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LETTER TO THE EDITOR

Studies of the melting of a 20 solid

S K Sinhat , P Vorat:j:, P Dutta§ and L Passelill
t Solid State Science Division. Argonne National Laboratory. Argonne. Illinois 60439.

USA
II Department of Physics. Brookhaven National Laboratory. Upton. NY 11973. USA

Rcceived JI December 1981

Abstract. We have m,.de a detailed numerical analysis of neutron diffraction linesh;lncs
~~[OSs the constant-co crage melting transition ofincommcnsurate mon"layers of methane
on gr,ryhite. We find that in the liquid phase the liquid lineshape is well fitted with a lorentzian
structure factor. While the exact nature of the transition very close to T m cannot be com-
mented upon. the 'freezing' of the liquid appears to be initially continuous. with an increase
in correlation length to hundreds of Angstroms before the appearance of a solid phase.

R~cent theoretical work has emphasised the unique nature of the melting transition in
two-dimensional (2D) systems (Dash and Ruvalds 1979, Sinha 1980). The dislocation-
mediated theory of melting (Kosterlitz and Thouless 1973, Young 1979, Nelson and
Halperin 1979) predicts a continuous melting transition from a 2D solid to a .hexatic'
liquid phase with only an essential singularity in the specific heat. However, a more
definitive signature for this transition is predicted in the pair correlation length, which
is expected to diverge continuously as the temperature is lowered towards the liquid-
solid transition temperature T m. On the other hand. several computer simulations
lAbraham 1980, Toxvaerd 1980, Kalia and Vashishta 1981) appear to yield the result
that the 2D melting transition is first order, as in 3D.

Monolayer films physisorbed on relatively smooth substrates provide good physical
realisations of two-dimensional solids and fluids. (The effect of the lateral periodic
potential of the substrate is minimised when the monolayer periodicity is incommen-
SUr(lte to that of the substrate, although an orientational ordering field may still be

present.) In this Letter we present a quantitative study of the behaviour of thc ::tructure
factor of CD.J illonolayers on a graphite substrate through the melting transition, using
n~utron diffraction techniques. In order to do this. it is necessary to carry out a more
d~tailed and rigorous analysis of the diffraction lineshape in terms of an arbitrary S( K),
rather than the 'Warren' lineshapes (Warren 1941, Kjems eta/1976) used previously.
We have done this, and the general expression for the observed lineshape in terms of

S(K), the orientational distributions of the graphite crystallites and the instrumental
resolution has been given elsewhere (Dutta et a/1980, Sinha et a/1982). The results

presented here will represent least-squares fits to those lineshape expressions using
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suitably parametrised forms for S(K). Details of the experimental technique may be
found elsewhere (Dutta et al 1980, Sinha 1981). The diffraction experiments were
performed with an experimental wavevector resolution of about 0.01 A -I.

The phase diagram of CD4 on graphite is known from recent neutron diffraction
studies (Vora et alI979). At temperatures up to 50 K and up to a critical coverage (here
denoted by p = 1.0), a registered Y3 x Y3 solid phase exists, while at higher coverages
or temperatures the solid phase is incommensurate with the substrate, Q.eing expanded
relative to the Y3 x Y3 structure for p < 1.0 and compressed for p> 1.0. From the
earlier measurements (Vora et alI979), it was deduced that melting from the expanded
2D solid proceeded through a coexisting solid-liquid p:lase region as the temperature
was raised, indicative of a first-order melting transition. On the other hand for p > 1.0
no coexistence region could be identified, and for these constant coverage experiments
it was surmised that the transition was continuous (the coverage on the surface was not
quite constant owing to losses to the ambient vapour in the sample container with
increasing temperature, but this effect is small). Since CD4 on graphite always melts
from an incommensurate (IC) solid phase, this system allows us to study the melting of
a 2D solid on a smooth surface over a range of coverages. Accordingly, a detailed set of
neutron diffraction measurements was performed as a function of temperature using a
grafoil substrate and at two nominal values of the coverage (p = 0.92 and p = 1.09).

Results for the structure factor in the vicinity of (10) reflection for the lC solid phase
are presented elsewhere (Sinha et alI982). They are consistent with the power-law
structure factor expected theoretically, with the exponent 11 increasing rapidly near T m'
This is ascribed (Nelson and Halperin 1979) to the renormalisation of the elastic moduli

near T m'
Figure 1 shows the integrated intensity of the (10) diffraction peak (with the empty

grafoil scattering subtracted) as a function of temperature for the two coverages studied.
It may be seen that for the higher coverage there is an abrupt decrease in the peak height.
indicative of a solid-liquid transition. For p = 0.92, a more gradual rise is noted with
decreasing temperature. This is similar to the behaviour observed for Kr on graphite
(Birgeneau et al1980) and is ascribed to the presence of a two-phase coexistence region.
Although the temperature at which the solid phase first appears cannot be precisely
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Figure I. Integrated intensity of (10) diffraction peak!i (with bilckground subtrilcted) from
CD. on grafoil (0 p = (J.92; .P ~ 1.U'J) as iI function of tcmperature acrO!i!i the melting

transition.



Letter to the Editor L277

Ie
re

J4.:tcrmined from the plot. it reveals temperature ranges over which the liquid phase

certainly exists. Accordingly. starting from the highest temperatures. a fit to the observed

p4.:aks was made. assuming a liquid structure factor.

No attempt was made here to verify directly the existence of a hexatic phase. since

thl.: ralldom orientation of the crystal lites around the c axis precludes observation of

oricntational order in the plane. It is believed that the orientational field of the substrate

;11~o eliminates the isotropic-liquid to hcxatic transition. Accordingly. for the fitting

procedure. we chose the structure factor given by Nelson and Halperin (1979):

S(K) = L StJ(K -G) (1)
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where
SG(q) = A(q2s:z + 1)-(1-1/;'/2) (2)

where G is a reciprocal lattice vector of the 20 solid, .; is a correlation length in the fluid,
..\ is an amplitude factor and 11<; is the value of the exponent in the power-law structure
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Figure 2. Diffraction lineshapes for the (10) peak of CD, on grafoil at a coverage of p = 1.09
as a function of temperature just above the melting transition. The full lines represent fits

using a lorentzian S(K) as in equation (2).

factor of the solid at T m (for the (10) peak, '1 cannot exceed 1/3 (Nelson and Halperin
1979». In practice, the exponent of equation (2) was approximated by unity (i.e. a
lorentzian line'shape was assumed), and contributions from reciprocal lattice vectors
other than (10) were neglected. S(K) was then averaged over all possible orientations of
G in the plane, to obtain an effective isotropic S(K). It should be noted that the expression
in equation (2) is approximate, being rigorously valid only at q = O. Also, equation (2)
is valid only for infinite 20 crystals. Modifications of the Kosterlitz- Thouless transition
due to finite size effects have not yet been calculated theoretically. However, one would
expect equation (2) to be valid provided"; < L, the crystallite size.

Figure 2 shows the observed and fitted lineshapes in the high-temperature region for
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a coverage ofp = 1.09. The asymmetric form of the peak shapes is well known (Kjems
et a11976) and is due to the combination of the distribution of orientations of the
crystallite planes and the nature of the diffraction process from 20 systems. Figure 3
shows the behaviour of the correlation lengths with temperature. Several features are
to be noted. First, at high temperatures the correlation length is at a roughly constant
value, which for all coverages is significantly larger than typical ranges of atomic cor-
relation in 30 liquids. As the temperature is decreased, ; rises rapidlY:iJ.nd at still lower
temperatures behaves rather differently. We interpret the lower-temperature regime as
that in which the system has become a finite-sized 20 solid (for p = 1.09) or has passed
into the regime of solid-liquid coexistence, i.e. a first-order transition has taken place
(for p = 0.92). In these regimes, we are no longer justified in using equation (2). Thus
only the higher-temperature points, as shown, were used in discussing the behaviour of
;with temperature in the liquid. Unfortunately, since the exact T m cannot be determined
because of the above effects, the number of observed values of ;( 7) are not sufficient to

Figure 3. (a) Temperature dependence of ~ for CD. on grafoil at a coverage of p = 0.92
(fluid), based on fits using a Jorcntzian S(K): (b) as in (a) hut for a coverage of (J = J .OLJ.
Open circles arc the data.

characterise definitively the critical behaviour. Shown in figure 3 are fits of :;( 7) of the
form (Nelson and Halperin 1979)

'1;(7) = 'l;flexp[b(T- Tm)-O,369ftj (3)

where 19, A, T m were taken as adjustable parameters. Also shown are straight powcr-
law fits of the form

';(7) = a(T- Tm)-". (4)

It may be seen that it is not possible on the evidence of the data to decide which is to hl'
nreferred



L279Letter to the Editor

(i) It may be shown by computer simulation of lineshape profiles using different
values of'; that the present instrumental resolution (including crystallite misorientation
effc.:cts) does not prevent us from distinguishing'; values up to 8()() A. Although the
()Vcrall width of the curve is not very sensitive to .; beyond 150 A or so, the ratio of the
hcight of the peak to the height of the 'tail' at large q is still quite sensitive to .;. However.
this assumes a unique model (Iorentzian lineshape) for S(K).

(ii) Computer simu)ations show that, in principle, the lineshapes for a power-law
(solid-like) structure factor (" <~) and lorentzian (liquid-like) structure factor are
distinguishable for.;< l/~K, where ~K is the halfwidth of the effective leading edge
due to instrumental resolution. However, the distinguishability requires counting sta-
tistics far better than obtained in the present experiments. Thus, there rer:-:ains the
troublesome question of whether the apparent increase of '; on lowering T may be due
to the continuous but rapid increase of a solid phase coexisting with a liquid phase. This
may, however, be resolved by means of the following further test. Let us suppose there
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Figure 4. Dependence of the amplitude factor A of the fitted lorentzian form of S(K) on ;.
for CD4 on grafoil at p = 0.92 (open circles) and p = 1.09 (full circles).

exists a fractionf of solid and (1 -1) of liquid, where fmay be a function of temperature.
The structure factor may then be written as

~(K) = fSsolid(K) + (1 -nSliq(K) (5)

where we assume a constant size L for the solid regions. and a characteristic 1](=1]*.
since we are in the vicinity of T m) which is also slowly varying with temperature relative
to f. For Ssolid(K) we take the expression derived by Dutta and Sinha (1981) for a finite
crystal. For Sliq(K) we use equation (2), where A = .;2- II- as required by general scaling
arguments. It is reasonable to assume that the amplitude A of the effective lorentzian
fitted to equation (5) is proportional to the value of S(K) at q = K -G = 0, while the
fitted'; is proportional to the value of q at which S(K) drops to half its maximum value.
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