimensionality from Model 2 and

Model 3 are quite close, but the average via Model 4 bears a large difference. This

finding applies to the minimum efficiency units as well. Regarding to the number of ef-

ficient patrols, Model 1 now has the same number of efficient units as Model 2, 3 and 4.

That is, Model 1 bears large dimensionality effect comparing to the rest smaller models.

To be specific, we illustrate this point at Model 1 and Model 2. In Model 1, without

correction of dimensionality effect, the number of efficient units is 89, as displayed in

Table 1. However, among these efficient units, 8 of them indicate the inflation of effi-

ciencies, resulting from the inclusion of one additional input based on Model 2. A closer

comparison of the efficiency scores in Model 1 and that after dimensionality correction

reveals that, except for efficient units, efficiency scores are all inflated.

3.6.1.3 Testing Changes in Efficiency

The significant dimensionality effect found in the previous subsections distorts

efficiency measures for larger models. In program evaluations, it is therefore important

to account for these effects when, for example, dwelling on questions such as whether
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expenditures on a particular input is contributory significantly to the output. Whether

there is efficiency change under such circumstances is subject to a valid statistical test3.

We apply our bootstrap algorithm 2 proposed in Section 4 to perform inferences

on the change in efficiency scores. Our null hypothesis is that there is no difference in

efficiency scores computed in Model 1 and Model 2 (resp. Model 3, Model 4), while the

alternative is that there is efficiency change. The test is performed in R-language with

the following specifications, B=999, N=161, m=120, with 999 bootstrapped statistics

that approximate the distribution of our testing statistic. The corresponding p-values

for these tests are presented in Table 3.8.

P-values computed are all greater than 10%. Therefore we fail to reject the

null hypothesis that there is no efficiency change when more input variables are included

in the model. Note that our test result for the efficiency change from Model 4 to Model

1 is consistent with the conclusion from HY, where they conclude that Model 4 reflects

pure dimensionality effect and should not be used. However, our computed p-value is

significantly greater than 10%, which favors the null. This leads us to conclude that,

after accounting for the dimensionality effect, Model 1 and Model 4 produce efficiency

scores that are not statistically distinguishable.

3.6.2 Additivity of Input Variables

For completeness, we add a simple illustration to check the additivity of input

(output) variables. We ask the question that whether some input variables can be

aggregated. Particularly, we look into the labor input variables, police and civilians in

NSW data set and see if the two types of labor inputs are homogeneous in nature in
3Varian (1990) argued that test as such should be done in economic sense, instead of statistically.

This will involve a specific objective/value function for the particular problem at hand. Yet, we focus
on statistical test that can be applied in a general setting and leave for future research tests from an
economic point of view.
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terms of efficiency measurement. We briefly state our results to save space. We consider

the following model as an alternative to Model 1,

M5 : Include all input and output variables but police and civilians enter the model only

additively.

Model 5 contains aggregated input variables, and is not considered in HY. We

reported the raw technical efficiencies in Table 3.5 and other results in Table 2-4. Under

the additive-input-variable specification, the technical efficiency is bounded in between

0.919 and 0.596, with 80 units being efficient. The estimated average dimensionality

effect between Model 1 and Model 5 is 0.049, and the corrected average technical ef-

ficiency is 0.870. The associated p-value to test additivity of input variables is 0.06,

which leads to a rejection of the null at 10% significance level. This suggests that the

police and civilian employees can be aggregated to one labor input to enter the efficiency

model. The two inputs have the same unit of measurement and both deliver services

to the community. As the convergence rate slows down when the input-output dimen-

sions goes up, it is desirable to keep the dimensions low by aggregating certain inputs

(outputs), if it is appropriate.

3.7 Conclusion

The comparison confirms that the index of the dimensionality constructed by

observation-based simulations is more credible than that by random number generators.

We also extend the tests to more general cases that allow for the comparison of non-

nested variable changes.

The raw efficiency scores estimated by the DEA models not only reflect tech-

nical inefficiency but also the dimensions of a variable set. The dimensionality effect
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in technical efficiency models is notorious and distorts policy decisions. In this paper,

we propose a measure of the dimensionality effect via a bootstrap algorithm, together

with a procedure to test the change in efficiency when the dimension of a model used to

perform program evaluations changes. Our test concerns more about the marginal role

of particular variables playing in the production process and allows the partial dimen-

sionality effect to be heterogeneous. The diagnostic test utilizes the remaining observed

variables and mimics the sampling distribution by bootstrap method.

Our test manages to balance the computational burden and valid power in

finite sample. We apply the proposed approach to NSW data set to identify efficient

police patrol units, estimate dimensionality effects in models where several variables

may be irrelevant or may be aggregated. In the first application, we found that there

is no change in efficiency when input variables are removed from the full model, so we

suggest a small scale model instead of the full model, taking the potential dimensionality

effect into account. In the second application, we check the additivity of labor input

variables and found that they should not enter the model additively since the change in

efficiency score is significant. Last, we point out that our proposed bootstrap procedures

can also be applied to non-nested efficiency models to measure the dimensionality effect

and testing changes in efficiency measures when model dimension changes.

While we present our bootstrap procedures for measuring dimensionality effect

and testing changes in efficiency scores, with illustrations using HY data, the theoretical

aspects of the proposed procedures are still left for future research. We hope that the

recent development in empirical process theory would help to tackle this theoretical

challenge and some of Simar and Wilson would help to bring more fruitful work in this

direction.
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3.8 Appendix B: Tables

Table 3.1: Monte Carlo Estimates of Size of Test

(DGP1: Irrelevant Input Variable)

Sample Size
Nominal Size 25 50 100 200 400

0.01 0.003 0.009 0.016 0.013 0.008
0.05 0.038 0.044 0.036 0.052 0.049
0.10 0.071 0.069 0.082 0.092 0.126
0.15 0.092 0.103 0.130 0.142 0.146
0.20 0.162 0.159 0.177 0.194 0.203

Table 3.2: Monte Carlo Estimates of Size of Test

(DGP2: Additive Input Variables)

Sample Size
Nominal Size 25 50 100 200 400

0.01 0.004 0.005 0.08 0.011 0.009
0.05 0.036 0.040 0.039 0.046 0.052
0.10 0.072 0.087 0.093 0.094 0.097
0.15 0.103 0.119 0.206 0.172 0.159
0.20 0.162 0.188 0.175 0.192 0.196
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Table 3.3: Monte Carlo Estimates of Power of Test

(DGP1: Irrelevant Input Variable)

Sample Size
Nominal Size 25 50 100 200 400

0.01 0.632 0.663 0.598 0.763 0.892
0.05 0.651 0.688 0.863 0.876 0.952
0.10 0.721 0.760 0.852 0.886 0.961
0.15 0.803 0.851 0.892 0.920 0.955
0.20 0.825 0.859 0.903 0.935 0.967

Table 3.4: Monte Carlo Estimates of Power of Test

(DGP2: Additive Input Variables)

Sample Size
Nominal Size 25 50 100 200 400

0.01 0.652 0.631 0.862 0.854 0.935
0.05 0.663 0.644 0.879 0.883 0.942
0.10 0.666 0.673 0.899 0.925 0.966
0.15 0.681 0.690 0.903 0.932 0.984
0.20 0.699 0.704 0.911 0.943 0.989

Table 3.5: Summary of Technical Efficiency Results

Model
1 2 3 4 5

Average 0.933 0.921 0.918 0.901 0.919
Minimum 0.606 0.606 0.523 0.518 0.596
No. of efficient patrols 89 81 77 67 80
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Table 3.6: Summary of Dimensionality Effects

Model
2 → 1 3 → 1 4 → 1 5 → 1

Average 0.017 0.019 0.036 0.049
Maximum 0.066 0.091 0.131 0.260

Table 3.7: Summary of Efficiency Results with Dimensionality Effect Correction

Model
2 → 1 3 → 1 4 → 1 5 → 1

Average 0.916 0.902 0.882 0.870
Minimum 0.542 0.537 0.491 0.649
No. of efficient patrols 81 77 67 80

Table 3.8: P-values for Testing Changes in Efficiency Scores

Model
2 → 1 3 → 1 4 → 1 5 → 1

p-value 0.231 0.197 0.206 0.060
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Chapter 4

Environmental Regulation and

Foreign Direct Investment Inflows

to U.S. States: A Three-Stage

Model Approach

4.1 Introduction

Following decades of liberalization of global capital markets, considerable de-

bate has arisen about the role of FDI in sustainable development of recipient economies.

One contentious issue of concern is its potential negative externalities on the environment

of host countries. The so-called pollution haven hypothesis argues that multinational

firms in pollution-intensive industries seek to relocate to the places with weaker envi-

ronmental standards. In order to attract more FDI, recipient economies may intend

to implement lose environmental policies, which could trigger a race to the bottom, as
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other economies may also lower their standards to retain the FDI. Copeland and Taylor

(1994) probably are the first to introduce a complete model to test the pollution haven

hypothesis. However, further studies in the following decade show controversial results,

as represented by the sixteen papers collected in Fullerton (2006). Despite the plausi-

bility of the pollution haven hypothesis, empirical studies, especially those focusing on

the stringency of national environmental standards, detect little evidence to support the

hypothesis. Eskeland and Harrison (2003) examine the distribution of FDI across indus-

tries in four Latin American countries, but find little evidence to support the pollution

haven hypothesis. Javorcik and Wei (2004) examine the pollution haven hypothesis in

25 East European countries, but find no support for it.

Another group of empirical studies concentrates on comparisons of intra-country

environmental standards, as different states or provinces are more comparable than dif-

ferent countries on nongovernmental grounds. Levinson and Taylor (2008) use a panel

of the FDI across 130 industries in Mexico over 1977-1986, and conclude that the abate-

ment cost plays a crucial role in the pollution haven hypothesis. In the U.S., the state

governments take a large fraction of the responsibility for setting environmental stan-

dards. As discussed by Keller and Levinson (2002), even if the same federal policy or

standards are imposed, the state characteristics may still lead to different costs. The

U.S. state-level data on environmental costs also are better and easier to obtain than

those on international costs. Keller and Levinson (2002) employ state-level panel data in

the U.S. and find moderate evidence on the pollution haven hypothesis. Henderson and

Millimet (2007) use nonparametric methods to reassess the robustness of the conclusions

in Keller and Levinson (2002). Fredriksson et al. (2003) incorporate both environmental

policy and governmental corruption in the model and find empirical evident to support
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the pollution haven hypothesis in the U.S.

The stringency of environmental policy is an uncontrollable variable to each

state. Several models have been proposed to incorporate the uncontrollable environmen-

tal effects into a DEA-based efficiency evaluation, which can be grouped into one-stage

model, two-stage model, and three-stage model. First developed by Banker and Morey

(1986), the one-stage (single-stage) model directly includes uncontrollable discretionary

environmental variables in its linear functions along with traditional inputs and out-

puts, but restricts the optimization to either inputs or outputs. As it is a traditional

DEA model, uncontrollable variables can be altered radially, but no random noise is

accounted for. Pioneered by Timmer (1971), the two-stage model runs a regression in

the second stage after a first stage DEA assessment. McCarty and Yaisawarng (1993)

and Bhattacharyya et al. (1997) extend the two-stage model to adjust the first stage

efficiency scores in the second stage. Fried et al. (1993) modify the two-stage model by

replacing the first stage efficiency scores with its slacks in the second stage regression.

Although the second stage is stochastic, the data adjustment does not account for the

impact of statistical noise. Fried et al. (2002) suggest a three-stage approach, which

can purge managerial inefficiency from environmental effects and statistical noise. After

running the first and second stage analysis as in the two-stage model, the DEA evalu-

ation is repeated in the third stage by using the adjusted data. The three-stage model

can completely decompose the variation in performance to the components attributes

to environmental effects, managerial inefficiency and statistical noise.

The stochastic frontier analysis (SFA) in the second stage is developed to dis-

tinguish the statistical noise from technical inefficiency. The parametric SFA model is

first proposed by Aigner and Lovell (1977), Meeusen and van Den Broeck (1977), and
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Battese and Corra (1977). These early works estimate technical efficiency by the maxi-

mum likelihood estimation (MLE) and apply the SFA to cross-sectional data. Schmidt

and Sickles (1984) suggest using panel data to relax some strong assumptions on the

cross-sectional framework. Pitt and Lee (1981) extend the MLE to panel data settings.

Hausman and Taylor (1981) construct a panel data model that allows for time variance

of some covariates. Schmidt and Sickles (1984) apply fixed effects (FE) and random

effects (RE) on the estimation of time-invariant technical efficiency.

The quality of the SFA measurement depends on whether the functional form

represents the true model. To relax the dependence on the parametric functional form,

recent studies focus on developing semiparametric or fully nonparametric SFA models.

Fan et al. (1996) consider a semiparametric cross-sectional SFA model, which has no

restrictions on the functional form of the production frontier and takes the distribution

of the composite error terms as known. Kneip and Simar (1996) present a general

semiparametric SFA framework to deal with panel data set. The general production

functional form, transforming input xjt to output yjt is:

(4.1) yjt = h(xjt) + αj + εjt

where h(·) is an unknown smooth part of production function shared by each producer,

αj captures the DMU specific effect, and ε represents the two sided noise component.

Kneip and Simar (1996) use the Nadaraya-Watson estimator ĥ to estimate h. This pa-

per improves the second stage SFA evaluation by using the Local Linear Least Squares

(LLLS) estimator. LLLS provides more efficient estimates of h, and can estimate both

the production function and the elasticities in one step. In the first stage, the input-

oriented DEA is applied to inputs and outputs only. In the third stage, the DEA evalua-

tion is performed again, using adjusted inputs to account for the effects of environmental
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standards and statistical nose.

The remainder of the paper is organized as follows. Section 2 proposes the

three-stage model. Section 3 discusses the panel data and presents the empirical results.

Section 4 concludes.

4.2 Methodology

4.2.1 First Stage DEA

The initial evaluation of producer performance is conducted using the DEA

method and traditional inputs and outputs. Although the method of efficiency mea-

surement can be applied to analyze any number of (macro or micro) DMU’s, here we

will describe the special case related to my macro-level example. Capital is treated

as heterogeneous and separated into foreign capital (KF ) and domestic capital (KD).

The technology contains four macroeconomic variables: gross state product (GSP) (Y )

and three aggregate inputs–KF , KD and labor (L). The standard technology reflects

the mechanism that the input vector in state j at period t, Xjt = (KFjt,KDjt, Ljt),

gets transformed into Yjt. Under the assumptions of constant-returns-to-scale and free

disposability of inputs and outputs, the reference technology for the U.S. at time t is

defined by

T 1
t =

{
〈Yt,KFt,KDt, Lt〉 ∈ R4

+

∣∣∣ Yt ≤∑
j

αjtYjt ∧ KFt ≥
∑
j

αjtKFjt(4.2)

∧ KDt ≥
∑
j

αjtKDjt ∧ Lt ≥
∑
j

αjtLjt, αjt ≥ 0 ∀ j
}
,

where αjt is the level of operation of a linear process for the jt observation. Every point

in the technology set is a linear combination of observed input and output vectors or

a point dominated by such a combination. The constructed technology is a polyhedral
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cone with piecewise linear isoquants, commonly referred to as a Farrell cone (Farrell

(1957a)).

The Farrell input-based technical efficiency index1 for state j at time t is defined

by

(4.3) E(Yjt,KFjt,KDjt, Ljt) = min
{
θ
∣∣∣ 〈Yjt, θKFjt, θKDjt, θLjt〉 ∈ Tt

}
.

The Farrell input-based technical efficiency index can be calculated by solving

the following linear program for each observation:

min
θ, α11,..., αJt

θ subject to Yjt ≤
∑
τ≤t

∑
j

αjτYjτ ,(4.4)

θKFjt ≥
∑
τ≤t

∑
j

αjτKFjτ ,

θKDjt ≥
∑
τ≤t

∑
j

αjτKDjτ ,

θLjt ≥
∑
τ≤t

∑
j

αjτLjτ ,

αjτ ≥ 0, ∀ j, τ.

The optimal solutions to (4.4) provide preliminary performance evaluations for each

state, but mix the effects attributable to managerial inefficiencies, environmental effects,

and statistical noise.

4.2.2 Second Stage SFA

In this stage, the SFA method is applied to regress the first stage efficiency

measures against environmental variable(s). While the regressors are operating envi-

ronmental variables, there are two choices of dependent variables. One is the first stage

efficiency scores, and the other is the first stage slacks. Timmer (1971) is the first to
1Färe and Primont (1995) proves that the assumption of constant returns to scale is equivalent to the

condition that the input- and output-distance functions assign reciprocal values to each input-output
combination. Thus, under constant returns to scale, the Farrell input-oriented and output-oriented
indexes are equivalent.
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apply limited dependent variable regression techniques to first stage efficiency scores.

McCarty and Yaisawarng (1993) and Bhattacharyya et al. (1997) extend it to adjust

regression residuals. As efficiency scores are bounded and frequently reach the upper

bound, the choice of a regression function is very limited. Fried et al. (2002) use the SFA

to regress first stage slacks against the observable environmental variables. Denote total

input slack of input i from the first stage DEA for state j as sij , which is the difference

between the actual usage of the n-th input and the optimal projection of actual input

onto the efficient input subset for output yj .

(4.5) sij = xij −
∑
l

αilx
i
l.

The regressors are K observable environmental variables zj for J states. Fried et al.

(2002) set up N separate regressions, which allows environmental variables to have

different impacts on each input slack.2 The general regression form is

(4.6) sij = f i(zj) + vij + uij , i = 1, · · · , I, j = 1, · · · , J.

where vij ∼ N(0, σ2
vi) captures statistical noise and uij ∼ N+(µi, σ2

ui) reflects managerial

inefficiency. vij and uij are assumed to be distributed independently. Fried et al. (2002)

do not impose a time dimension and parameterize (4.6) by MLE:

(4.7) sij = zjβ
i + vij + uij , i = 1, · · · , I, j = 1, · · · , J.

where βi is the parameter vector reflecting the marginal effect of the environmental

variable vector zj on the input slack sij .

As discussed in Fried et al. (2002), there are several advantages of using SFA

in the second stage. First, we do not have to specify the direction of the effect of any
2Another approach is to stack the N regressions and estimate a single SFA regression model. Fried

et al. (2002) suggest to run separate regressions, as the gain in flexibility outweighs the sacrifice of degree
of freedom.
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environmental variable prior to the analysis. Second, the statistical significance of such

effect can be tested by conventional likelihood ratio tests. Third, we can test whether

managerial efficiency is invariant across producers by testing the hypothesis that σ2
ui = 0.

Lastly and most importantly, this setting allows managerial inefficiency, environmental

variables and statistical noise to impose different effects across inputs.

However, Fried et al. (2002) have two limitations. First, they use parametric

regressions in the SFA, which is expected to perform the best when the model is correctly

specified. However, when the parametric model is incorrectly specified, it is expected

to lead to inconsistent estimation of f(·) and the parameters. It is hard to believe that

the underlying complicated technology is linear. Henderson and Ullah (forthcoming)

conduct Monte Carlo experiments and show that nonparametric models drastically out-

perform the parametric model when the technology becomes nonlinear. Second, Fried

et al. (2002) assume the model is time invariant and pool the data set, which ignores

any commonalities or panel data effect.

This paper extends the three-stage model to a semiparametric panel setting.

The feasible slack frontier is constructed by the following semiparametric model:

(4.8) sijt = hi(zjt) + αij + εijt,

where hi(·) is an unknown smooth function shared by each states, αij captures the

location effect, and the error term εijt represents the i.i.d. stochastic noise component

with zero mean.

The LLLS estimator is used to estimate hi(·). Taking a first-order Taylor

expansion of equation (4.8) with respect to zjt yields

(4.9) sijt ≈ hi(z) + (zjt − z)βi(z) + αij + εijt,

where βi(z) ≡ Ohi(z) is the partial derivative of hi(z) with respect to z. If s and z
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are expressed in logarithmic form, then βi(z) represents a ”local” elasticity for state j,

evaluated at the point z. The estimator of δi(z) ≡ ((hi(z), (βi(z))′)′ is given by3

(4.10) δ̂i(z) = (ĥi(z), (β̂i(z))′)′ = (M ′K(z)M)−1M ′K(z)s,

whereM = (1, (zjt−z)) andK(z) is a diagonal matrix of kernel functionsK(b−1(zjt−z)).

The optimal bandwidths b can be obtained by minimizing the Least-Squares Cross-

Validation (LSCV) function given by

(4.11) CV (b) =
t∑

τ=1

J∑
j=1

[sjτ − ĥi−j(zjτ )]2

The estimator of αij is given by

(4.12) α̂ij =
1
t

t∑
τ=1

(sjτ − ĥi(zjτ )).

The estimator of uij is derived by means of the normalization:

(4.13) ûij = max
j
α̂ij − α̂ij .

4.2.3 Third Stage DEA

Before applying the DEA again, raw input data should be adjusted for the

effects of environmental variable(s) and statistical noise. As in Fried et al. (2002),

inputs are adjusted according to

(4.14) X̃i
jt = Xi

jt +
[
max
l

{
ĥi(zlt)

}
− ĥi(zjt)

]
+
[
max
l

{
ε̂ilt
}
− ε̂ijt

]
,

where X̃i
jt is the amount of input i used in state j at time t after adjustment. The first

stage DEA evaluation does not take into account the effect of relatively unfavorable
3We note that this estimator is inefficient because it does not take into account the variance covariance

matrix of the combined error (αi +εit). For an efficient estimator, see Su and Ullah (2007) and Henderson
and Ullah (2005). Further, if αi is a fixed effect, then for the nonparametric estimator, see Henderson
et al. (2008a) and Su and Ullah (2006).

86



environments and relatively bad luck. Thus, max
l

{
ĥi(zlt)

}
− ĥi(zjt) is the adjustment

putting all states in a common operating environment, and max
l

{
ε̂ilt
}
− ε̂ijt is the ad-

justment putting all states in a common extenuating circumstance.

In the third stage, the DEA is applied on the adjusted inputs X̃i
jt and original

outputs Yjt. The results provide evaluations of purely managerial efficiency, while the

effect of the operating environment and statistical noise are completely purged out.

4.3 Empirical Application

4.3.1 Data

The three-stage method is applied to a panel of 48 contiguous U.S. states4

from 1980 to 1994. The GSP, state-by-state capital K and foreign capital stock KF

are from Bureau of Economic Analysis and are converted to 1992 constant USD. Labor

and the data of environmental variables are directly from Keller and Levinson (2002).

The state-level environmental stringency (ES) is measured by the industry-adjusted

environmental index proposed by Keller and Levinson (2002). Other environmental

variables are market proximity (MKT ), unionization rates (UN) and tax efforts (TAX).

MKT measures the distance of each state to potential markets in other states, which

is a distance-weighted average of all other states’ GSP. UN is the percentage of union

membership in the civilian labor force. TAX is calculated as a state’s actual revenues

divided by its estimated capacity to raise revenues based on a model tax code.

The summary statistics of the input-output data are presented in Table 4.1.

The lowest GSP is produced by Vermont in 1980, and the highest GSP is from California

in 1994. In average, 3% of each state’s capital stock is consisted of foreign capital in the
4There is no complete data set for Alaska and Hawaii.
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sample, but the share varies a lot across states. South Dakota had the lowest foreign

capital stock in 1981, and Texas archived the highest foreign capital stock in 1994.

4.3.2 Empirical Results

The stage 1 DEA analysis is conducted using only the output and three inputs.

Table 4.3 summarizes the stage 1 DEA evaluations. It suggests a relatively low average

efficiency level and a relatively large dispersion in performance. Thus, there is consid-

erable room for efficiency improvement by bringing up the inefficient states to the best

practice frontier. However, the laggard states in the initial performance evaluations

may operate in unfavorable environments, or experience unfavorable extenuating cir-

cumstances. To investigate the effect of management inefficiency from the mixed stage

1 results, stage 2 efficiency breakdowns and stage 3 re-evaluation are needed.

The effect of the environmental variables, especially that of the environmen-

tal stringency, is investigated in the stage 2 SFA analysis. No priors are imposed on

the directions of the effects of environmental variables. It is expected that high MKT

provides more favorable environment, while high ES, UN and TAX disfavor the man-

agerial efficiency. Table 4.2 summarizes comparisons of stage 2 evaluations using the

LLLS and MLE estimations, respectively. The first thing to note is that all the coef-

ficients (gradients) have expected signs except those of ES with respect to KD slacks

and MKT with respect to KF slacks using the MLE. The two coefficients (gradients)

with unexpected signs are statistically insignificant.

We are primarily interested in the impact of state-level environmental strin-

gency on the input slacks. The results suggest that input slacks are consistently smaller

in the operation environment with higher environment standard, although the coefficient

(gradient) is insignificant in the KD slacks equation. Using the semiparametric esti-
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mation provides consistent results across all the three equations, while using the MLE

shows unexpected sign for KD slacks. The positive relationship between KF slacks

and ES indicates that higher environment standard draws foreign capital away, and

supports the pollution haven hypothesis.

The semiparametric evaluation suggests that higher market proximity narrows

all of the input slacks, although the coefficient (gradient) is significant only in L slacks.

The MLE evaluation provides the same results for KD and L slacks, but has opposite

conclusion for KF slacks. The higher unionization rates and more tax effort both enlarge

the input slacks. The results are significant for all inputs slacks under the semiparametric

evaluation.

Stage 3 re-evaluates each state’s performance after adjusting for the impact of

the operating environment and for variation of statistical noise. Table 2.2 lists the stage

1 and 3 efficiency scores for each of the 48 states in 1994, respectively. The average

efficiency score increases dramatically in stage 3 and the standard deviation narrows

down about 38% after the stage 3 re-evaluation. The increase in mean efficiency supports

the hypothesis that the high initial performance evaluations in some states is owing

to their relatively favorable operating environments or relatively favorable extenuating

circumstances. The number of efficient states increases from 2 to 6 after the adjustment,

while the efficient states shuffle thoroughly in stage 3. New York keeps its efficient

position on the frontier, while California falls back a little bit from the frontier in stage

3 evaluation. Arizona, Florida, South Carolina, Tennesseans, and Virginia catch up

and are recognized as efficient states after the adjustment. Texas experiences efficiency

decline after the stage 3 adjustment, which is consistent with the hypothesis that the

relatively low stage 1 performance evaluations in some states are due to the unfavorable
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operating environments or relatively unfavorable extenuating circumstances.

4.4 Conclusion

The traditional DEA or SFA methods only consider inputs and outputs in

the evaluation of the DMU’s efficiency performance. The omission of environmental

variables is a big drawback. Three-stage model is developed to evaluate the impact

of operational environment on DMU’s performance. This paper extends the stage 2

SFA model to a semiparametric panel setting to capture the complicated feature of the

underlaying technology. Compare to the MLE, the semiparametric estimator provides

expected signs and consistent results for the empirical example considered in this paper.

To test the pollution haven hypothesis across 48 contiguous states in the U.S.,

the stage 2 evaluation is focused on the effect of the state-level environmental stringency.

The result suggests a negative relationship between environment standards and foreign

capital slacks, which provides some evidence for the pollution haven hypothesis.

In our empirical example, all the environmental variables are continuous. The

model itself is general and can be applied to both discrete (categorical) or mixed (con-

tinuous and discrete) data. The semiparametric estimation has significant improvement

over the MLE in the stage 2 evaluation, but it still keeps the restrictive assumption that

firm effect enters in linearly. The linearity can be further generalized by a fully non-

parametric model. The difficulty arises from the construction of a consistent estimator.
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4.5 Appendix C: Tables and Figures

Table 4.1: Descriptive Statistics of U.S. State-level Production, 1980–1994

Variables Average Std. Deviation Min. Max.
Output:
Y 85841 112454 3031 898836

Inputs:
KF 3150 4071 17 30131
KD 119601 14203 15672 802634
L 35714 38114 669 216800

Table 4.2: Comparisons of Stage 2 Stochastic Frontier Estimation

(Semiparametric Vs. MLE)

Slacks
Independent Variables KF KD L

ES 0.358∗ -0.840 0.389∗

0.443 ∗ -0.102 0.473 ∗

MKT -0.248 -0.250 -0.300∗

0.537 -0.132 -0.929 ∗

UN 0.226∗ 0.406∗ 0.460∗

0.382 0.305 0.428 ∗

TAX 0.513∗ 0.234∗ 0.109∗

0.519 ∗ 0.193 ∗ 0.712 ∗

* Significant at the 5% level or better

Table 4.3: Comparison of Stage 1 & 3 DEA Evaluations

States Stage 1 Stage 3

Alabama 0.260 0.968

Arizona 0.322 1.000

continued
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TABLE 4.3

CONTINUED

States Stage 1 Stage 3

Arkansas 0.164 0.859

California 1.000 0.955

Colorado 0.327 0.910

Connecticut 0.324 0.937

Delaware 0.086 0.752

Florida 0.671 1.000

Georgia 0.476 0.877

Idaho 0.097 0.742

Illinois 0.697 0.814

Indiana 0.391 0.987

Iowa 0.233 0.741

Kansas 0.215 0.733

Kentucky 0.282 0.799

Louisiana 0.344 0.823

Maine 0.098 0.490

Maryland 0.383 0.919

Massachusetts 0.489 0.910

Michigan 0.590 0.925

Minnesota 0.364 0.876

Mississippi 0.176 0.766

continued
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TABLE 4.3

CONTINUED

States Stage 1 Stage 3

Missouri 0.380 0.866

Montana 0.070 0.370

Nebraska 0.155 0.692

Nevada 0.166 0.803

New Hampshire 0.103 0.654

New Jersey 0.610 0.854

New Mexico 0.158 0.778

New York 1.000 1.000

North Carolina 0.494 0.947

North Dakota 0.055 0.485

Ohio 0.647 0.893

Oklahoma 0.232 0.751

Oregon 0.248 0.810

Pennsylvania 0.643 0.832

Rhode Island 0.087 0.732

South Carolina 0.254 1.000

South Dakota 0.066 0.518

Tennessee 0.357 1.000

Texas 0.885 0.735

Utah 0.148 0.786

continued
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TABLE 4.3

CONTINUED

States Stage 1 Stage 3

Vermont 0.051 0.585

Virginia 0.464 1.000

Washington 0.448 0.973

West Virginia 0.118 0.696

Wisconsin 0.363 0.951

Wyoming 0.054 0.674

Mean 0.339 0.816

Std. Deviation 0.245 0.152

Min. 0.051 0.370

No. of efficient states 2 6
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Chapter 5

Conclusions

This dissertation analyzes the impact of FDI on productivity growth, conver-

gence, and the environment. Chapters 2 and 4 develop the method to examine the role

that FDI plays in economic growth and environment, respectively. Chapter 3 constructs

a statistical test to select appropriate nonparametric efficiency model in terms of its

dimensionality.

Chapter 2 extends the HR decomposition of labor productivity growth by

breaking physical capital accumulation into foreign capital and domestic capital. Thus,

labor productivity growth is decomposed into components attributable to technological

change, technological catch-up, foreign capital accumulation, domestic capital accumu-

lation and human capital accumulation.

The empirical evaluation using a worldwide panel across 78 countries over the

1980–2005 period indicates that the effects of foreign capital deepening and domes-

tic capital deepening on productivity growth are dramatically different. Foreign capital

accumulation, together with human capital accumulation, is the driving force of produc-

tivity growth, while the contribution of domestic capital accumulation is much smaller.
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We also find that technological change is decidedly nonneutral, with most technological

advancement taking place in countries that are highly foreign-capital intensive. For-

eign capital deepening and human capital accumulation are the primary driving forces

behind increased international dispersion of labor productivity.

Raw efficiency scores estimated by DEA method reflect not only technical inef-

ficiency but also the dimensions of a variable set. The dimensionality effect in technical

efficiency models is notorious and distorts policy decisions. In chapter 3, a measure of the

dimensionality effect is proposed by a bootstrap algorithm, together with a procedure

to test the change in efficiency when the dimension of a model used to perform program

evaluations changes. The dimensionality test concerns more about the marginal role of

particular variables playing in the production process and allows the partial dimension-

ality effect to be heterogeneous.

The diagnostic test utilizes the remaining observed variables and mimics the

sampling distribution by bootstrap method. It manages to balance the computational

burden and valid power in finite sample. The theoretical aspects of the proposed proce-

dures are still left for future research. We hope that the recent development in empirical

process theory would help to tackle this theoretical challenge.

Chapter 4 proposes a three-stage model to test the pollution haven hypothesis

across 48 contiguous states in the U.S. In stage 1, preliminary performance evaluation

is provided by the DEA on inputs and outputs only. The average efficiency score is

relatively low and the dispersion in performance is relatively large. The stage 2 SFA

method is extended to a semiparametric panel setting to capture the complicated feature

of the underlaying technology. Compare to the MLE estimation, the LLLS estimator

provides expected signs and consistent results for the empirical example considered in
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this chapter. The stage 2 evaluation is focus on the effect of state-level environmental

stringency. The result suggests a negative relationship between environment standards

and foreign capital slacks.

The first stage DEA evaluation does not take into account of the effect of rel-

atively unfavorable environments and relatively bad luck. In stage 2, the variation in

performance is completely decomposed to the components attributes to environmental

effects, managerial inefficiency and statistical noise. After the decomposition, adjust-

ments are applied on inputs to put each DMU in a common operating environment

and common extenuating circumstance. The stage 3 DEA re-evaluation uses adjusted

inputs, and the results indicate purely managerial efficiency, while the effect of the oper-

ating environment and statistical noise are completely purged out. The empirical results

show that average efficiency score increases dramatically in stage 3 and the standard

deviation narrows down after the stage 3 re-evaluation.

In chapter 4, all the environmental variables are continuous. The three-stage

model itself is general and can be applied to discrete (categorical) or mixed (continuous

and discrete) data. The semiparametric estimation has significant improvement over the

MLE in stage 2 evaluation, but it still keeps the restrictive assumption that firm effect

enters in linearly. Future work includes generalizing the model to a fully nonparametric

panel setting. The difficulty arises from the construction of a consistent estimator.

These are left for future research.
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