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DEGENERATE COMPETING THREE-PARTICLE SYSTEMS ∗

TOMOYUKI ICHIBA † IOANNIS KARATZAS ‡

June 11, 2020

Abstract

We study systems of three interacting particles, in which drifts and variances are assigned by rank.
These systems are “degenerate”: the variances corresponding to one or two ranks can vanish, so
the corresponding ranked motions become ballistic rather than diffusive. Depending on which ranks
are allowed to “go ballistic”, the systems exhibit markedly different behavior which we study in
some detail. Also studied are stability properties for the resulting planar process of gaps between
successive ranks.

Keywords and Phrases: Competing particle systems; local times; reflected planar Brownian motion;
triple collisions; structure of filtrations.

AMS 2020 Subject Classifications: Primary, 60J60; secondary, 60J55, 60K35.

1 Introduction

In recent years, systems of interacting particles that assign local characteristics to individual particles by
rank, rather than by index (“name”), have received quite a bit of attention under the rubric of “competing
particle systems”. A crucial common feature of all these studies is non-degeneracy: particles of all ranks
are assigned some local variance that is strictly positive.

We study here, and to the best of our knowledge for the first time, systems of such competing particles
that are allowed to degenerate, meaning that the variances corresponding to some ranks can vanish. This
kind of degeneracy calls for an entirely new theory to handle the resulting systems; we initiate such a
theory in the context of systems consisting of three particles. Even with this simplification, the range
of behavior these systems can exhibit is quite rich. We illustrate just how rich, by studying in detail the
construction and properties of three such systems – in Sections 2–6, 7 and 8, respectively.

A salient feature emerging from the analysis, is that two purely ballistic ranked motions can never
“pinch” a diffusive motion running between and reflected off from them (Proposition 4.1); whereas two
diffusive ranked motions can pinch a purely ballistic one running in their midst and reflected off from
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simulations for the paths of the processes involved. We are indebted to Drs. Jiro Akahori, Chris Rogers, Johannes Ruf, Andrey
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them, resulting in a massive collision that involves all three particles (§7.2). Using simple excursion-
theoretic ideas, we show in Proposition 7.1 how such a system can extricate itself from a triple collision;
but also that the solution to the system of stochastic equations that describe its motion, which is demon-
strably strong up until the first time a triple collision occurs, ceases to be strong after that time. This last
question on the structure of filtrations had been open for several years.

The analysis of the three-particle systems is deeply connected to that of planar, semimartingale re-
flecting Brownian motions (SRBM) and their local times on the faces of the nonnegative orthant. Under
appropriate conditions amounting to the so-called “skew-symmetry” for SRBM, the planar process of
gaps between ranked particles has an invariant distribution. We exhibit this joint distribution explicitly
in one instance (§8.3), and offer a conjecture for it in another (Remark 6.4). We show that the former is
the product (8.25) of its exponential marginals, while the latter is determined by the distribution of the
sum of its marginals as in (6.18) and is not of product form (Remark 6.2).

2 Diffusion in the Middle, with Ballistic Hedges

Given real numbers δ1, δ2, δ3 and x1 > x2 > x3 , we would like to start by constructing a filtered
probability space (Ω,F,P), F =

{
F(t)

}
0≤t<∞ and on it three independent, adapted Brownian motions

B1(·), B2(·), B3(·) , as well as the three continuous, adapted processes X1(·), X2(·), X3(·) , so that

Xi(·) = xi +
3∑

k=1

δk

∫ ·
0

1{Xi(t)=RX
k (t)} dt+

∫ ·
0

1{Xi(t)=RX
2 (t)} dBi(t) , i = 1, 2, 3 , (2.1)

∫ ∞
0

1{RX
k (t)=RX

` (t)} dt = 0 , ∀ k < ` (2.2)

and {
t ∈ (0,∞) : RX1 (t) = RX3 (t)

}
= ∅ (2.3)

hold with probability one. Here we denote by

max
j=1,2,3

Xj(t) =: RX1 (t) ≥ RX2 (t) ≥ RX3 (t) := min
j=1,2,3

Xj(t) , t ∈ [0,∞) (2.4)

the reverse order statistics, and adopt the convention of resolving ties always in favor of the lowest index
i ; for instance, we set

RX1 (t) = X1(t) , RX2 (t) = X3(t) , RX3 (t) = X2(t) on
{
X1(t) = X3(t) > X2(t)

}
.

The dynamics of (2.1) mandate ballistic motions for the leader and laggard particles with drifts δ1 and
δ3 , respectively, which act here as “outer hedges”; and a diffusive (Brownian) motion with drift δ2 , for
the particle in the middle. The condition (2.2) posits that collisions of particles are non-sticky, in the
sense that the set of all collision times has zero LEBESGUE measure; while the condition (2.3) proscribes
triple collisions altogether.

As a canonical example of this situation, it is useful to consider the symmetric case

δ3 = −δ1 = g > 0 = δ2 ; (2.5)

that is, ballistic motion with negative drift −g for the leading particle, ballistic motion with positive drift
g for the laggard particle, and purely diffusive (Brownian) motion for the particle in the middle. In this
case, the system of equations (2.1) takes the appealing, symmetric form

Xi(·) = xi + g

∫ ·
0

(
1{Xi(t)=RX

3 (t)} − 1{Xi(t)=RX
1 (t)}

)
dt+

∫ ·
0

1{Xi(t)=RX
2 (t)} dBi(t) . (2.6)
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This system was first introduced and studied in the technical report FERNHOLZ (2010). Figure 1, which
offers a nice illustration of the path behavior for this system, is taken from that report.

A very salient feature of the dynamics in (2.1) is that its dispersion structure is both degenerate and
discontinuous. It should come then as no surprise, that the analysis of the system (2.1)-(2.3) might not be
entirely trivial; in particular, it is not covered by the results in either STROOCK & VARADHAN (1979) or
BASS & PARDOUX (1987). The question then, is whether a three-dimensional diffusion with the dynam-
ics (2.1) and the properties (2.2), (2.3) exists; and if so, whether its distribution is uniquely determined,
and whether one can compute its transition probabilities and characterize its ergodic behavior.

3 Analysis

Suppose that such a solution to the system of equation (2.1) subject to the conditions of (2.2), (2.3)
as postulated in the previous section, has been constructed. Under these conditions, its reverse order
statistics are given then as

RX1 (t) = x1 + δ1 t+
1

2
Λ(1,2)(t) (3.1)

RX2 (t) = x2 + δ2 t+W (t)− 1

2
Λ(1,2)(t) +

1

2
Λ(2,3)(t) (3.2)

RX3 (t) = x3 + δ3 t−
1

2
Λ(2,3)(t) (3.3)

for 0 ≤ t <∞ , on the strength of the results in BANNER & GHOMRASNI (2008). Here the process

W (·) :=
3∑
i=1

∫ ·
0

1{Xi(t)=RX
2 (t)} dBi(t) =

3∑
i=1

(
Xi(·)− xi −

3∑
k=1

δk

∫ ·
0

1{Xi(t)=RX
k (t)}dt

)
(3.4)

is standard Brownian motion by the P. LÉVY theorem, and we denote by

Λ(k,`)(t) ≡ LR
X
k −R

X
` (t) , k < ` (3.5)

the local time accumulated at the origin by the continuous, nonnegative semimartingale RXk (·)−RX` (·)
over the time interval [0, t]. Here and in what follows, we use the convention

LΞ(·) ≡ LΞ(· ; 0) := lim
ε↓0

1

2ε

∫ ·
0

1{Ξ(t)<ε} d〈M〉(t) =

∫ ·
0

1{Ξ(t)=0} dΞ(t) =

∫ ·
0

1{Ξ(t)=0} dC(t)

(3.6)
for the “right” local time at the origin of a continuous, nonnegative semimartingale Ξ(·) = Ξ(0)+M(·)+
C(·) , with M(·) a continuous local martingale and C(·) a process of finite first variation on compact
intervals of the real line. The local time process LΞ(·) is continuous, adapted and nondecreasing, flat
off the set {t ≥ 0 : Ξ(t) = 0} .

We set now
G(·) := RX1 (·)−RX2 (·) , H(·) := RX2 (·)−RX3 (·) (3.7)

for the sizes of the gaps between the leader and the middle particle, and between the middle particle and
the laggard, respectively, and obtain from (3.1)–(3.5) the semimartingale representations

G(t) = x1 − x2 −
(
δ2 − δ1

)
t−W (t)− 1

2
LH(t) + LG(t) , 0 ≤ t <∞ (3.8)

H(t) = x2 − x3 −
(
δ3 − δ2

)
t+W (t)− 1

2
LG(t) + LH(t) , 0 ≤ t <∞ (3.9)

3



where we recall LG(·) ≡ Λ(1,2)(·) , LH(·) ≡ Λ(2,3)(·) from (3.7), (3.5). We introduce also the continu-
ous semimartingales

U(t) = x1−x2−
(
δ2− δ1

)
t−W (t)− 1

2
LH(t) , V (t) = x2−x3−

(
δ3− δ2

)
t+W (t)− 1

2
LG(t) ,

and note
G(·) = U(·) + LG(·) ≥ 0 ,

∫ ∞
0

1{G(t)>0} dLG(t) = 0 (3.10)

H(·) = V (·) + LH(·)) ≥ 0 ,

∫ ∞
0

1{H(t)>0} dLH(t) = 0 . (3.11)

In other words, the “gaps” G(·) , H(·) are the SKOROKHOD reflections of the semimartingales U(·) and
V (·), respectively. The theory of the SKOROKHOD reflection problem (e.g., Lemma 3.6.14 in KARATZAS

& SHREVE (1991)) provides now the relationships

LG(t) = max
0≤s≤t

(
− U(s)

)+
= max

0≤s≤t

(
− (x1 − x2) +

(
δ2 − δ1

)
s+W (s) +

1

2
LH(s)

)+
, (3.12)

LH(t) = max
0≤s≤t

(
− V (s)

)+
= max

0≤s≤t

(
− (x2 − x3) +

(
δ3 − δ2

)
s−W (s) +

1

2
LG(s)

)+
(3.13)

between the two local time processes LG(·) ≡ Λ(1,2)(·) and LH(·) ≡ Λ(2,3)(·) , once the scalar Brow-
nian motion W (·) has been specified.

• Finally, we note that the equations of (3.8)-(3.9) can be cast in the form(
G(t)
H(t)

)
=: G(t) = g + Z(t) +RL(t) , 0 ≤ t <∞ , (3.14)

of HARRISON & REIMAN (1981), where

R = I − Q , Q :=

(
0 1/2

1/2 0

)
, g = G(0) , L(t) =

(
LG(t)
LH(t)

)
,

and

Z(t) =

(
(δ1 − δ2)t−W (t)
(δ2 − δ3)t+W (t)

)
, 0 ≤ t <∞ . (3.15)

One reflects, in other words, off the faces of the nonnegative quadrant, the degenerate, two-dimensional
Brownian motion Z(·) with drift vector and covariance matrix given respectively by

m =
(
δ1 − δ2 , δ2 − δ3

)′
, C :=

(
1 −1
−1 1

)
, (3.16)

The directions of reflection are the row vectors of the reflection matrix R , and the matrix Q = I − R
has spectral radius strictly less than 1, in agreement with the HARRISON & REIMAN (1981) theory.

4 Synthesis

We start with given real numbers δ1, δ2, δ3 , and x1 > x2 > x3 , and construct a filtered probability
space (Ω,F,P), F =

{
F(t)

}
0≤t<∞ rich enough to support a scalar, standard Brownian motion W (·).

In fact, we select the filtration F to be FW =
{
FW (t)

}
0≤t<∞, the smallest right-continuous filtration

to which the scalar Brownian motion W (·) is adapted.
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Informed by the analysis of the previous section we consider, by analogy with (3.12)-(3.13), the
system of equations

A(t) = max
0≤s≤t

(
− (x1 − x2) +

(
δ2 − δ1

)
s+W (s) +

1

2
Γ(s)

)+
, 0 ≤ t <∞ (4.1)

Γ(t) = max
0≤s≤t

(
− (x2 − x3) +

(
δ3 − δ2

)
s−W (s) +

1

2
A(s)

)+
, 0 ≤ t <∞ (4.2)

for two continuous, nondecreasing and adapted processes A(·) and Γ(·) with A(0) = Γ(0) = 0 . This
system of equations is of the type studied in HARRISON & REIMAN (1981). From Theorem 1 of that
paper, we know that the system (4.1), (4.2) possesses a unique, FW−adapted solution.

Once the solution
(
A(·),Γ(·)

)
to this system has been constructed, we define the processes

U(t) := x1−x2−
(
δ2−δ1

)
t−W (t)− 1

2
Γ(t) , V (t) := x2−x3−

(
δ3−δ2

)
t+W (t)− 1

2
A(t) (4.3)

and then “fold” them to obtain their SKOROKHOD reflections; that is, the nonnegative continuous semi-
martingales

G(t) := U(t) + max
0≤s≤t

(
− U(s)

)+
= x1 − x2 −

(
δ2 − δ1

)
t−W (t)− 1

2
Γ(t) +A(t) ≥ 0 (4.4)

H(t) := V (t) + max
0≤s≤t

(
− V (s)

)+
= x2 − x3 −

(
δ3 − δ2

)
t+W (t)− 1

2
A(t) + Γ(t) ≥ 0 (4.5)

for t ∈ [0,∞) , in accordance with (3.10)–(3.13). From the theory of the SKOROKHOD reflection
problem once again, we deduce the a.s. properties∫ ∞

0
1{G(t)>0} dA(t) = 0 ,

∫ ∞
0

1{H(t)>0} dΓ(t) = 0 ; (4.6)

and from the theory of semimartingale local time (KARATZAS & SHREVE (1991), Exercise 3.7.10) we
obtain∫ ∞

0
1{G(t)=0} dt =

∫ ∞
0

1{G(t)=0} d〈G〉(t) = 0 ,

∫ ∞
0

1{H(t)=0} dt =

∫ ∞
0

1{H(t)=0} d〈H〉(t) = 0 .

(4.7)

4.1 Constructing the Ranks

We introduce now, by analogy with (3.1)-(3.3), the processes

R1(t) := x1 + δ1 t+
1

2
A(t) , R3(t) := x3 + δ3 t−

1

2
Γ(t) , (4.8)

R2(t) := x2 + δ2 t+W (t)− 1

2
A(t) +

1

2
Γ(t) (4.9)

for 0 ≤ t < ∞ and note the relations R1(·) − R2(·) = G(·) ≥ 0 , R2(·) − R3(·) = H(·) ≥ 0 in
conjunction with (4.4) and (4.5). In other words, we have the a.s. comparisons, or “rankings”, R1(·) ≥
R2(·) ≥ R3(·) . It is clear from the discussion following (4.1), (4.2), that these processes are adapted to
the filtration generated by the driving Brownian motion W (·), whence the inclusion F (R1,R2,R3) ⊆ FW .

Let us show that these rankings never collapse. To put things a bit colloquially: “Two ballistic
motions cannot squeeze a diffusive (Brownian) motion”. We are indebted to Drs. Robert FERNHOLZ

(cf. FERNHOLZ (2010)) and Johannes RUF for the argument that follows.
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Proposition 4.1. With probability one, we have: R1(·)−R3(·) = G(·) +H(·) > 0 .

Proof: We shall show that there cannot possibly exist numbers T ∈ (0,∞) and r ∈ R , such that
R1(T ) = R2(T ) = R3(T ) = r .

We argue by contradiction: If such a configuration were possible for some ω ∈ Ω and some T =
T (ω) ∈ (0,∞) , r = r(ω) ∈ R , we would have

r − δ3(T − t) ≤ R3(t, ω) ≤ R2(t, ω) ≤ R1(t, ω) ≤ r − δ1(T − t) , 0 ≤ t < T .

This is already impossible if δ1 > δ3 , so let us assume δ1 ≤ δ3 and try to arrive at a contradiction in
this case as well. The above quadruple inequality implies, a fortiori,

r − δ3(T − t) ≤ R(t, ω) :=
1

3

(
R3(t, ω) +R2(t, ω) +R1(t, ω)

)
≤ r − δ1(T − t) , 0 ≤ t < T .

But we have r − R(t, ω) = R(T, ω) − R(t, ω) = δ(T − t) +
(
W (T, ω) −W (t, ω)

)
/3 , where δ :=

(δ1 + δ2 + δ3)/3 , and back into the above inequality this gives

3
(
δ1 − δ

)
≤ W (T, ω)−W (t, ω)

T − t
≤ 3

(
δ3 − δ

)
, 0 ≤ t < T .

However, from the PAYLEY-WIENER-ZYGMUND theorem for the Brownian motion W (·) (KARATZAS

& SHREVE (1991), Theorem 2.9.18, p. 110), this double inequality would force ω into a P−null set.

4.2 Identifying the Increasing Processes A(·) , Γ(·) as Local Times

We claim that, in addition to (4.6) and (4.7), the properties∫ ∞
0

1{H(t)=0} dA(t) = 0 ,

∫ ∞
0

1{G(t)=0} dΓ(t) = 0 (4.10)

are also valid a.s. Indeed, we know from (4.6) that A(·) is flat off the set {t ≥ 0 : G(t) = 0} , so
we have

∫∞
0 1{H(t)=0} dA(t) =

∫∞
0 1{H(t)=G(t)=0} dA(t) ; but this last expression is a.s. equal to zero

because, as we have shown, {t ≥ 0 : G(t) = H(t) = 0} = ∅ holds mod.P . This proves the first
equality in (4.10); the second is argued similarly.

But now, the local time at the origin of the continuous, nonnegative semimartingale G(·) is given as

LG(·) =

∫ ·
0

1{G(t)=0} dG(t) =

∫ ·
0

1{G(t)=0} dA(t)

−
∫ ·

0
1{G(t)=0}

dΓ(t)

2
+
(
δ1 − δ2

) ∫ ·
0

1{G(t)=0} dt

on the strength of (3.6) and (4.4). From (4.7) and (4.10) the last two integrals vanish, so (4.6) leads to

LG(·) =

∫ ·
0

1{G(t)=0} dA(t) = A(·) ; and LH(·) = Γ(·) (4.11)

is shown similarly. In the light of Proposition 4.1, these local times satisfy the rather interesting property
1

2

(
LG(t) + LH(t)

)
> x3 − x1 +

(
δ3 − δ1

)
t , 0 < t <∞ . (4.12)

Remark 4.1 (The Structure of Filtrations). We have identified the component processes of the pair
(A(·),Γ(·)), solution of the system (4.1)-(4.2), as the local times at the origin of the continuous semi-
martingales R1(·) − R2(·) = G(·) ≥ 0 , R2(·) − R3(·)H(·) ≥ 0 . In particular, this implies FA,Γ ⊆
F (R1,R2,R3); and back in (4.9), it gives FW ⊆ F (R1,R2,R3) .

But we have already established the reverse of this inclusion, and so we conclude that the process of
ranks generates exactly the same filtration as its driving Brownian motion: F (R1,R2,R3) = FW .

6



4.3 Constructing the “Names” (Individual Motions)

Once the “ranks” R1(·) ≥ R2(·) ≥ R3(·) have been constructed in section 4.1 on the filtered probability
space (Ω,F,P) , F = {F(t)}0≤t<∞ , with F selected as the smallest right-continuous filtration FW =
{FW (t)}0≤t<∞ to which the scalar Brownian motionW (·) is adapted, we can construct as in the proof of
Theorem 5 in KARATZAS ET AL. (2016) the “names” that correspond to these ranks – that is, processes
X1(·), X2(·), X3(·) , as well as a three-dimensional Brownian motion (B1(·), B2(·), B3(·)) defined on
this same space and such that the equation (2.1) is satisfied and RXk (·) ≡ Rk(·) , k = 1, 2, 3 .

It is also clear from our construction that the conditions (2.2) and (2.3) are also satisfied: the first
thanks to the properties of (4.7), the second because of Proposition 4.1.

• Alternatively, the construction of a pathwise unique, strong solution for the system (2.1) can be carried
out along the lines of Proposition 8 in ICHIBA ET AL. (2013). We start at time τ0 ≡ 0 and follow the
paths of the top particle and of the pair consisting of the bottom two particles separately, until the top
particle collides with the leader of the bottom pair (at time %0). Then we follow the paths of the bottom
particle and of the pair consisting of the top two particles separately, until the bottom particle collides
with the laggard of the top pair (at time τ1). We repeat the procedure until the first time we see a triple
collision, obtain two interlaced sequences of stopping times {τk}k∈N0 and {%k}k∈N0 with

0 = τ0 ≤ %0 ≤ τ1 ≤ %1 ≤ · · · ≤ τk ≤ %k ≤ · · · , (4.13)

and denote by

S := inf
{
t ∈ (0,∞) : X1(t) = X2(t) = X3(t)

}
= lim

k→∞
τk = lim

k→∞
%k (4.14)

the first time a triple collision occurs. During each interval of the form [τk, %k) or [%k, τk+1) , a pathwise
unique, strong solution of the corresponding two-particle system is constructed as in Theorem 4.1 in
FERNHOLZ ET. AL. (2013b).

We end up in this manner with a three-dimensional Brownian motion (B1(·), B2(·), B3(·)), and
with three processes X1(·), X2(·), X3(·) that satisfy the system of (2.1) as well as the requirement
(2.2), once again thanks to results in FERNHOLZ ET AL. (2013b). For this system, the ranked processes
RX1 (·) ≥ RX2 (·) ≥ RX3 (·) as in (2.4), satisfy the equations we studied in Sections 2, 3 and generate the
same filtration FW = {FW (t)}0≤t<∞ as the scalar Brownian motion W (·) above (Remark 4.1). We
have seen in Proposition 4.1 that for such a system there are no triple collisions, to wit, S = ∞ ; thus
the condition (2.3) is satisfied as well, and all the inequalities in (4.13) are strict.

• We have proved the following result.

Theorem 4.2. The system of equations (2.1) admits a pathwise unique strong solution, satisfying the
conditions of (2.2) and (2.3).

Figure 1, reproduced here from FERNHOLZ (2011), illustrates the trajectories of these three scalar
random motions X1(·), X2(·), X3(·) in the case of the canonical example (2.5). It is very clear from this
picture and from the construction in subsections 3.1, 3.2 that the middle particle R2(·) undergoes Brow-
nian motion W (·) with reflection at the upper and lower boundaries, respectively R1(·) and R3(·) , of
a time-dependent domain.

In contrast to the situation of the “double SKOROKHOD map” studied by KRUK et al. (2007), where
the upper and lower reflecting boundaries are given constants, these boundaries R1(·) and R3(·) here
are functions of time with finite first variation on compact intervals. They are “sculpted” by the Brownian
motion W (·) itself, via the local times LG(·) ≡ A(·) and LH(·) ≡ Γ(·) , in the manner of the system
(4.1), (4.2). The upper (respectively, lower) boundary decreases (resp., increases) by linear segments at
a 45o angle, and increases (resp., decreases) by a singularly continuous “devil’s staircase”, governed by
the local time LG(·) ≡ A(·) (resp., LH(·) ≡ Γ(·)).
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Figure 1: Simulated processes for the system in (2.6) with g = 1 : Black = X1(·) , Red = X2(·) ,
Green = X3(·). The 3-D process (X1(·), X2(·), X3(·)) carries the same information content as a scalar
Brownian Motion. We are indebted to Dr. E.R. FERNHOLZ for this picture, which illustrates the “ballistic
nature of the outer hedges” and the diffusive motion in the middle.

5 Positive Recurrence and Ergodicity

We present now a criterion for the process (G(·), H(·)) in (3.8)-(3.9) to reach an arbitrary open neigh-
borhood of the origin in finite expected time.

We carry out this analysis along the lines of HOBSON & ROGERS (1993). The system studied by
these authors is a non-degenerate reflected Brownian motion (X·,Y·) in the first orthant driven by a
planar Brownian motion (B·,W·) , namely

Xt = x+Bt + µ t+LXt +αLYt , Yt = y +Wt + ν t+ βLXt +LYt , 0 ≤ t <∞ . (5.1)

Here (x,y) is the initial state in the nonnegative quadrant, and µ , ν , α , β are real constants. A
necessary and sufficient condition for the positive recurrence of (X·,Y·) in (5.1) is

µ+αν− < 0 , ν + βµ− < 0 (5.2)

(Proposition 2.3 of HOBSON & ROGERS (1993)); and x− = max(−x, 0) is the negative part of x ∈ R .
By contrast, our system (3.8)-(3.9) is driven by the single Brownian motion W (·), thus degenerate,

and has the form

Xt = x−Wt + µt+LXt +αLYt , Yt = y +Wt + νt+ βLXt +LYt , 0 ≤ t <∞ (5.3)

that one obtains by replacing formally the planar Brownian motion (B·,W·) in (5.1) by (−W·,W·).
The system (3.8)-(3.9) can be cast in the form (5.3), if we replace formally the triple (X·,Y·,W·) by
the triple (G(·), H(·),W (·)) and substitute µ = −(δ2 − δ1) , ν = −(δ3 − δ2) , α = β = −1 / 2 .

We have the following result.
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Proposition 5.1. If the conditions

2(δ3 − δ2) +
(
δ1 − δ2

)−
> 0 , 2(δ2 − δ1) +

(
δ2 − δ3

)−
> 0 , (5.4)

hold, then the process
(
G(·), H(·)

)
in (3.8)-(3.9) is positive recurrent, has a unique invariant probability

measure π with π((0,∞)2) = 1 , and converges to this measure in distribution as t→∞ .

Let us note that the condition (5.4) is a simple recasting of (5.2). It is satisfied in the special case of
(2.5); and more generally, when the strict ordering

δ1 < δ2 < δ3 (5.5)

holds. This last condition is strictly stronger than (5.4); for example, the choices δ1 = 1 / 3 , δ2 = 0 ,
δ3 = 1 satisfy (5.4) but not (5.5). Let us also note that (5.4) implies δ1 < δ3 , as well as at least one of
δ2 > δ1 , δ3 > δ2 ; that is, (5.4) excludes the possibility δ3 ≤ δ2 ≤ δ1 . These claims are discussed in
detail in subsection 5.1.1.

Under the condition (5.4), the sum of local times LG(·) + LH(·) dominates a straight line with
positive slope, on account of (4.12).

Proof: Let us define inductively two sequences of stopping times τ := τ1 = inf{s ≥ 0 : G(s) = 0} ,
σ := σ1 = inf{s ≥ τ : H(s) = 0} , τn := inf{s ≥ σn−1 : G(s) = 0} , σn := inf{s ≥ τn : H(s) =
0} for n = 2, 3, . . . . Also let us define T0 := inf{s ≥ 0 : G(s)H(s) = 0} and

T† := inf{s ≥ 0 : G(s) ≤ x0, H(s) = 0} , Tr := inf{s ≥ 0 : (G(s), H(s)) ∈ B0(r)} ,

where B0(r) is the ball of radius r > 0 centered at the origin. Most of the arguments in HOBSON &
ROGERS (1993) carry over smoothly to the degenerate system (3.8)-(3.9). In fact, we can replace B(·)
by −W (·) in the proof of Propositions 2.1-2.2 of HOBSON & ROGERS (1993), and deduce that, under
(5.4), there exists a large enough x0 > 0 such that for x1 − x2 ≥ x0 we have

E(x1−x2,0)[G(σ1)] ≤ (x1 − x2)/2 , E(x1−x2,0)[σ1] ≤ 2C(x1 − x2) ,

where C is some positive constant. Moreover, again replacing B(·) by −W (·) in the first part of the
proof of Proposition 2.3 of HOBSON & ROGERS (1993), we deduce

E[T†] ≤ C
(

1 +
√

(x1 − x2)2 + (x2 − x3)2
)
.

We conjecture that there exists a constant δ > 0 such that a uniform estimate

inf
0<y≤x0

P(y,0)
(
Tε ≤ T2x0 ∧ 1

)
≥ δ > 0 (5.6)

holds; once (5.6) has been established, positive recurrence under the condition (5.4) will follow.
Instead of showing (5.6), we shall show under the condition (5.4) that for every 0 < ε < x0 , there

exists a positive constant δ > 0 such that

inf
ε<y≤x0

P(y,0)
(
T̃ε ≤ T̃2x0 ∧ t0(y)

)
≥ δ > 0 , (5.7)

where t0(y) := (y − (5/6)ε) / (δ3 − δ1 − (1/2)(δ3 − δ2)+) > 0 , ε < y ≤ x0 and

T̃r := inf{s ≥ 0 : G(s) +H(s) = r} , r ≥ 0 .
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In fact, we evaluate the smaller probability infε<y≤x0 P(y,0)(T̃ε ≤ T̃2x0 ∧ t0(y) , T̃ε < τ) , where
we recall τ := inf{s > 0 : G(s) = 0} , that is, the probability that the process (G(·), H(·)) , starting
from the point G(0) = y ∈ (0, x0] , H(0) = 0 in the axis, reaches the neighborhood of the origin,
before going away from the origin and before attaining the other axis. The process (G(·), H(·)) does
not accumulate any local time A(·) before time τ :

0 < G(t) = y − (δ2 − δ1)t−W (t)− (1/2)Γ(t) , 0 ≤ H(t) = −(δ3 − δ2)t+W (t) + Γ(t) ,

and consequently G(t) +H(t) = y− (δ3− δ1)t+ (1/2)Γ(t) , for 0 ≤ t ≤ τ . From the SKOHOKHOD

construction, we obtain the upper bound for the local time Γ(·) :

Γ(t) = max
0≤s≤t

(
−W (s) + (δ3 − δ2)s

)+ ≤ max
0≤s≤t

(−W (s))+ + (δ3 − δ2)+t , 0 ≤ t ≤ τ .

Thus we obtain

G(t) ≥ y −
(
δ2 − δ1 +

1

2
(δ3 − δ2)+

)
t−W (t)− 1

2
max
0≤s≤t

(
−W (s)

)+
, (5.8)

G(t) +H(t) ≤ y −
(
δ3 − δ1 −

1

2
(δ3 − δ2)+

)
t+

1

2
max
0≤s≤t

(
−W (s)

)+
; 0 ≤ t ≤ τ . (5.9)

Now let us consider the event

A(y) : =
{
ω ∈ Ω : max

0≤s≤t0(y)
|W (s, ω)| ≤ ε / 3

}
, ε < y ≤ x0 .

Since δ3 − δ1 − (1/2)(δ3 − δ2)+ ≤ δ2 − δ1 + (1/2)(δ3 − δ2)+ , for every ω ∈ A(y) we obtain

min
0≤t≤t0(y)

[
y −

(
δ2 − δ1 +

1

2
(δ3 − δ2)+

)
t−W (t, ω)− 1

2
max
0≤s≤t

(
−W (s, ω)

)+] ≥ ε

3
> 0 ,

and hence, combining with (5.8), we obtain A(y) ⊂ {t0(y) < τ} . Moreover, for every ω ∈ A(y) we
have

min
0≤t≤t0(y)

(
G(t, ω)+H(t, ω)

)
≤ min

0≤t≤t0(y)

[
y−
(
δ3−δ1−

1

2
(δ3−δ2)+

)
t+

1

2
max
0≤s≤t

(
−W (s, ω)

)+] ≤ ε ,
thus also

max
0≤t≤t0(y)

(
G(t, ω) +H(t, ω)

)
≤ x0 + ε < 2x0 .

Thus A(y) ⊂ {T̃ε ≤ T̃2x0 ∧ t0(y), T̃ε < τ} . Therefore, by the reflection principle for Brownian
motion,

inf
ε<y≤x0

P(y,0)(T̃ε ≤ T̃2x0 ∧ t0(y)) ≥ inf
ε<y≤x0

P(y,0)(T̃ε ≤ T̃2x0 ∧ t0(y), T̃ε < τ)

≥ inf
ε<y≤x0

P(y,0)(A(y)) ≥ 1−
(t0(x0)

2π

)1/2
· 4

ε/3
· exp

(
− (ε/3)2

2t0(x0)

)
(cf. Problem 2.8.2 of KARATZAS & SHREVE (1991)). Letting its right-hand side be δ > 0 , we obtain
(5.7). Appealing to the second half of the proof of Proposition 2.3 in HOBSON & ROGERS (1993), page
393, we conclude that the system (3.8)-(3.9) is neighborhood positive recurrent under (5.4).
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For the remaining claims of the Proposition, let us recall the equations of (3.8)-(3.9) written in the
HARRISON & REIMAN (1981) form (3.14)-(3.16), and note that the process Z(·) of (3.15) has indepen-
dent, stationary increments with Z(t) = 0 and E

∣∣Z(1)
∣∣ < ∞ . Now, as is relatively easy to verify (and

shown in subsection 5.1.1), the conditions of (5.4) imply that the components of the vector

−R−1 E
(
Z(1)

)
=

2

3

(
2 1
1 2

)(
δ2 − δ1

δ3 − δ2

)
=

2

3

(
δ2 + δ3 − 2δ1

2δ3 − δ1 − δ2

)
=:

(
λ1

λ2

)
= λ (5.10)

are both strictly positive; cf. (5.16) below. Then Corollary 2.1 in KELLA & RAMASUBRAMANIAN

(2012) (cf. KHAS’MINSKII (1960), KELLA & WHITT (1996), Theorem 3.4 in KONSTANTOPOULOS

ET AL. (2004), SARANTSEV (2016, 2017)) implies that G(·) =
(
G(·), H(·)

)
is positive recurrent, has

a unique invariant probability measure π , and converges to this measure in distribution as t → ∞ .
In addition, for any bounded, measurable function f : [0,∞)2 → R we have the strong law of large
numbers

lim
T→∞

1

T

∫ T

0
f
(
G(t), H(t)

)
dt =

∫
[0,∞)2

f(g, h)π(dg,dh) , a.s.

The claim π
(
(0,∞)2

)
= 1 follows now from (4.7) .

5.1 Strong Laws of Large Numbers for Local Times

We shall suppose in this section that the drifts in the system (2.1) satisfy the conditions of (5.4).

Proposition 5.2. Under the conditions of (5.4), the local times accumulated at the origin by the “gap”
processes G(·) and H(·) satisfy the strong laws of large numbers

lim
t→∞

LG(t)

t
= λ1 , lim

t→∞

LH(t)

t
= λ2 (5.11)

almost surely, in the notation of (5.10).

Proof: As we just argued, under the condition (5.4) the two-dimensional process (G(·), H(·)) of gaps
has a unique invariant probability measure π on B

(
(0,∞)2

)
, to which it converges in distribution. This

implies, a fortiori, that

lim
t→∞

G(t)

t
= 0 and lim

t→∞

H(t)

t
= 0 (5.12)

hold in distribution, thus also in probability. Back into (4.4), (4.5) and in conjunction with the law of
large numbers for the Brownian motion W (·) , these observations give that

lim
t→∞

2LG(t)− LH(t)

2 t
= δ2 − δ1 , lim

t→∞

2LH(t)− LG(t)

2 t
= δ3 − δ2 (5.13)

hold in probability, and thus the same is true of (5.11).
There exist then sequences {tk}k∈N ⊂ (0,∞) and {τk}k∈N ⊂ (0,∞) which increase strictly to

infinity, and along which we have

lim
k→∞

LG(τk)

τk
=

2

3

(
δ2 + δ3 − 2 δ1

)
, lim

k→∞

LH(tk)

tk
=

2

3

(
2 δ3 − δ1 − δ2

)
almost surely. However, Theorem II.2 in AZÉMA ET AL. (1967) implies that the limits limt→∞

(
LG(t)/t

)
and limt→∞

(
LH(t)/t

)
do exist almost surely (see also HARRISON & WILLIAMS (1987), sections 7

and 8). It follows from these considerations, that the limiting relations of (5.11) are valid not just in
probability, but also almost surely; the same is true then for those of (5.12). �
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Figure 2: Simulated local times LG(·) (black) and LH(·) (red) for a short time (left panel) and for
a long time (right panel) with δ1 = 0.01 , δ2 = 0.02 , δ3 = 0.03 , thus λ1 = λ2 = 0.02 . The
long-term growth rates converge in the manner of (5.11), as the time-horizon increases; whereas over
short time horizons, the CANTOR-function-like nature of local time becomes quite evident.

We note that both limits in (5.11) are equal to 2 g in the special case (2.5); and as a sanity check, we
verify in subsection 5.1.1 that both these limits are strictly positive under the conditions of (5.4). Let us
also note that the range of the particles’ configuration

RX1 (t)−RX3 (t) = G(t) +H(t) = x1 − x3 −
(
δ3 − δ1

)
t +

1

2

(
LG(t) + LH(t)

)
, 0 ≤ t <∞

is a process of finite variation: it decreases linearly (with slope δ3 − δ1); increases in Cantor-function-
like fashion (as the sums of local times), a behavior that can be gleaned very clearly from Figure 1; and
satisfies limt→∞

((
RX1 (t)−RX3 (t)

)/
t
)

= 0 a.s., on the strength of (5.12).

The long-term average growth rates of local times (LG(·), LH(·)) in (5.11) are consistent with sim-
ulated local times based on the SKOROKHOD map in HARRISON & REIMAN (1981). The simulations,
reported in Figure 2, demonstrate the long-term linear growth of these local times with the rates of (5.11).

Remark 5.1. Elementary stochastic calculus applied to the equations (4.4), (4.5) leads to the dynamics

d
(
G2(t) +G(t)H(t) +H2(t)

)
=
[

1− 3

2

(
λ1G(t) + λ2H(t)

)]
dt+

(
H(t)−G(t)

)
dW (t). (5.14)

As the planar process (G(t), H(t)) approaches the origin, the drift in this expression gets close to 1
and pushes the process away from the origin; on the other hand, when either of the components of the
vector (G(t), H(t)) gets very large, there is a strong negative drift in the above expression (5.14), which
tends to bring (G(·), H(·)) back toward the origin. This behavior is consistent with the existence of an
invariant probability measure for the process (G(·), H(·)).

Straightforward computation shows that V (g, h) = exp
{√

g2 + gh+ h2
}

, (g, h) ∈ [0,∞)2 \
(0, 0) is a LYAPOUNOV function for the semimartingale reflecting Brownian motion (G(·), H(·)), lead-
ing to yet another derivation of the positive recurrence and stochastic stability (existence and uniqueness
of an invariant distribution) for this process. We refer to DUPUIS & WILLIAMS (1994), BRAMSON, DAI
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& HARRISON (2009) and BRAMSON (2011) for construction of a LYAPOUNOV function and fluid paths,
leading to the positive recurrence of (non-degenerate) semimartingale reflecting Brownian motion. Here,
Proposition 5.1 deals with the degenerate case.

5.1.1 Discussion of Condition (5.4), and a Sanity Check

We note that if δ1 ≥ δ2 ≥ δ3 , the conditions of (5.4) cannot hold; this is because we have then

2(δ2 − δ1) +
(
δ2 − δ3

)−
= 2(δ2 − δ1) ≤ 0 , 2(δ3 − δ2) +

(
δ1 − δ2

)−
= 2(δ3 − δ2) ≤ 0 .

Thus, under (5.4), we have either δ2 > δ1 or δ3 > δ2 . We shall consider the following three cases, the
only ones that are compatible with (5.4):

(i) δ1 < δ2 < δ3 , (ii) δ2 > δ1 and δ2 ≥ δ3 , (iii) δ3 > δ2 and δ1 ≥ δ2 .

It can be shown that, in all three cases, the conditions of (5.4) imply

δ3 > δ1 (5.15)

as well as
2δ3 − δ1 − δ2 > 0 , δ2 + δ3 − 2δ1 > 0 . (5.16)

Then the a.s. limits in (5.11) are positive.
Let us close this paragraph by observing that the inequalities of (5.16) imply both (5.15) and (5.4).

Thus, the condition of (4.4) is equivalent to that in (5.16), and also equivalent to the component-wise
inequality R−1E(Z(1)) < 0 in (5.10).

6 Basic Adjoint Relation (BAR) and LAPLACE Transforms

Under the condition (5.4), can the invariant probability measure π of the two-dimensional process
(G(·), H(·)) of gaps be computed explicitly? We do not know the answer to this question, but will try
to make some progress on it in the present section, culminating with the conjecture of Remark 6.4 which
pertains to what we call the “symmetric case” for this problem.

For every bounded continuous function f : [0,∞)2 → R of class C2
b

(
(0,∞)2

)
∩C1

b

(
[0,∞)2\{0}

)
,

simple stochastic calculus gives

f(G(T ))− f(G(0)) =

∫ T

0
∇f(G(t)) · d

(
Z(t) +RL(t)

)
+

∫ T

0

1

2

(
D2
gg +D2

hh − 2D2
gh

)
f(G(t))dt

where the processes
(
G(·),Z(·),L(·)

)
and the matrix R are defined in (3.14)-(3.16). Taking expecta-

tion on both sides, then integrating with respect to the invariant probability measure π for the vector
process G(·) =

(
G(·), H(·)

)
, we obtain by FUBINI’s theorem

0 = T

∫ ∞
0

∫ ∞
0

[ 1

2

(
D2
gg +D2

hh − 2D2
gh

)
f(g, h) +m · ∇f(g, h)

]
π(dg,dh) (6.1)

+
T

2

(∫ ∞
0

(
Dg −

1

2
Dh

)
f(0, h)ν1(dh) +

∫ ∞
0

(
Dh −

1

2
Dg

)
f(g, 0)ν2(dg)

)
for 0 < T <∞ , where m =

(
δ1 − δ2 , δ2 − δ3

)′ is the drift vector of Z(·) in (3.15), (3.16).
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We have denoted here by ν1 (respectively, by ν2 ) the σ-finite measure on the axis {(g, h) ∈
[0,∞)2 : g = 0} (respectively, on the axis {(g, h) ∈ [0,∞)2 : h = 0} ) induced by the vector
L(·) =

(
LG(·), LH(·)

)′ of local times under the invariant probability measure π ; namely,

Eπ
∫ T

0
f
(
G(t)

)
dL(t) =

T

2

(∫ ∞
0

f(0, h)ν1(dh) ,

∫ ∞
0

f(g, 0)ν2(dg)

)′
, (6.2)

or equivalently

ν1(A) = Eπ
∫ 2

0
1{H(t)∈A} dLG(t) , ν2(A) = Eπ

∫ 2

0
1{G(t)∈A} dLH(t) (6.3)

for A ∈ B
(
(0,∞)

)
; see AZÉMA ET AL. (1967). Dividing both sides of (6.1) by T/2 , we obtain for the

invariant probability measure π of (G(·), H(·)) in (3.8)-(3.9) the Basic Adjoint Relation (BAR)∫ ∞
0

∫ ∞
0

((
D2
gg +D2

hh − 2D2
gh

)
+ 2
(
δ1 − δ2

)
Dg + 2

(
δ2 − δ3

)
Dh

)
f(g, h)π(dg,dh) + (6.4)

+

∫ ∞
0

(
Dg −

1

2
Dh

)
f(0, h)ν1(dh) +

∫ ∞
0

(
Dh −

1

2
Dg

)
f(g, 0)ν2(dg) = 0 .

This Basic Adjoint Relationship (BAR) was introduced, and studied in detail, for non-degenerate re-
flected Brownian motions, by HARRISON & WILLIAMS (1987). A probability measure π on B

(
(0,∞)2

)
is invariant for the vector process G(·) = (G(·), H(·)) if it, together with two finite measures ν1 , ν2

on B((0,∞)), satisfies the BAR (6.4); cf. DAI & KURTZ (2003).

6.1 LAPLACE Transforms and Ramifications

The Basic Adjoint Relation of (6.4) allows us to express the LAPLACE transform π̂ of the invariant
probability measure π in terms of the LAPLACE transforms ν̂1, ν̂2 of the measures ν1, ν2 in (6.2),
(6.3) on the axes. Indeed, substituting f(g, h) = exp(−α1g − α2h) into (6.4) with α1 ≥ 0 , α2 ≥ 0 ,
we see that the LAPLACE transforms

π̂(α) := π̂(α1, α2) = Eπ
[
e−α1G(t)−α2H(t)

]
, ν̂i(αj) :=

∫ ∞
0

e−αjxνi(dx)

for i 6= j ∈ {1, 2} satisfy the equation[
(α1 − α2)2 + 2(δ2 − δ1)α1 + 2(δ3 − δ2)α2

]
π̂(α1, α2) =

=
(
α1 −

α2

2

)
ν̂1(α2) +

(
α2 −

α1

2

)
ν̂2(α1) . (6.5)

The following observations, in the form of bullets, are consequences of this last equation (6.5).

• For any pair (α1, α2) ∈ [0,∞)2 that satisfies (α1 − α2)2 + 2(δ2 − δ1)α1 + 2(δ3 − δ2)α2 6= 0 , the
equation (6.5) yields

Eπ
[
e−α1G(t)−α2H(t)

]
=

(2α1 − α2)ν̂1(α2) + (2α2 − α1)ν̂2(α1)

2(α1 − α2)2 + 4(δ2 − δ1)α1 + 4(δ3 − δ2)α2
= π̂(α1, α2) . (6.6)

In other words, the invariant distribution π on (0,∞)2 can be obtained from the measures ν1 , ν2 of
(6.2) on the two axes.

The reverse is also true: Setting α1 = 2α2 > 0 (resp., α2 = 2α1 > 0) in (6.6), we get respectively,

ν̂1(α2) =
2

3

(
α2+2

(
δ2+δ3

)
−4δ1

)
π̂
(
2α2, α2

)
, ν̂2(α1) =

2

3

(
α1−2

(
δ2+δ1

)
+4δ3

)
π̂
(
α1, 2α1

)
.
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• If (α1, α2) ∈ [0,∞)2 lies on the segment of the parabola

(α1 − α2)2 + 2(δ2 − δ1)α1 + 2(δ3 − δ2)α2 = 0 , (6.7)

then (6.5) yields
(2α1 − α2) ν̂1(α2) + (2α2 − α1) ν̂2(α1) = 0 .

Under the conditions of (5.4), the segment is non-empty provided δ2 < δ1 < (δ2 + δ3)/2 < δ3 or
δ1 < (δ1 + δ2)/2 < δ3 < δ2 .

On the other hand, under the condition (5.5), the segment on the parabola (6.7) degenerates to the
origin (α1, α2) = (0, 0) and thus (6.6) holds then for every (α1, α2) ∈ [0,∞)2 \ {(0, 0)} .

• Dividing (6.5) by αj > 0 , then letting αj ↑ ∞ , j = 1, 2 , we obtain

lim
α2↑∞

α2 π̂(α1, α2) = ν̂2(α1) , lim
α1↑∞

α1 π̂(α1, α2) = ν̂1(α2) , (α1, α2) ∈ [0,∞)2 . (6.8)

We deduce that the measures ν1 , ν2 of (6.2) are appropriately normalized traces on the two axes, of the
the invariant probability measure π .

• Now, let us take α1 = α2 = α > 0 in (6.5); we see that the LAPLACE transform of the invariant
distribution for the sum G(·) +H(·) of the gaps is expressed as

Eπ
[
e−α(G(T )+H(T ))

]
= π̂(α, α) =

ν̂1(α) + ν̂2(α)

4(δ3 − δ1)
=
ν̂1(α) + ν̂2(α)

2(λ1 + λ2)
; α > 0 . (6.9)

In conjunction with Proposition 4.1, this shows that the measure ν1 + ν2 is supported on the open
half-line (0,∞).

Letting α ↓ 0 in the above equation gives the total mass of the two measures on the axes under the
stationary distribution, namely(

ν1 + ν2

)
((0,∞)) = ν̂1(0) + ν̂2(0) = 4(δ3 − δ1) > 0 ; (6.10)

this is consistent with the strong laws of large numbers (5.11), because of the normalization (6.2) and

lim
T→∞

1

T

(
LG(T ) + LH(T )

)
=

1

2

(
ν1 + ν2

)(
(0,∞)

)
= 2(δ3 − δ1) = λ1 + λ2 .

In particular, the two measures ν1 , ν2 of (6.2) are both finite.

• Now let us take the limit in (6.6) as α2 ↓ 0 , to obtain

Eπ
[
e−α1G(T )

]
= π̂(α1, 0) =

2 ν̂1(0)− ν̂2(α1)

2α1 + 4(δ2 − δ1)
;

next we let α1 ↓ 0 and get
2 ν̂1(0)− ν̂2(0) = 4(δ2 − δ1) .

In conjunction with (6.10), this gives the total mass of each of the two measures on the axes, namely

ν1

(
(0,∞)

)
= ν̂1(0) =

4

3

(
δ2 + δ3 − 2 δ1

)
= 2λ1 = 2 lim

T→∞

LG(T )

T
, (6.11)

ν2

(
(0,∞)

)
= ν̂2(0) =

4

3

(
2 δ3 − δ1 − δ2

)
= 2λ2 = 2 lim

T→∞

LH(T )

T
, (6.12)

in accordance with (6.2) and (5.11). This way we express the LAPLACE transform for the first marginal

Eπ
[
e−α1G(T )

]
= π̂(α1, 0) =

4λ1 − ν̂2(α1)

2α1 + 4(δ2 − δ1)
, (6.13)
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and likewise the LAPLACE transform for the second marginal

Eπ
[
e−α2H(T )

]
= π̂(0, α2) =

4λ2 − ν̂1(α2)

2α2 + 4(δ3 − δ2)
, (6.14)

in terms of the LAPLACE transforms of the traces ν2 and ν1 , respectively.

Remark 6.1 (Absolute Continuity). It can be shown as in section 8 of HARRISON & WILLIAMS (1987)
that the measures ν1(·) and ν2(·) are absolutely continuous with respect to LEBESGUE measure; in
other words, that there exist probability density functions σ1(·) and σ2(·) on (0,∞) , such that

νj(A) = 2λj

∫
A
σj(z) dz , A ∈ B

(
[0,∞)

)
, j = 1, 2 . (6.15)

It follows now from (6.9) that the invariant distribution of the sum of gaps G(·)+H(·) is also absolutely
continuous with respect to LEBESGUE measure, with probability density function Pπ

(
G(T ) +H(T ) ∈

dz
)

= σ(z) dz given by

σ(z) =
λ1

λ1 + λ2
σ1(z) +

λ2

λ1 + λ2
σ2(z) , z ∈ (0,∞) . (6.16)

Remark 6.2 (No Product Form). It is seen from (6.2), (6.11) and the definition of the local time that

(2λ1)−1

∫ ∞
0

e−α2h ν1(dh) =
(
Eπ
[
LG(T )

])−1
· Eπ

[ ∫ T

0
e−α1G(t)−α2H(t)dLG(t)

]
=
(
Eπ
[

lim
ε↓0

1

2ε

∫ T

0
1{G(t)<ε}dt

])−1
· Eπ

[
lim
ε↓0

1

2ε

∫ T

0
e−α1G(t)−α2H(t)1{G(t)<ε}dt

]
= lim

ε↓0

(
π(g < ε)

)−1
∫ ∞

0

∫ ∞
0

e−α1g−α2h · 1{g<ε} π(dg,dh) , (α1, α2) ∈ (0,∞)2

holds for all T ∈ (0,∞) . Hence, by the uniqueness of the LAPLACE transform and (6.15) we obtain

Pπ
(
H(T ) ∈ dz

∣∣G(T ) = 0
)

= σ1(z) dz ; similarly Pπ
(
G(T ) ∈ dz

∣∣H(T ) = 0
)

= σ2(z) dz .

With this interpretation in mind, it becomes clear that the joint distribution of the two gaps under the
invariant probability measure cannot possibly be the product of their two marginal distributions.

6.2 The General Symmetric Case

Let us consider now the general symmetric case

δ2 − δ1 = δ3 − δ2 =: g > 0 ; (6.17)

the configuration of (2.5) is a special case of this situation, with δ2 = 0.
We have now λ1 = λ2 = 2 g =: λ in (5.10), as well as ν1(·) ≡ ν2(·) =: ν(·) , σ1(·) ≡ σ2(·) ≡

σ(·) , and (6.9), (6.6) lead to ν̂(α) = 2λ π̂(α, α) and to the functional equation

π̂(α1, α2) =
λ

(α1 − α2)2 + λ(α1 + α2)

[
(2α1−α2) π̂

(
α2, α2

)
+ (2α2−α1) π̂

(
α1, α1

) ]
(6.18)

for the LAPLACE transform of the joint distribution of the gaps. To wit, in the symmetric case of (6.17)
and in steady state, the joint distribution of the gaps is determined by the distribution of their sum – or
for that matter by the common marginal distribution of each of these gaps, as in this case

ν̂(α) = 2λ π̂(α, α) , π̂(α, 0) = π̂(0, α) =
λ

α+ λ

[
2− π̂(α, α)

]
; α ≥ 0 . (6.19)
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Figure 3: The marginal probability density function τ (·) in (6.25) (left) and the joint Laplace transform
π̂(α1, α2) in (6.26) (right) under the conjecture on σ(·) in (6.23).

This last equation suggests that, in the symmetric case of (6.17), the marginal invariant distributions of
the gaps have common probability density function

Pπ
(
G(t) ∈ dξ

)
dξ

=
Pπ
(
H(t) ∈ dξ

)
dξ

= τ (ξ) = λ

[
2 e−λξ −

∫ ξ

0
e−λ(ξ−z) σ(z) dz

]
(6.20)

for ξ ∈ (0,∞) . In particular, the invariant distribution for the sum of the two gaps has finite moment-
generating function, thus moments of all orders:∫ ∞

0
eλz σ(z) dz ≤ 2 . (6.21)

Remark 6.3 (The Average Gaps in Steady-State). Always under the condition (6.17), suppose that the
pair of processes (G(·), H(·)) runs under its stationary distribution π. Then by taking the expectation
in the expression (5.14) of Remark 5.1, one obtains Eπ[ 1− 3gG(t)− 3gH(t) ] = 0 ; due to symmetry,
this shows

Eπ
[
G(t)

]
= Eπ

[
H(t)

]
=

1

6 g
=

1

3λ
. (6.22)

The first-moment computation (6.22) rules out exponential marginal distributions for the gaps in this
symmetric case (6.17). For if τ (ξ) = β e−β ξ , ξ ∈ (0,∞) were valid for some constant β > 0 , then
the equation

τ (ξ) eλ ξ = λ

[
2−

∫ ξ

0
eλ z σ(z) dz

]
, 0 < ξ <∞

from (6.20) would force β = 2λ and τ (ξ) = σ(ξ) = β e−β ξ , thus Eπ
[
G(t)

]
= Eπ

[
H(t)

]
= 1/β =

1/(2λ), contradicting (6.22).

Remark 6.4 (A Conjecture Involving the Gamma Distribution). Always in the symmetric case (6.17), we
conjecture that under the stationary distribution π , the density function σ(·) for the sum of the gaps
G(·) +H(·) is the Gamma probability density with parameters (λu, (2/3)u) , i.e.,

σ(ξ) =
(λu)2u/3

Γ(2 u/3)
ξ (2u/3)−1 e−λuξ , 0 < ξ <∞ . (6.23)
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Here Γ(z) =
∫∞

0 xz−1e−xdx is the Gamma function, and the positive constant u the unique solution
of the transcendental equation 2u log(u/(u− 1)) = 3 log 2 . Equivalently, u is given as

u :=
3 log 2

3 log 2 + 2 W(−(3 log 2)/(4
√

2))
(6.24)

in terms of W(·) , the LAMBERT W-function or “product logarithm”, with the property z = W(zez).
With this probability density function σ(·) as in (6.23), the condition (6.21) is satisfied as equality:∫ ∞

0
eλzσ(z)dz =

( u

u− 1

)2u/3
= 2 .

It follows from (6.20) that the common marginal probability density for the gaps becomes then

τ (ξ) = λe−λξ
[( ∫ ∞

0
−
∫ ξ

0

)
eλzσ(z)dz

]
= λe−λξ ·

∫ ∞
ξ

eλzσ(z)dz , 0 < ξ <∞ (6.25)

under the invariant distribution; that the LAPLACE transform in (6.18) for the joint distribution of the
gaps takes the form

π̂(α1, α2) =
λ

(α1 − α2)2 + λ(α1 + α2)

[ (
2α1 − α2

)( λu

λu + α2

) 2u
3

+ (2α2 − α1)
( λu

λu + α1

) 2u
3

]
(6.26)

for (α1, α2) ∈ (0,∞)2 , as in Figure 3; and that the first-moment condition of (6.22) holds, namely,

Eπ[G(t)] = Eπ[H(t)] =

∫ ∞
0

ξ · λe−λξ
[ ∫ ∞

ξ
eλzσ(z)dz

]
dξ =

1

λ
− 2

3λ
=

1

3λ
.

7 The “Obverse” of (2.1)–(2.3): Ballistic Middle Motion, Diffusive Hedges

We take up in this section the “obverse” of the three-particle system in (2.1)-(2.3), by which we mean
replacing the equations in (2.1) by

Xi(·) = xi +
3∑

k=1

δk

∫ ·
0

1{Xi(t)=RX
k (t)} dt+

∫ ·
0

(
1{Xi(t)=RX

1 (t)} + 1{Xi(t)=RX
3 (t)}

)
dBi(t) (7.1)

for i = 1, 2, 3, and replacing the conditions of (2.2), (2.3) by∫ ∞
0

1{RX
k (t)=RX

` (t)} dt = 0 , ∀ k < ` ; LR
X
1 −RX

3 (·) ≡ 0 (7.2)

in the notation of (2.4) and (3.6). The processes B1(·), B2(·), B3(·), are again independent scalar Brow-
nian motions. In words: it is now the leading and laggard particles that undergo diffusion, and the
particle in the middle that undergoes purely ballistic motion. Once again, the dynamics of the system
(7.1) involve dispersion functions that are both discontinuous and degenerate.

In contrast to Proposition 4.1, we shall see here that “the two diffusive motions can squeeze the
ballistic motion in the middle”, and thus triple points will occur with probability one; yet the resulting
triple collisions are “soft”, in that the local time LR

X
1 −RX

3 (·) associated with them is identically equal
to zero, as postulated in the second requirement of (7.2). The first requirement there, mandates that all
collisions are non-sticky.
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7.1 Analysis

Let us assume that a weak solution to this system of (7.1), (7.2) has been constructed on an appropriate
filtered probability space (Ω,F,P), F = {F(t)}0≤t<∞ . Reasoning as before, we have the analogues

RX1 (t) = x1 + δ1 t+W1(t) +
1

2
Λ(1,2)(t) ,

RX2 (t) = x2 + δ2 t−
1

2
Λ(1,2)(t) +

1

2
Λ(2,3)(t) ,

RX3 (t) = x3 + δ3 t+W3(t)− 1

2
Λ(2,3)(t) ; t ≥ 0

(7.3)

of (3.1)-(3.3) in the notation of (3.5), and as in (3.4) with the processes

Wk(·) :=
3∑
i=1

∫ ·
0

1{Xi(t)=RX
k (t)} dBi(t) , k = 1, 3 (7.4)

which are independent Brownian motions by the P. LÉVY theorem. It is fairly clear that the center of
gravity of this system evolves as Brownian motion with drift, since

3∑
i=1

Xi(t) = x+ δ t+
√

2 V (t) , 0 ≤ t <∞ ,

for x = x1 + x2 + x3 , δ = δ1 + δ2 + δ3 , and V = (W1 +W3)/
√

2 a standard Brownian motion.
Then the gaps G(·) := RX1 (·)−RX2 (·) and H(·) := RX2 (·)−RX3 (·) are given as

G(t) = U(t) + LG(t) , H(t) = V (t) + LH(t) , 0 ≤ t <∞

in the manner of (3.8), (3.9), where again LG(·) ≡ Λ(1,2)(·), LH(·) ≡ Λ(2,3)(·), and now

U(t) := x1−x2−
(
δ2−δ1

)
t+W1(t)− 1

2
LH(t) , V (t) := x2−x3−

(
δ3−δ2

)
t−W3(t)− 1

2
LG(t) .

The theory of the SKOROKHOD reflection problem gives the analogues

LG(t) = max
0≤s≤t

(
− U(s)

)+
= max

0≤s≤t

(
− (x1 − x2) +

(
δ2 − δ1

)
s−W1(s) +

1

2
LH(s)

)+
(7.5)

LH(t) = max
0≤s≤t

(
− V (s)

)+
= max

0≤s≤t

(
− (x2 − x3) +

(
δ3 − δ2

)
s+W3(s) +

1

2
LG(s)

)+
(7.6)

of the equations (3.12), (3.13), a system of equations linking the two local time processes LG(·) , LH(·) .

7.2 Synthesis

We start again with the given real numbers δ1, δ2, δ3 and x1 > x2 > x3 , and construct a filtered
probability space (Ω, F̃,P), F̃ =

{
F̃(t)

}
0≤t<∞ and on it three independent, standard Brownian motions

Wi(·) , i = 1, 2, 3. We consider the analogue

A(t) = max
0≤s≤t

(
− (x1 − x2) +

(
δ2 − δ1

)
s−W1(s) +

1

2
Γ(s)

)+
, 0 ≤ t <∞ (7.7)

Γ(t) = max
0≤s≤t

(
− (x2 − x3) +

(
δ3 − δ2

)
s+W3(s) +

1

2
A(s)

)+
, 0 ≤ t <∞ (7.8)
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of the system of equations (7.5) and (7.6) for two continuous, nondecreasing and adapted processes A(·)
and Γ(·) with A(0) = Γ(0) = 0 . Once again, the theory of HARRISON & REIMAN (1981) guarantees
the existence of a unique continuous solution

(
A(·),Γ(·)

)
for the system (7.7), (7.8), adapted to the

filtration F (W1,W3) generated by the 2-D Brownian motion (W1(·),W3(·)):

F (A,Γ)(t) ⊆ F (W1,W3)(t) , 0 ≤ t <∞ . (7.9)

With the processes A(·), Γ(·) thus in place, we consider the continuous semimartingales

U(t) := x1−x2−
(
δ2− δ1

)
t+W1(t)− 1

2
Γ(t) , V (t) := x2−x3−

(
δ3− δ2

)
t−W3(t)− 1

2
A(t)

and then “fold” them to obtain their SKOROKHOD reflections

G(t) := U(t) + max
0≤s≤t

(
− U(s)

)+ (7.10)

= x1 − x2 −
(
δ2 − δ1

)
t+W1(t)− 1

2
Γ(t) +A(t) ≥ 0

H(t) := V (t) + max
0≤s≤t

(
− V (s)

)+ (7.11)

= x2 − x3 −
(
δ3 − δ2

)
t−W3(t)− 1

2
A(t) + Γ(t) ≥ 0

for t ∈ [0,∞) . This system of equations (7.10), (7.11) can be cast in the HARRISON-REIMAN form(
G(t)
H(t)

)
=

(
G(0)
H(0)

)
+ Z(t) +RL(t) , 0 ≤ t <∞

of (3.14), now with covariance matrix

C :=

(
1 0
0 1

)
, reflection matrix R = I − Q , Q :=

(
0 1/2

1/2 0

)
,

and

L(t) =

(
LG(t)
LH(t)

)
, Z(t) =

(
(δ1 − δ2)t+W1(t)
(δ2 − δ3)t−W3(t)

)
, 0 ≤ t <∞ .

Once again, we obtain easily the analogues∫ ∞
0

1{G(t)>0} dA(t) = 0 ,

∫ ∞
0

1{H(t)>0} dΓ(t) = 0 (7.12)

and ∫ ∞
0

1{G(t)=0} dt = 0 ,

∫ ∞
0

1{H(t)=0} dt = 0 (7.13)

of the properties in (4.6), (4.7) using, respectively, the theories of the SKOROKHOD reflection problem
and of semimartingale local time.

We claim that we also have the analogues∫ ∞
0

1{H(t)=0} dA(t) = 0 ,

∫ ∞
0

1{G(t)=0} dΓ(t) = 0 (7.14)

of the properties in (4.10), though now for a different reason.
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Let us elaborate: the system of (7.10), (7.11) characterizes a two-dimensional Brownian motion
(G(·), H(·)) with drift (δ1 − δ2, δ2 − δ3) and reflection along the faces of the nonnegative quadrant.
According to the theory of VARADHAN & WILLIAMS (1985) (see also ICHIBA & KARATZAS (2010)),
this process will hit the corner of the quadrant, with probability one: P(G(t) = H(t) = 0, for some t >
0) = 1. Yet we have, again with probability one,∫ ∞

0
1{G(t)=0} dΓ(t) =

∫ ∞
0

1{G(t)=H(t)=0} dΓ(t) = 0 (7.15)

and ∫ ∞
0

1{H(t)=0} dA(t) =

∫ ∞
0

1{G(t)=H(t)=0} dA(t) = 0 , (7.16)

where the first equalities come from those in (7.12) and the second equalities from Theorem 1 in REIMAN

& WILLIAMS (1988). The claims in (7.14) are thus established.
Armed with the properties (7.12)-(7.14), we obtain here again the identifications LG(·) ≡ A(·) ,

LH(·) ≡ Γ(·) of the processes A(·), Γ(·) in (7.7), (7.8) as local times. Details are omitted, being very
similar to what was done before.

• Construction of the Ranked Motions: We introduce now, by analogy with (4.8)-(4.9), the processes

R1(t) :=x1 + δ1 t+W1(t) +
1

2
A(t)

R2(t) :=x2 + δ2 t−
1

2
A(t) +

1

2
Γ(t)

R3(t) :=x3 + δ3 t+W3(t)− 1

2
Γ(t)

(7.17)

for 0 ≤ t < ∞ , and note again the relations R1(·) − R2(·) = G(·) ≥ 0 , R2(·) − R3(·) = H(·) ≥ 0

and the comparisons R1(·) ≥ R2(·) ≥ R3(·) . The range

R1(t)−R3(t) = G(t)+H(t) = x1−x3+
(
δ1−δ3

)
t+W1(t)−W3(t)+

1

2

(
A(t)+Γ(t)

)
, 0 ≤ t <∞

is a nonnegative semimartingale with 〈R1 −R3〉(t) = 2 t and local time at the origin

LR1−R3(·) =

∫ ·
0

1{G(t)+H(t)=0}

[ (
δ1 − δ3

)
dt+

1

2

(
dA(t) + dΓ(t)

) ]
= 0 (7.18)

by virtue of (3.6) and (7.13), (7.14). This is in accordance with the second property posited in (7.2).
Whereas, we argued already that the first time

S := inf
{
t ≥ 0 : R1(t) = R3(t)

}
(7.19)

of a triple collision, is a.e. finite: P(S <∞) = 1.

Remark 7.1 (On the Structure of Filtrations). It follows from (7.17), (7.9) that the so-constructed triple
(R1(·), R2(·), R3(·)) is adapted to the filtration F (W1,W3) generated by the 2-D Brownian motion (W1(·),
W3(·)) :

F (R1,R2,R3)(t) ⊆ F (W1,W3)(t) , 0 ≤ t <∞ . (7.20)

On the other hand, the identifications

A(·) = LG(·) = LR1−R2(·) , Γ(·) = LH(·) = LR2−R3(·) ,
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show that (A(·), Γ(·)) is adapted to the filtration F (R1,R2,R3) generated by the triple (R1(·), R2(·),
R3(·)); on account of (7.17), it follows that the same is true of the 2-D Brownian motion (W1(·),W3(·)).
In other words, the reverse inclusion of (7.20) is also valid, and we conclude that the triple (R1(·), R2(·),
R3(·)) and the pair (W1(·),W3(·)) generate exactly the same filtration:

F (R1,R2,R3)(t) = F (W1,W3)(t) , 0 ≤ t <∞ . (7.21)

• Construction of the Individual Motions Up Until the First Triple Collision: The same methodologies
as those deployed already in subsection 4.3, show here as well how to construct a strong solution to the
system (7.1) subject to the requirements of (7.2), up until the first time S of (7.19) that a triple collision
occurs. The difference now, of course, is that this happens in the present context with probability one in
finite time, i.e., P(S <∞) = 1, so we need to find another way to construct a solution beyond this time.

• Construction of the Individual Motions After a Triple Collision: In order to construct the processes
that satisfy (7.1) after the first triple collision time S, we consider the excursions of the rank-gap process
(G(·), H(·)) and unfold them, by permuting the names of the individual components.

More precisely, for the semimartingales G(·) and H(·) let us define the first passage time

σ0 := inf
{
t > 0 : G(t) ∧H(t) = 0

}
,

the zero sets
ZG := {t ≥ 0 : G(t) = 0} , ZH := {t ≥ 0 : H(t) = 0} ,

and the corresponding countably-many excursion intervals {CG` , ` ∈ N} , {CHm ,m ∈ N} in a measurable
manner, i.e.,

R+ \ ZG =
⋃
`∈N
CG` , R+ \ ZH =

⋃
m∈N
CHm .

In order to be able to permute the indices in a proper and consistent way, let us define the particular
permutation matrices

P1,2 :=

 0 1 0
1 0 0
0 0 1

 , P2,3 :=

 1 0 0
0 0 1
0 1 0

 . (7.22)

Here P1,2 represents the permutation between the first and second elements, and P2,3 represents the
permutation between the second and third elements.

We enlarge the probability space by introducing I.I.D. random (permutation) matrices {ΞG`,m, ` ∈
N, m ∈ N} and {ΞH`,m, ` ∈ N, m ∈ N}, independent of each other and of the filtration FR(·) generated
by the rank process (R1(·), R2(·), R3(·))′ . Here, for each (`,m), the random matrix ΞG`,m takes each
of the values in {I, P1,2} with probability 1/2 ; whereas ΞH`,m takes each of the values in {I, P2,3}
with probability 1/2 .

With these ingredients we introduce the simple, matrix-valued process

η(·) :=
∑
`∈N

∑
m∈N

1CG` ∩CHm∩[σ0,∞)(·)
((

ΞG`,m − I
)
· 1{inf CG` >inf CHm}

+
(
ΞH`,m − I

)
· 1{inf CG` <inf CHm}

) (7.23)

and then define the matrix-valued process Z(·) as the solution to the stochastic integral equation

Z(·) = I +

∫ ·
0
Z(t) dη(t) . (7.24)

For the construction of this solution, we proceed via an approximating sequence as in (7.28)-(7.29)
below. The definition of the process η(·) in (7.23), after σ0 , is understood as follows:
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(i) On the interval CG` ∩ CHm of the excursion which starts from a point in ZG (i.e., inf CG` > inf CHm ),
the simple process η(·) assigns the non-zero matrix

P1,2 − I =

 −1 1 0
1 −1 0
0 0 0

 (7.25)

with probability 1/2 , or the 0 matrix with probability 1/2 .
(ii) On the interval CG` ∩ CHm of the excursion which starts from a point in ZH (i.e., inf CG` < inf CHm ),
the simple process η(·) assigns the non-zero matrix

P2,3 − I =

 0 0 0
0 −1 1
0 1 −1

 (7.26)

with probability 1/2 , or the 0 matrix with probability 1/2 .
(iii) When the excursion starts from the corner {t ≥ 0 : G(t) = H(t) = 0} (that is, inf CG` = inf CHm
for some ` and m), then the process η(·) assigns the 0 matrix to this excursion.

The value Z(t) of the process defined in (7.24) represents the product of (countably many, random)
permutations listed in (7.22), until time t ≥ 0 . Since products of permutations are also permutations,
the process Z(·) takes values in the collection of permutation matrices.

Finally, with the rank process R(·) = (R1(·), R2(·), R3(·))′ constructed as in (7.17), let us define
the vector process X(·) := (X1(·), X2(·), X3(·))′ by

X(·) := Z(·)R(·) . (7.27)

Now we introduce the enlarged filtration F := {F(t), t ≥ 0} via F(t) := F̃(t) ∨ FZ(t) . Since
the sequences of I.I.D. random matrices {ΞG`,m; ` ∈ N, m ∈ N} and {ΞH`,m; ` ∈ N, m ∈ N} are
independent of FR , it can be shown as in PROKAJ (2009) that both triples (W1(·),W2(·),W3(·)) and
(R1(·), R2(·), R3(·)) are semimartingales with respect to this enlarged filtration F .

Proposition 7.1. There exists a weak solution, unique in the sense of the probability distribution, for the
obverse system (7.1) with the requirements (7.2).

This solution is pathwise unique and strong, up until the first time S a triple collision occurs;
however, the solution fails to be strong after S .

Proof. We split the argument in three distinct parts.
(i) Existence: We show that, on a suitable filtered probability space, the process X(·) defined by
(7.27), with Z(·) in (7.24) and η(·) in (7.23), satisfies (7.1) for suitable independent Brownian mo-
tions B1(·), B2(·), B3(·), as well as (7.2). The proof is based on the unfolding of semimartingales as in
ICHIBA ET AL. (2018) in the context of WALSH semimartingales.

We start by defining recursively the sequence {τ ε` , ` ∈ N0} of stopping times by τ ε0 := 0 ,

τ ε2`+1 := inf{t > τ ε2` : G(t) ∧H(t) ≥ ε} ,
τ ε2`+2 := inf{t > τ ε2`+1 : G(t) ∧H(t) = 0} ,

(7.28)

as well as the approximating processes Xε(·) := Zε(·)R(·) , where

Zε(·) = I +

∫ ·
0
Zε(t)dηε(t) , ηε(·) :=

∑
`∈N

η(·) 1[τε2`+1,τ
ε
2`+2)(·) (7.29)

for every ε > 0 . Then for the approximating processes we have by the product rule

Xε(·) =

∫ ·
0

d
(
Zε(t)R(t)

)
=

∫ ·
0
Zε(t) dR(t) +

∫ ·
0

dZε(t)R(t)
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Now, as ε ↓ 0 , the process Xε(·) converges to X(·) = Z(·)R(·) in (7.27), and the first term on the
right-hand side converges in probability to the stochastic integral

∫ ·
0 Z(t) dR(t) .

Let us analyze the semimartingale dynamics of this last integral. Since Z(·) is a permutation-matrix-
valued process, the instantaneous drift components of

∫ ·
0 Z(t) dR(t) are

∫ ·
0
Z(t)

 δ1

δ2

δ3

 dt =

∫ ·
0

3∑
k=1

 δk1{X1(t) =Rk(t)}
δk1{X2(t) =Rk(t)}
δk1{X3(t) =Rk(t)}

 dt

for t ≥ 0 . Similarly, the martingale components of
∫ ·

0 Z(t) dR(t) are given by

∫ ·
0
Z(t)

 dW1(t)
0

dW3(t)

 =

∫ ·
0

 1{X1(t) =R1(t)}dW1(t) + 1{X1(t) =R3(t)}dW3(t)

1{X2(t) =R1(t)}dW1(t) + 1{X2(t) =R3(t)}dW3(t)

1{X3(t) =R1(t)}dW1(t) + 1{X3(t) =R3(t)}dW3(t)


=

∫ ·
0

 (1{X1(t)=R1(t)} + 1{X1(t)=R3(t)})dB1(t)

(1{X2(t)=R1(t)} + 1{X2(t)=R3(t)})dB2(t)

(1{X3(t)=R1(t)} + 1{X3(t)=R3(t)})dB3(t)

 ,

(7.30)

where by the P. LÉVY theorem the processes

Bi(·) :=
3∑

k=1

∫ ·
0

1{Xi(t) =Rk(t)}dWk(t) , i = 1, 2, 3 (7.31)

are independent Brownian motions with respect to F (we recall that Wi(·) , i = 1, 2, 3 are independent
F−Brownian motions). Finally, the local time components contributed by the term

∫ ·
0 Z(t)dR(t) are

∫ ·
0
Z(t)

 (1/2) dLG(t)
−(1/2) dLG(t) + (1/2) dLH(t)

−(1/2) dLH(t)


=

1

2

∫ ·
0
Z(t)

 1
−1
0

dLG(t) +

 0
1
−1

 dLH(t)

 .

(7.32)

On the other hand, in the limit of the term
∫ ·

0 dZε(t)RX(t) as ε ↓ 0 , local time components appear
and cancel those in (7.32). More precisely, by (7.24), we have∫ T

0
dZε(t)R(t) =

∫ T

0
Zε(t)

(
dηε(t)

)
R(t) , (7.33)

and ∫ T

0
dηε(t)R(t) =

∑
{` : τε2`+1≤T}

ηε(τ ε2`+1)R(τ ε2`+1) .

The random vector ηε(τ ε2`+1)R(τ ε2`+1) can take values

(
P1,2 − I

)
R(τ ε2`+1) =

 −R1(τ ε2`+1) +R2(τ ε2`+1)

R1(τ ε2`+1)−R2(τ ε2`+1)
0

 = ε

 −1
1
0


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or 0, each with equal probability 1/2 , if it corresponds to the excursion from ZG for sufficiently small
ε > 0 . It can take values

(
P2,3 − I

)
R(τ ε2`+1) =

 0
−R2(τ ε2`+1) +R3(τ ε2`+1)
R2(τ ε2`+1)−R3(τ ε2`+1)

 = ε

 0
−1
1


or 0, each with probability 1/2 , if it corresponds to the excursion from ZH , for sufficiently small ε > 0 .
We are deploying here (7.23), (7.25)-(7.26), and the almost-sure continuity of the sample paths of R(·) .

Thus, by the law of large numbers and the excursion-theoretic characterization of local time via
“upcrossings” (Theorem VI.1.10 of REVUZ & YOR (1999)), we obtain the limit

∫ T

0
dηε(t)R(t) −−→

ε↓0

∫ T

0

1

2

 −1
1
0

 dLG(t) +

∫ T

0

1

2

 0
−1
1

 dLH(t)

in probability. Combining this limit with (7.33), we obtain the convergence in probability

∫ T

0
dZε(t)R(t) −−→

ε↓0

1

2

∫ T

0
Z(t)

 −1
1
0

dLG(t) +

 0
−1
1

 dLH(t)

 ; (7.34)

hence the local time components in (7.32) are cancelled by the limit (7.34) of
∫ T

0 dZε(t)R(t) .
Therefore, the process X(·) in (7.27) satisfies the requirements of the system (7.1)-(7.2). Conse-

quently, a weak solution (Ω,F , (Ft),P) , (X(·), B(·)) exists for the system (7.1)-(7.2).
Remark: Let us point out that, in contrast to the situation in (7.5), (7.6), where only W1(·) and W3(·)
appear, all three “rank-specific” Brownian motions W1(·), W2(·) and W3(·) are needed here for con-
structing the “driving”, or “name-specific”, Brownian motions B1(·), B2(·), B3(·) in (7.31). This is
common in situations where the quadratic variation of a driving local martingale can vanish, and an ad-
ditional, independent randomness is needed to “re-ignite” the motion — as for instance in the proof of
the DOOB representation of continuous local martingales with quadratic variation which is absolutely
continuous with respect to LEBESGUE measure.

(ii) Uniqueness in Distribution: Suppose that there are two probability measures Pj(·) , j = 1, 2
under which X(·) in (7.27) satisfies (7.1)-(7.2) and B(·) is a three-dimensional, independent Brownian
motion. For j = 1, 2 we have Pj(S < ∞) = 1 . By complete analogy with the discussion in
subsection 4.3, up to the first time S of triple collision defined as in (4.14), this solution is pathwise
unique, thus also strong; that is, adapted to the filtration F (B1,B2,B3) generated by the 3-D Brownian
motion (B1(·), B2(·), B3(·)). Hence, its probability distribution is uniquely determined over the interval
[0,S); in other words, P1(·) ≡ P2(·) on F(S−) .

At t = S , we have X1(S) = X2(S) = X3(S) , Pj -a.e., and ties are resolved in favor of the
lowest index for j = 1, 2 . For t > S , each name appears in rank equally likely, since the system
(7.1)-(7.2) is invariant under permutations; in particular, for every t > 0 ,

Pj
(
Xi(t) = RXk (t) | t > S

)
=

1

3
; (i , k) ∈ {1, 2, 3} , j = 1, 2 . (7.35)

Here the probability distribution of the rank process RXk (·) , k = 1, 2, 3 in (7.3) is uniquely determined
through (7.17) by the probability distribution of the reflected Brownian motion (G(·), H(·)) in section
7.2. Since the probability distribution of X(t) , t > S is determined by the rank process RX(t) and
the name-rank correspondence, it is uniquely determined for t ≥ S .
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Standard arguments based on the MARKOV property allow us now to extend these considerations to
the finite-dimensional distributions of t ≥ S , i.e., P1( · , t ≥ S) ≡ P2( · , t ≥ S) for every t > 0 .
Therefore, combining with the uniqueness in distribution before S, we deduce that the weak solution we
constructed is unique in distribution, that is, P1(·) ≡ P2(·).

(iii) Failure of Pathwise Uniqueness and of Strength: In the construction of the matrix-valued processes
η(·) in (7.23) and Z(·) in (7.24), the excursion starting from the corner {t ≥ 0 : G(t) = H(t) = 0}
does not appear explicitly, because the triple collision local time LG+H(·) = LR

X
1 −RX

3 (·) is identically
equal to zero, as in (7.18). The corresponding construction of X(·) does not change the name-rank
correspondence immediately before and after the triple collision. Since the triple collision local time
LG+H(·) does not grow, one may perturb in the above construction the weak solution, by randomly
permuting the names of particles immediately after the triple collision time S – but still obtain the same
stochastic dynamics (7.1)-(7.2), and hence, the same probability distribution.

Then the resulting sample path of X(·) is different from the original sample path, and pathwise
uniqueness fails. But here we have uniqueness of distribution, so the solution of (7.1)-(7.2) cannot be
strong after the first triple collision S ; this is because of the “dual” YAMADA-WATANABE theorem
(ENGELBERT (1991), CHERNY (2001)).

Remark 7.2. The above approach to solving (7.1)-(7.2) is reminiscent of the construction of the WALSH

Brownian motion, and of the splitting stochastic flow of the TANAKA equation. It would be interesting
to examine the solvability of (7.1)-(7.2) via the spectral measures of classical/non-classical noises, and
via the theory of stochastic flows developed by TSIREL’SON (1997), WARREN (2002), LE JAN & RAI-
MOND (2004a, 2004b) and WATANABE (2000) (see also AKAHORI, IZUMI & WATANABE (2009) and
the references listed there).

7.3 Local Time Considerations: The Case of Equal Drifts

When δ1 = δ2 = δ3 , it is possible to describe the local behavior of the semimartingale reflected Brow-
nian motion (G(·), H(·)) at the corner of the quadrant, and in the manner of WILLIAMS (1987), as
follows.

Let us denote by (%·,ϑ·) the system (7.10)-(7.11) in polar coordinate in R2 , i.e., 0 ≤ G(·) =
%· cos(ϑ·) , 0 ≤ H(·) = %· sin(ϑ·) . In the notation of VARADHAN & WILLIAMS (1985), this system
corresponds to planar Brownian motion reflected on the faces of the nonnegative quadrant at angles
θ1 ≡ θ2 := arctan(1/2) relative to the interior normals there, thus

α :=
θ1 + θ2

Ξ
=

2

π
arctan

(
4/3
)
∈
(

1

2
,

2

3

)
.

From the theory of VARADHAN & WILLIAMS (1985), we know that the process (G(·), H(·)) , started
in the interior of the quadrant, hits eventually the vertex (0,0) with probability one, but does not get
absorbed there: it manages to escape from the vertex, though it hits immediately the boundary of the
quadrant (cf. WILLIAMS (1987), section 3). We define the function

ϕ(ρ, θ) = ρα cos(αθ − θ1) , 0 ≤ ρ <∞ , 0 ≤ θ ≤ π/2 ,

and note (2 /
√

5) ≤ cos(αθ − θ1) ≤ 1 for 0 ≤ θ ≤ π/2 . Always with δ1 = δ2 = δ3 , the process
ϕ(%·,ϑ·) is a nonnegative, continuous local submartingale; the continuous, adapted, non-decreasing
process in its DOOB-MEYER decomposition is a constant multiple of

0 ≤ Λ•(·) :=
α(2− α)

2
lim
ε↓0

ε1−(2/α)

∫ ·
0

(
cos
(
αϑt − θ1

))(2/α)−2
· 1[0,ε)

(
ϕ(%t,ϑt)

)
dt , (7.36)
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(Lemma 2.8 in WILLIAMS (1987), p. 305), in the sense of convergence in probability. The continuous,
increasing, additive functional Λ•(·) is supported on

{
t ≥ 0 : G(t) = H(t) = 0

}
.

The expression in (7.36) provides a measure of how this kind of occupation time grows, as a function
of the angles of reflection in this quadrant. Since α < 1 , we deduce from (7.36) that the semimartin-
gale %· does not accumulate semimartingale local time at the origin, i.e., L%(·) ≡ 0 ; see the Remark
7.4 below. Likewise, the semimartingale ϕ(%·,ϑ·) does not accumulate semimartingale local time at
the origin, i.e., Lϕ(%,ϑ)(·) ≡ 0 ; and this, despite the fact that we can find the continuous, increasing
additive functional Λ•(·) in (7.36), also called “local time for ϕ(%·,ϑ·) at the corner”. For a similar
phenomenon in BESSEL processes of dimension δ ∈ (1, 2) , cf. Exercise XI (1.25) of REVUZ & YOR

(1999), Appendix A.1 in ICHIBA ET AL. (2011).

Remark 7.3. Let us denote by P• (respectively E• ) the probability measure (respectively expectation)
induced by the system (7.10)-(7.11) with δ1 = δ2 = δ3 , G(0) = H(0) = 0 . Let us rescale Λ•(·) by

L•(t) :=
(
E•
[ ∫ ∞

0
e−sdΛ•(s)

])−1
Λ•(t) ; 0 ≤ t <∞ .

In this case the right continuous inverse τ•(u) := inf{t ≥ 0 : L•t > u} of the map t 7→ L•(t) is a
stable subordinator of index κ = α/2 and rate 1 under P• , i.e.,

log E•
(

exp
(
− λτ•(u)

))
= −uλα/2 , t, u > 0 .

As a result, the set
{
t ≥ 0 : G(t) = H(t) = 0

}
has HAUSSDORFF dimension κ = α/2 , and its

HAUSSDORFF measure is known. For the details of excursions of the semimartingale reflected Brownian
motion from the corner of the quadrant see WILLIAMS (1987) and ROGERS (1989). WILLIAMS (1987)
also shows that the measure with the density right below is invariant for the process (%·,ϑ·) :

f(ρ, θ) = ρ−α cos(αθ − θ1) , 0 ≤ ρ <∞ , 0 ≤ θ ≤ π/2 .

Remark 7.4. Suppose that δ1 = δ2 = δ3 ; that there exist a smooth function ϕ̃(ρ, θ) for 0 < ρ < ∞ ,
0 ≤ θ ≤ π/2 and real constants r0 > 0 , c1 > 0 , c2 < 1 , c3 > 0 , p > 0 such that c0 :=
(2/α) − 1 − p(1 − c2) > 0 , [c3 ϕ(ρ, θ)]p ≤ ϕ̃(ρ, θ) for every 0 ≤ ρ ≤ r0 , 0 ≤ θ ≤ π / 2 ; and that
ϕ̃· := ϕ̃(%·,ϑ·) is a semimartingale with quadratic variation 〈ϕ̃〉· and∫ ·

0
1[0,r0)(ϕ̃t) d〈ϕ̃〉t ≤ c1

∫ ·
0

1[0,r0)(ϕ̃t) · |ϕ̃(%t,ϑt)|c2 dt .

Then it follows from (7.36) that the semimartingale local time Lϕ̃(%,ϑ)(·) for ϕ̃(%·,ϑ·) does not accu-
mulate at the origin, i.e., Lϕ̃(·) ≡ Lϕ̃(%,ϑ)(·) ≡ 0 .

Indeed, since 2 /
√

5 ≤ cos(αθ − θ1)) ≤ 1 for 0 ≤ θ ≤ π/2 and

1

u

∫ ·
0

1[0,u)(ϕ̃t)d〈ϕ̃〉t ≤
c1

ε1−c2

∫ ·
0

1[0,u)([c3ϕ(%t,ϑt)]
p)dt =

c1

ε1−c2

∫ ·
0

1[0, u1/p / c3)(ϕ(%t,ϑt))dt

=
c1

(c3 ε)p(1−c2)

∫ ·
0

1[0,u)(ϕ(%t,ϑt))dt ≤ c1c
−p(1−c2)
3 εc0+1−(2/α)

∫ ·
0

1[0,ε)(ϕ(%t,ϑt))dt ,

where ε := u1/p / c3 for 0 < u ≤ r0 , combining these estimates with (7.36), letting u ↓ 0 , and hence
ε ↓ 0 , we obtain the convergence in probability

Lϕ̃(%,ϑ)(·) := lim
u↓0

1

2u

∫ ·
0

1[0,u)(ϕ̃t)d〈ϕ̃〉t = 0 . (7.37)
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With this claim we can verify L%(·) ≡ 0 by choosing ϕ̃(ρ, θ) := ρ for 0 ≤ ρ <∞ , 0 ≤ θ ≤ π/2
with p := 1 /α > 0 , c1 := 1 , c2 := 0 , c3 := 1 , r0 := 1 and c0 := (1 /α) − 1 > 0 , since
0 < α < 1 . Similarly, it can be verified that Lϕ(%,ϑ)(·) ≡ 0 because |∇ϕ(ρ, θ)|2 = α2ρ2α−2 ,
d〈ϕ(%,ϑ)〉t / dt = α2%2α−2

t , c1 := (
√

5/2)c2α2 > 0 , c2 := 2α − 2 < 1 , c3 = 1 , p := 1 ,
r0 = 1 , c0 := (2/α)− 1− (3− 2α) = (2/α) + 2α− 4 ≈ 0.568 > 0 .

Remark 7.5. For a general choice of drifts (δ1, δ2, δ3) we may use GIRSANOV’s change of measure on
top of the procedure described above. In fact, the rank system (7.17) is rewritten as

R1(t) =x1 + δ2t+ W̃1(t) +
1

2
A(t) ,

R2(t) =x2 + δ2t−
1

2
A(t) +

1

2
Γ(t) ,

R3(t) =x3 + δ2t+ W̃3(t)− 1

2
Γ(t) ,

(7.38)

where W̃1(t) := (δ1 − δ2)t + W1(t) and W̃3(t) := (δ3 − δ2)t + W3(t) , t ≥ 0 are independent
Brownian motion under a new probability measure equivalent to the original measure by the Girsanov
theorem. Thus we may deal with a general choice of drifts.

8 The System of (2.1) with Skew-Elastic Collisions

We shall study in this section a variant of the system (2.1) — with the same purely ballistic motions
for the leader and laggard particles, and the same diffusive motion for the middle particle — but now
with skew-elastic collisions as in FERNHOLZ, ICHIBA & KARATZAS (2013a) between the second- and
third-ranked particles, namely,

Xi(·) = xi +

3∑
k=1

δk

∫ ·
0

1{Xi(t)=RX
k (t)} dt+

∫ ·
0

1{Xi(t)=RX
2 (t)} dBi(t) (8.1)

+

∫ ·
0

1{Xi(t)=RX
2 (t)} dLR

X
2 −RX

3 (t)+

∫ ·
0

1{Xi(t)=RX
3 (t)} dLR

X
2 −RX

3 (t) , i = 1, 2, 3

in the notation of (2.4), (3.6). Here again, δ1, δ2, δ3 and x1 > x2 > x3 are given real numbers. This
system was first introduced and studied in FERNHOLZ (2011).

We shall try to find a weak solution to this system; in other words, construct a filtered probabil-
ity space (Ω,F,P), F =

{
F(t)

}
0≤t<∞ rich enough to accommodate independent Brownian motions

B1(·), B2(·), B3(·) and continuous semimartingales X1(·), X2(·), X3(·) so that, with probability one,
the equations of (8.1) are satisfied along with the “non-stickiness” and “soft triple collision” requirements∫ ∞

0
1{RX

k (t)=RX
` (t)} dt = 0 , ∀ k < ` ; LR

X
1 −RX

3 (·) ≡ 0 . (8.2)

8.1 Analysis

Assuming that such a weak solution to the system of (8.1), (8.2) has been constructed, the ranked pro-
cesses RXk (·) as in (2.4) are continuous semimartingales with decompositions

RX1 (t) = x1 + δ1 t+
1

2
Λ(1,2)(t) , RX3 (t) = x3 + δ3 t+

1

2
Λ(2,3)(t) (8.3)

RX2 (t) = x2 + δ2 t+W (t)− 1

2
Λ(1,2)(t) +

3

2
Λ(2,3)(t) (8.4)
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by analogy with (3.1)-(3.3). We are using here the exact same notation for the standard Brownian motion
W (·) as in (3.4), and the exact same notation for the collision local times Λ(k,`)(·) , k < ` as in (3.5). For
the gaps G(·) = RX1 (·)−RX2 (·) ,H(·) = RX2 (·)−RX3 (·) we have the SKOROKHOD-type representations
of the form (3.10)-(3.11), now with

U(t) = x1−x2 +
(
δ1− δ2

)
t−W (t)− 3

2
LH(t) , V (t) = x2−x3 +

(
δ2− δ3

)
t+W (t)− 1

2
LG(t) .

Whereas, from the theory of the SKOROKHOD reflection problem we obtain now the relationships linking
the two local time processes LG(·) and LH(·) , namely

LG(t) = max
0≤s≤t

(
− U(s)

)+
= max

0≤s≤t

(
x2 − x1 +

(
δ2 − δ1

)
s+W (s) +

3

2
LH(s)

)+
, (8.5)

LH(t) = max
0≤s≤t

(
− V (s)

)+
= max

0≤s≤t

(
x3 − x2 +

(
δ3 − δ2

)
s−W (s) +

1

2
LG(s)

)+
(8.6)

• The resulting system

G(t) = x1 − x2 +
(
δ1 − δ2

)
t−W (t)− 3

2
LH(t) + LG(t) , 0 ≤ t <∞ (8.7)

H(t) = x2 − x3 +
(
δ2 − δ3

)
t+W (t)− 1

2
LG(t) + LH(t) , 0 ≤ t <∞ (8.8)

for the two nonnegative gap processes is again of the HARRISON & REIMAN (1981) type (3.14): it
amounts to reflecting along the faces of the nonnegative outhant the degenerate, two-dimensional Brow-
nian motion Z(·) as in (3.15), with drift vector m =

(
δ1 − δ2, δ2 − δ3

)′ and covariance matrix

C =

(
1 −1
−1 1

)
as in (3.16), but now with reflection matrix

R := I − Q , Q =

(
0 3/2

1/2 0

)
, thus R−1m = 2

(
2 δ1 + δ2 − 3 δ3

δ1 + δ2 − 2 δ3

)
. (8.9)

It is important to note here that the matrix Q has zero elements on its diagonal and spectral radius strictly
less than 1, and that the skew-symmetry condition

R+R′ = 2 C (8.10)

of HARRISON & WILLIAMS (1987) is satisfied by these covariance and reflection matrices.

8.2 Synthesis

Let us start now with given real numbers δ1, δ2, δ3 , and x1 > x2 > x3 , and construct a filtered
probability space (Ω,F,P), F =

{
F(t)

}
0≤t<∞ rich enough to support a standard Brownian motion

W (·). By analogy with (8.5)-(8.6), we consider the system of equations

A(t) = max
0≤s≤t

(
x2 − x1 +

(
δ2 − δ1

)
s+W (s) +

3

2
Γ(s)

)+
, 0 ≤ t <∞ (8.11)

Γ(t) = max
0≤s≤t

(
x3 − x2 +

(
δ3 − δ2

)
s−W (s) +

1

2
A(s)

)+
, 0 ≤ t <∞ (8.12)
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Figure 4: Simulated processes; Black = R1(·) , Red = R2(·) , Green = R3(·) . Here we have taken
δ1 = −1, δ2 = −2 and δ3 = −1 in (8.1). We are indebted to Dr. E.R. FERNHOLZ for this picture.

for two continuous, nondecreasing and adapted processes A(·) and Γ(·) with A(0) = Γ(0) = 0 . The-
orem 1 of HARRISON & REIMAN (1981) guarantees that this system has a unique continuous solution
(A(·),Γ(·)), adapted to the smallest filtration FW to which the driving Brownian motion W (·) is itself
adapted. With this solution in place, we construct the continuous semimartigales

U(t) := x1−x2 +
(
δ1− δ2

)
t−W (t)− 3

2
Γ(t) , V (t) := x2−x3 +

(
δ2− δ3

)
t+W (t)− 1

2
A(t) ,

(8.13)
and then “fold” them to obtain their SKOROKHOD reflections

G(t) := U(t) + max
0≤s≤t

(
− U(s)

)+
= x1 − x2 +

(
δ1 − δ2

)
t−W (t)− 3

2
Γ(t) +A(t) ≥ 0 (8.14)

H(t) := V (t) + max
0≤s≤t

(
− V (s)

)+
= x2 − x3 +

(
δ2 − δ3

)
t+W (t)− 1

2
A(t) + Γ(t) ≥ 0 (8.15)

for t ∈ [0,∞). As before, for these two continuous, nonnegative semimartingales the theories of the
SKOROKHOD reflection problem and of semimartingale local time give, respectively,∫ ∞

0
1{G(t)>0} dA(t) = 0 ,

∫ ∞
0

1{H(t)>0} dΓ(t) = 0 (8.16)

and ∫ ∞
0

1{G(t)=0} dt = 0 ,

∫ ∞
0

1{H(t)=0} dt = 0 . (8.17)

We claim the additional properties∫ ∞
0

1{G(t)=0} dΓ(t) = 0 ,

∫ ∞
0

1{H(t)=0} dA(t) = 0 . (8.18)
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Indeed, focusing on the first one (the second is established similarly), we see that
∫∞

0 1{G(t)=0} dΓ(t) =∫∞
0 1{G(t)=H(t)=0} dΓ(t) = 0 holds, on the strength of the second equality in (8.16) and of Theorem 1

in REIMAN & WILLIAMS (1988).

• We need to identify the regulating processes A(·) , Γ(·) as local times; we start by observing

LG(·) =

∫ ·
0

1{G(t)=0} dG(t) =

∫ ·
0

1{G(t)=0}

[
dA(t)− 3

2
dΓ(t)− dW (t) +

(
δ1 − δ2

)
dt
]
.

from (3.6) and (8.14). The last (LEBESGUE) and next-to-last (ITÔ) integrals in this expression vanish on
the strength of (8.17), whereas the third-to-last integral vanishes on account of (8.18); so we are left with
the identification LG(·) =

∫ ·
0 1{G(t)=0} dA(t) ≡ A(·) , where the last equality comes on the heels of

(8.16). We establish similarly the identification LH(·) ≡ Γ(·) .

• By analogy with (8.3)-(8.4), we construct now the FW−adapted processes of ranks

R1(t) := x1 + δ1 t+
1

2
A(t) (8.19)

R2(t) := x2 + δ2 t+W (t)− 1

2
A(t) +

3

2
Γ(t) (8.20)

R3(t) := x3 + δ3 t+
1

2
Γ(t) (8.21)

and note R1(·)−R2(·) = G(·) ≥ 0 , R2(·)−R3(·) = H(·) ≥ 0 , thus R1(·) ≥ R2(·) ≥ R3(·) and

R1(t)−R3(t) = G(t) +H(t) = x1 − x3 +
(
δ1 − δ3

)
t+

1

2

[
A(t)− Γ(t)

]
.

In particular, the continuous process R1(·)− R3(·) ≥ 0 is of finite first variation on compact intervals,
so its local time at the origin vanishes, as posited in (8.2): LR1−R3(·) ≡ 0 . The other properties posited
there are direct consequences of (8.17). Finally, the identifications A(·) ≡ LG(·) ≡ LR1−R2(·), Γ(·) ≡
LH(·) ≡ LR2−R3(·) show, in conjunction with (8.20), that the rank vector process (R1(·), R2(·), R3(·))
and the scalar, standard Brownian motion W (·) generate the exact same filtration.

• We can construct now on a suitable filtered probability space independent Brownian motions B1(·),
B2(·), B3(·) and continuous, adapted processes X1(·), X2(·), X3(·) so that, with probability one, the
equations of (8.1) are satisfied, along with those of (8.2), up until the first time of a triple collision

S :=
{
t ≥ 0 : X1(t) = X2(t) = X3(t)

}
, (8.22)

as well as RXk (t) = Rk(t) , 0 ≤ t < S for k = 1, 2, 3 . Just as before, this is done by considering the
particles two-by-two in the manner of ICHIBA ET AL. (2013), and applying the results in FERNHOLZ ET

AL. (2013a) and (2013b).
It is an open question, whether P(S =∞) = 1 is valid in this case.

8.3 Invariant Distribution

Under the conditions
3 δ3 > 2 δ1 + δ2 , 2 δ3 > δ1 + δ2 , (8.23)
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we have that both components of the vector

λ ≡
(
λ1

λ2

)
:= −R−1m = 2

(
3 δ3 − 2 δ1 − δ2

2 δ3 − δ1 − δ2

)
(8.24)

are positive numbers. Repeating the reasoning in section 5, we deduce that here again the two-dimensional
process

(
G(·), H(·)

)
of gaps is positive recurrent, has a unique invariant measure π with π((0,∞)2) =

1 , and converges to this probability measure in distribution as t→∞ .
For instance, we have the analogue

d
(
G2(t) + 3G(t)H(t) + 3H2(t)

)
=
[

1− 1

2

(
λ1G(t) + 3λ2H(t)

)]
dt+

(
3H(t) +G(t)

)
dW (t)

of the dynamics of (5.14) in the present context; and the function V (g, h) = exp
{√

g2 + 3gh+ 3h2
}

is a LYAPOUNOV function for the semimartingale reflecting Brownian motion (G(·), H(·)), which is
thus seen to be positive recurrent and to have a unique invariant distribution. We also deduce, just as
before, the Strong Laws of Large Numbers

lim
t→∞

LG(t)

t
= λ1 = 2

(
3 δ3 − 2 δ1 − δ2

)
, lim

t→∞

LH(t)

t
= λ2 = 2

(
2 δ3 − δ1 − δ2

)
.

On the other hand, in view of the fact that the covariance matrix C and the reflection matrix R
satisfy the skew-symmetry condition of (8.10), the results of O’CONNELL & ORTMANN (2012) suggest
that the invariant probability measure for the vector process

(
G(·), H(·)

)
of gaps should be the product

of exponentials

π
(
dg,dh

)
= 4λ1 λ2 e

−2λ1 g−2λ2 h dg dh , (g, h) ∈ (0,∞)2 . (8.25)

Proof of the claim in (8.25): This claim can be verified as in section 9 of HARRISON & WILLIAMS

(1987); for completeness, we present now the details. As shown in that paper, and in DAI & KURTZ

(2003), it is enough to find two measures ν1 and ν2 on (0,∞) so that the appropriate form of the
Basic Adjoint Relationship for the system of (8.7), (8.8), namely∫ ∞

0

∫ ∞
0

((
D2
gg +D2

hh − 2D2
gh

)
+ 2
(
δ1 − δ2

)
Dg + 2

(
δ2 − δ3

)
Dh

)
f(g, h)π(dg,dh) + (8.26)

+

∫ ∞
0

(
Dg −

1

2
Dh

)
f(0, h)ν1(dh) +

∫ ∞
0

(
Dh −

3

2
Dg

)
f(g, 0)ν2(dg) = 0 ,

holds for every function f of class C2
(
(0,∞)2

)
. Once again, selecting f(g, h) = exp

(
− α1g − α2h

)
for α1 ≥ 0 and α2 ≥ 0 and substituting in (8.26), we obtain the equation(

(α1−α2)2 +2(δ2−δ1)α1 +2(δ3−δ2)α2

)
π̂(α1, α2) =

(
α1−

α2

2

)
ν̂1(α2)+

(
α2−

3α1

2

)
ν̂2(α1)

(8.27)
linking the LAPLACE transforms of the measures π and ν1 , ν2 .

In accordance with the guess (8.25) that we are trying to establish, let us posit a product-form ex-
pression

π
(
dg,dh

)
= p1(g) p2(h) dg dh , (g, h) ∈ (0,∞)2 (8.28)

for the invariant measure for the process of gaps; here p1(·) and p2(·) are probability density functions
on the positive half-line. We denote by p̂1(·) and p̂2(·) the LAPLACE transforms of these density
functions, set

cj := lim
α→∞

(
α p̂j(α)

)
, j = 1, 2 ,
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and note that (8.28) implies then π̂(α1, α2) = p̂1(α1) p̂2(α2) . Now we divide the resulting expression
(8.27) by α1 > 0 (respectively, by α2 > 0 ), then send α1 (respectively, by α2 ) to infinity; the results
are, respectively,

ν̂1(α2) = c1 p̂2(α2) , ν̂2(α1) = c2 p̂1(α1) .

Substituting these expressions back into (8.27) gives

p̂1(α1) p̂2(α2)
(

(α1 − α2)2 + 2(δ2 − δ1)α1 + 2(δ3 − δ2)α2

)
=

= c1 p̂2(α2)
(
α1 −

α2

2

)
+ c2 p̂1(α1)

(
α2 −

3α1

2

)
;

whereas, setting α2 = 0 (respectively, α1 = 0) in this last equation, we obtain

c1 = p̂1(α1)
(
α1 + 2

(
δ2 − δ1

)
+

3

2
c2

)
, c2 = p̂2(α2)

(
α2 + 2

(
δ3 − δ2

)
+

1

2
c1

)
.

On account of the rather obvious properties p̂1(0) = p̂2(0) = 1 , we obtain the system of equations

c1 = 2
(
δ2 − δ1

)
+

3

2
c2 , c2 = 2

(
δ3 − δ2

)
+

1

2
c1 .

The solution to this system is now rather trivially c1 = 2λ1 , c2 = 2λ2 in the notation of (8.24); this
leads to the transforms p̂j(α) = (2λj)/(α + 2λj) , α ≥ 0 , and thence to the exponential probability
density functions

p1(g) = 2λ1 e
−2λ1 g , g > 0 and p2(h) = 2λ2 e

−2λ2 h , h > 0 (8.29)

and to the measures

ν2(dg) = 4λ2 λ1 e
−2λ1 g dg , and ν1(dh) = 4λ1 λ2 e

−2λ2 h dh (8.30)

on the Borel sets of (0,∞) . The total masses of these measures are respectively ν1((0,∞)) = 2λ1

and ν2((0,∞)) = 2λ2 , just as in (6.11) and (6.12). For the two probability density functions of
(8.29), the product measure (8.28) satisfies the Basic Adjoint Relationship (8.26), and is thus the invariant
probability measure for the two-dimensional process

(
G(·), H(·)

)
of gaps.

A picture of the paths of the resulting process (R1(·), R2(·), R3(·)) with δ1 = −1, δ2 = −2 and
δ3 = −1 is depicted in Figure 4, reproduced here from FERNHOLZ (2011). Note that the conditions of
(8.21) are satisfied in this case.
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