
UC San Diego
UC San Diego Previously Published Works

Title
Recent Updates on Predicting Conversion in Youth at Clinical High Risk for Psychosis.

Permalink
https://escholarship.org/uc/item/4mr3h5rm

Journal
Current Psychiatry Reports, 25(11)

Authors
Caballero, Noe
Machiraju, Siddharth
Diomino, Anthony
et al.

Publication Date
2023-11-01

DOI
10.1007/s11920-023-01456-2

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4mr3h5rm
https://escholarship.org/uc/item/4mr3h5rm#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Vol.:(0123456789)1 3

Current Psychiatry Reports (2023) 25:683–698 
https://doi.org/10.1007/s11920-023-01456-2

Recent Updates on Predicting Conversion in Youth at Clinical High Risk 
for Psychosis

Noe Caballero1 · Siddharth Machiraju1 · Anthony Diomino1 · Leda Kennedy1 · Armita Kadivar1 · 
Kristin S. Cadenhead1 

Accepted: 5 September 2023 / Published online: 27 September 2023 
© The Author(s) 2023

Abstract
Purpose of Review This review highlights recent advances in the prediction and treatment of psychotic conversion. Over the 
past 25 years, research into the prodromal phase of psychotic illness has expanded with the promise of early identification 
of individuals at clinical high risk (CHR) for psychosis who are likely to convert to psychosis.
Recent Findings Meta-analyses highlight conversion rates between 20 and 30% within 2–3 years using existing clinical cri-
teria while research into more specific risk factors, biomarkers, and refinement of psychosis risk calculators has exploded, 
improving our ability to predict psychotic conversion with greater accuracy. Recent studies highlight risk factors and biomark-
ers likely to contribute to earlier identification and provide insight into neurodevelopmental abnormalities, CHR subtypes, 
and interventions that can target specific risk profiles linked to neural mechanisms.
Summary Ongoing initiatives that assess longer-term (> 5–10 years) outcome of CHR participants can provide valuable 
information about predictors of later conversion and diagnostic outcomes while large-scale international biomarker studies 
provide hope for precision intervention that will alter the course of early psychosis globally.

Keywords Psychosis · Clinical high risk · Prodome · Conversion · Biomarkers · Treatment

Introduction

Foundational research from the past two decades has elu-
cidated the presence of the clinical high risk (CHR) state, 
or the period prior to the onset of psychosis [1, 2]. This 
prodromal phase of illness has been referred to as CHR, 
attenuated psychosis syndrome (APS), and ultra high risk 
(UHR) and has been studied internationally as a critical 
time window for early identification and intervention [2–4]. 
For the purposes of this review, we will refer to this period 
as the CHR phase and will refer to individuals as CHR to 
denote this risk for psychosis. Adapted from findings in 
schizophrenia cohorts, attenuated positive symptoms such 
as unusual thought content, suspiciousness, and percep-
tual abnormalities are now understood to exist on a clini-
cal spectrum of severity, and are used as primary metrics 
to determine if an individual has crossed the “threshold” 

from CHR to a full-blown psychotic disorder [3, 5, 6]. In 
the literature, this is widely referred to as “conversion” or 
“transition” to psychosis, denoted as CHR-C (converted) 
versus CHR-NC (non-converted) in this review.

Meta-analyses provide estimates of conversion rates 
between 20 and 30% within 2–3 years among those that meet 
criteria for CHR [4]. A recent meta-analysis by Salazar de 
Pablo et al. [7] revealed similar conversion estimates of 25% 
in a span of 2–3 years, additionally suggesting that risk for 
conversion to psychosis increases with time. While findings 
in conversion rates have been comparable over the past sev-
eral decades, they remain heterogenous, with many studies 
using different methodologies, definitions, and controlling 
for different confounders [7–9].

Identifying biomarkers linked to psychotic conversion 
has become a critical directive in the early psychosis field 
to not only predict risk of conversion with greater accuracy 
but to better understand the mechanism of conversion and 
to identify critical treatment targets linked to neurobiol-
ogy. Importantly, multi-site large-scale studies have identi-
fied epidemiological, neuroimaging, electrophysiological, 
neurocognitive, inflammatory, genetic, and neurohormonal 
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biomarkers that are associated with increased risk for con-
version to psychosis [10].

Despite landmark findings regarding conversion rates and 
predictors of conversion in prodromal psychosis from the 
early part of the twenty-first century, there have been few 
works which have evaluated and summarized these findings 
in recent years [4, 7, 11]. The aim of this review is to syn-
thesize contemporary research findings regarding prediction 
of conversion to psychosis among CHR cohorts from 2019 
to the present day. This review will highlight areas where 
critical questions in the pursuit of predicting conversion 
remain and will provide insight into future research avenues 
that may improve the fields’ ability to predict the onset of 
psychosis in CHR youth, to understand the neurobiological 
mechanisms, and to identify targeted treatments.

Epidemiological Risk Factors for Psychotic 
Conversion

A variety of clinical and environmental predictors of conver-
sion to psychosis have been identified within CHR cohorts 
[12–14]. When combined, these various risk factors have 
contributed to predictive models and psychosis risk calcula-
tors with higher prognostic accuracy for psychosis in CHR 
than any one alone [15] (see “Prediction Models” below). 
Earlier and more precise identification of psychosis risk 
could lead to better-targeted preventive efforts in this pop-
ulation [16]. Past reviews of the literature have identified 
factors such as poorer social functioning, severity of sub-
threshold positive symptoms, cannabis use, migrant status, 
and genetic risk for schizophrenia as consistent predictors 
of later psychotic conversion [5, 17].

Since 2019, several reports have investigated epide-
miological factors linked to psychosis (Table 1). A recent 
epidemiological study by Bolhuis et al. [18••] assessed 
individuals born in Finland in 1987 and found that of those 

who presented to the hospital for self-harm, 12.8% went on 
to receive a diagnosis of psychosis and 9.4% a diagnosis 
of bipolar disorder by 28 years of age. The investigators 
also found that younger age of first self-harm was associ-
ated with higher risk of conversion; 29.1% of those who 
presented with self-harm before the age of 18 developed a 
psychotic or bipolar disorder [18••].

Recent reports have also investigated epidemiologic risk 
factors within CHR cohorts. Barbato et al. [19] assessed 
whether migrant status is a predictor of transition to psycho-
sis within the North American Prodrome Longitudinal Study 
phase 3 (NAPLS3) cohort. No significant difference was 
found between the migrant status defined groups (native-
born, first-generation, or second-generation) in symptoms 
or functioning at any time point and transition rates did not 
differ across groups [19]. Tronick et al. [20], also from the 
NAPLS3 consortium, found that CHR-C scored lower on a 
protective factors index—including prosocial involvement 
and resilient personality traits—compared to CHR-NC, 
while other risk factors also associated with violence risk 
were not predictive of conversion. Furthermore, while prior 
studies have found mixed results when assessing age as a 
risk factor for development of psychosis [21, 22], a recent 
meta-analysis by Salazar de Pablo et al. [7] found that age 
did not moderate transition risk.

Overall, studies of epidemiological risk factors for psy-
chotic conversion have identified emergency room visits for 
self-harm as a risk factor for psychosis in a general popula-
tion while recent findings on migrant status and age as risk 
factors among CHR cohorts are less conclusive. Conversion 
risk has also been linked to fewer protective factors, sug-
gesting that bolstering resilience could enhance preventative 
efforts. These data suggest that early evidence of self-harm 
could also be an important risk factor not only in the general 
population but perhaps in CHR youth and focused interven-
tion efforts in this population may mitigate future risk of 
serious mental illness [18••, 20].

Table 1  Epidemiology updates

NAPLS North American Prodrome Longitudinal Studies, CHR clinical high risk, CHR-C clinical high risk converted, CHR-NC CHR non-converted

Key publications Sample Key findings

Bolhuis et al. (2021) [18••] General population born in Finland in 1987 
(N = 59,476)

Hospital presentation for self-harm associated 
with later psychotic or bipolar disorder, of those 
who presented prior at age 18, 29.1% went on to 
develop a psychotic or bipolar disorder by age 28

Tronick et al. (2023) [20] NAPLS3: CHR (N = 684), CHR-C (N = 68), CHR-NC 
(N = 380)

CHR-C scored lower on the protective factors index, 
specifically on prosocial involvement and resilient 
personality traits

Barbato et al. (2022) [19] NAPLS3: CHR (N = 710), CHR-C (N = 49), CHR-NC 
(N = 197)

Rates of conversion did not differ across migrant 
status groups

Salazar de Pablo et al. (2021) [7] Meta-analysis 130 studies: CHR (N = 9222) Age is not a moderator of transition risk
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Biomarkers Linked to Psychotic Conversion

Neuroimaging Recent neuroimaging literature findings sup-
port the notion that detectable patterns in brain morphometry 
and functional neuroanatomy are associated with conversion 
to psychosis in CHR youth [23••]. In one of the first CHR 
neuroimaging studies, Pantelis et al. [24] demonstrated that 
decreased gray matter volume was associated with later psy-
chotic conversion in a cross-sectional design while repeat 
scans revealed continued reduction in gray matter in CHR-C 
vs CHR-NC. These early cross-sectional and longitudinal 
findings were replicated in several subsequent studies [25–
27], further highlighting the importance of assessing neuro-
imaging biomarkers cross-sectionally as well as change over 
time as a risk factor for psychosis.

Recent studies (Table 2) including those from the Shang-
hai at Risk for Psychosis (SHARP) [28] and NAPLS3 [23••] 
cohorts have reported that decreased cortical thickness and 

accelerated cortical thinning are associated with conver-
sion. Del Re et al. [28] found that decreased relative cortical 
thickness in the superior temporal sulcus, Heschl’s gyrus, 
and pars triangularis differentiated the CHR-C from the 
CHR-NC after 1 year follow-up while Collins et al. [23••] 
found accelerated thinning across several cortical regions 
in the prefrontal, temporal, and parietal regions in CHR-C 
vs CHR-NC.

White matter alterations measured with diffusion ten-
sor imaging (DTI) and fractional anisotropy (FA) have also 
recently been explored as potential predictors of psychotic 
conversion [29–31]. Kristensen et al. [29] demonstrated that 
a prediction model incorporating FA at baseline assessment 
predicted conversion to psychosis in a CHR sample from 
Denmark (see “Prediction Models” below). In alignment 
with those findings, Nägele et al. [30] observed significantly 
lower FA in commissural and association tracts in CHR-C vs 
CHR-NC in a sample from Germany, while León-Ortiz et al. 

Table 2  Neuroimaging updates

SHARP Shanghai at Risk for Psychosis, NAPLS North American Prodrome Longitudinal Studies, CHR clinical high risk, CHR-C clinical high 
risk converted, CHR-NC CHR non-converted, FA fractional anisotropy, AUC  area under the curve, DMN default mode network, Glu Glutamate, 
Glx Glutamine + Glu, mI myo-inositol, cr creatine

Key publications Sample Key findings

Morphometry studies
  Del Re et al. (2021) [28] SHARP: CHR (N = 152), CHR-C (N = 22), CHR-NC 

(N = 130)
CHR-C vs CHR-NC reduced cortical thickness in the 

superior temporal sulcus, Heschl’s gyrus, and pars 
triangularis

  Collins et al. (2022) [23••] NAPLS3: CHR (N = 382), CHR-C (N = 42), 
CHR-NC (N = 338)

CHR-C vs CHR-NC greater cortical thinning over 
time in the prefrontal, temporal, and parietal cortical 
regions

Diffusion tensor imaging
  Kristensen et al. (2021) [29] Denmark: CHR (N = 110), CHR-C (N = 10), 

CHR-NC (N = 100)
CHR-C vs CHR-NC reduced global FA

  Nägele et al. (2021) [30] Germany: CHR (N = 30), CHR-C (N = 8), CHR-NC 
(N = 22)

CHR-C vs CHR-NC reduced FA of cellular tissue

  León-Ortiz et al. (2022) [31] Mexico: CHR (N = 33), CHR-C (N = 7), CHR-NC 
(N = 26)

CHR-C vs CHR-NC differences in FA values in 
posterior thalamic radiation

Resting state ofMRI
  Collin et al. (2020) [34] SHARP: CHR (N = 158), CHR-C (N = 23), CHR-NC 

(N = 135)
CHR-C vs CHR-NC abnormal baseline modular 

connectome organization
  Chen et al. (2021) [35••] NAPLS2: CHR (N = 263), CHR-C (N = 25), 

CHR-NC (N = 238)
CHR-C vs CHR-NC increased activity in frontoparietal 

network, inferior temporal gyrus, cerebellum, 
negative mediators included DMN, thalamus, visual 
cortex, cerebellar lobe 8

  Cao et al. (2019) [36] NAPLS2: CHR (N = 155), CHR-C (N = 18), 
CHR-NC (N = 137)

CHR-C vs CHR-NC reduction in global efficiency and 
an increase in network diversity, primarily driven by 
DMN

Proton magnetic resonance spectroscopy studies (1H-MRS)
  Leon-Ortiz et al. (2022) [31] Mexico: CHR (N = 33), CHR-C (N = 7), CHR-NC 

(N = 26)
CHR-C vs CHR-NC no differences in Glu/Glx striatum

  Provenzano et al. (2020) [42] CHR (N = 75), CHR-C (N = 25), CHR-NC (N = 50) CHR-NC vs CHR-C no differences in hippocampal glu
  Bossong et al. (2019) [43] CHR (N = 86), CHR-C (N = 12), CHR-NC (N = 74) CHR-C vs CHR-NC greater hippocampal glu, mI, and 

cr
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[31] found that lower FA in the posterior thalamic radia-
tion differentiated between CHR-C and CHR-NC in Mexico. 
These studies suggest that white matter alterations among 
CHR may be a valid neuroimaging marker for future study 
in predictive models of psychosis.

Previous studies using resting-state functional connec-
tivity MRI (rs fMRI) have identified thalamocortical and 
thalamocerebellar dysconnectivity and hyperconnectivity 
with sensorimotor cortical areas respectively as potential 
biomarkers of psychosis risk in CHR-C participants [32, 
33]. More recently, Collin et al. [34] found that abnormal 
modular connectome organization at baseline predicted 
conversion to psychosis as part of the SHARP study. 
Chen et al. [35••] designed a high-dimensional brain-
wide functional mediation framework and used rs fMRI 
data from the NAPLS2 sample to identify neural markers 
potentially linked to conversion including increased activ-
ity in the frontoparietal network and inferior temporal 
gyrus and cerebellum as well as negative mediators that 
were part of the default mode network (DMN), thalamus, 
visual cortex, and cerebellar lobe 8. Cao et al. [36] inves-
tigated longitudinal changes in rs fMRI network from a 
subsample in NAPLS2 and found that CHR-C showed 
a reduction in global efficiency and an increase in net-
work diversity relative to CHR-NC and this was primarily 
driven by the DMN.

Proton magnetic resonance spectroscopy studies (1H-
MRS) have identified neurometabolic changes in various 
brain regions that may be unique to the onset of psychosis 
and provide insight into the neuropathological changes 
early in the course of illness [37–41]. In one of the first 
1H-MRS studies addressing conversion in CHR, de la 
Fuente-Sandoval et al. [37] reported higher glutamate (glu) 
levels in the striatum in CHR-C compared to CHR-NC.  
In a recent follow-up report from the same group, Leon-
Ortiz et  al. [31] did not replicate their previous 1H-
MRS glu results in a Mexican sample but they observed 
significant correlations between striatal glu and FA results. 
Provenzano et al. [42] found that CHR participants had 
high glu/glx (glu + glutamine) in the hippocampus 
compared to controls but did not find any association 
with conversion to psychosis. A recent publication from 
Bossong et al. [43] in the UK reported that higher levels 
of hippocampal glutamate predicted conversion along with  
higher myo-inositol and creatine.

Altogether, neuroimaging has identified several promising 
imaging biomarkers that may be helpful in both predicting 
conversion to psychosis as well as conceptualizing structural, 
functional, and metabolic changes in the brain that precede 
conversion. One ongoing challenge in neuroimaging and con-
version literature is using data-driven approaches to improv-
ing existing prediction algorithms and risk calculators (see 
“Prediction Models” section).

Electrophysiology A body of literature supports the notion 
of impaired sensory and cognitive processing prior to and 
upon conversion to psychosis. Event-related potentials 
(ERPs) and sensorimotor gating, measurable by electro-
encephalogram (EEG) or electromyography (EMG) as ste-
reotyped responses to stimuli, have consistently garnered 
interest as potential neurobiological biomarkers of clinical 
outcomes in CHR including conversion risk, owing to their 
robust findings in psychosis [44]. Prior to 2019, the CHR 
research community honed in on several measures, including 
mismatch negativity (MMN), oddball, P50 sensory gating, 
neural synchrony, and prepulse inhibition (PPI) paradigms 
as potential predictors of psychotic conversion [44–48]. Sev-
eral early studies highlighted that a reduced P300 amplitude 
in oddball paradigms was predictive of imminent psychosis 
[49, 50]. These findings, taken together, have propelled rig-
orous investigation of each paradigm as objective, measur-
able biomarkers of conversion.

Since 2019, several important ERP papers have been pub-
lished, further contributing to the conversion prediction liter-
ature in electrophysiology (Table 3). In an auditory oddball 
paradigm, Hamilton et al. [51••] reported that, among CHR 
individuals enrolled in the NAPLS2 study, a greater reduc-
tion in P300 amplitude—in particular, a deficit in target P3b 
amplitude—was associated with progression to psychosis 
and implicated a shorter time to conversion [51••], while 
Tang et al. [52] reported that reduced novel P3a amplitude 
was predictive of conversion in a Chinese cohort. Foss-Feig 
et al. [53] expanded on this work within a NAPLS2 sub-
cohort of CHR with comorbid autism spectrum disorder 
(ASD), given higher rates of psychosis in ASD compared to 
the general population. Of note, the investigators not only 
reported that P300 amplitude differentially predicted conver-
sion to psychosis among CHR, but also that comorbid ASD 
moderated this relationship [53]. Though prior literature 
supports the association between a smaller P300 amplitude 
and conversion to psychosis, their findings suggested that 
a greater P300 amplitude was associated with conversion 
among CHR with a history of ASD [53]. Within the realm 
of sensory registration, a recent study by Duncan et al. [54] 
from the NAPLS2 consortium reported that a reduction in 
N100 amplitude measured in the auditory oddball task was 
predictive of conversion to psychosis in CHR. The investiga-
tors found that a smaller N100 amplitude in response to both 
standard and novel stimuli was predictive of conversion to 
psychosis [54]. Furthermore, a smaller N100 amplitude was 
associated with shorter time to conversion for both standard 
and novel stimuli [54].

Newer developments in repetition positivity (RP)—another 
component of predictive coding—and mismatch negativity 
(MMN) have also surfaced in recent years. Hamilton et al. 
[55••] reported that, among CHR not receiving antipsychotics 
at baseline, an attenuated MMN amplitude in a double deviant 



687Current Psychiatry Reports (2023) 25:683–698 

1 3

paradigm was associated with both conversion to psychosis 
and decreased time to conversion. Fryer et al. [56] determined 
that CHR-C had greater deficits in response to late-appearing 
standards compared to CHR-NC whose symptoms had remit-
ted in the NAPLS2 cohort. The group also observed that a 
greater reduction in RP was predictive of shorter time to con-
version among those not receiving pharmacotherapy [56].

PPI of the startle response is an index of sensorimotor 
gating that has been shown to be deficient in individuals in 
the psychosis spectrum [57–59], CHR [60, 61], and transla-
tional models of psychosis [62, 63]. Prior to 2019, only one 
study [46] assessed PPI in CHR participants who later con-
verted to psychosis. Cadenhead [46] found that a small sam-
ple of CHR-C had greater PPI than CHR-NC. Since 2019, 
Cadenhead et al. [64] have published on a larger cohort 
from the NAPLS2 sample and did not find any PPI differ-
ences between CHR-C and CHR-NC but, within the CHR-C 
sample, age was significantly correlated with PPI (greater 
with advancing age and not typical of normally develop-
ing adolescents), replicating a previous age finding [46], 
that provided evidence of neurodevelopmental differences 
in the sample who later converted to psychosis. In addition, 
the startle response latency, a measure of neural processing 

speed, was greater in CHR-C compared to CHR-NC, with 
greater predictive power than clinical symptoms in predict-
ing future psychosis in female CHR. It is therefore possible 
that slow neural processing represents a potential biomarker 
of psychosis risk in female CHR. Both the PPI developmen-
tal findings and startle latency can be studied in translational 
models, perhaps providing further insight into brain changes 
that predict future psychosis.

In summary, research in electrophysiological biomarkers 
has continued to flourish in the last few years, with consid-
erable traction gained in the study of P300, MMN, N100, 
and startle latency as predictors of conversion to psychosis. 
While no single neurophysiologic biomarker is claimed to 
be a hallmark prognostic marker, multiple measures of infor-
mation processing may collectively provide insight in the 
prediction of conversion among CHR.

Neurocognition Neurocognitive deficits are prominent 
across the psychosis spectrum [65–68], are apparent in 
childhood in those individuals who go on to develop schiz-
ophrenia, and tend to exacerbate before the onset of psy-
chotic symptoms [69]. Early reports in CHR samples [67, 
70–72] demonstrated neurocognitive deficits across multiple 

Table 3  Electrophysiology updates

SHARP Shanghai at Risk for Psychosis, NAPLS North American Prodrome Longitudinal Studies, CHR clinical high risk, CHR-C clinical high 
risk converted, CHR-NC CHR non-converted, RP repetitive positivity, HC healthy comparison

Key publications Sample Key findings

P300 oddball paradigm
  Hamilton et al. (2019) [51••] NAPLS2: CHR (N = 552), CHR-C (N = 73), 

CHR-NC (N = 225)
CHR-C vs CHR-NC smaller auditory target P3b 

amplitude and a shorter time to conversion
  Tang et al. (2020) et al. [52] SHARP: CHR (N = 104), CHR-C (N = 19), CHR-NC 

(N = 75)
CHR-C vs CHR-NC smaller auditory novel P3a

  Foss-Feig et al. (2021) [53] NAPLS2: CHR (N = 304, 14 ASD + , 290 ASD-), 
CHR-C (N = 75, 4 ASD + , 71 ASD-)

CHR-C vs CHR-NC smaller visual novel P3a 
amplitude and auditory target P3b amplitude but 
comorbid ASD moderated this relationship and 
greater P300 amplitudes were associated with 
conversion among CHR + ASD individuals

  Duncan et al. (2022) [54] NAPLS2: CHR (N = 552), CHR-C (N = 73), 
CHR-NC (N = 225)

CHR-C vs CHR-NC had reduced N100 amplitude to 
both standard and novel stimuli that was associated 
with earlier time to conversion

Mismatch negativity
  Fryer et al. (2020) [56] NAPLS2: CHR (N = 579), CHR-C (N = 77), 

CHR-NC (N = 238)
CHR-C vs CHR-NC-Remitted had deficits in 

response to late-appearing standards. In CHR-C, 
greater reduction in RP was predictive of shorter 
time to conversion among those not receiving 
pharmacotherapy

  Hamilton et al. (2022) [55••] NAPLS2: CHR (N = 580), CHR-C (N = 77), 
CHR-NC (N = 238)

CHR-C vs CHR-NC had greater deficits in MMN 
amplitude in double deviant paradigm that was also 
associated with shorter time to conversion

Startle modulation
  Cadenhead et al. (2020) [64] CHR (N = 543), CHR-C (N = 58), CHR-NC (N = 255) CHR-C vs CHR-NC had slower startle response 

latency but did not differ in PPI. In CHR-C, PPI was 
positively correlated with age while this was not 
present in HC
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domains that are greatest in CHR-C. Early longitudinal stud-
ies also found a decline in neurocognitive domains such as 
verbal memory over time, in CHR-C [73, 74]. Larger col-
laborative studies [75, 76] and meta-analyses [77–79] later 
confirmed the association of neurocognitive deficits with 
conversion to psychosis and incorporated specific neurocog-
nitive tests (e.g., processing speed and verbal learning and 
memory) into psychosis risk calculators [21] that, along with 
clinical and demographic data, predict psychotic conversion 
with greater accuracy.

Since 2019, several new meta-analyses have been pub-
lished that confirm not only baseline differences [80, 81] 
between CHR-C versus CHR-NC but also longitudinal 
changes [82] and variability [83] of cognitive performance 
(Table 4). Millman et al. [80] reported that the domains of 
global cognition, processing speed, and working memory 
differentiated CHR-C vs CHR-NC, while Catalan et al. [81] 
identified verbal learning and memory as most associated 
with transition to psychosis. Hedges et al. [82] examined 
longitudinal changes and found that CHR participants, 

Table 4  Neurocognitive updates

NAPLS North American Prodrome Longitudinal Studies, CHR clinical high risk, CHR-C clinical high risk converted, CHR-NC CHR non-converted

Key publications Sample Key findings

Meta-analyses
  Millman et al. (2022) [80] 21 studies: CHR (N = 482–948), CHR-C 

(N = 42–107), CHR-NC (N = 235–557)
CHR-C vs CHR-NC differences in global cognition, 

processing speed and working memory
  Catalan et al. (2021) [81] 78 studies: CHR (N = 119–1973), CHR-C 

(N = 37–278), CHR-NC (N = 104–1075)
CHR-C vs CHR-NC differences in verbal learning 

and memory
  Hedges et al. (2022) [82] 13 studies: CHR (N = 94–431), CHR-C 

(N = 34–86), CHR-NC (N = 83–347)
CHR-C vs CHR-NC showed less improvement or a 

decline in performance in processing speed over 
time

  Catalan et al. (2022) [83] 78 studies: CHR (N = 5162) CHR-C vs CHR-NC showed a greater variability ratio 
in executive functioning

Individual and consortia studies
  Cui et al. (2020) [84] SHARP: CHR (N = 196), CHR-C (N = 41), 

CHR-NC (N = 155)
CHR-C vs CHR-NC performed worse in processing 

speed and visual learning
  Luo et al. (2021) [86] Chinese college students: CHR (N = 115), CHR-C 

(N = 29), CHR-NC (N = 78)
CHR-C exhibited poorer performance in visual 

learning, working memory, reasoning, and problem 
solving compared to non-converters

  Zhang et al. (2022) [85] SHARP: CHR-C (N = 43 adolescents, N = 34 
adults), CHR-NC (N = 146 adolescents, N = 102 
adults)

Adolescent CHR-C vs CHR-NC worse in speed of 
processing, working memory, verbal learning, 
visual learning and reasoning and problem solving, 
adult CHR-C vs CHR-NC worse in visuospatial 
memory test

Novel analytic techniques of neurocognitive and psychosis risk data
  Velthorst et al. (2019) [87] NAPLS1: CHR (N = 166), CHR-C (N = 54), 

CHR-NC (N = 112)
Hierarchical clustering derived neurocognitive 

subgroups. Subgroup with significant 
neurocognitive impairment had the greatest deficits 
in processing speed and memory tasks and greatest 
risk of psychotic conversion (58%) compared to 
mildly impaired (24%) or normal/high performance 
(10.3%) subgroups

  Haddad et al. (2022) [88] Brazil: CHR (N = 92), CHR-C (N = 15), CHR-NC 
(N = 77)

Latent profile analysis identified 4 classes. Class with 
low neurocognitive performance and decreased 
expression of emotion was more likely to convert to 
psychosis

  Zhang et al. (2020) [91] SHARP: CHR (N = 289), CHR-C (N = 54), 
CHR-NC (N = 235)

3 Subtypes derived from canonical correlation/
hierarchical cluster analyses. Subtype with negative 
symptoms and neurocognitive deficits had the 
highest risk for psychosis (39% vs 11.1% and 
18.6%)

  Kim et al. (2019) [90] CHR (N = 60), CHR-C (N = 13) Factor analyzed psychosis risk factors and 
neurocognitive factor (verbal memory, attention/
working memory, psychomotor speed, executive 
function and spatial memory) was the most 
predictive of later conversion
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like controls, improved over time but CHR-C showed less 
improvement or a decline in performance on processing 
speed tasks compared to CHR-NC. Catalan et  al. [83] 
evaluated within-group variability across neurocogni-
tive domains in CHR participants and found that CHR-C 
showed greater variability in executive functioning com-
pared to CHR-NC.

Recent international studies have replicated the neurocog-
nitive findings in CHR-C [84–86]. As part of the SHARP 
study [84], CHR-C showed greater deficits in processing 
speed and visual learning relative to CHR-NC while Zhang 
et al. [85] found different patterns in adolescents vs adults. 
Luo et al. [86], in a sample of 115 college students, similarly 
reported that CHR-C exhibited poorer performance in visual 
learning, working memory, reasoning, and problem solving 
compared to CHR-NC.

Several publications have used novel analytic methods to 
identify neurocognitive subtypes as a means of parsing the 
heterogeneity among CHR [87–90]. Velthorst et al. [87], 
using hierarchical clustering on NAPLS1 data, found that the 
subgroup with significant neurocognitive impairment had 
the greatest risk of psychotic conversion (58%) compared to 
mildly impaired (24%) or normal/high performance (10.3%) 
subgroups. Similarly, Haddad et al. [88] performed a latent 
profile analysis and found that the class with low neuro-
cognitive performance and decreased expression of emotion 
was more likely to convert to psychosis. Zhang et al. [91], 
using canonical correlation and hierarchical cluster analyses, 
found that the subtype characterized by negative symptoms 
and cognitive deficits had the highest risk for psychosis. 
Kim et al. [90] analyzed multiple psychosis risk factors and 
found that the neurocognitive factor was the most predictive 
of later conversion.

Taken together, neurocognitive deficits (both at base-
line and longitudinally) are a robust predictor of psychotic 

conversion in cross-cultural CHR populations. Neurocogni-
tive performance, when combined with symptom and demo-
graphic risk factors for psychosis, increases the predictive 
power of psychosis risk calculators with potential utility in 
identifying CHR subtypes with varying degrees of risk and 
individualized treatment needs.

Fluid Biomarkers Immune, neuroendocrine, and metabolic 
dysregulation are likely linked in the pathophysiology of 
psychotic disorders [92–94]. Importantly, groundbreaking 
studies have explored how various fluid biomarkers linked to 
these domains and genetics may influence psychotic illness 
and whether they may help to elucidate and predict future 
psychotic illness in CHR participants (Table 5) [95–100].

Perkins et al. [98], in their study utilizing a plasma bio-
marker assay, found that 15 largely immunomodulatory and 
neurohormonal biomarkers helped distinguish CHR-C from 
CHR-NC in the NAPLS2 sample. While a recent meta-
analysis [101] found no significant trends in inflammatory 
biomarkers levels in CHR-C vs CHR-NC, studies since con-
tinue to identify potential immunomodulatory biomarkers. 
In a recent study by Ouyang et al. [102], CHR-C had higher 
levels of TNF-β and IL-17 than CHR-NC, again suggesting 
that immune dysregulation may characterize psychotic con-
version. Zhang et al. [103] investigated whether an imbal-
ance of Th1 and Th2 cytokines was linked to conversion 
risk, finding that lower IL-1β coupled with a decreased 
IL-1β/IL-6 ratio was associated with an increased risk 
of conversion among CHR participants from the SHARP 
study. Linked to immune dysregulation is hypothalamic–
pituitary–adrenal axis dysfunction and in a follow-up to 
the original report by Walker et al. [104], Worthington 
et al. [105] reported that higher levels of salivary corti-
sol predicted psychotic conversion in the NAPLS2 cohort 
and found including cortisol in the NAPLS Psychosis Risk 

Table 5  Fluid biomarkers updates

SHARP Shanghai at Risk for Psychosis, NAPLS North American Prodrome Longitudinal Studies, EU-GEI European Network of National Schiz-
ophrenia Networks Studying Gene-Environment Interactions, CHR clinical high risk, CHR-C clinical high risk converted, CHR-NC CHR non-
converted

Key publications Sample Key findings

Ouyang et al. (2022) [102] China: CHR (N = 49), CHR-C (N = 14), CHR-NC 
(N = 35)

CHR-C vs CHR-NC higher concentrations of IL-1β and 
TNF-β

Zhang et al. (2022) [103] SHARP: CHR (N = 84), CHR-C (N = 16), CHR-NC 
(N = 68)

CHR-C vs CHR-NC pattern of Th1/Th2 cytokine 
imbalance (decreased IL-1β and decreased IL-1β/IL-6 
ratio)

Dickens et al. (2021) [107] EU-GEI: CHR (N = 263), CHR-C (N = 50), CHR-NC 
(N = 213)

CHR-C vs CHR-NC lower baseline ether phospholipid 
levels

Li et al. (2022) [99] SHARP: CHR (N = 90), CHR-C (N = 23), CHR-NC 
(N = 67)

CHR-C vs CHR-NC elevated 1-Stearoyl-2-arachidonoyl-
sn-glyceral

Perkins et al. (2020) [111••] NAPLS2: CHR (N = 764), CHR-C (N = 80), CHR-NC 
(N = 248)

CHR-C vs CHR-NC PRS was higher in the European 
sample
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Calculator improved its predictive accuracy (see “Prediction 
Models” section below).

The increased prevalence of cardiometabolic abnor-
malities in antipsychotic naive CHR populations has 
been described [106], and recent studies have looked at 
metabolic markers for CHR conversion. In a European 
Network of National Schizophrenia Networks Studying 
Gene-Environment Interactions (EU-GEI) study popu-
lation [107], a machine learning model distinguished 
between CHR-NC and CHR-C based on a baseline serum 
lipid profile, with ether phospholipids in particular being 
at lower levels in CHR-C. Li et al. [99] used a metabo-
lomic approach to identify potential biomarkers and found 
that changes in unsaturated fatty acid synthesis and ele-
vated 1-stearoyl-2-arachidonoyl-sn-glycerol plasma con-
centration characterized CHR-C.

Similar to metabolomic approaches, proteomic studies 
facilitate the discovery of potential biomarkers for psychi-
atric illness [108]. Mongan et al. [109] utilized proteomic 
data in an EU-GEI CHR cohort to develop models that were 
able to effectively predict conversion. In this study, proteins 
involved in the complement system and coagulation cascade 
were differentially expressed in participants who converted 
to psychosis, in line with prior evidence of immune dys-
regulation and inflammation influencing conversion [109].

Given that there is not one genetic locus that has a large 
influence on the development of psychotic illness, polygenic 
risk scores (PRS) have been developed utilizing genome-
wide association studies to quantify combined genetic sus-
ceptibility for an illness [110]. Perkins et al. [111••] utilized 
a PRS in CHR in the NAPLS2 sample and found that in 
the European participants, the PRS was higher in CHR-C 
compared to CHR-NC, whereas for non-Europeans, no such 
difference was found; adding this study’s PRS to the NAPLS 
Psychosis Risk Calculator enhanced the prediction of indi-
vidual risk (see “Prediction Models” section below).

Prediction Models

Determining individual risk for conversion to psychosis 
remains an important challenge in psychiatry, as it has 
major public health implications. In 2016, Cannon et al. 
[21] published their work on the Psychosis Risk Calculator 
developed from the NAPLS2 cohort, using clinical, demo-
graphic, and neurocognitive variables—increased unusual 
thought content and suspiciousness, reduced social function-
ing, diminished processing speed, decreased verbal learning 
and memory performance, and younger age at baseline—to 
predict conversion using time-to-event analysis. Their model 
determined that the 2-year conversion risk among CHR sub-
jects was 16% with a concordance index (C-index) of 0.71, 

suggesting good discrimination. The NAPLS Psychosis Risk 
Calculator was the first of its kind and set forth a push for 
replication, more rigorous variable selection, the addition of 
biomarkers, and improved model performance [112–115].

Since 2019 (Table 6), several innovative studies have 
been done that not only validate existing models but aim to 
improve on the predictive power of psychosis risk calcula-
tors using new technologies and analytic techniques. As part 
of the Harmonization of At Risk Multisite Observational 
Networks for Youth (HARMONY) collaboration, Koutsoul-
eris et al. [116] tested the generalizability and prognostic 
value of the NAPLS Psychosis Risk Calculator in the Per-
sonalised Prognostic Tools for Early Psychosis Management 
(PRONIA) cohort and found good prediction after model 
calibration to account for sample differences. Zhang et al. 
[117] developed the SHARP Risk Calculator (SHARP-RC) 
that used a convenient smartphone-based tool along with 
clinical predictors and found excellent discriminatory accu-
racy for psychotic conversion that was then replicated in 
an independent sample. Ciarleglio et al. [14] developed a 
prediction model that identified visual perceptual abnormali-
ties, dysphoric mood, unusual thought content, disorganized 
communication, and violent ideation as having the largest 
effect sizes. Brodey et al. [118] developed and validated the 
Early Psychosis Screener for Internet (EPSI) that utilized 
Support Vector Machine (SVM) classifiers. The EPSI tool 
when combined with the Structured Interview for Psycho-
sis Risk Syndromes (SIPS) increased the combined posi-
tive predicted value of the model [118]. A transdiagnostic 
prediction model previously developed by Fusar-Poli et al. 
[115] was readapted and applied to a US electronic health 
record (EHR)–based study of over 2 million subjects, result-
ing in a C-index of 0.68 and suggestive of transportability to 
a distinct population abroad [119]. Due to its potential for 
clinical utility as evidenced by repeated external validation 
in multiple settings, the EHR tool has been piloted for use 
in clinical practice within the UK [119].

Many of the biomarkers described previously in this 
review have also been incorporated into psychosis risk cal-
culators to improve predictive power. Collins et al. [23••] 
found that percent cortical thickness change in the left 
hemisphere performed well in a predictive model from the 
NAPLS3 consortium differentiating CHR-C vs CHR-NC. 
In a small sample, Kegeles et al. [120] developed a model 
with striatal glutamate 1H MRS and visual perceptual abnor-
malities in the Columbia Risk Calculator and found a high 
area under the curve (AUC). The PRONIA study employed 
a multimodal machine learning model including structural 
MRI and psychosis polygenic risk scores, in addition to 
clinical and neurocognitive predictors, to predict conver-
sion among CHR individuals [121]. They demonstrated 
that clinician-based classification had a higher specific-
ity, whereas their model was highly sensitive; however, 



691Current Psychiatry Reports (2023) 25:683–698 

1 3

combined human–machine classification had a balanced 
accuracy in predicting conversion [121]. Kristensen et al. 
[29] incorporated global FA into a multivariate prediction 
model finding excellent sensitivity, specificity, and AUC. 
Dickins et al. [107] used a machine learning approach to 
develop a model using serum lipids and was able to dif-
ferentiate CHR-C from CHR-NC groups. Cadenhead et al. 
[64] added startle response latency to the clinical symptoms 
used in the NAPLS Psychosis Risk Calculator and found 
that in female CHR startle latency had a higher AUC than 
the clinical symptoms in predicting psychosis. Furthermore, 
Worthington et al. [105] included salivary cortisol in the 
NAPLS Psychosis Risk Calculator and achieved a good 
C-index. As previously noted, Mongan et al. [109] developed 

a well-performing model that incorporated proteomic and 
clinical data of individuals sampled from the EU-GEI and 
the Avon Longitudinal Study of Parents and Children sam-
ples. Perkins et al. [111••] added the PRS to the NAPLS 
Psychosis Risk Calculator and found that, with the exception 
of clinical symptoms, the PRS contributed as much or more 
than other variables in the calculator in predicting conver-
sion and was significantly correlated with the two neurocog-
nitive domains—processing speed and verbal memory—that 
are part of the calculator.

Over the last few decades, advancements in technology 
and predictive models have offered new approaches to pre-
dicting risk of conversion among CHR individuals. Since the 
emergence of COVID-19, digital psychiatry, in particular, 

Table 6  Prediction model updates

SHARP Shanghai at Risk for Psychosis, NAPLS North American Prodrome Longitudinal Studies, EU-GEI European Network of National Schiz-
ophrenia Networks Studying Gene-Environment Interactions, PRONIA Personalised Prognostic Tools for Early Psychosis Management, CHR 
clinical high risk, CHR-C clinical high risk converted, CHR-NC CHR non-converted, ROD recent onset depression, ROD-C ROD converted, 
ROD-NC ROD non-converted, PPV positive predictive power, PRS polygenic risk score

Key publications Sample (training set) Key findings

Brodey et al. (2019) [118] CHR (N = 182), CHR-C/FEP (N = 76), CHR-NC 
(N = 106)

The EPSI-SR tool achieved a PPV of 86.6% when 
combined with clinician-administered SIPS in 
differentiating psychosis

Ciarleglio et al. (2019) [14] CHR (N = 199), CHR-C (N = 64), CHR-NC (N = 135) Visual perceptual abnormalities, dysphoric 
mood, unusual thought content, disorganized 
communication, and violent ideation predicted 
conversion in the model, C-Index = 0.73

Kegeles et al. (2020) [120] CHR (N = 19), CHR-C (N = 7), CHR-NC = 12 Striatal glutamate 1H MRS and visual perceptual 
abnormalities performed with an AUC of 0.87 in a 
multivariate regression model

Zhang et al. (2019) [113] SHARP: CHR (N = 196), CHR-C (N = 51) at 
24 months

The smartphone-based SHARP-RC achieved high 
discriminatory accuracy of predicting conversion to 
psychosis using four clinical predictors, AUC of 0.78

Kristensen et al. (2021) [29] Denmark: CHR (N = 110), CHR-C (N = 10) Global FA in a multivariate prediction model was 
predictive of conversion after 12 months (sensitivity 
0.70, specificity of 0.88, AUC of 0.87)

Worthington et al. (2020) [131] NAPLS2: CHR (N = 417), CHR-C (N = 54) at 
24 months

Inclusion of salivary cortisol into the original 
eight-predictor NAPLS Psychosis Risk Calculator 
improved its predictive accuracy by 7%, C-index 0.78

Mongan et al. (2021) [109] EU-GEI: CHR (N = 133), CHR-C (N = 49), CHR-NC 
(N = 84)

Model included proteomic and clinical predictors AUC 
0.95

Dickens et al. (2021) [107] CHR (N = 263), CHR-C (N = 50), CHR-NC (N = 213) CHR-C vs CHR-NC distinguished based on lipid 
profile in model with AUC 0.81 (95% confidence 
interval = 0.69–0.93)

Koutsouleris et al. (2021) [116] PRONIA: CHR (N = 167), ROD (N = 167), CHR-C 
(N = 23), CHR-NC (N = 144), ROD-C (N = 3), 
ROD-NC (N = 164)

Alongside clinician input, model consisting of 
structural MRI, schizophrenia PRS, clinical and 
neurocognitive predictors achieved a balanced 
accuracy of 85.5% in predicting conversion among 
CHR and ROD

Cadenhead et al. (2020) [64] NAPLS2: CHR (N = 543), CHR-C (N = 58), CHR-NC 
(N = 255)

CHR-C vs CHR-NC had slower startle response latency 
that was more predictive of conversion than clinical 
symptoms (AUC 0.65 vs 0.55) in female CHR 
participants

Perkins et al. (2020) [111••] NAPLS2: CHR (N = 764), CHR-C (N = 80), CHR-NC 
(N = 248)

Incorporating PRS into NAPLS psychosis risk 
calculator contributed 15% risk prediction in 
Europeans and 7% in non-Europeans
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has rapidly evolved as a field, with pilot studies and inter-
ventions adopting new technologies in both mental health 
care and research [122]. Various data types and modalities, 
spanning passive smartphone sensing to self-reported data 
collection via mobile device apps, have been utilized to 
study behavior and cognition [123], measure symptom bur-
den [124, 125], and predict early stages of relapse [126–129] 
among individuals with established psychotic disorders. 
However, digital phenotyping of CHR individuals prior to 
developing first-episode psychosis (FEP) remains poorly 
characterized [130].

With a treasure trove of clinical and biomedical data 
available, discussion of best practices for building diagnos-
tic and prognostic models is vital. Issues with data-driven 
research include the use of multivariable models that may 
not be informed by a priori selection of predictors stem-
ming from clinical and epidemiologic expertise, as well as 
limited statistical power due to small sample sizes, thereby 
negatively impacting the predictive accuracy of statistical 
models [131]. Attention must also be directed toward iden-
tifying predictors of remission among CHR individuals who 
do not experience FEP [132], as well as more efficacious 
interventions for those eventually identified as high-risk for 
conversion [100]. Lastly, considerable variability in patient 
samples, clinical presentations, quantitative methods, and 
sociocultural contexts complicates the implementation of 
models in psychiatric practice [133]. However, improved 
predictive capability of models within recent years has 
encouraged translation of promising models, but to fully 
understand their utility in clinical care, pursuit of net benefit 
analyses is recommended.

Interventions

While the primary focus of intervention research for CHR 
populations in recent years has been to synthesize knowl-
edge of treatments which effectively address symptoms 
and functioning, since 2019 several studies have reviewed 

the literature on interventions in the context of conver-
sion to psychosis and there have been several clinical tri-
als (Table 7) [134–137]. Interventions that have historically  
been used to treat symptoms in CHR populations include 
cognitive behavioral therapy (CBT), low-dose antipsychotic 
medication, other medication interventions for comorbid 
symptoms, anti-inflammatory interventions, and cognitive 
remediation [136, 138]. Devoe et al. [137] performed a sys-
tematic review and meta-analysis to evaluate interventions 
focused on conversion to psychosis. They found that there 
was a reduced risk for conversion favoring CBT at 12 and 
18 months but no interventions were significantly more 
effective at reducing conversions compared with all other 
interventions in network meta-analyses [137]. As part of a 
Cochrane Review [136], Kuharic et al. compared transition 
rates across different interventions and found no discern-
able treatment effects on conversion, with the exception 
of a slightly lower conversion rate among CHR individu-
als taking Omega-3 supplements compared to placebo in a 
single study [139]. The Omega-3 trial was repeated as part 
of the NEURAPRO trial by McGorry et al. [140], but this 
initially promising finding was unable to be replicated. In 
a comprehensive meta-analysis of interventions for CHR 
with a primary outcome of transition to psychosis, Mei et al. 
[135] found the pooled effect of CBT on the prevention 
of psychosis at 12 months to be significantly greater than 
that of comparable interventions, further emphasizing the 
therapeutic efficacy of CBT to reduce symptoms and pos-
sibly prevent the onset of psychosis among CHR youth. In 
a naturalistic study design in CHR participants who were 
more symptomatic, Zhang et al. [141] examined the effect 
of antipsychotic medication on reducing risk of psychotic 
conversion and found no difference in the conversion rate 
among those taking antipsychotic medication versus those 
who were not. Despite much effort, there is little consensus 
on effective interventions to prevent transition to psychosis 
in CHR samples [138]. 

Several studies geared toward trialing interventions in 
CHR or creating space to test new interventions are fast 

Table 7  Intervention updates

SHARP Shanghai at Risk for Psychosis, CHR clinical high risk, CHR-C clinical high risk converted, CHR-NC CHR non-converted, CBT cogni-
tive behavioral therapy

Key publications Sample Key findings

Devoe et al. (2020) [137] Meta-analysis: 38 studies CBT associated with reduction in conversion
Mei et al. (2021) [135] Meta-analysis: 26 studies CBT was associated with a reduction in incidence at 12 months
Kuharic et al. (2019) [136] Cochrane Review: 20 studies No clear differences between treatments in prevention of conversion, small evi-

dence of Omega-3 in preventing transition to psychosis but low statistical power
Zhang et al. (2022) [141] SHARP: CHR (N = 210), 

CHR-C (N = 56), CHR-NC 
(N = 154)

Antipsychotic treatment (N = 151) vs no antipsychotic treatment (N = 59) had no 
effect on conversion rate in a naturalistic design
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emerging across the globe [134, 142]. This movement is 
evident in the funding of major recent research initiatives 
such as the NIMH biomarker–based research consortia 
Accelerating Medicines Partnership Program-Schizophrenia 
(AMP-SCZ) that brings together international researchers 
to develop better prediction models for conversion and will 
provide a platform to test novel interventions [143, 144]. 
The Psychosis Risk Outcomes Network (PRONET) study is 
a branch of the initiative that aims to map biomarkers, clini-
cal and neuropsychological phenotypes of CHR onto clini-
cal outcomes including conversion to test predictive models 
and trajectories of CHR [143]. Consistent with the Research 
Domain Criteria (RDoC) approach to studying psychiatric 
disorders, recent field-wide emphasis has been placed on 
identifying modifiable biological treatment targets for CHR 
as well as on developing interventions that reduce risk for 
conversion across diverse CHR populations [145]. Predictive 
models described above may assist in identifying those indi-
viduals at elevated risk for conversion who may be appropri-
ate for future treatment studies and clinical treatment trials.

Conclusions

CHR research over the past few decades has provided impor-
tant insights into (i) risk factors for conversion to full psy-
chotic illness within a 2–3-year period, (ii) the development 
of psychosis risk calculators [21], (iii) biomarkers linked 
to psychosis risk [98, 104, 146, 147], and (iv) evidence of 
dynamic brain changes [36] that are likely present before 
the onset of illness and continue to evolve into FEP and 
more chronic forms of psychosis. Despite these advances in 
our understanding of the CHR state, longer-term outcomes 
(5 + years), including eventual diagnoses, have been seldom 
investigated in the CHR population. Long-term follow-up 
of CHR individuals provides a unique and rare opportunity 
to investigate the full trajectory of illness from CHR to first 
episode to chronic illness.

The CHR criteria identify a heterogeneous popula-
tion with not only sub-syndromal psychotic symptoms 
but neurocognitive deficits, comorbid mood, anxiety, and 
trauma-related symptoms, along with significant social and 
role functioning problems [148]. Meta-analyses show that 
20–30% [149] develop psychosis within 2 years and one-
third of known psychotic conversions occur after 2 years 
[150]. The question of how many conversions occur after 
5 years has not been extensively studied in a prospective 
longitudinal follow-up design. Retrospective studies suggest 
that the prodromal phase of illness can last up to 20 years 
[151], but it is unclear which early CHR characteristics pre-
dict a later vs early psychotic conversion, affective vs non-
affective psychosis, or good vs poor functional outcome.

Substantial evidence already exists for multiple bio-
marker abnormalities in CHR [76, 98, 104, 147, 152–154]. 
Specifically, CHR youth show deficits in neurocognition 
[76], regional cortical gray matter [153], and ERP ampli-
tudes [147, 154], as well as higher PRS [152], inflammatory 
markers [98], and cortisol [104], relative to comparison sub-
jects. Biomarkers also predict who will convert to psychosis 
[104, 147, 153, 154] at 2 years and add to the predictive 
power of psychosis risk calculators.

With NIMH initiatives such as AMP-SCZ, it will be 
possible to bring together the rapidly developing research 
in biomarkers and prediction algorithms to investigate 
treatments linked to the identified neurobiological mech-
anisms and perhaps individualize interventions based on 
each person’s unique biological signature.
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