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Abstract

Optimal Search Algorithms for Structured Problems in Natural Language Processing

by

Adam David Pauls

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Dan Klein, Chair

Many tasks in Natural Language Processing (NLP) can be formulated as the assignment of a label to an
input. Often, the set of possible labels can be unmanageably large and even enumerating the set would be
intractable. For example, the set of possible labels for machine translation might be the set of all sentences
in the output language, which can in principle be infinite. Fortunately, these large label sets typically exhibit
some kind of structure – that is, they are composed of smaller parts. Because they are composed of parts, it
is possible to construct labels piece by piece. The problem of predicting such structured labels is referred to
as structured prediction, and the process of incrementally constructing the best structured label(s) is called
search.

In this thesis, we consider problems for which it is feasible to perform exact or optimal search – that is,
search that is guaranteed to find the best possible label according to some model. Many such problems can
be formulated as a search for the best path in a weighted directed hypergraph. For example, monolingual
parsing, bitext parsing, and syntactic machine translation can all be formulated in this way. We will discuss
both known and novel algorithms that can find the best path without considering all hyperedges in the
hypergraph, and hence can speed up search without sacrificing search quality. We will provide simplified
proofs of correctness for these algorithms. We also propose two novel algorithms that permit extraction of
the k-best paths instead of the single best. We compare these approaches both against exhaustive search,
and against approximate search techniques which speed up search by sacrificing optimality guarantees.
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Bouchard-Côté, Slav Petrov, Percy Liang, David Burkett, Mohit Bansal, John Blitzer, Dave Golland, Taylor
Berg-Kirkpatrick, Greg Durrett and Jonathan Kummerfeld were all incredibly (and humblingly) smart, fun,
and talented people. I consider myself fortunate to have the opportunity to continue working with some of
them when I join Google Research.

I also had the fortune of working with great researchers at other institutions. I learned a lot about
machine translation – and even wrote a handout or two – during my internship with Kevin Knight and David
Chiang at ISI. There, I also met USC students Jon May, Dirk Hovy, Victoria Fossum, Jason Riesa, Sujith
Ravi, Ashish Vaswani, Zornitsa Kozareva, Oana Nicolov, Ulf Hermjakob and fellow interns Michael Auli,
Paramveer Dhillon, and Erica Greene, who helped make the summer fun both inside and outside the lab. I
had the chance to witness translation in the real world at Google working with Wolfgang Macherey, Franz
Och, and a list of interns and employees too long to remember. I collaborated remotely with Chris Quirk
and Microsoft Research.

A satisfying life outside of work can be just as important to one’s success in a PhD. The many cur-
rent, former, and honorary members of my beloved Woolsey house were all great friends and made for an
enjoyable place to come home to. The Wednesday night dinner crowd provided highly intelligent humor,
as well as much needed culinary variety to my otherwise burrito- and sandwich-heavy diet. Richard Liang
and Jacob Becklund were always there if I just wanted to eat some ham and play video games. My friends
back home in Canada were surprisingly good at making me feel like I had never left when I visited; Jon
Woodward, Tim Louman-Gardiner, Reka Pataky, and Sarah Ramey in particular provided me with a place
to stay more often that I can probably ever return the favor.

My family has been an unlimited supply of support. My mother has always made sure I know just
how much she brags about my accomplishments, no matter how mundane they seem to me. My brother
was always down to chat online and make me feel jealous about his latest traveling adventures. My father,
probably more than anyone, encouraged the curiosity and work ethic that made want to get a PhD, and few
things sadden me more than that he was not there to see me graduate.

Jessica Kirkpatrick, my partner in crime, made it all worthwhile. She was a relentless cheerleader,
amazing listener, surprisingly willing proofreader, and possibly the only person in the world who enjoys a
good sleep-in as much as I do. I shudder to think of spending these six years in graduate school without her.

Thank you one last time to everyone who I’ve known in my time at Berkeley. I couldn’t have done it
without you.

i



For my dad, who always told me to
look it up in my Funk and Wagnalls.

ii



Contents

Acknowledgements i

Contents iii

List of Figures vi

List of Tables viii

1 Introduction 2

1.1 Structured Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Optimal Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Why Worry about Optimality? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 What This Thesis Is Not About . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Structured Search 6

2.1 Hypergraph Basics and Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Optimal Search Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Weighted Deduction Rules and Agenda-Driven Search . . . . . . . . . . . . . . . . 9

2.3 Approximate Search Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Beam Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Coarse-to-Fine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Heuristic Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Hierarchical Search 15

3.1 Hierarchical A∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

iii



3.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.2 HA∗ for Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.3 Theoretical Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Agenda-Driven Hierarchical Coarse-to-Fine Parsing . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Hierarchical Coarse-to-Fine Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Pruning with Priority Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.2 State-Split Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.3 Lexicalized Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Hierarchical Search with Bridge Scores 30

4.1 Bridge Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Theoretical Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 K-Best List Extraction 36

5.1 A Naive k-Best A∗ Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 NAIVE Search for Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 A New k-Best A∗ Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.1 Deduction Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.2 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.3 Lazy Successor Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.1 Mixing Dynamic Programming and KA∗ . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4.1 State-Split Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4.2 Lexicalized Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4.3 Tree Transducer Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Top-Down k-Best A∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5.1 TKA∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5.3 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

iv



5.5.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Conclusions 54

Bibliography 55

A Proof of Correctness of Hierarchical A∗ 59

A.1 Knuth’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.1.1 Monotonicity Guarantee for Knuth’s Algorithm . . . . . . . . . . . . . . . . . . . . 60

A.1.2 Knuth’s Algorithm with Generalized Weights . . . . . . . . . . . . . . . . . . . . . 61

A.2 Proof of Correctness for HA∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.3 Proof of Correctness for BHA∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.4 Proof of Correctness for KA∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.5 Proof of Correctness for TKA∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

v



List of Figures

2.1 Basic hypergraph concepts. (a) A simple hypergraph with edge set E = {e1, e2, e3, e4} and
vertex set V = {v1,v2,v3, v4, v5, v̄}, leaves V={v1,v2,v3}, and root v̄. (b) A complete path
ρ̄ = {e2, e4}. (c) An (inside) path ρ(v5) = {e2}. (d) An outside path ρ̈(v5) = {e4}. . . . . 7

3.1 A graphical depiction of the deduction rule schema for A∗ (Table 3.1). Items to the left of
the arrow indicate edges and rules that can be combined to produce the state to the right of
the arrow. States are depicted as complete triangles. The value inside an state represents the
weight of that state. Each new state is assigned the priority written above the arrow when
added to the agenda. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Non-base case deductions for HA∗ depicted graphically. (a) shows the IN schema and (b)
shows the OUT-L and OUT-R schemata. Inside states are depicted as complete triangles,
while outside states are depicted as chevrons. A state from a previous level in the hierarchy
is denoted with dashed lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Efficiency of several hierarchical parsing algorithms, across the test set. UCS and all A∗

variants are optimal and thus make no search errors. The CTF variants all make search
errors on about 2% of sentences. The number in parenthesis on the axis labels indicates
which auxiliary grammars were used for computing heuristics and/or pruning. For example,
HA∗ (3-5) means that HA∗ was run with a hierarchy in which the 3-, 4-, and 5-split grammars
were the auxiliary grammars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Average slack (difference between estimated outside cost and true outside cost) at each level
of abstraction as a function of the size of the outside context. The average is over states
in the Viterbi tree. The lower and upper dashed lines represent the slack of the exact and
uniformly zero heuristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 States pushed as a function of the average slack for spans of length 10 when parsing with
each auxiliary grammar individually. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 States pushed as function of sentence length for HA∗ 3-5 and CTF 0-5. . . . . . . . . . . . 27

3.7 Performance of CTF as a function of search errors for state split grammars. The dashed
lines represent the time taken by UCS and HA∗ which make no search errors. As search
accuracy increases, the time taken by CTF increases until it eventually becomes slower than
HA∗. The y-axis is a log scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.8 Performance of CTF for lexicalized parsing as a function of search errors. The dashed line
represents the time taken by A∗, which makes no search errors. The y-axis is a log scale. . . 29

vi



4.1 A pictorial representation of the bridge outside score for the vertex v8. The outside path
ρ̈(v8) = {e1, e2, e3} has bridge outside score w̃(ρ(v8)) = w(e1) + w(π(e2)) + w(e3). The
hyperedge e2 (shown with dotted lines) is scored with its coarse weight because it is a right
cousin of v8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Non-base case deductions for BHA∗ depicted graphically. (a) shows the IN schema, (b)
shows OUT-L, and (c) shows OUT-R. Inside states are depicted as complete triangles, while
outside states are depicted as chevrons. A state from a previous level in the hierarchy is
denoted with dashed lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Performance of HA∗ and BHA∗ as a function of increasing refinement of the coarse gram-
mar. Performance is measured in terms of number of states pushed onto the agenda, so lower
is faster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Performance of BHA∗ on hierarchies of varying size, measured in terms of number of states
pushed onto the agenda. Along the x-axis, we show which coarse grammars were used in the
hierarchy. For example, 3-5 indicates the 3-,4-, and 5-split grammars were used as auxiliary
grammars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Representations of the different types of items used in parsing. (a) An inside edge item:
I(VP, 2, 5). (b) An outside edge item: O(VP, 2, 5). (c) An inside derivation item:
D(TVP, 2, 5) for a tree TVP. (d) A ranked derivation item: K(VP, 2, 5, 6). (e) A modified in-
side derivation item (with backpointers to ranked items): D(VP, 2, 5, 3,VP→ VBZ NP, 1, 4). 39

5.2 The delayed DERIV deduction rule schema. . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Number of derivation items enqueued as a function of heuristic. Heuristics are shown in
decreasing order of tightness. The y-axis is on a log-scale. . . . . . . . . . . . . . . . . . . 46

5.4 The cost of k-best extraction as a function of k for state-split grammars, for both KA∗ and
EXH. The amount of time spent in the k-best phase is negligible compared to the cost of the
bottom-up phase in both cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5 The performance of KA∗ for lexicalized grammars. The performance is dominated by the
computation of the heuristic, so that both the bottom-up phase and the k-best phase are
barely visible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.6 The cost of k-best list extraction as a function of k for tree transducer grammars, for both
KA∗ and EXH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.7 Representations of the different types of states used in parsing. (a) An inside edge
item I(VP, 2, 5). (b) An outside edge item O(VP, 2, 5). (c) An inside derivation item:
D(TVP, 2, 5). (d) An outside derivation item: Q(TRVP, 2, 3, {(NP, 3, n)}. The vertices in
boldface are frontier vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.8 Top-down expansion of an outside derivation item. (a) An outside derivation item before
expansion at (VP, 2, 5). (b) The result of expanding the item in (a) using the rule VP→ VB
NN. Frontier vertices are marked in boldface. . . . . . . . . . . . . . . . . . . . . . . . . . 51

vii



List of Tables

3.1 Deduction rule schema for A∗ parsing. The items on the left of the→ indicate what states
must be present on the chart, and the item on the right is the state that may be added to the
agenda. The weight of each edge appears after the colon. The rule r is A → B C with
weight wr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Inside and outside deduction rule schemata for HA∗ parsing. The rule r is in all cases
Am → Bm Cm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Deduction rules for BHA∗ parsing. The rule r is in all cases Am → Bm Cm. . . . . . . . . 32

5.1 The deduction schema (IN) for building inside edge items, using a supplied heuristic. This
schema is sufficient on its own for 1-best A∗, and it is used in KA∗. Here, r is the rule
A→ B C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 The deduction schema for building derivations, using a supplied heuristic. TB and TC denote
full tree structures rooted at symbols B and C. This schema is the same as the IN deduction
schema, but operates on the space of fully specified inside derivations rather than dynamic
programming edges. This schema forms the NAIVE k-best algorithm. . . . . . . . . . . . . 38

5.3 The deduction schemata for building ouside edge items. The first schema is a base case that
constructs an outside item for the goal (G, 0, n) from the inside item I(G, 0, n). The second
two schemata build outside items in a top-down fashion. Note that for outside items, the
completion cost is the weight of an inside item rather than a value computed by a heuristic. . 38

5.4 The deduction schema for building derivations, using exact outside scores computed using
OUT deductions. The dependency on the outside item O(A, i, j) delays building derivation
items until exact Viterbi outside scores have been computed. This is the final search space
for the KA∗ algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.5 The schemata for simultaneously building and ranking derivations, using a supplied heuris-
tic, for the lazier form of the NAIVE algorithm. BUILD builds larger derivations from
smaller ones. RANK numbers derivations for each vertex. Note that RANK requires dis-
tinct Di, so a rank k RANK rule will first apply (optimally) as soon as the kth-best inside
derivation item for a given vertex is removed from the queue. However, it will also still for-
mally apply (suboptimally) for all derivation items dequeued after the kth. In practice, the
RANK schema need not be implemented explicitly – one can simply assign a rank to each
inside derivation item when it is removed from the agenda, and directly add the appropriate
ranked inside item to the chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

viii



5.6 The deduction schemata for building and ranking derivations, using exact outside scores
computed from OUT deductions, used for the lazier form of the KA∗ algorithm. . . . . . . . 46

5.7 The deduction rules used in TKA∗. Here, r is the rule A → B C. IN is the standard inside
deduction from A∗. In OUT-D, the tree TRB is the tree TRA extended at (A, i, j) with rule r,
FC is the list F with (C, l, j) prepended, and β(F) is

∑
v∈F β(v). Whenever the left child

I(B, i, l) of an application of OUT-D represents a terminal, the next vertex is removed from
F and is used as the new point of expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.1 Deduction rules for HA∗ on general hypergraphs. Note that because of the way the chart is
initialized, the weight of a state O(v−1) is given by the outside heuristic α̂(v0). The IN and

OUT schemata both refer to an edge e = vm1 . . . vmn
w(e)−−−→ vm. . . . . . . . . . . . . . . . . 62

A.2 Reformulation of the HA∗ deductions (Table A.1). These rules are equivalent to HA∗,
but in a form that can be cast as an instance of Knuth’s algorithm. We omit the priority
above the arrow because in this formulation, the priority of a rule is the same as its weight
(pψ(·) ≡ gψ(·)). Note that because of the way the chart is initialized, the weight of a
state O(v−1) is given by (−∞, α̂(v0)). The IN and OUT schemata both refer to an edge

e = vm1 . . . vmn
w(e)−−−→ vm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.3 Deduction rule schemata for BHA∗ on general hypergraphs. Note that because of the way
the chart is initialized, the weight for a state I(v−1) is β̂(v0). The IN and OUT schemata

both refer to an edge e = vm1 . . . vmn
w(e)−−−→ vm. . . . . . . . . . . . . . . . . . . . . . . . . 67

A.4 Reformulated deduction rule schemata for BHA∗ that allow it to be cast as an instance of
Knuth’s algorithm. We omit the priority above the arrow because in this formulation, the
priority of a rule is the same as its weight (pψ(·) ≡ gψ(·)). Note that because of the way the
chart is initialized, the weight for a state I(v−1) is given by (β̂(v0),−∞). The IN and OUT

schemata both refer to an edge e = vm1 . . . vmn
w(e)−−−→ vm. . . . . . . . . . . . . . . . . . . . 67

1



Chapter 1

Introduction

1.1 Structured Prediction

At a high-level, the goal of research in Natural Language Processing (NLP) is to get computers to

understand and produce human language. Of course, this is a lofty and ill-defined goal – what exactly

does it mean for a computer to “understand” human language? As such, much of NLP research focuses on

specific tasks that can be concretely formulated. For example, machine translation is the task of taking a

sentence in one language and producing a grammatically correct and semantically faithful rendering of it

in another; parsing is the task of producing a syntactic or semantic analysis of an input sentence in some

agreed-upon grammatical formalism; and text categorization is the task of assigning one of a pre-defined

set of categories such as “sports” or “politics” to a document.

A large number of these tasks can be formulated as the assignment of the “best” label to an input, where

the notion of “best” is captured by a score assigned by a model. In some cases, like text categorization,

the set of labels is fixed and usually small, and explicitly scoring all possible labels is trivial. However, in

many cases, the set of possible labels can be unmanageably large and even enumerating the set would be

intractable. For example, the set of possible labels for machine translation might be the set of all sentences

in the output language, which can in principle be infinite. Fortunately, these large label sets typically exhibit

some kind of structure – that is, they are composed of smaller parts. Because they are composed of parts,

it possible to construct labels piece-by-piece. The problem of predicting such structured labels is referred to
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as structured prediction, and the process of incrementally constructing the best structured label(s) is called

search (or sometimes decoding).

1.2 Optimal Search

In this thesis, we consider problems for which it is feasible to perform exact or optimal search – that

is, search that is guaranteed to find the best possible label according to a model. In particular, we will study

problems that can be formulated as a search for the best path in a weighted directed hypergraph (Gallo et al.,

1993). Many problems can be formulated in this way, including parsing (Klein and Manning, 2001b) with

a probabilistic context-free grammar (PCFG), bitext parsing (Wu, 1997), and syntactic machine transla-

tion (Galley et al., 2006). This formalism also includes weighted directed graphs as a special case, allowing

us to treat search in sequence models using the same framework.

In general, optimal search in a hypergraph can be done using dynamic programming in time linear in the

number of hyperedges it contains, though the number of hyperedges is not necessarily linear in the size of

the input. We will restrict ourselves to problems where the number of hyperedges is polynomial in the size

of the input – meaning optimal search is tractable – but large, so that exhaustive dynamic programming is

cumbersome. We will discuss algorithms that can find the best path without considering all hyperedges in the

hypergraph, and hence can speed up search without sacrificing search quality. We will also propose search

algorithms that can extract the k-best paths instead of the single best. We will compare these approaches both

against exhaustive search, and against approximate search techniques which speed up search by sacrificing

optimality guarantees.

1.2.1 Why Worry about Optimality?

In many practical settings, finding a solution that is guaranteed to be optimal is not a primary concern.

Many practical search algorithms focus on providing good trade-offs between search speed and quality, and

it is often possible to achieve significant gains in search speed by incurring a relatively small number of

search errors. Moreover, there is no guarantee the model-optimal solution is actually the best according
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some external evaluation metric, and it is not uncommon for researchers to find that introducing search

errors actually increases task-level accuracy!

So one might ask, why worry about optimality at all? There are several reasons. First, even in cases

where one is willing to trade search quality for speed, it is not possible to know exactly how many search

errors are caused by inexact search procedures unless one has access to an optimal search procedure. Second,

there are cases in which optimal search can be faster and more accurate than sub-optimal search – we

discuss such a case in Section 3.3.3. Finally, optimal search techniques often have relatively clear sub-

optimal variants, and the development of more powerful optimal search techniques can lead to new and

more successful sub-optimal algorithms. For example, the k-best list extraction technique we discuss in

Chapter 5 can be employed with inadmissible heuristics to yield search that is inexact, but still employs a

heuristic to speed up search in a fashion which is to our knowledge novel.

1.3 What This Thesis Is Not About

This thesis is not about learning models for structured prediction. We will always assume a fixed model,

and concern ourselves only with the task of discovering the best (or k-best) labels for some input given that

model. For a comprehensive review of approaches to learning such models, we refer the reader to Smith

(2011).

This thesis always makes the assumption that the notion of the “best” label under a model denotes the

single highest scoring label (usually called the Viterbi label). Other notions of best are used in the literature.

For example, in Minimum Bayes Risk decoding (Kumar and Byrne, 2004), the goal is to find the label which

minimizes the expected loss for some user-defined loss function; note that the Viterbi label is the Minimum

Bayes Risk label if the 0-1 loss is used.

1.4 Outline

This thesis is structured as follows. Chapter 2 introduces notation and provides relevant background for

search algorithms for structured problems. In particular, we discuss dynamic programming, agenda-based
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search, and non-optimal search strategies. Chapter 3 describes the Hierarchical A∗ algorithm of Felzen-

szwalb and McAllester (2007) and provides comparisons against other optimal and non-optimal search al-

gorithms on the task of parsing. Chapter 4 describes a novel modification of Hierarchical A∗ called Bridging

Hierarchical A∗, which demonstrates more robustness to different choices of hierarchies. In Chapter 5, we

propose two methods for extracting k-best lists using A∗ search algorithms. We conclude in Chapter 6.

1.5 Contributions

The contributions of this thesis are:

• An empirical comparison of optimal and non-optimal hierarchical search strategies for parsing (Chap-

ter 3). This chapter is largely based on work previously published in Pauls and Klein (2009b).

• Bridging Hierarchical A∗, a novel variant of Hierarchical A∗ (Chapter 4). This chapter is largely based

on work previously published in Pauls and Klein (2010a).

• K-best A∗, a generalization of A∗ that allows the extraction of k-best lists. This chapter is largely

based on work previously published in Pauls and Klein (2009a) and Pauls and Klein (2010b).

• A novel proof of correctness for Hierarchical A∗ that, with minor modification, also proves the correct-

ness of Bridging Hierarchical A∗ (Appendices A.2 and A.3). This proof also generalizes Hierarchical

A∗ (and hence also standard A∗) to allow negative weights.
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Chapter 2

Structured Search

2.1 Hypergraph Basics and Problem Statement

A weighted directed hypergraph is a combinatorial data structure that generalizes the notion of a

weighted directed graph. A hypergraph G is composed of a set of vertices V and directed (hyper)edges

E, where each edge e ∈ E has a list of tail vertices T (e), head vertices H(e), and weight w(e) ∈ R. A

graph is the special case when both T and H always have cardinality of at most one. A B-hypergraph is

a hypergraph in which H must have cardinality one, but the cardinality of T is not constrained; see Fig-

ure 2.1(a) for an example B-hypergraph. We will implicitly assume that hypergraphs are B-hypergraphs for

the remainder of the thesis, and use h(e) to denote the single head of a hyperedge. We will often write a

hyperedge in the form

v1 . . . vn
w−→ v

where T (e) = {v1, . . . , vn}, h(e) = v, and w = w(e).

The vertex set V contains a distinguished root vertex v̄ and leaf vertices V . The root vertex is the “goal”

or “sink” of G, while the leaf vertices are the “start” or “source” vertices. Leaf vertices are never the head

of any edge, and the root vertex is never in the tail of any edge.
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Figure 2.1. Basic hypergraph concepts. (a) A simple hypergraph with edge set E = {e1, e2, e3, e4}
and vertex set V = {v1, v2, v3, v4, v5, v̄}, leaves V = {v1, v2, v3}, and root v̄. (b) A complete path
ρ̄ = {e2, e4}. (c) An (inside) path ρ(v5) = {e2}. (d) An outside path ρ̈(v5) = {e4}.

An inside path (or simply path) ρ(v) to a target vertex v is a set of hyperedges that satisfies the fol-

lowing recursive property: if v ∈ V , then the set is empty; otherwise, the set is the union of exactly one

hyperedge e with h(e) = v and paths ρ(vi) for each vi ∈ T (e). See Figure 2.1(c) for an example. We call

a path to the root v̄ a complete path (Figure 2.1(b)), which we denote as ρ̄.1 The weight w(ρ(v)) of a path

ρ(v) is
∑

e∈ρ(v) w(e). We will take the convention that weights are costs to be minimized, so that the “best”

or “optimal” path to v is arg minρ(v)w(ρ(v)). We will assume that the hypergraphs that we deal with do not

have negative cycles, so that the weight of the best path can not be arbitrarily negative.

Hypergraphs provide a language for compactly encoding a large number of possible weighted tree struc-

tures or derivations over the leaves V . This formalism is very powerful, and can be used to encode possible

labels for a wide variety of problems already discussed in the introduction. Throughout this thesis, we will

assume that we are given a grammar G (for example, a PCFG) that tells us how to construct a hypergraph
1Note that this definition does not require that a complete path contains an outgoing hyperedge for every leaf vertex. In practice,

this is a problem-specific but very common requirement. For example, in parsing, each vertex is associated with a range of leaf
vertices, and hyperedges can only combine vertices that cover adjacent ranges. However, we stress that this requirement can be
encoded with an appropriate choice of vertices V and hyperedges E, and does not require modification of the general hypergraph
framework.
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G = (V,E) for a given input (for example, a sentence). Our goal in this thesis is to provide efficient

algorithms for extracting the 1-best or k-best paths through G.

2.2 Optimal Search Algorithms

2.2.1 Dynamic Programming

In general, it is possible to construct the best path through a hypergraph G using an O(|E|) dynamic

program that visits each hyperedge in the hypergraph exactly once. Because paths through hypergraphs are

trees, they exhibit the optimal substructure property: the best path to a vertex v must be constructed from

some edge e with h(e) = v and the best paths to each of the children of e. This allows us to express the

weight of best path to v, which we will denote with β(v), with a simple recursion:

β(v) = min
e:h(e)=v

w(e) +
∑

v′∈T (e)

β(v′)

with base case β(v) = 0 ∀v ∈ V . The weight β(v) is called the Viterbi inside cost. We can efficiently

calculate β(v) for all v in a bottom-up fashion, where the notion of “bottom-up” is captured by a topolog-

ical ordering on the vertices (see Huang (1998) for more details). Not all hypergraphs have a topological

ordering, though most grammars of interest produce hypergraphs that either have a topological ordering,

or can be transformed into hypergraphs that do. For example, PCFGs that contain unary cycles can have

cycles removed by computing a unary closure. After computing β(v) for all v, we can recover the weight

of the best complete path in the graph from β(v̄), and the best path itself can be recovered by maintaining

backpointers that remember which hyperedge e obtained the minimum for each v.

This general dynamic program includes the Viterbi algorithm for sequence models and the CKY al-

gorithm for PCFGs as special cases, among others. Although this algorithm is linear in the size of the

hypergraph, it is not necessarily linear in the size of the input. For example, for PCFGs, the number of

hyperedges in the hypergraph for a sentence of length n is O(n3). Even worse, the number of hyperedges

also depends on a multiplicative factor which, although constant with respect to the size of the input, can

nevertheless be quite large. For example, for sequence models, the number of hyperedges is O(n · |S|2),
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where n is the length of the sequence and |S| is the number of possible symbols at each step in the sequence.

This factor is often called the grammar constant, and can be prohibitively large for many grammars.2

Viterbi outside costs

A similar dynamic program can also be used to calculate the Viterbi outside cost α(v), which is the

best possible weight of extending a path to v all the way to the root v̄. More formally, an outside path,

denoted ρ̈(v), is a set of vertices given by ρ̄(v)− ρ(v) for some (inside) path ρ(v) and a complete path ρ̄(v)

passing through v, where ρ(v) ⊆ ρ̄(v); see Figure 2.1(d). The Viterbi outside cost of v is the minimum over

all ρ̈(v).

The Viterbi outside cost satisfies the recursion

α(v) = min
e:v∈T (e)

w(e) + α(h(e)) +
∑

v′∈T (e)−v

β(v′)

and can be computed by proceeding through the vertices in reverse topological order, with base case

α(v̄) = 0.

The sum of Viterbi inside and outside costs for a vertex v give us the max-marginal µ(v), which is the

cost of the best complete path ρ̄(v) that contains v. That is, β(v) + α(v) = µ(v).

Computing the Viterbi outside costs or max-marginals is not necessary for performing search – in par-

ticular, this computation requires that search has already been performed by computing β(v) for all v.

However, outside scores and max-marginals will prove useful in several of the techniques we discuss in this

thesis.

2.2.2 Weighted Deduction Rules and Agenda-Driven Search

An alternative to dynamic programming for search in hypergraphs is an agenda-driven search using

weighted deduction rules (Shieber et al., 1995; Nederhof, 2003). Weighted deduction rules provide a lan-
2In fact, in many cases, although the grammar constant is asymptotically constant for large n, it is not necessarily constant for

practical values of n (Klein and Manning, 2001a).
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guage for specifying search states or items along with rules that declare how states can be combined together

to form new states. A deduction rule ψ has the form

φ1 : w1 . . . φn : wn
pψ(w1,...,wn)
−−−−−−−−→ φ0 : gψ(w1, . . . , wn)

where φ1, . . . , φn are the antecedent states of the deduction rule and φ0 is the conclusion state. A deduc-

tion rule states that, given the antecedents φ1, . . . , φn with weights w1, . . . , wn, the conclusion φ0 can be

produced with weight gψ(w1, . . . , wn) and priority pψ(w1, . . . , wn). For the algorithms we discuss in this

paper, states will be associated with vertices in the hypergraph and rules will be associated with hyperedges,

though the association will not necessarily be one-to-one.

Deduction rules are “executed” within a generic agenda-driven algorithm that constructs states in a

prioritized fashion. The algorithm maintains an agenda (a priority queue of unprocessed states), as well as

a chart or closed list of states already processed. The agenda is initialized with a set of initial states. The

fundamental operation of the algorithm is to pop the highest (minimum) priority state φ from the agenda,

put it into the chart with its current weight, and form using deduction rules any states that can be built by

combining φ with other states already in the chart. If the conclusion state is new, or is already on the agenda

but with a worse priority, it is put on the agenda with priority given by pψ(·) and weight gψ(·). The search

proceeds until a state that satisfies a goal test is reached.

This framework defines a declarative way for specifying several important search algorithms. For ex-

ample, Dijkstra’s algorithm (Dijkstra, 1959), uniform cost search, and A∗ search (Hart et al., 1968) can all

be expressed as particular choices of pψ(·) and gψ(·). In fact, even exhaustive dynamic programming can be

described using deduction rules by simply assigning priorities to states that yield the topological ordering in

the hypergraph. The algorithms in Chapters 3, 4, and 5 will all be expressed using weighted deduction rules.

A∗ Search

The A∗ algorithm of Hart et al. (1968) was originally designed for search in graphs, and was extended

by Klein and Manning (2003c) for search in hypergraphs. Several algorithms in this thesis are generaliza-

tions of this basic algorithm, and we describe it here as an example usage of weighted deduction rules.
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We can construct weighted deduction rules that describe the A∗ algorithm for a particular hypergraph

G as follows: for each hyperedge e ∈ G, we construct a deduction rule ψ whose antecedent states represent

the tail vertices T (e) and whose conclusion state represents the head vertex h(e). The functions gψ(·) and

pψ(·) are given by

gψ(w1, . . . , wn) = w(e) +
n∑
i=1

wi

and

pψ(w1, . . . , wn) = gψ(w1, . . . , wn) + α̂(h(e))

where α̂(·) is a heuristic, which is an estimate of the Viterbi outside score. The search is initialized by

placing states for each leaf vertex v ∈ V on the agenda, and proceeds until a state representing the root

vertex is removed from the agenda.

If the heuristic is consistent, meaning it satisfies α̂(v̄) = 0 and

w(ρ(v)) + α̂(v) ≤
∑

v′∈T (e)

w(ρ(v′)) + α̂(h(e)) + w(e)

for all edges e ∈ G with v ∈ T (e) and all paths ρ(v) and ρ(v′) to vertices v, v′ ∈ T (e), then A∗ search

guarantees that when a state is removed from the agenda, its weight will be equal to the Viterbi inside cost

β(v) of the vertex v it represents. We refer to this guarantee as a correctness guarantee. As a special

case, this guarantee ensures that when the root state is reached, its weight will be the weight of the best

path to the root v̄. The actual path itself can be constructed by maintaining backpointers. A∗ also provides

a monotonicity guarantee, which states that vertices are removed from the agenda in increasing order of

β(v) + α̂(v).

A consistent heuristic is also admissible, meaning that α̂(v) is a lower bound on the cost of any outside

paths ρ̈(v) from v, i.e. α̂(v) ≤ α(v) for all v. The more tightly α̂(·) approximates α(·), the quicker the

search will proceed. In particular, the monotonicity guarantee implies that A∗ will explore all vertices that

satisfy
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β(v) + α̂(v) ≤ β(v̄)

In other words, A∗ explores all vertices whose estimated best path cost β(v) + α̂(v) is better than the true

best path through the graph. As a special case, if heuristic is perfect, meaning α̂(v) = α(v) for all v, then

A∗ will only explore vertices that are on the best path (up to ties).

In addition to allowing exact search without exploring the entire hypergraph, A∗ also has the advantage

that it does not require that a topological ordering on the vertices exists since it handles cycles implicitly;

see Huang (1998) for more discussion.3

2.3 Approximate Search Algorithms

The previous section described well-known search techniques for hypergraphs that are provably opti-

mal, and gave an example of a search technique (A∗) that is optimal despite not exploring all edges in a

hypergraph. In this section, we describe search techniques that avoid exploration of the entire hypergraph

in ways that do not guarantee optimality, but are often used in practice because they can be made arbitrarily

fast, though at the cost of arbitrarily large potential for search errors. These techniques will be useful in

determining how much efficiency we lose by using algorithms that guarantee optimality.

2.3.1 Beam Search

Beam search (Lowerre, 1976) is a pruning procedure that introduces competition among groups of

vertices, and keeps only the best set of vertices in each group. The notion of a “group” is captured by some

projection function π(v). In most cases, there are some quite natural projections: for example, in HMMs,

where beam search was first employed, vertices that represent states at a particular time step are projected

into the same group; in parsing, it is common to project vertices that represent states that cover a particular

span of a sentence to the same group. There are many different strategies for choosing the “best set” of
3Although the hypergraphs may be cyclic, the optimal solutions cannot. Note that this is a vacuous condition because in the

absence of negative cycles, a cycle can only increase the cost of a solution and thus cannot be part of an optimal solution.
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vertices in each group. Two common choices are to keep a fixed number of vertices, or to keep all vertices

within some threshold of the best vertex found for each group.

By pruning vertices early on in the search, beam search reduces the number of hyperedges explored

because any hyperedge reachable only by a pruned vertex will never be considered. This strategy can lead to

search errors because the optimal path may involve a vertex v that has sufficiently low Viterbi inside score

β(v) relative to other vertices in its group that it is pruned from consideration. Even worse, beam search has

the peculiar property that it is possible for it to find solutions with higher costs when the beams are made

larger. Nevertheless, its simplicity makes it a common choice in practice.

2.3.2 Coarse-to-Fine

Coarse-to-fine search (Charniak and Johnson, 2005), hereafter CTF, is a modification of exhaustive dy-

namic programming. Like beam search, CTF introduces competition among groups of vertices specified by

a projection function. However, where beam search prunes vertices “on-the-fly” as search proceeds, CTF

prunes vertices in advance by first performing dynamic programming in a projected “coarse” grammar, and

pruning any vertices whose projections were low-scoring according to the coarse grammar. More formally,

given some projection function π, CTF builds a smaller, projected hypergraph Gπ for a graph G by pro-

jecting each edge e = v1 . . . vn
w−→ v to a coarse edge π(e) = eπ = π(v1) . . . π(vn) wπ−−→ π(v) of

with wπ chosen to approximate w(e). CTF then computes Viterbi inside and outside scores using dynamic

programming, and prunes vertices from G whose projections have with high max-marginal cost µ(π(v)) in

Gπ. More precisely, CTF prunes any vertex v ∈ V with

µ(π(v)) ≥ µ(π(v̄)) + τ

CTF can prune far more effectively than beam search because it makes pruning decisions based on coarse

max-marginals µ(π(v)), which incorporate both inside and outside information, where beam search only

considers the inside scores β(v). However, the performance of CTF is dependent on an appropriate choice

of approximating weights w(eπ), which is not necessary in standard beam search.

We note the particular algorithm we have described here is a special case of a larger family of algorithms
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that go by the name of “coarse-to-fine.” In particular, it is common to prune based on sum-marginals instead

of max-marginals (Charniak and Johnson, 2005).

2.3.3 Heuristic Search

When we described agenda-based search in Section 2.2.2, we assumed that the priority function p(·)

took the form p(v) = β(v)+α̂(v) for some consistent heuristic α̂, which is sufficient to guarantee optimality.

There are several other choices of priority functions that can lead to significant increases in efficiency, though

at the cost of optimality guarantees. For example, if α̂(·) is inadmissible (and hence inconsistent), we lose

optimality, but it becomes much easier to devise heuristics that tightly approximate the true Viterbi outside

costs α(·). Many practical algorithms rely on heuristic search; in particular, most phrase-based machine

translation systems rely heavily on inadmissible heuristic costs for efficient search (Koehn et al., 2003).
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Chapter 3

Hierarchical Search

In Chapter 2, we reviewed well-known techniques for optimal- and non-optimal search in hypergraphs.

In this chapter, we empirically evaluate hierarchical search techniques which have become increasingly

popular for NLP problems (Charniak et al., 2006; Petrov and Klein, 2007). In particular, we evaluate the

Hierarchical A∗ (HA∗) algorithm of Felzenszwalb and McAllester (2007), and compare it against non-

hierarchical A∗ as well as the hierarchical (non-optimal) coarse-to-fine algorithm of Petrov and Klein (2007).

We evaluate these techniques on several different parsing problems.

3.1 Hierarchical A∗

HA∗ is described in its most general form in Felzenszwalb and McAllester (2007). In this section, we

first give a brief overview of HA∗ as it applies to hypergraphs in general, and then describe the algorithm in

detail as it applies to parsing.

3.1.1 Overview

In standard, non-hierarchical A∗, the heuristic α̂(·) is assumed to come from a black box. For example,

Klein and Manning (2003c) precomputes most heuristics offline, while Klein and Manning (2003a) solves

simpler parsing problems for each sentence. In such cases, the time spent to compute heuristics is often
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non-trivial. Indeed, it is typical that effective heuristics are themselves expensive search problems. HA∗

relies on the insight that the heuristic itself can be computed in an agenda-driven way, making it possible

speed up the computation of a heuristic using the A∗ algorithm itself.

Formally, HA∗ takes as input a sentence and a sequence (or hierarchy) of M + 1 grammars G0 . . .GM ,

where GM is the target grammar and G0 . . .Gm−1 are auxiliary grammars. Each grammar Gm tells us how

to generate a hypergraph Gm for a given input as in Chapter 2, with a root vertex v̄m and leaf vertices V m.

The hypergraphs G0 . . . GM must form a hierarchy in which Gm−1 is a relaxed projection of Gm. A

grammarGm−1 is a relaxed projection ofGm if it is a projection (as defined in Section 2.3.2) with projection

function π(·) and approximate weights w(eπ) ≤ w(e) for all e that project to eπ. Given a target graph Gm

and a projection function π, it is easy to construct a relaxed projection Gm−1 by minimizing over edges

collapsed by π(·):

w(eπ) = min
π−1(e)

w(eπ)

where we denote the set of edges that project to eπ with π−1(eπ). Given a series of projection functions

π1 . . . πM , we can construct a hierarchy of relaxed projections by projecting GM to GM−1 using πM , then

GM−1 to GM−2 using πM−1, and so on. Note that by construction, Viterbi inside and outside scores in a

relaxed projection Gm−1 are consistent heuristics for parses in Gm (Felzenszwalb and McAllester, 2007).

HA∗ differs from standard A∗ in two ways. First, A∗ only performs search for a single hypergraph, and

all states in the search represent possible Viterbi inside scores for vertices in the target graph GM . HA∗,

on the other hand, performs search in all levels in the hierarchy, with states representing possible scores for

vertices for all graphs G0 . . . GM in the hierarchy, though these states all co-exist on single, global priority

queue. Second, while A∗ only computes inside scores for vertices it explores, HA∗ computes both inside

and outside scores for vertices (except for vertices in GM , where only inside scores are needed). Because

Viterbi outside scores in a relaxed projection Gm−1 form consistent heuristics for a graph Gm, HA∗ can

compute both heuristics and final path costs using the same mechanism, without having to exhaustively

compute inside and outside scores at any level of the hierarchy.
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3.1.2 HA∗ for Parsing

Here, we describe the HA∗ algorithm in detail as it applies to parsing, in hopes of that concreteness will

make the algorithm more readily understandable. We refer the reader to Appendix A and to Felzenszwalb

and McAllester (2007) for a more general treatment.

For parsing, our grammars Gm take the form of a PCFG in Chomsky normal form1 with rules of the form

r = Am → Bm Cm, whereAm,Bm andCm all represent non-terminal symbols in the Gm. This vocabulary

has a distinguished root symbol Rm. Each rule r has a non-negative2 weight wr (e.g. a negative log

probability), and we wish to minimize the sum of the rule weights. Given an input sentence S = s0 . . . sn−1

and a PCFG grammar, we construct a hypergraph in which each vertex represents a symbolAm over a span3

[i, j] of the sentence, which we denote as (Am, i, j). For each pair of vertices (Bm, i, l) and (Cm, l, j), the

hypergraph contains an edge with head (Am, i, j) for every rule Am → Bm Cm. There is one leaf vertex

vm = (smi , i, i+ 1) for each word smi in the input sentence, and the root vertex is v̄m = (Rm, 0, n). We use

the notation Am−1 to refer to πm(Am).

As mentioned previously, HA∗ tracks states that compute both inside and outside scores for each vertex;

we call these different types of states inside states and outside states. We denote inside and outside states

as ιm = I(Xm, i, j) and om = O(Xm, i, j), respectively. For example, I(VP, 0, 3) denotes a state that

tracks the inside score of the vertex (VP, 0, 3). When we need to denote the inside version of an outside

edge, or the reverse, we write om = ι̌m, etc. We refer to the weight of inside and outside states as w(ιm)

and w(om) on the chart.

Like A∗, HA∗ can be formulated in terms of weighted deduction rules. As we described in Section 2.2.2,

A∗ required one weighted deduction rule per hyperedge in the hypergraph, with antecedents corresponding

to the tail of the hyperedge and conclusion corresponding to the head. Because HA∗ computes both inside

and outside scores, and uses outside scores at one level as heuristics in the next, the rules are somewhat more

complex. However, they can be compactly described in terms of deduction rule schemata which specify
1Chomsky normal form demands that all rules are binary. Unary rules and preterminal productions, which are present in most

grammars, can be easily expressed as binary rules with an empty right child. Rules that have more than two children can be
binarized.

2Non-negative weights are not actually a requirement for A∗ or HA∗. We discuss this further in Appendix A.
3As is standard, we take the convention that the first index of a span is inclusive and the second is exclusive, so that the span

[0, 2] covers words s0 and s1.
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Inside Deduction for A∗

IN: I(B, i, l) : wA I(C, l, j) : wC
wB+wC+wr+α̂(A,i,j)−−−−−−−−−−−−−−−−→ I(A, i, j) : wB + wC + wr

Table 3.1. Deduction rule schema for A∗ parsing. The items on the left of the → indicate what
states must be present on the chart, and the item on the right is the state that may be added to the
agenda. The weight of each edge appears after the colon. The rule r is A→ B C with weight wr.

A

i j

B 

i l

C 

l j

wC

A

B C
wr

wB +wC+wr

wB+wC+wr+  (A,i,j)α̂

wB

Figure 3.1. A graphical depiction of the deduction rule schema for A∗ (Table 3.1). Items to the left
of the arrow indicate edges and rules that can be combined to produce the state to the right of the
arrow. States are depicted as complete triangles. The value inside an state represents the weight of
that state. Each new state is assigned the priority written above the arrow when added to the agenda.

general templates for instantiating concrete deduction rules. A∗ can be described by a single schema, shown

in Table 3.1 and Figure 3.1. This schema is instantiated into a concrete deduction rule for each possible rule

r = A→ B C and indexes 0 ≤ i < n, i < j ≤ n, and i < l < j.

The five deduction rule schemata that describe HA∗ for parsing are given in Table 3.2 and represented

graphically in Figure 3.2. The general form of HA∗ is given in Table A.1 in the Appendix. The IN schema

(a) is the familiar deduction rule from standard A∗: we can combine two adjacent inside state using a binary

rule to form a new inside state. The new twist is that because heuristics (scores of outside edges from the

previous level) are also computed on the fly, they may not be ready yet. Therefore, we cannot carry out

this deduction until the required outside state is present in the previous level’s chart. That is, fine inside

deductions wait for the relevant coarse outside states to be popped. While coarse outside states contribute to

priorities of refined inside scores (as heuristic values), they do not actually affect the inside scores of states

(again just like basic A∗).

In standard A∗, we begin with all terminal states on the agenda. However, in HA∗, we cannot enqueue

refined terminal states until their outside scores are ready. The IN-B schema specifies the base case for
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Inside Deductions for Hierarchical A∗

IN-B: O(sm−1
i , i, i+ 1) : w

w−→ I(smi , i, i+ 1) : 0

IN: O(Am−1, i, j) : wA I(Bm, i, l) : wB I(Cm, l, j) : wC
wB+wC+wr+wA−−−−−−−−−−−−−→ I(Am, i, j) : wB + wC + wr

Outside Deductions for Hierarchical A∗

OUT-B: I(Rm, 0, n) : w
w−→ O(Rm, 0, n) : 0

OUT-L: O(Am, i, j) : wA I(Bm, i, l) : wB I(Cm, l, j) : wC
wA+wC+wr+wB−−−−−−−−−−−−−→ O(Bm, i, l) : wA + wC + wr

OUT-R: O(Am, i, j) : wA I(Bm, i, l) : wB I(Cm, l, j) : wC
wA+wB+wr+wC−−−−−−−−−−−−−→ O(Cm, l, j) : wA + wB + wr

Table 3.2. Inside and outside deduction rule schemata for HA∗ parsing. The rule r is in all cases
Am → Bm Cm.

A

i j

wB +wC+wr

wB+wC+wr+wA

wA

A

0 i j n

B 

i l

C 

l j

wC

A

B C
wr

wB

(a)

wB+wC+wr+wA

wA

A

0 i j n

wB+
wC+

wr+wA

0 n

wA +wB+wr

C 

l j

0 n

wA +wC+wr

B 

i l

B 

i l

C 

l j

wC

A

B C
wr

wB

(b)

Figure 3.2. Non-base case deductions for HA∗ depicted graphically. (a) shows the IN schema and
(b) shows the OUT-L and OUT-R schemata. Inside states are depicted as complete triangles, while
outside states are depicted as chevrons. A state from a previous level in the hierarchy is denoted
with dashed lines.

a inference at level m: we cannot begin until the outside score for the terminal symbol si is ready in the

coarser level m− 1. The initial queue contains only the most abstract level’s terminals, I(s0
i , i, i+ 1). The

entire search terminates when the inside edge I(Rm, 0, n), representing the root in the target hypergraph, is

dequeued.

The deductions that assemble outside states are less familiar from the standard A∗ algorithm. These

deductions take larger outside states and produce smaller sub-states by linking up with inside state, as

shown in Figure 3.2(b). The OUT-B schema states that an outside pass for level m can be started if the

inside score of the root symbol Rm for that level has been computed. The OUT-L and OUT-R rules are the
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deduction rules for building outside edges. OUT-L states that, given an outside state over the span [i, j] and

some inside state over [i, l], we may construct an outside state over [l, j].

As in standard A∗, inside states are placed on the agenda with a priority equal to their path cost (inside

score) and some estimate of their completion cost (outside score), now taken from the previous projection

rather than a black box. Specifically, the priority function takes the form p(ιm) = w(ιm) +w(ι̌m−1), where

ι̌m−1 is the outside version of ι one level previous in the hierarchy.

Outside states also have priorities that combine path costs with a completion estimate, except that the

roles of inside and outside scores are reversed: the path cost for an outside state om is its (outside) score

w(om), while the completion cost is the inside score w(ιm) of o’s complementary inside state ιm = ǒm.

Therefore, p(om) = w(om) + w(ǒm).

Note that inside states combine their inside scores with outside scores from a previous level (a lower

bound), while outside states combine their outside scores with (exact) inside scores from the same level,

which are already available. Felzenszwalb and McAllester (2007) show that these choices of priorities have

the same guarantee as standard A∗: whenever an inside or outside state comes off the queue, its path cost is

optimal.

3.1.3 Theoretical Guarantees

HA∗ comes with correctness and monotonicity guarantees analogous to those of A∗. We prove these

guarantees in a way that slightly generalizes the proof given in (Felzenszwalb and McAllester, 2007) in

Appendix A.2. The correctness guarantee states that when a state is removed for the agenda,w(ιm) = β(ιm)

for inside states and w(om) = α(om) for outside states. Together with the correctness guarantee, the

monotonicity guarantee ensures that states are popped off the agenda in order of their intrinsic priority

ṗ(·). The intrinsic priority for inside and outside states ιm and om are given by

ṗ(ιm) = β(ιm) + α(ι̌m−1)

ṗ(om) = α(om) + β(ǒm)

In other words, HA∗ only pops of inside states ιm for which
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β(ιm) + α(ι̌m−1) ≤ β(ιMR )

and outside states om for which

α(om) + β(ǒm) ≤ β(ιMR )

where β(ιMR ) the Viterbi inside cost of the root in the target grammar.

3.2 Agenda-Driven Hierarchical Coarse-to-Fine Parsing

We would like to compare HA∗ and hierarchical CTF pruning. Unfortunately, these two algorithms are

generally deployed in different architectures: CTF is most naturally implemented using a dynamic program

like CKY, while best-first algorithms like A∗ are necessarily implemented with agenda-based parsers. To

facilitate comparison, we would like to implement them in a common, agenda-driven architecture. An

agenda-driven implementation of CTF allows us to put it on a level playing field with HA∗, highlighting the

effectiveness of the various parsing strategies and normalizing their implementations.

3.2.1 Hierarchical Coarse-to-Fine Pruning

First, we define (hierarchical) coarse-to-fine (CTF) pruning. In standard CTF, we exhaustively parse

in each projection level, but skip edges whose projections in the previous level had sufficiently low scores.

In particular, a state ιm will be skipped entirely if its projection ιm−1 has a low max marginal w(ι̌m−1) +

w(ιm−1), that is, the score of the best tree containing ιm−1 was low compared to the score of the best overall

root derivation ιm−1
R . Formally, we prune all ιm where w(ιm−1) + w(ῑm−1) > w(ιm−1

R ) + τ for some

threshold τ . Note that because this pruning can lead to search errors, we are not necessarily guaranteed that

w(ιm) = β(ιm) and w(om) = α(om), so the max-marginals computed by the algorithm are not necessarily

the true max-marginals.
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3.2.2 Pruning with Priority Functions

We want to implement CTF in an agenda-based setting, noting that the crucial property of CTF is not

the CKY order of exploration, but the pruning of unlikely states, which can be equally well done in an

agenda-based parser. In fact, it is possible to closely mimic dynamic programs like CKY using a best-first

algorithm with a particular choice of priorities.

Note that we can replace the HA∗ priority function with an alternate priority function of our choosing.

In doing so, we may lose the optimality guarantees of HA∗, but we may also be able to achieve significant

increases in performance. We do exactly this in order to put CTF pruning in an agenda-based framework.

The priority function we use to implement CTF in our agenda-based framework is:

p(ιm) = w(ιm)

p(om) =

8>><>>:
∞ w(om) + w(ǒm) > w(ιmR ) + τm

w(om) + w(ǒm) otherwise

Here, τm ≥ 0 is a user-defined threshold for level m and w(ιmR ) is the weight of the root at level m. These

priorities lead to uniform-cost exploration for inside edges and completely suppress outside edges which

would have been pruned in standard CTF. Note that, by the construction of the IN rule, pruning an outside

edge also prunes all inside edges in the next level that depend on it; we therefore prune slightly earlier than

in standard CTF. In any case, this priority function explores a similar set of states to CKY-based CTF,4 but

does not necessarily explore those states in the same order.

3.3 Experiments

3.3.1 Evaluation

Our focus is parsing speed. Thus, we would ideally evaluate our algorithms in terms of CPU time. How-

ever, this measure is problematic: CPU time is influenced by a variety of factors, including the architecture
4The set of states explored by uniform-cost search can be smaller than exhaustive search, and so even with no pruning (τm =

∞), our agenda-driven search explores a potentially smaller set of states than CKY.
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of the hardware, low-level implementation details, and other running processes, all of which are hard to

normalize.

It is common to evaluate best-first parsers in terms of states removed off the agenda. This measure is

used by Charniak et al. (1998) and Klein and Manning (2003c). However, when states from grammars of

varying size are processed on the same agenda, the number of successor states per edge popped changes

depending on what grammar the state was constructed from. In particular, states in more refined grammars

are more expensive than states in coarser grammars. Thus, our basic unit of measurement will be states

pushed onto the agenda. We found in our experiments that this was well correlated with CPU time.

3.3.2 State-Split Grammars

We first experimented with the grammars described in Petrov et al. (2006). Starting with an X-Bar

grammar, they iteratively refine each symbol in the grammar by adding latent substates via a split-merge

procedure. This training procedure creates a natural hierarchy of grammars, and is thus ideal for our pur-

poses. We used the Berkeley Parser5 to train such grammars on sections 2-21 of the Penn Treebank (Marcus

et al., 1993). We ran 6 split-merge cycles, producing a total of 7 grammars. These grammars range in size

from 98 symbols and 8773 rules in the unsplit X-Bar grammar to 1139 symbols and 973696 rules in the

6-split grammar. We then parsed all sentences of length ≤ 30 of section 23 of the Treebank with these

grammars. Our “target grammar” was in all cases the largest (most split) grammar. Our parsing objective

was to find the Viterbi derivation (i.e. fully refined structure) in this grammar. Note that this differs from the

objective used by Petrov and Klein (2007), who use a variational approximation to the most probable parse.

A∗ versus HA∗

We first compare HA∗ with standard A∗. In A∗ as presented by Klein and Manning (2003c), an auxiliary

grammar can be used, but we are restricted to only one and we must compute inside and outside estimates

for that grammar exhaustively. For our single auxiliary grammar, we chose the 3-split grammar; we found

that this grammar provided the best overall speed.
5http://berkeleyparser.googlecode.com
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Figure 3.3. Efficiency of several hierarchical parsing algorithms, across the test set. UCS and all
A∗ variants are optimal and thus make no search errors. The CTF variants all make search errors
on about 2% of sentences. The number in parenthesis on the axis labels indicates which auxiliary
grammars were used for computing heuristics and/or pruning. For example, HA∗ (3-5) means that
HA∗ was run with a hierarchy in which the 3-, 4-, and 5-split grammars were the auxiliary grammars.

For HA∗, we can include as many or as few auxiliary grammars from the hierarchy as desired. Ideally,

we would find that each auxiliary grammar increases performance. To check this, we performed experiments

with all 6 auxiliary grammars (0-5 split); the largest 3 grammars (3-5 split); and only the 3-split grammar.

Figure 3.3 shows the results of these experiments. As a baseline, we also compare with uniform cost

search (UCS) (A∗ with h = 0 ). A∗ provides a speed-up of about a factor of 5 over this UCS baseline.

Interestingly, HA∗ using only the 3-split grammar is faster than A∗ by about 10% despite using the same

grammars. This is because, unlike A∗, HA∗ need not exhaustively parse the 3-split grammar before begin-

ning to search in the target grammar.

When we add the 4- and 5-split grammars to HA∗, it increases performance by another 25%. However,

we can also see an important failure case of HA∗: using all 6 auxiliary grammars actually decreases perfor-

mance compared to using only 3-5. This is because HA∗ requires that auxiliary grammars are all relaxed

projections of the target grammar. Since the weights of the rules in the smaller grammars are the minimum

of a large set of rules in the target grammar, these grammars have costs that are so cheap that all states in

those grammars will be processed long before much progress is made in the refined, more expensive lev-

els. The time spent parsing in the smaller grammars is thus entirely wasted. This is in sharp contrast to

hierarchical CTF (see below) where adding levels is always beneficial.

To quantify the effect of optimistically cheap costs in the coarsest projections, we can look at the degree

to which the outside costs in auxiliary grammars underestimate the true outside cost in the target grammar
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Figure 3.4. Average slack (difference between estimated outside cost and true outside cost) at each
level of abstraction as a function of the size of the outside context. The average is over states in the
Viterbi tree. The lower and upper dashed lines represent the slack of the exact and uniformly zero
heuristics.

(the “slack”). In Figure 3.4, we plot the average slack as a function of outside context size (number of unin-

corporated words) for each of the auxiliary grammars. The slack for large outside contexts gets very large

for the smaller, coarser grammars. In Figure 3.5, we plot the number of states pushed when bounding with

each auxiliary grammar individually, against the average slack in that grammar. This plot shows that greater

slack leads to more work, reflecting the theoretical property of A∗ that the work done can be exponential in

the slack of the heuristic.

HA∗ versus CTF

In this section, we compare HA∗ to CTF, again using the grammars of Petrov et al. (2006). It is important

to note, however, that we do not use the same grammars when parsing with these two algorithms. While

we use the same projections to coarsen the target grammar, the scores in the CTF case need not be lower
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Figure 3.5. States pushed as a function of the average slack for spans of length 10 when parsing
with each auxiliary grammar individually.

bounds. Instead, we follow Petrov and Klein (2007) in taking coarse grammar weights which make the

induced distribution over trees as close as possible to the target in KL-divergence. These grammars represent

not a minimum projection, but more of an average.6

The performance of CTF as compared to HA∗ is shown in Figure 3.3. CTF represents a significant

speed up over HA∗. The key advantage of CTF, as shown here, is that, where the work saved by using

coarser projections falls off for HA∗, the work saved with CTF increases with the addition of highly coarse

grammars. Adding the 0- through 2-split grammars to CTF was responsible for a factor of 8 speed-up with

no additional search errors.

Another important property of CTF is that it scales far better with sentence length than does HA∗.

Figure 3.6 shows a plot of states pushed against sentence length. This is not surprising in light of the

increase in slack that comes with parsing longer sentences. The more words in an outside context, the more

slack there will generally be in the outside estimate, which triggers the time explosion.

Since we prune based on thresholds τm in CTF, we can explore the relationship between the number

of search errors made and the speed of the parser. While it is possible to tune thresholds for each grammar

individually, we use a single threshold for simplicity. In Figure 3.7, we plot the performance of CTF using

all 6 auxiliary grammars for various values of τ . For a moderate number of search errors (< 5%), CTF
6We tried using these average projections as heuristics in HA∗, but doing so violates consistency, causes many search errors,

and does not substantially speed up the search.
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Figure 3.6. States pushed as function of sentence length for HA∗ 3-5 and CTF 0-5.

parses more than 10 times faster than HA∗ and nearly 100 times faster than UCS. However, below a certain

tolerance for search errors (< 1%) on these grammars, HA∗ is the faster option.7

3.3.3 Lexicalized Parsing

We also experimented with the lexicalized parsing model described in Klein and Manning (2003a). This

lexicalized parsing model is constructed as the product of a dependency model and the unlexicalized PCFG

model in Klein and Manning (2003b). We constructed these grammars using the Stanford Parser.8 The

PCFG has 19054 symbols 36078 rules. The combined (sentence-specific) grammar has n times as many

symbols and 2n2 times as many rules, where n is the length of an input sentence. This model was trained

on sections 2-20 of the Penn Treebank and tested on section 21.

For these lexicalized grammars, we did not perform experiments with UCS or more than one level of

HA∗. We used only the single PCFG projection used in Klein and Manning (2003a). This grammar differs

from the state split grammars in that it factors into two separate projections, a dependency projection and a

PCFG. Klein and Manning (2003a) show that one can use the sum of outside scores computed in these two
7In Petrov and Klein (2007), fewer search errors are reported; this difference is because their search objective is more closely

aligned to the CTF pruning criterion.
8http://nlp.stanford.edu/software/
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Figure 3.7. Performance of CTF as a function of search errors for state split grammars. The dashed
lines represent the time taken by UCS and HA∗ which make no search errors. As search accuracy
increases, the time taken by CTF increases until it eventually becomes slower than HA∗. The y-axis
is a log scale.

projections as a consistent heuristic in the combined lexicalized grammar. The generalization of HA∗ to the

factored case is straightforward but not effective. We therefore treated the dependency projection as a black

box and used only the PCFG projection inside the HA∗ framework. When computing A∗ outside estimates

in the combined space, we use the sum of the two projections’ outside scores as our completion costs. This

is the same procedure as Klein and Manning (2003a). For CTF, we carry out a uniform cost search in the

combined space where we have pruned items based on their max-marginals in the PCFG model only.

In Figure 3.8, we examine the speed/accuracy trade off for the lexicalized grammar. The trend here is

the reverse of the result for the state split grammars: HA∗ is always faster than posterior pruning, even for

thresholds which produce many search errors. This is because the heuristic used in this model is actually an

extraordinarily tight bound – on average, the slack even for spans of length 1 was less than 1% of the overall

model cost. Thus, for this particular model, we see that applying informed but optimal search procedures

can produce significant speed ups over even approximate search schemes.

28



0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

3
4

5
6

7
8

Fraction of sentences without search errors

St
at

es
 p

us
he

d 
(b

ill
io

ns
)

A
*

Figure 3.8. Performance of CTF for lexicalized parsing as a function of search errors. The dashed
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Chapter 4

Hierarchical Search with Bridge Scores

The fundamental insight of the HA∗ algorithm is that outside scores from a previous level can be used

as completion costs for inside states, and inside costs from the same level can be used as completion costs

for outside states. The key property of these completion costs is that they form consistent and admissible

heuristic costs, they are not the only quantities that satisfy this requirement.

In this section, we discuss a modification of HA∗ that can compute bridge outside scores, which are

bounds on true outside costs that are tighter than completely coarse outside scores used by HA∗. These

bridge outside scores mix inside and outside costs from finer grammars with inside costs from coarser

grammars. Because the bridge costs represent tighter estimates of the true outside costs, we expect them to

reduce the work of computing inside costs in finer grammars. At the same time, because bridge costs mix

computation from coarser and finer levels of the hierarchy, they are more expensive to compute than purely

coarse outside costs. Whether the work saved by using tighter estimates outweighs the extra computation

needed to compute them is an empirical question.

Experimentally, we find that the use of bridge outside costs substantially outperforms the HA∗ algo-

rithm when the coarsest levels of the hierarchy are very loose approximations of the target grammar. For

hierarchies with tighter estimates, we show that BHA∗ obtains comparable performance to HA∗. In other

words, BHA∗ is more robust to poorly constructed hierarchies.
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Figure 4.1. A pictorial representation of the bridge outside score for the vertex v8. The outside
path ρ̈(v8) = {e1, e2, e3} has bridge outside score w̃(ρ(v8)) = w(e1) + w(π(e2)) + w(e3). The
hyperedge e2 (shown with dotted lines) is scored with its coarse weight because it is a right cousin
of v8.

4.1 Bridge Scores

The outside scores computed by HA∗ are useful for prioritizing computation in more refined grammars.

As an alternative, we propose a novel bridge outside cost α̃(vm). Intuitively, this cost represents the cost of

the best path to the root where rules “above” and “left” of a vertex v come from edges at level m, and rules

“below” and “right” of vm come from level m− 1; see Figure 4.1 for a graphical depiction. More formally,

given an outside path ρ̈(vm), let the right cousins rc(ρ̈(v)) of vm in ρ̈(vm) be the set of all edges em such

that h(em) is neither a descendant nor ancestor of vm and h(em) lies to the right of vm in ρ̈(vm). We define

the bridge outside weight w̃(ρ̈(vm)) as

w̃(ρ̈(vm)) =
∑

em∈rc(ρ̈(vm))

w(em−1) +
∑

em∈ρ̈(vm)−rc(ρ̈(vm))

w(em)

and the bridge Viterbi outside cost as α̃(vm) as

α̃(vm) = min
ρ̈(vm)

w̃(ρ̈(vm))

.

Like ordinary outside costs, bridge outside costs form consistent and admissible estimates of the true
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Name Rule
IN-BASE Õ(smi , i, i+ 1) : w

w−→ I(smi , i, i+ 1) : 0

IN Õ(Am, i, j) : wA I(Bm, i, l) : wB I(Cm, l, j) : wC
wB+wC+wr+wA−−−−−−−−−−−−−→ I(Am, i, j) : wB + wC + wr

OUT-BASE I(Rm, 0, n) : w
w−→ Õ(Rm, 0, n) : 0

OUT-L Õ(Am, i, j) : wA I(Bm−1, i, l) : wB I(Cm−1, l, j) : wC
wA+wC+wr+wB−−−−−−−−−−−−−→ Õ(Bm, i, l) : wA + wC + wr

OUT-R Õ(Am, i, j) : wA I(Bm, i, l) : wB I(Cm−1, l, j) : wC
wA+wB+wr+wC−−−−−−−−−−−−−→ Õ(Cm, l, j) : wA + wB + wr

Table 4.1. Deduction rules for BHA∗ parsing. The rule r is in all cases Am → Bm Cm.

Viterbi outside score α(v) of a vertex v. Because bridge costs mix rules from the finer and coarser grammar,

bridge costs are at least as good an estimate of the true outside score as entirely coarse outside costs, and

will in general be much tighter. That is, we have

α(vm−1) ≤ α̃(vm) ≤ α(vm)

In particular, note that the bridge costs become better approximations farther right in the sentence, and the

bridge cost of the last word in the sentence is equal to the Viterbi outside cost of that word.

To compute bridge outside costs in the special case of parsing, we introduce bridge outside items õ =

Õ(Am, i, j)(b). The deduction rule schemata which build both inside items and bridge outside items are

shown in Table 4.1 and graphically in Figure 4.2. The rules are very similar to those which define HA∗, but

there are two important differences. First, inside states wait for bridge outside items at the same level, while

outside states wait for inside items from the previous level. Second, the left and right outside deductions are

no longer symmetric – bridge outside states can extended to the left given two coarse inside states, but can

only be extended to the right given an exact inside state on the left and coarse inside state on the right.

4.2 Theoretical Guarantees

These deduction rules come with guarantees analogous to those of HA∗. The monotonicity guarantee

ensures that inside and (bridge) outside items are processed in order of:

p̂(ιm) = β(ιm) + α̃(ι̌m)

p̂(õm) = α̃(õm) + β(ˇ̃om−1)
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Figure 4.2. Non-base case deductions for BHA∗ depicted graphically. (a) shows the IN schema, (b)
shows OUT-L, and (c) shows OUT-R. Inside states are depicted as complete triangles, while outside
states are depicted as chevrons. A state from a previous level in the hierarchy is denoted with dashed
lines.

The correctness guarantee ensures that when an item is removed from the agenda, its weight will be

equal to β(ιm) for inside items and α̃(õm) for bridge items. The efficiency guarantee remains the same as

HA∗, though because the intrinsic priorities are different, the set of items processed will be different from

those processed by HA∗.

A proof of these guarantee is provided in Appendix A.3. The proof for BHA∗ follows the proof for HA∗

with minor modifications. The key property of HA∗ needed for these proofs is that coarse outside costs form

consistent and admissible heuristics for inside states, and exact inside costs form consistent and admissible

heuristics for outside states. BHA∗ also has this property, with bridge outside costs forming admissible and

consistent heuristics for inside states, and coarse inside costs forming admissible and consistent heuristics

for outside states.
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Figure 4.3. Performance of HA∗ and BHA∗ as a function of increasing refinement of the coarse
grammar. Performance is measured in terms of number of states pushed onto the agenda, so lower
is faster.

4.3 Experiments

The performance of BHA∗ is determined by the efficiency guarantee given in the previous section.

However, we cannot determine in advance whether BHA∗ will be faster than HA∗. In fact, BHA∗ has the

potential to be slower – BHA∗ builds both inside and bridge outside states under the target grammar, where

HA∗ only builds inside states. It is an empirical, grammar- and hierarchy-dependent question whether the

increased tightness of the outside estimates outweighs the additional cost needed to compute them. We

demonstrate empirically in this section that for hierarchies with very loosely approximating coarse gram-

mars, BHA∗ can outperform HA∗, while for hierarchies with good approximations, performance of the two

algorithms is comparable.

We performed experiments with the grammars of Petrov et al. (2006). The training procedure for these

grammars produces a hierarchy of increasingly refined grammars through state-splitting, so a natural pro-

jection function πm(·) is given. We used the Berkeley Parser1 to learn such grammars from Sections 2-21

of the Penn Treebank (Marcus et al., 1993). We trained with 6 split-merge cycles, producing 7 grammars.

We tested these grammars on 300 sentences of length ≤ 25 of Section 23 of the Treebank. Our “target

grammar” was in all cases the most split grammar.
1http://berkeleyparser.googlecode.com
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of states pushed onto the agenda. Along the x-axis, we show which coarse grammars were used
in the hierarchy. For example, 3-5 indicates the 3-,4-, and 5-split grammars were used as auxiliary
grammars.

In our first experiment, we construct 2-level hierarchies consisting of one coarse grammar and the tar-

get grammar. By varying the coarse grammar from the 0-split (X-bar) through 5-split grammars, we can

investigate the performance of each algorithm as a function of the coarseness of the coarse grammar. We

follow Pauls and Klein (2009b) in using the number of items pushed as a machine- and implementation-

independent measure of speed. In Figure 4.3, we show the performance of HA∗ and BHA∗ as a function

of the total number of items pushed onto the agenda. We see that for very coarse approximating grammars,

BHA∗ substantially outperforms HA∗, but for more refined approximating grammars the performance is

comparable, with HA∗ slightly outperforming BHA∗ on the 3-split grammar.

Finally, we verify that BHA∗ can benefit from multi-level hierarchies as HA∗ can. We constructed two

multi-level hierarchies: a 4-level hierarchy consisting of the 3-,4-,5-, and 6- split grammars, and 7-level

hierarchy consisting of all grammars. In Figure 4.4, we show the performance of BHA∗ on these multi-level

hierarchies, as well as the best 2-level hierarchy from the previous experiment. Our results echo the results of

Pauls and Klein (2009b): although the addition of the reasonably refined 4- and 5-split grammars produces

modest performance gains, the addition of coarser grammars can actually hurt overall performance.
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Chapter 5

K-Best List Extraction

Many situations require a search algorithm to return the k-best paths rather than only the 1-best. Uses

for k-best lists include minimum Bayes risk decoding (Goodman, 1998; Kumar and Byrne, 2004), dis-

criminative reranking (Collins, 2000; Charniak and Johnson, 2005), and discriminative training (Och, 2003;

McClosky et al., 2006). The most efficient known algorithm for k-best parsing (Jiménez and Marzal, 2000;

Huang and Chiang, 2005) performs an initial bottom-up dynamic programming pass before extracting the

k-best parses. In that algorithm, the initial pass is, by far, the bottleneck (Huang and Chiang, 2005).

In this chapter, we describe an extension of A∗ parsing which integrates k-best search with an A∗-based

exploration of the 1-best chart. A∗ parsing can avoid significant amounts of computation by guiding 1-

best search with heuristic estimates of parse completion costs, and has been applied successfully in several

domains (Klein and Manning, 2002, 2003c; Haghighi et al., 2007). Our algorithm extends the speed-ups

achieved in the 1-best case to the k-best case and is optimal under the same conditions as a standard A∗

algorithm. The amount of work done in the k-best phase is no more than the amount of work done by the

algorithm of Huang and Chiang (2005). Our algorithm is also equivalent to standard A∗ parsing (up to ties)

if it is terminated after the 1-best derivation is found. Finally, our algorithm can be written down in terms

of deduction rules, and thus falls into the well-understood view of parsing as weighted deduction (Shieber

et al., 1995; Goodman, 1998; Nederhof, 2003). In fact, our algorithm can be understood as a special case

of HA∗. In addition to presenting the algorithm, we show experiments in which we extract k-best lists for

three different kinds of grammars: the lexicalized grammars of Klein and Manning (2003a), the state-split
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grammars of Petrov et al. (2006), and the tree transducer grammars of Galley et al. (2006). We demonstrate

that optimal k-best lists can be extracted significantly faster using our algorithm than with previous methods.

5.1 A Naive k-Best A∗ Algorithm

Due to the optimal substructure property of hypergraphs, efficient 1-best search algorithms search over

a space of states representing optimal paths to vertices, rather than the space of paths. This is the essence of

1-best dynamic programming – although most vertices can be reached by many paths, a state representing

each vertex will be popped exactly once during parsing, with a score and backpointers representing the

1-best path to that vertex.

However, k-best lists necessarily involve searching over suboptimal paths, so any k-best search algo-

rithm must at some point consider suboptimal paths to vertices. One way to compute k-best paths is therefore

to abandon optimal substructure and dynamic programming entirely, and to search over space of paths. That

is, we can run A∗ search over states that represent inside paths ρ(v) to a vertex v. In this expanded search

space, each distinct path has its own state, derivable only in one way.

If we continue to search long enough, we will pop multiple complete paths to the root. The monotonicity

guarantee of A∗ ensures that the first k complete paths that come off the agenda will be the k-best paths.

Because we are using A∗, we can include a heuristic to speed up search. Because of the context freedom of

the grammar, any consistent heuristic for 1-best A∗ is also consistent for this search over paths.

We refer to this approach as NAIVE. While correct, NAIVE is massively inefficient. In comparison with

A∗ parsing over G, where there are O(n2) inside states, the size of the derivation space is exponential in the

length of the input.

This naive algorithm is, of course, not novel, either in general approach or specific computation. Early

k-best parsers functioned by abandoning dynamic programming and performing beam search on derivations

(Ratnaparkhi, 1999; Collins, 2000). Huang (2005) proposes an extension of Knuth’s algorithm (Knuth,
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Inside Vertex Deductions (Used in A∗ and KA∗)

IN: I(B, i, l) : w1 I(C, l, j) : w2
w1+w2+wr+α̂(A,i,j)−−−−−−−−−−−−−−−→ I(A, i, j) : w1 + w2 + wr

Table 5.1. The deduction schema (IN) for building inside edge items, using a supplied heuristic.
This schema is sufficient on its own for 1-best A∗, and it is used in KA∗. Here, r is the rule
A→ B C.

Inside Derivation Deductions (Used in NAIVE)

DERIV: D(TB , i, l) : wB D(TC , l, j) : wC
wB+wC+wr+α̂(A,i,j)−−−−−−−−−−−−−−−−→ D

 
A

TB TC

, i, j

!
: w1 + w2 + wr

Table 5.2. The deduction schema for building derivations, using a supplied heuristic. TB and
TC denote full tree structures rooted at symbols B and C. This schema is the same as the IN
deduction schema, but operates on the space of fully specified inside derivations rather than dynamic
programming edges. This schema forms the NAIVE k-best algorithm.

Outside Edge Deductions (Used in KA∗)

OUT-B: I(R, 0, n) : w
w−→ O(R, 0, n) : 0

OUT-L: O(A, i, j) : wA I(B, i, l) : wB I(C, l, j) : wC
wA+wC+wr+wB−−−−−−−−−−−−−→ O(B, i, l) : wA + wC + wr

OUT-R: O(A, i, j) : wA I(B, i, l) : wB I(C, l, j) : wC
wA+wB+wr+wC−−−−−−−−−−−−−→ O(C, l, j) : wA + wB + wr

Table 5.3. The deduction schemata for building ouside edge items. The first schema is a base case
that constructs an outside item for the goal (G, 0, n) from the inside item I(G, 0, n). The second
two schemata build outside items in a top-down fashion. Note that for outside items, the completion
cost is the weight of an inside item rather than a value computed by a heuristic.

Delayed Inside Derivation Deductions (Used in KA∗)

DERIV: O(A, i, j) : wA D(TB , i, l) : wB D(TC , l, j) : wC
wB+wC+wr+wA−−−−−−−−−−−−−→ D

 
A

TB TC
, i, j

!
: wB + wC + wr

Table 5.4. The deduction schema for building derivations, using exact outside scores computed
using OUT deductions. The dependency on the outside item O(A, i, j) delays building derivation
items until exact Viterbi outside scores have been computed. This is the final search space for the
KA∗ algorithm.
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Figure 5.1. Representations of the different types of items used in parsing. (a) An inside edge item:
I(VP, 2, 5). (b) An outside edge item: O(VP, 2, 5). (c) An inside derivation item: D(TVP, 2, 5)
for a tree TVP. (d) A ranked derivation item: K(VP, 2, 5, 6). (e) A modified inside derivation item
(with backpointers to ranked items): D(VP, 2, 5, 3,VP→ VBZ NP, 1, 4).

1977) to produce k-best lists by searching in the space of derivations, which is essentially this algorithm.

While Huang (2005) makes no explicit mention of a heuristic, it would be easy to incorporate one into their

formulation.

5.1.1 NAIVE Search for Parsing

Although NAIVE is an intractable algorithm, it is a very useful tool for understanding our fool algorithm.

For concreteness, we describe it in detail here. As in Chapter 3, we will specialize the algorithm to parsing

for added clarity.

NAIVE searches over states that we call derivation states, and are of the form d = D(TA, i, j), spec-

ifying an entire parse tree TA rooted at symbol A and spanning si+1 . . . sj (see Figure 5.1(c)). Derivation

states are combined using the DERIV schema of Table 5.2. The goals in this space, representing root parses,

are any derivation states rooted at symbol R that span the entire input.
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We refer to the weight of a derivation state d as δ(d), analogous to β(ι) for (1-best) inside states.1 By

the monotonicity property of A∗, we know that NAIVE will pop all derivation states d with

δ(d) + α̂(d) ≤ δ(dRk)

where dRk is derivation state corresponding to the kth-best root parse. Even for reasonable heuristics, this

number can be very large; see Section 5.4 for empirical results.

5.2 A New k-Best A∗ Parser

While NAIVE suffers severe performance degradation for loose heuristics, we make the observation that

if α̂(·) is the perfect heuristic (α̂(d) = α(d)), then the search is actually very efficient. In particular, the

search will only pop derivation states satisfying

δ(d) + α(ď) ≤ δ(dRk)

where ď is the outside state corresponding to the derivation state d. In fact, the set of derivation items d

satisfying this inequality is exactly the set which appear in the k-best complete paths (as always, modulo

ties). NAIVE would therefore be quite efficient if we could obtain exact Viterbi outside scores α(·).

One option is to compute outside scores with exhaustive dynamic programming over the original gram-

mar. In a certain sense, described in greater detail below, this precomputation of exact heuristics is equiva-

lent to the k-best extraction algorithm of Huang and Chiang (2005). However, this exhaustive 1-best work

is precisely what we want to use A∗ to avoid.

Our algorithm solves this problem by integrating three searches into a single agenda-driven process.

First, an A∗ search in the space of inside states with an (imperfect) external heuristic α̂(·) finds exact inside

scores. Second, exact outside scores are computed from inside and outside states. Finally, these exact
1The new symbol emphasizes that δ scores a specific path rather than a minimum over a set of paths. Note that unlike standard

A∗, because each state d represents a unique path, it is easy to see that the weight of the state w(d) is always the same as the weight
of the derivation δ(d) that d represents.
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Figure 5.2. The delayed DERIV deduction rule schema.

outside scores guide the search over derivation states. It can be useful to imagine these three operations as

operating in phases, but they are all interleaved, progressing in order of their various priorities.

These computations can be performed by the HA∗ algorithm of Chapter 3. In particular, we note that

the space of inside states is a relaxed projection of the space of derivation states. Therefore, we can run HA∗

on a two-level hierarchy in which the finest level is the derivation space and the coarsest level is inside state

space; we provide more details in Section 5.2.2. In fact, because our algorithm is a special case of HA∗, we

need not limit ourselves to this two-level hierarchy – further relaxed projections of the inside state space can

be used to further speed the search.

5.2.1 Deduction Rules

Although our algorithm is a special case of HA∗, we describe it here as a stand-alone algorithm for

clarity. Table 5.1 and Table 5.3 shows the IN and OUT deduction schemata for building inside and outside

items, familiar from HA∗. In Table 5.4 and Figure 5.2, we show a modified DERIV deduction schema

that delays the construction of a derivation state until its corresponding outside state has been popped.
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This ensures that derivation states are only explored once their perfect heuristics (outside scores) have been

computed.

We call the algorithm which executes these rules KA∗. In words, it functions as follows: we initialize

the agenda with the terminal states I(si, i, i+ 1) and D(si, i, i+ 1) for i = 0 . . . n− 1. We compute inside

scores in standard A∗ fashion using the IN deduction schema, using any heuristic we might provide to 1-best

A∗. Once the inside state I(R, 0, n) is found, we automatically begin to compute outside scores via the OUT

deduction schema. OnceO(si, i, i+1) is found, we can begin to also search in the space of derivation items,

using the perfect heuristics given by the just-computed outside scores. Note, however, that all computation

is done with a single agenda, so the processing of all three types of items is interleaved, with the k-best

search possibly terminating without a full inside computation. As with NAIVE, the algorithm terminates

when a k-th root derivation is dequeued.

5.2.2 Correctness

We prove the correctness of this algorithm by reduction to the to HA∗; details can be found in Ap-

pendix A.4. The fact that KA∗ can be reduced to an instance of HA∗ has advantages in addition to the fact

that the proof is simple. First, the algorithm is naturally online in the sense that it can be stopped at any k

without advance specification, a fact which follows from the monotonicity guarantee of HA∗. Second, the

algorithm can be easily exploit of hierarchy of relaxed projections because it is already an instance of HA∗.

In terms of efficiency, we can characterize the amount of work done using the monotonicity guarantee.

Let dRk be the kth-best derivation item for the goal edge g. Our algorithm processes all derivation states d,

outside states o, and inside states ι satisfying

δ(d) + α(ď) ≤ δ(dRk)

β(ǒ) + α(o) ≤ δ(dRk)

β(ι) + α̂(ι) ≤ δ(dRk)

We have already argued that the set of derivation items satisfying the first inequality is the set of subtrees
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that appear in the optimal k-best parses, modulo ties. Similarly, it can be shown that the second inequality is

satisfied only for states that appear in the optimal k-best parses. The last inequality characterizes the amount

of work done in the bottom-up pass. We compare this to 1-best A∗, which pops all inside states i satisfying

β(ι) + α̂(ι) ≤ β(ιR) = δ(dR1)

Thus, the “extra” inside states popped in the bottom-up pass during k-best parsing as compared to 1-best

parsing are those items i satisfying

δ(dR1) ≤ β(ι) + α̂(ι) ≤ δ(dRk)

The question of how many states satisfy these inequalities is empirical; we show in our experiments

that it is small for reasonable heuristics. At worst, the bottom-up phase pops all inside items and reduces to

exhaustive dynamic programming.

5.2.3 Lazy Successor Functions

The monotonicity guarantee ensures that we will only dequeue derivation fragments of top parses. How-

ever, we will enqueue all combinations of such items, which is wasteful. By exploiting a local ordering

amongst derivations, we can be more conservative about combination and gain the advantages of a lazy

successor function (Huang and Chiang, 2005).

To do so, we represent inside derivations not by explicitly specifying entire trees, but rather by using

ranked backpointers. In this representation, inside derivations are represented in two ways, shown in

Figure 5.1(d) and (e). The first way (d) simply adds a rank a to an edge, giving a tuple (A, i, j, a). The

corresponding item is the ranked derivation item K(A, i, j, a), which represents the ath-best derivation of

A over (i, j). The second representation (e) is a backpointer of the form (A, i, j, l, r, a, b), specifying the

derivation formed by combining the ath-best derivation of (B, i, l) and the bth-best derivation of (C, l, j)

using rule r = A→ B C. The corresponding items D(A, i, j, l, r, a, b) form of our inside derivation items.

The modified deduction schemata for the NAIVE algorithm over these representations are shown in

Table 5.5. The BUILD schema produces new inside derivation items from ranked derivation items, while

the RANK schema assigns each derivation item a rank; together they function like DERIV. We can find the
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k-best list by searching until K(G, 0, n, k) is removed from the agenda. The k-best derivations can then be

extracted by following the backpointers for K(G, 0, n, 1) . . . K(G, 0, n, k). The KA∗ algorithm can be

modified in the same way, shown in Table 5.6.

The actual laziness is provided by additionally delaying the combination of ranked items. When an item

K(B, i, l, u) is popped off the queue, a naive implementation would loop over items K(C, l, j, v) for all

v, C, and j (and similarly for left combinations). Fortunately, little looping is actually necessary: there is

a partial ordering of derivation items, namely, that D(A, i, j, l, r, a, b) will have a lower computed priority

than D(A, i, j, l, r, a− 1, b) and D(A, i, j, l, r, a, b− 1) (Jiménez and Marzal, 2000). So, we can wait until

one of the latter two is built before “triggering” the construction of the former. This triggering is similar to

the “lazy frontier” used by Huang and Chiang (2005). All of our experiments use this lazy representation.

5.3 Discussion

5.3.1 Mixing Dynamic Programming and KA∗

One appealing aspect of the HA∗ algorithm that KA∗ inherits is its indifference to how antecedents on

the chart are computing when applying deduction rules. As long as all antecedents on the chart have their

correct scores, HA∗ (and hence KA∗) will operate correctly. This means that KA∗ can be “warm-started”

by, for example, pre-computing inside scores exhaustively by dynamic programming, before initiating an

agenda-based search over outside states and derivation states.

Note that this pre-computation of inside scores might compute scores for states that HA∗ would not

consider, and hence do some extra work in terms of states considered. In fact, if a good heuristic α̂(·) is

available, the work saved by running the agenda-based search can be quite significant. However, for heuris-

tics that offer only loose bounds on the true outside costs, the work saved might be small. Furthermore,

it is often the case that low-level optimization is much easier in dynamic programs, so that dynamic pro-

gramming can actually be faster in terms of CPU time, despite doing more work overall. In such cases,

pre-computing inside scores may be faster overall.
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5.3.2 Related Work

While formulated very differently, one limiting case of our algorithm relates closely to the EXH algo-

rithm of Huang and Chiang (2005). In particular, if all inside items are processed before any derivation

items (or are computed using dynamic programming as discussed above), the subsequent number of deriva-

tion items and outside items popped by KA∗ is nearly identical to the number popped by EXH in our

experiments – both algorithms have the same ordering bounds on which derivation items are popped. The

conceptual difference between the algorithms in this limited case is that EXH places k-best items on lo-

cal priority queues per edge, while KA∗ makes use of one global queue. Thus, in addition to providing a

method for speeding up k-best extraction with A∗, our algorithm also provides an alternate form of Huang

and Chiang (2005)’s k-best extraction that can be phrased in a weighted deduction system.

5.4 Experiments

5.4.1 State-Split Grammars

We performed our first experiments with the grammars of Petrov et al. (2006). The training procedure for

these grammars produces a hierarchy of increasingly refined grammars through state-splitting. We followed

Pauls and Klein (2009b) in computing heuristics for the most refined grammar from outside scores for

less-split grammars.

We used the Berkeley Parser2 to learn such grammars from Sections 2-21 of the Penn Treebank (Marcus

et al., 1993). We trained with 6 split-merge cycles, producing 7 grammars. We tested these grammars on

100 sentences of length at most 30 of Section 23 of the Treebank. Our “target grammar” was in all cases the

most split grammar.

Heuristics computed from projections to successively smaller grammars in the hierarchy form succes-

sively looser bounds on the outside scores. This allows us to examine the performance as a function of the
2http://berkeleyparser.googlecode.com
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Ranked Inside Derivation Deductions (Lazy Version of NAIVE)

BUILD: K(B, i, l, a) : wB K(C, l, j, b) : wC
wB+wC+wr+α̂(A,i,j)−−−−−−−−−−−−−−−−→ D(A, i, j, l, r, a, b) : wB + wC + wr

RANK: D1(A, i, j, ·) : w1 . . . Dk(A, i, j, ·) : wk
minm wm+α̂(A,i,j)−−−−−−−−−−−−−−→ K(A, i, j, k) : minm wm

Table 5.5. The schemata for simultaneously building and ranking derivations, using a supplied
heuristic, for the lazier form of the NAIVE algorithm. BUILD builds larger derivations from smaller
ones. RANK numbers derivations for each vertex. Note that RANK requires distinct Di, so a rank
k RANK rule will first apply (optimally) as soon as the kth-best inside derivation item for a given
vertex is removed from the queue. However, it will also still formally apply (suboptimally) for all
derivation items dequeued after the kth. In practice, the RANK schema need not be implemented
explicitly – one can simply assign a rank to each inside derivation item when it is removed from the
agenda, and directly add the appropriate ranked inside item to the chart.

Delayed Ranked Inside Derivation Deductions (Lazy Version of KA∗)

BUILD: O(A, i, j) : wA K(B, i, l, a) : wB K(C, l, j, b) : wC
wB+wC+wr+wA−−−−−−−−−−−−−→ D(A, i, j, l, r, a, b) : wB + wC + wr

RANK: D1(A, i, j, ·) : w1 . . . Dk(A, i, j, ·) : wk O(A, i, j) : wA
minm wm+wA−−−−−−−−−−→ K(A, i, j, k) : minm wm

Table 5.6. The deduction schemata for building and ranking derivations, using exact outside scores
computed from OUT deductions, used for the lazier form of the KA∗ algorithm.
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Figure 5.3. Number of derivation items enqueued as a function of heuristic. Heuristics are shown
in decreasing order of tightness. The y-axis is on a log-scale.
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Figure 5.4. The cost of k-best extraction as a function of k for state-split grammars, for both KA∗

and EXH. The amount of time spent in the k-best phase is negligible compared to the cost of the
bottom-up phase in both cases.

tightness of the heuristic. We first compared our algorithm KA∗ against the NAIVE algorithm. We extracted

1000-best lists using each algorithm, with heuristics computed using each of the 6 smaller grammars.

In Figure 5.3, we evaluate only the k-best extraction phase by plotting the number of derivation items

and outside items added to the agenda as a function of the heuristic used, for increasingly loose heuristics.

We follow earlier work (Pauls and Klein, 2009b) in using number of states pushed as the primary, hardware-

invariant metric for evaluating performance of our algorithms.3 While KA∗ scales roughly linearly with the

looseness of the heuristic, NAIVE degrades very quickly as the heuristics get worse. For heuristics given by

grammars weaker than the 4-split grammar, NAIVE ran out of memory.

Since the bottom-up pass of k-best parsing is the bottleneck, we also examine the time spent in the

1-best phase of k-best parsing. As a baseline, we compared KA∗ to the approach of Huang and Chiang

(2005), which we will call EXH (see below for more explanation) since it requires exhaustive parsing in

the bottom-up pass. We performed the exhaustive parsing needed for EXH in our agenda-based parser to

facilitate comparison. For KA∗, we included the cost of computing the heuristic, which was done by running

our agenda-based parser exhaustively on a smaller grammar to compute outside items; we chose the 3-split

grammar for the heuristic since it gives the best overall tradeoff of heuristic and bottom-up parsing time.
3We found that states pushed was generally well correlated with parsing time.
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Figure 5.5. The performance of KA∗ for lexicalized grammars. The performance is dominated by
the computation of the heuristic, so that both the bottom-up phase and the k-best phase are barely
visible.

We separated the items enqueued into items enqueued while computing the heuristic (not strictly part of the

algorithm), inside items (“bottom-up”), and derivation and outside items (together “k-best”). The results

are shown in Figure 5.4. The cost of k-best extraction is clearly dwarfed by the the 1-best computation in

both cases. However, KA∗ is significantly faster over the bottom-up computations, even when the cost of

computing the heuristic is included.

5.4.2 Lexicalized Parsing

We also experimented with the lexicalized parsing model described in Klein and Manning (2003a). This

model is constructed as the product of a dependency model and the unlexicalized PCFG model in Klein and

Manning (2003b). We constructed these grammars using the Stanford Parser.4 The model was trained on

Sections 2-20 of the Penn Treebank and tested on 100 sentences of Section 21 of length at most 30 words.

For this grammar, Klein and Manning (2003a) showed that a very accurate heuristic can be constructed
4http://nlp.stanford.edu/software/
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Figure 5.6. The cost of k-best list extraction as a function of k for tree transducer grammars, for
both KA∗ and EXH.

by taking the sum of outside scores computed with the dependency model and the PCFG model individually.

We report performance as a function of k for KA∗ in Figure 5.5. Both NAIVE and EXH are impractical on

these grammars due to memory limitations. For KA∗, computing the heuristic is the bottleneck, after which

bottom-up parsing and k-best extraction are very fast.

5.4.3 Tree Transducer Grammars

Syntactic machine translation (Galley et al., 2004) uses tree transducer grammars to translate sentences.

Transducer rules are synchronous context-free productions that have both a source and a target side. We

examine the cost of k-best parsing in the source side of such grammars with KA∗, which can be a first step

in translation.

We extracted a grammar from 220 million words of Arabic-English bitext using the approach of Galley

et al. (2006), extracting rules with at most 3 non-terminals. These rules are highly lexicalized. About 300K

rules are applicable for a typical 30-word sentence; we filter the rest. We tested on 100 sentences of length

at most 40 from the NIST05 Arabic-English test set.

We used a simple but effective heuristic for these grammars, similar to the FILTER heuristic suggested in

Klein and Manning (2003c). We projected the source projection to a smaller grammar by collapsing all non-

terminal symbols to X, and also collapsing pre-terminals into related clusters. For example, we collapsed
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Figure 5.7. Representations of the different types of states used in parsing. (a) An inside edge item
I(VP, 2, 5). (b) An outside edge item O(VP, 2, 5). (c) An inside derivation item: D(TVP, 2, 5). (d)
An outside derivation item: Q(TRVP, 2, 3, {(NP, 3, n)}. The vertices in boldface are frontier vertices.

the tags NN, NNS, NNP, and NNPS to N. This projection reduced the number of grammar symbols from

149 to 36. Using it as a heuristic for the full grammar suppressed ∼ 60% of the total items (Figure 5.6).

5.5 Top-Down k-Best A∗

Although KA∗ is just at least as efficient as the EXH algorithm of Jiménez and Marzal (2000) and

Huang and Chiang (2005) (and much more efficient with an accurate heuristic), it has some extra conceptual

baggage. EXH only performs two passes – an exhaustive dynamic programming inside pass, followed by

a lazy, top-down k-best extraction pass – while KA∗ computes has both an inside and outside 1-best pass,

followed by a bottom-up k-best pass.

To simplify KA∗ further, in this section, we describe TKA∗, a top-down variant of KA∗ that, like EXH,

performs only an inside pass before extracting k-best lists top-down, but maintains the same optimality and

efficiency guarantees as KA∗. Eliminating the outside pass makes KA∗ simpler both in implementation and

description.
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Figure 5.8. Top-down expansion of an outside derivation item. (a) An outside derivation item
before expansion at (VP, 2, 5). (b) The result of expanding the item in (a) using the rule VP→ VB
NN. Frontier vertices are marked in boldface.

TKA∗

IN: I(B, i, l) : wB I(C, l, j) : wC
wB+wC+wr+α̂(A,i,j)−−−−−−−−−−−−−−−−→ I(A, i, j) : wB + wC + wr

OUT-D: Q(TRA , i, j,F) : wA I(B, i, l) : wB I(C, l, j) : wC
wA+wr+wB+wC+β(F)−−−−−−−−−−−−−−−−−→ Q(TRB , i, l,FC) : wA + wr

Table 5.7. The deduction rules used in TKA∗. Here, r is the rule A → B C. IN is the standard
inside deduction from A∗. In OUT-D, the tree TRB is the tree TRA extended at (A, i, j) with rule r,FC
is the list F with (C, l, j) prepended, and β(F) is

∑
v∈F β(v). Whenever the left child I(B, i, l)

of an application of OUT-D represents a terminal, the next vertex is removed from F and is used as
the new point of expansion.

5.5.1 TKA∗

KA∗ efficiently explores the space of derivation states because it waits for the exact Viterbi outside

costs before building each derivation state. However, these outside costs and associated deduction states are

only auxiliary quantities used to guide the exploration of inside derivations: they allow KA∗ to prioritize

currently constructed inside derivation items (i.e., constructed derivations of the root) by their optimal com-

pletion cost. Outside costs are thus only necessary because we construct partial derivations bottom-up; if

we constructed partial derivations in a top-down fashion, all we would need to compute optimal completion

costs are Viterbi inside scores, and we could forget the outside pass.

TKA∗ does exactly that. Inside states are constructed in the same way as KA∗, but once the inside

state I(R, 0, n) has been discovered, TKA∗ begins building partial derivations from the root outwards. We

replace the derivation states of KA∗ with outside derivation states, which represent trees rooted at the

root and expanding downwards; we will call derivation states for KA∗ “inside derivation states” to avoid

ambiguity. These outside derivation states bottom out in a list of vertices called the frontier vertices. See

Figure 5.7(d) for a graphical representation. When a frontier vertex represents a single word in the input,
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i.e. is of the form (si0, i, i + 1), we say that vertex is complete. An outside derivation can be expanded

by applying a rule to one of its incomplete frontier vertices; see Figure 5.8. In the same way that inside

derivation states wait on exact outside scores before being built, outside derivation states wait on the inside

states of all frontier vertices before they can be constructed.

Although building derivations top-down obviates the need for a 1-best outside pass, it raises a new issue.

When building derivations bottom-up, the only way to expand a particular inside derivation is to combine

it with another inside derivation to build a bigger tree. In contrast, an outside derivation can be expanded

anywhere along its frontier. Naively building derivations top-down would lead to an exponential number of

expansion choices.

We solve this issue by always expanding the left-most incomplete frontier vertex of an outside derivation

state. We show the deduction rule OUT-D which performs this deduction in Figure 5.7. We denote an outside

derivation state as Q(TRA , i, j,F), where TRA is a tree rooted at the root with left-most incomplete vertex

(A, i, j), and F is the list of incomplete frontier vertices excluding (A, i, j). Whenever the application of

this rule “completes” the left-most vertex, the next vertex is removed from F and used as the new point of

expansion. Once all frontier vertices are complete, the item represents a correctly scored derivation of the

goal, explored in a pre-order traversal.

5.5.2 Implementation Details

Building derivations bottom-up is convenient from an indexing point of view: since larger derivations

are built from smaller ones, it is not necessary to construct the larger derivation from scratch. Instead, one

can simply construct a new tree whose children point to the old trees, saving both memory and CPU time.

In order keep the same efficiency when building trees top-down, a slightly different data structure is

necessary. We represent top-down derivations as a lazy list of expansions. The top node TRG is an empty

list, and whenever we expand an outside derivation item Q(TRA , i, j,F) with a rule r = A→ B C and split

point l, the resulting derivation TGB is a new list item with (r, l) as the head data, and TRA as its tail. The

tree can be reconstructed later by recursively reconstructing the parent, and adding the edges (B, i, l) and

(C, k, l) as children of (A, i, j).
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5.5.3 Correctness

We provide a brief proof of correctness of the more general form of TKA∗ in Appendix A.5.

5.5.4 Performance

We have argued that TKA∗ is simpler than TKA∗, but we do not expect it to do any more or less

work than KA∗, modulo grammar specific optimizations. Therefore, in this section, we simply verify that

the additional work of extracting k-best lists with TKA∗ is negligible compared to the time spent building

1-best inside edges.

We examined the time spent building 100-best for the same experimental setup as Pauls and Klein

(2009a).5 On 100 sentences, our implementation of TKA∗ constructed 3.46 billion items, of which about

2% were outside derivation items. Our implementation of KA∗ constructed 3.41 billion edges, of which

about 0.1% were outside edge items or inside derivation items. In other words, the cost of k-best extraction

is dwarfed by the the 1-best inside edge computation in both cases. The reason for the slight performance

advantage of KA∗ is that our implementation of KA∗ uses lazy optimizations discussed in Pauls and Klein

(2009a), and while such optimizations could easily be incorporated in TKA∗, we have not yet done so in our

implementation.

5This setup used 3- and 6-round state-split grammar from Petrov et al. (2006), the former used to compute a heuristic for the
latter, tested on sentences of length up to 25.
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Chapter 6

Conclusions

This thesis has discussed efficient optimal search techniques for problems that can be formulated as

search in a hypergraph. We have provided a novel description and proof of correctness for the Hierarchical

A∗ algorithm of Felzenszwalb and McAllester (2007). We have empirically compared this algorithm to

well-known non-optimal search techniques, and found that non-optimal search techniques are much faster

unless a very accurate heuristic can be obtained for a particular problem (Section 3.3.3) or the user has a

very low tolerance for search errors (Section 3.3.2). We also described a novel variant of Hierarchical A∗

that is more robust to poor choices of grammar hierarchies.

We have also described two novel A∗-based algorithms that can extract k-best lists rather than just the

1-best. We have shown that this algorithm can lead to significant speed ups over existing state-of-the-art

k-best extraction algorithms given an appropriate heuristic.

54



Bibliography

Eugene Charniak and Mark Johnson. Coarse-to-fine n-best parsing and maxent discriminative reranking. In

Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL), 2005.

Eugene Charniak, Sharon Goldwater, and Mark Johnson. Edge-based best-first chart parsing. In Proceedings

of the Sixth Workshop on Very Large Corpora, pages 127–133. Morgan Kaufmann, 1998.

Eugene Charniak, Mark Johnson, Micha Elsner, Joseph Austerweil, David Ellis, Isaac Haxton, Catherine

Hill, R. Shrivaths, Jeremy Moore, Michael Pozar, and Theresa Vu. Multilevel coarse-to-fine pcfg parsing.

In Proceedings of the main conference on Human Language Technology Conference of the North Amer-

ican Chapter of the Association of Computational Linguistics, pages 168–175, Morristown, NJ, USA,

2006. Association for Computational Linguistics. doi: http://dx.doi.org/10.3115/1220835.1220857.

Michael Collins. Discriminative reranking for natural language parsing. In Proceedings of the Seventeenth

International Conference on Machine Learning (ICML), 2000.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269271,

1959.

P. Felzenszwalb and D. McAllester. The generalized A* architecture. Journal of Artificial Intelligence

Research, 2007.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel Marcu. What’s in a translation rule? In Human

Language Technologies: The Annual Conference of the North American Chapter of the Association for

Computational Linguistics (HLT-ACL), 2004.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel Marcu, Steve DeNeefe, Wei Wang, and Ignacio

55



Thayer. Scalable inference and training of context-rich syntactic translation models. In The Annual

Conference of the Association for Computational Linguistics (ACL), 2006.

Giorgio Gallo, Giustino Longo, Sang Nguyen, and Stefano Pallottino. Directed hypergraphs and applica-

tions. Discrete Applied Mathematics, 42(2-3), 1993.

Joshua Goodman. Parsing Inside-Out. PhD thesis, Harvard University, 1998.

Aria Haghighi, John DeNero, and Dan Klein. Approximate factoring for A* search. In Proceedings of

HLT-NAACL, 2007.

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost

paths. IEEE Transactions on Systems Science and Cybernetics, 4:100107, 1968.

Liang Huang. Unpublished manuscript. http://www.cis.upenn.edu/˜lhuang3/knuth.pdf,

2005.

Liang Huang. Forest-Based Algorithms in Natural Language Processing. PhD thesis, Harvard University,

1998.

Liang Huang and David Chiang. Better k-best parsing. In Proceedings of the International Workshop on

Parsing Technologies (IWPT), pages 53–64, 2005.
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Appendix A

Proof of Correctness of Hierarchical A∗

In this appendix, we present proofs of correctness for HA∗, BHA∗, KA∗, and TKA∗. Rather than prove

the correctness of HA∗ directly, as was done by Felzenszwalb and McAllester (2007), we show that HA∗

can be reformulated as a special case of Knuth’s algorithm (Knuth, 1977). This simpler and more elegant

proof allows us to generalize HA∗ to allow the use of negative weights and an initial consistent heuristic.

The correctness of BHA∗ can be proven with slight modifications to this proof, and the correctness of KA∗

and TKA∗ can be proven by reduction to HA∗ and BHA∗, respectively.

We start by reviewing Knuth’s algorithm in Section A.1, and arguing that weights in Knuth’s algorithm

need not be real numbers, but can be any generalized to any set with a total ordering. Then, we show in

Section A.2 that HA∗ is an instance of Knuth’s algorithm in which the weights w are pairs (β, α) ordered by

β + α, where β is an inside score and α is an outside score. The proofs for BHA∗, KA∗, and TKA∗ follow

in Sections A.3, A.4, and A.5.

A.1 Knuth’s Algorithm

Knuth (1977) describes an algorithm for finding the best path in a hypergraph. Although Knuth’s orig-

inal paper was formulated somewhat differently, Knuth’s algorithm can be thought of as operating on the

weighted deduction rules described in Section 2.2.2. In particular, it operates on weighted deduction rules
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ψ for which the priority function pψ(·) and the cost function gψ(·) are the same, so that each rule ψ has the

form

φ1 : w1, . . . , φn : wn
gψ(w1,...,wn)−−−−−−−−→ φ0 : gψ(w1, . . . , wn)

Knuth (1977) assumes that the functions gψ(·) are superior for all deduction rules. A function

gψ(w1, . . . , wn) is superior if

w′i ≥ wi implies gψ(w1, . . . , w
′
i, . . . , wn) ≥ gψ(w1, . . . , wi, . . . , wn)

and

gψ(w1, . . . , wn) ≥ max(w1, . . . , wn)

In words, a function is superior if it is monotone non-decreasing in each argument and upper bounds all

arguments.

Knuth (1977) shows that for superior functions, execution of the set of deduction rules will always

remove each state from the agenda with its minimum possible weight. In other words, Knuth’s algorithm

establishes the correctness guarantee of Section 2.2.2.

A.1.1 Monotonicity Guarantee for Knuth’s Algorithm

Because in Knuth’s algorithm, the priority of a state is always the same as its weight, a simple proof

also establishes the monotonicity guarantee of Section 2.2.2.

Theorem 1. During execution of any set of weighted deduction rules with pψ(·) ≡ gψ(·) and gψ(·) superior

for all deduction rules ψ, if state φ′ is removed from the agenda with weight w′ after some other state φ with

weight w, then w′ ≥ w. In other words, states are removed from the agenda in decreasing order of their

weight.

Proof. The proof is by contradiction. Suppose that the monotonicity guarantee is violated, i.e. that some

state φ′ is removed from the agenda with weight w′ after some other state φ with weight w where w′ < w.

Without loss of generality, suppose φ′ is the first state for which the monotonicity guarantee is violated, so

60



that the guarantee holds for all states already removed from the agenda. If Let ψ and ψ′ be the deduction

rules that derived φ and φ′ with their current weights, and let φ′1 . . . φ
′
n and φ1 . . . φn be their antecedents

and w′1 . . . w
′
n and w1 . . . wn be their weights.1 Finally, let φ′i′ and φi be the last states of φ′1 . . . φ

′
n and

φ1 . . . φn removed from the agenda, respectively, so that as soon as one is removed from the agenda, the rule

ψ′ or ψ can be applied. Note that by assumption, the monotonicity guarantee holds for the antecedents, so

it must be that w′i ≥ max(w′1, . . . , w
′
n) and wi ≥ max(w1, . . . , wn).

There are two cases. First suppose, φ′i′ was removed from the agenda before φi. But then φ′ must have

been enqueued before φ because φ′ can be enqueued as soon as φ′i′ is dequeued. Because w′ < w, and the

priority of a state is the same as its weight, φ′ must have been removed from the agenda before φ because it

was enqueued first and has a cheaper priority, producing a contradiction.

Now suppose φ′i′ was removed from the agenda after φi. If w′i > w, then φ′i′ will also be re-

moved after φ. But because gψ′(·) is superior, w′ ≥ w′i > w because w′ = gψ′(w′1, . . . , w
′
i, . . . , w

′
n) ≥

max(w′1, . . . , w
′
i, . . . , w

′
n) ≥ w′i > w, which contradicts w′ < w. If, on the other hand, w′i ≤ w, then φ′i′

will be removed from the agenda before φ. Thus, φ′ is placed on the agenda with priority w′ while φ is still

on the agenda with priority w. Since w′ < w, φ′ must be removed before φ, producing a contradiction.

A.1.2 Knuth’s Algorithm with Generalized Weights

Although Knuth’s algorithm assumes that states all weights are real, non-negative numbers, the proof

generalizes without modification to weights of any type as long as a total ordering � can be defined on the

weights. Then, a function gψ(·) is superior if

w′i � wi implies gψ(w1, . . . , w
′
i, . . . , wn) � gψ(w1, . . . , wi, . . . , wn)

and

gψ(w1, . . . , wn) � max
�

(w1, . . . , wn)

In particular, negative weights are permitted, as long as gψ(·) is superior. We will find this generalization

useful in our later proofs.
1To account for initial states, we can imagine that each initial state φ is produced by a unary deduction rule ψ with antecedent

φ0 having weight −∞.
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Deductions for HA∗ on General Hypergraphs

IN-B: O(vm−1) : α
α−→ I(vm) : 0

IN: O(vm−1
0 ) : α I(vm1 ) : β1 . . . I(vmn ) : βn

w(e)+α+
Pn
i=1 βi−−−−−−−−−−−−→ I(v0) : w(e) +

Pn
i=1 βi

OUT-B: I(v̄m) : β
β−→ O(v̄m) : 0

OUT: O(vm0 ) : α I(vm1 ) : β1 . . . I(vmi ) : βi . . . I(v
m
n ) : βn

w(e)+α+
Pn
i=1 βi−−−−−−−−−−−−→ O(vmi ) : α+ w(e) +

P
i′ 6=i βi′

Table A.1. Deduction rules for HA∗ on general hypergraphs. Note that because of the way the chart
is initialized, the weight of a state O(v−1) is given by the outside heuristic α̂(v0). The IN and OUT

schemata both refer to an edge e = vm1 . . . vmn
w(e)−−−→ vm.

Reformulated Deductions for HA∗

IN-B: O(vm) : (0, α) → I(vm) : (0, α)
IN: O(vm−1) : (βh, αh) I(vm1 ) : (β1, α1) . . . I(vmn ) : (βn, αn) → I(vm) : (w(e) +

Pn
i=1 βi, αh)

OUT-B: I(v̄m) : (β, 0) → O(v̄m) : (β, 0)
OUT: O(vm) : (βh, αh) I(vm1 ) : (β1, α1) . . . I(vmn ) : (βn, αn) → O(vmi ) : (βi, αh + w(e) +

P
i′ 6=i βi′ )

Table A.2. Reformulation of the HA∗ deductions (Table A.1). These rules are equivalent to HA∗, but
in a form that can be cast as an instance of Knuth’s algorithm. We omit the priority above the arrow
because in this formulation, the priority of a rule is the same as its weight (pψ(·) ≡ gψ(·)). Note that
because of the way the chart is initialized, the weight of a state O(v−1) is given by (−∞, α̂(v0)).

The IN and OUT schemata both refer to an edge e = vm1 . . . vmn
w(e)−−−→ vm.

A.2 Proof of Correctness for HA∗

In the preceding section, we established that the correctness and monotonicity guarantees hold for

weighted deduction rules in the case where gψ(·) is superior and pψ(·) = gψ(·). In this section, we will

show that HA∗ can be reformulated as an instance of Knuth’s algorithm, and hence inherits these guaran-

tees.

The deduction rule schemata for HA∗ on general hypergraphs are shown in Table A.1, and our reformu-

lation is shown in Table A.2. In the reformulation, each state has a (generalized) weight w = (β, α) with

w � w′ iff β + α ≥ β′ + α′. For inside states I(vm) at the mth level of the hierarchy, β will be used to

compute Viterbi inside costs at levelm, while α will be used to compute Viterbi outside costs at levelm−1.

For outside states O(vm), β and α will be used to compute Viterbi inside and outside costs at the mth level.

Unlike the version of HA∗ presented in Felzenszwalb and McAllester (2007), our reformulation also

assumes the presence of a consistent heuristic α̂(v0) defined for all 0th-level vertices v0. The heuristic α̂(·)

is necessary to properly deal with negative weights. In the special calse that all weights are non-negative,
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as Felzenszwalb and McAllester (2007) assume, then the trivial heuristic α̂(·) ≡ 0 is consistent and no

explicit heuristic is needed. Our reformulation is initialized by placing inside states I(v0) with weight

w = (0, α̂(v0)) on the chart for all leaf vertices v0 at the 0th level and outside states O(v−1) with weight

w = (−∞, α̂(v0)) for all v0 in G0.

We build up to the full proof with some lemmas. We start by proving in Lemma 1 that the inside

rule schemata (IN and IN-B) produce the correct weights, assuming the correctness of the outside rule

schemata (OUT and OUT-B). In Lemma 2, we show that the outside schemata are correct, if we assume

the correctness of the inside schemata. In Theorem 2, we resolve the mutual recursion of these two lemmas

with an appropriate base case and provide a summary of our claims.

Lemma 1. During execution of the deduction rules in Table A.2, suppose that the weight of any outside

state O(vm) removed from the agenda is w = (β(vm), α(vm)). Then, we have that:

(i) The weight of an inside state I(vm) on the agenda is (w(ρ(vm)), α(vm−1)) for some path ρ(vm) in

Gm to a vertex vm.

(ii) The weight of an inside state I(vm) when it is removed from the agenda is w = (β(vm), α(vm−1)).

Proof. We prove (i) by induction: we assume that (i) holds for antecedent states of a rule, and show that

it holds for the conclusion. As a base case, consider an inside state I(vm) for a leaf vertex vm. This state

was placed on the agenda according to the IN-B rule, so its weight is (0, α(vm−1)). The only path to a leaf

vertex is the empty path, which has weight 0, so the lemma holds.

Now consider an inside state I(vm) on the agenda where vm is non-leaf vertex. This state was placed

on the agenda by the IN schema for some edge em. We assume by induction that the lemma holds for all

vertices in vmi ∈ T (em), and show that the lemma holds for h(em) = vm. The weight wmi for each inside

state I(vmi ) is (w(ρ(vmi )), α(vm−1
i )) by the inductive assumption, and so the weight of I(vm) according to

the IN schema is

(
β1 + · · ·+ βn + w(em), α(vm−1)

)
=
(
w(ρ(vm1 )) + · · ·+ w(ρ(vmn )) + w(em), α(vm−1)

)
=
(
w(ρ(vm)), α(vm−1)

)
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where ρ(vm) = {em}∪ ρ(vm1 )∪ · · · ∪ ρ(vmn ),which proves (i). Because α̂(·) is a consistent heuristic for the

0th level, and α(vm−1) is a consistent heuristic all subsequent levels, we know that

w(ρ(vm)) + α(vm−1) = w(ρ(vm1 )) + · · ·+ w(ρ(vmn )) + w(em) + α(vm−1) ≥ w(ρ(vmi )) + α(vm−1
i )

for i = 1 . . . n, and sow � w′ wherew is the weight of the conclusion andw′ is the weight of any antecedent

inside state. We also know

w(ρ(vm)) + α(vm−1) ≥ β(vm) + α(vm−1) ≥ β(vm−1) + α(vm−1)

so the weight of conclusion is also greater than or equal to the weight of the outside antecedent state. Hence,

gψ(·) is superior for the IN deduction schema.2

To prove (ii), we note that by the correctness of Knuth’s algorithm, we can conclude that the weight

w = (β, α) for a state I(v) that is minimized. Since α = α(vm−1) is the same for all rules that proposed

I(v), β must be minimized. By (i), β = w(ρ(v)) for some path ρ(v), and since the minimum over paths

ρ(v) is β(v), we must have β = β(v), which proves (ii).3

We now prove the correctness of the outside deduction rules, assuming that inside states have weight

w = (β(vm), α(vm−1)) for all vm at any level.

Lemma 2. During execution of the deduction rules in Table A.2, suppose that the weight of an inside state

I(vm) for any vm is w = (β(vm), α(vm−1). Then, we have that:

(i) The weight of an outside state O(vm) on the agenda is w = (β(vm), w(ρ̈(vm)) for some outside path

ρ̈(vm) in Gm.

(ii) The weight of an outside state O(vm) when it is removed from the agenda is w = (β(vm), α(vm)).

2Superiority also requires that gψ(·) be non-decreasing in each argument. Because gψ(·) is in all cases the sum of β of inside
states and α of outside states, it is clearly non-decreasing in those values. Moreover, α for an inside state is the same for all rules that
propose that state, and β is the same for all proposals of an outside state. Therefore, w′ � w with w′ = (β′, α′) and w = (β, α)
implies β′ ≥ β for inside states and α′ ≥ α for outside states, which in turn implies that gψ(. . . , w′, . . . ) � gψ(. . . , w, . . . ).

3We might worry that the deductive program only proposes a subset of possible paths ρ(v) to a given vertex, and therefore the
minimum over all such path withs is not β(v). However, it is easy to verify that the IN deduction rules can propose all possible
paths to v.
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Proof. The proof of (i) is by induction as in Lemma 1, though the direction of the inductive assumption

is reversed: we assume that the lemma holds for a vertex v = h(e), and show that it holds for all vertices

v′ ∈ T (e).

As a base case, consider an outside state O(v̄m) proposed by the OUT-B schema. The weight of this

state is the weight of I(v̄m), which by assumption is w = (β(v̄m), α(v̄m−1)) = (β(v̄m), 0). The only

outside path from the root is the empty path with weight 0, so (i) holds. Now, consider an outside state

O(vmi ) proposed by the OUT rule for edge em with h(em) = vm and vmi ∈ T (em), and assume that (i)

holds for O(vm). Then the weight of O(vmi ) is

(
β(vmi ), β(vm1 ) + · · ·+ β(vmi−1) + β(vmi+1) + · · ·+ β(vmn ) + w(em) + w(ρ̈(vm))

)
= (β(vmi ), w(ρ̈(vmi )))

where w(ρ̈(vmi )) is the weight of an outside path for vmi in which vmi is the child of edge em and each

sibling of vmi has its optimal inside path. Therefore, (i) holds for the conclusion. It should be clear that

(β(vmi ), w(ρ̈(vmi ))) � (β(vm), w(ρ̈(vm))) because

β(vmi ) + w(ρ̈(vmi )) = β(vm1 ) + · · ·+ β(vmn ) + w(em) + w(ρ̈(vm)) ≥ β(vm) + w(ρ̈(vm))

β(vm). Therefore, gψ(·) is superior for OUT, and by the correctness of Knuth’s algorithm, the weight of a

state O(vm) when removed from the agenda must be a minimum. Because β is the same for all rules which

produce O(vm), if the weight is a minimum, then α must be a minimum, so α = α(vm). This proves (ii)

for the OUT schema.

We are now ready to state the correctness claims about our reformulation of HA∗.

Theorem 2. Given:

(a) A hierarchy of hypergraphs G0 . . . GM in which Gm−1 is a relaxed projection of Gm for each m =

1 . . .M

(b) A consistent heuristic α̂(v0) defined for all v0 ∈ G0

(c) A chart initialized with states I(v0) with weight w = (0, α̂(v0)) for all v0 and states O(v−1) with

weight w = (−∞, α̂(v0)) for all v0 in G0.
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(d) Deduction rules from the schemata in Table A.2 for all edges em ∈ Gm for m = 0 . . .M .

Then:

(i) The weight of an inside state I(vm) when it is removed from the agenda is w = (β(vm), α(vm−1)).

(ii) The weight of an outside state O(vm) when it is removed from the agenda is w = (β(vm), α(vm))

(iii) When a state with weight w = (β, α) is removed from the agenda, then only states with weight

w′ = (β′, α′) with β′ + α′ ≤ β + α have already been removed from the agenda.

Proof. We already proved (i) in Lemma 1 and (ii) in Lemma 2. Although these proofs are mutually recursive,

the inside deduction schemata at level 0 act as a base case because those schemata do not have outside states

as antecedents in the 0th level of the hierarchy, relying instead on the heuristic α̂(·). (iii) follows immediately

from the monotonicity guarantee of Knuth’s algorithm.

Together, (i) and (ii) establish the correctness guarantee of Section 3.1.3, while (iii) establishes the

efficiency guarantee.

A.3 Proof of Correctness for BHA∗

The proof of correctness for BHA∗ is analogous to that for HA∗: we can transform it into an equivalent

formulation and prove correctness by appealing to Knuth’s algorithm. The only difference from the proof

for HA∗ is that we need to verify that bridge outside scores α̃(v) ensure superiority of the inside deduction

schemata, and mixed coarse and fine inside scores ensure superiority of the outside deduction schemata.

To generalize BHA∗ to negative weights, we will require a heuristic as we did for HA∗. However, in

this case, we will need an inside heuristic β̂(vm) which lower bounds the Viterbi inside cost of a vertex

vm. An inside heuristic is consistent for a graph G if

β̂(v) ≤ w(e) +
∑

v′∈T (e)

β̂(v′)
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Deductions for BHA∗ on General Hypergraphs

IN-B: Õ(vm) : α
α−→ I(vm) : 0

IN: Õ(vm−1
0 ) : α I(vm1 ) : β1 . . . I(vmn ) : βn

α+w(e)+
Pn
i=1 βi−−−−−−−−−−−−→ I(v0) : w(e) +

Pn
i=1 βi

OUT-B: I(v̄m) : β
β−→ Õ(v̄m) : 0

OUT: Õ(vm0 ) : α I(v
m−1i≤1
1 ) : β1 . . . I(v

m−1i≤n
n ) : βn

α+w(e)+
Pn
i′=1 βi′−−−−−−−−−−−−−→ Õ(vmi ) : α+ w(e) +

P
i′ 6=i βi′

Table A.3. Deduction rule schemata for BHA∗ on general hypergraphs. Note that because of the
way the chart is initialized, the weight for a state I(v−1) is β̂(v0). The IN and OUT schemata both

refer to an edge e = vm1 . . . vmn
w(e)−−−→ vm.

Reformulated Deductions for BHA∗ on General Hypergraphs

IN-B: Õ(vm) : (0, α) → I(vm) :(0, α)

IN: Õ(vm) : (βh, αh) I(vm1 ) : (β1, α1) . . . I(vmn ) : (βn, αn) → I(vm) :(w(em) +
Pn
i=1 βi, αh)

OUT-B: I(v̄m) : (β, 0) → Õ(v̄m) :(β, 0)

OUT: Õ(vm) : (βh, αh) I(v
m−1i≤1
1 ) : (β1, α1) . . . I(v

m−1i≤n
n ) : (βn, αn) → Õ(vmi ) :(βc, αh + w(em) +

P
i′ 6=i βi′ )

Table A.4. Reformulated deduction rule schemata for BHA∗ that allow it to be cast as an instance of
Knuth’s algorithm. We omit the priority above the arrow because in this formulation, the priority of
a rule is the same as its weight (pψ(·) ≡ gψ(·)). Note that because of the way the chart is initialized,
the weight for a state I(v−1) is given by (β̂(v0),−∞). The IN and OUT schemata both refer to an

edge e = vm1 . . . vmn
w(e)−−−→ vm.

for all vertices v and edges e with h(e) = v. A consistent inside heuristic is also admissible, meaning

β̂(v) ≤ β(v) for all v. It is easy to see that inside scores from a relaxed projection G′ of G form consistent

inside heuristics for G.

We show the general form of BHA∗ in Table A.3 and the modified version for proof purposes in Ta-

ble A.4. The chart is initialized with inside states I(v−1) having weight w = (β̂(v0),−∞) for all v0 ∈ G0,

and the outside state O(v̄0) having weight w = (β̂(v0), 0).

To prove the correctness of BHA∗, we first prove Lemmas 3 and 4 which are analogous to Lemmas 1

and 2.

Lemma 3. During execution of the deduction rules in Table A.4, suppose that the weight of any outside

state Õ(vm) removed from the agenda is w = (β(vm), α̃(vm)). Then, we have that:

(i) The weight of an inside state I(vm) on the agenda is (w(ρ(vm)), α̃(vm)) for some path ρ(vm) to a

vertex vm.
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(ii) The weight of an inside state I(vm) when it is removed from the agenda is w = (β(vm), α̃(vm)).

Proof. We can prove this lemma using the same argument we used for Lemma 1 if we can establish that

bridge Viterbi outside costs α̃(vm) are consistent outside heuristics for level m.

We know that bridge outside costs satisfy

α̃(vmi ) ≤ w(em) + α̃(vmi ) +
i′−1∑
i′=1

w(ρ(vmi′ )) +
n∑

i′=i+1

w(ρ(vm−1
i′ ))

for all em = vm1 . . . vmn → vm and inside paths ρ(vmi′ ) and ρ(vm−1
i′ ).

Then for any inside path ρ(vmi ),

w(ρ(vmi )) + α̃(vmi ) ≤ w(ρ(vmi )) + w(em) + α̃(vm) +
i′−1∑
i′=1

w(ρ(vmi′ )) +
n∑

i′=i+1

w(ρ(vm−1
i′ ))

= w(em) + α̃(vm) +

(
i′−1∑
i′=1

w(ρ(vmi′ )) + w(ρ(vmi )) +
n∑

i′=i+1

w(ρ(vm−1
i′ ))

)

≤ w(em) + α̃(vm) +
n∑

i′=1

w(ρ(vmi′ ))

so α̃(·) is a consistent outside heuristic for level m.

We now proof that the outside deductions are correct assuming the inside deductions work as desired.

Lemma 4. During execution of the deduction rules in Table A.4, suppose that the weight of an inside state

I(vm) for any vm with w = (β(vm), α̃(vm)). Then, we have that:

(i) The weight of a bridge outside state Õ(vm) on the agenda is w = (β(vm−1), w̃(ρ̈(vm)) for some

outside path ρ̈(vm).

(ii) The weight of an outside state O(vm) when it is removed from the agenda is w = (β(vm−1), α̃(vm)).
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Proof. The proof of (i) is nearly identical to the proof of Lemma 2(i). The base case is unchanged, and

the weight of a bridge outside state Õ(vmi ) proposed by the OUT rule for edge em with h(em) = vm and

vmi ∈ T (em), is

(β(vm−1
i ), β(vm1 ) + · · ·+ β(vmi−1) + β(vm−1

i+1 ) + · · ·+ β(vm−1
n ) + w(em) + w̃(ρ̈(vm)))

=(β(vm−1
i ), w̃(ρ̈(vmi )))

where w̃(ρ̈(vmi )) is the bridge weight of an outside path for vmi in which vmi is a child of edge em, each

left sibling of vmi has its optimal inside path, and each right sibling of vmi has a bound on its optimal coarse

inside path (or a bound on its optimal inside path given by the inside heuristic β̂(·)). Therefore, (i) holds for

the conclusion.

The proof of (ii) is also the same as in Lemma 2(ii) if we can show the superiority of gψ(·), i.e. that

(β(vm−1
i ), w̃(ρ̈(vmi ))) � (β(vm−1), w̃(ρ̈(vm))). This holds because

β(vm1 ) + · · ·+ β(vmi−1)+β(vm−1
i ) + · · ·+ β(vm−1

n ) + w(em) + w̃(ρ̈(vm))

≥ β(vm−1
1 ) + · · ·+ β(vm−1

n ) + w(em) + w̃(ρ̈(vm))

≥ β(vm−1) + w̃(ρ̈(vm))

where the last inequality holds for m > 0 because β(vm−1) is a consistent inside heuristic for level m− 1,

and also holds for level m = 0 because β(v−1) = β̂(v0), which is a consistent inside heuristic for level

0.

A.4 Proof of Correctness for KA∗

We prove the correctness of this algorithm by a reduction to HA∗. We construct an instance of HA∗ as

follows: let G0 be the hypergraph generated by the input hypergraph G, and let G1, the target hypergraph

of our HA∗ instance, be a hypergraph in which there is one vertex v1 for all inside paths ρ(v) to all vertices

v ∈ G0 and each edge e1 has the form
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ρ(v1) . . . ρ(vn) w−→ ρ(v)

for an edge e = v1 . . . vn
w−→ v from G0, and where ρ(v) = ρ(v1) ∪ · · · ∪ ρ(vn) ∪ {e}. By construction,

G0 is a relaxed projection of G1 with projection function π(ρ(v)) = v, so the guarantees of HA∗ carry over

to KA∗. Since each vertex in G1 corresponds to an inside path in G0, KA∗ considers all possible paths to

the root. By the monotonicity guarantee, KA∗ will pop off complete paths to the root in ascending order of

weight.

A.5 Proof of Correctness for TKA∗

We prove the correctness of this algorithm by a reduction to BHA∗, using the same hierarchy of gram-

mars G0 and G1 from the previous section. We can think of the outside derivation states Q(·) of TKA∗ as

computing bridge outside scores for G1. In particular, like the deduction rules that compute bridge outside

costs for BHA∗, the deduction rules that build outside derivation states in TKA∗ mix “coarse” states to the

right of the current expansion point (inside vertex states from G0) and “fine” states to the left of the current

expansion point (complete inside derivations).
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