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With the aim of mitigating the basis set error in density functional theory (DFT)

calculations employing local basis sets, we herein develop two empirical corrections

for basis set superposition error (BSSE) in the def2-SVPD basis, a basis which

– when stripped of BSSE – is capable of providing near-complete-basis DFT re-

sults for non-covalent interactions. Specifically, we adapt the existing pairwise ge-

ometrical counterpoise approach (gCP) to the def2-SVPD basis, and we develop a

beyond-pairwise approach, DFT-C, which we parameterize across a small set of inter-

molecular interactions. Both gCP and DFT-C are evaluated against the traditional

Boys-Bernardi counterpoise correction across a set of 3402 non-covalent binding en-

ergies and isomerization energies. We find that the DFT-C method represents a

significant improvement over gCP, particularly for non-covalently-interacting molec-

ular clusters. Moreover, DFT-C is transferable among density functionals and can be

combined with existing functionals – such as B97M-V – to recover large-basis results

at a fraction of the cost.

a)Electronic mail: mhg@cchem.berkeley.edu
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I. INTRODUCTION

In an electronic structure calculation, two forms of basis set errors arise when local basis

sets are employed: basis set superposition error (BSSE), which is a consequence of incon-

sistent treatment of a larger supersystem and its constituent subsystems,1–3 and intrinsic

basis set incompleteness error, the category to which we relegate all remaining basis set er-

rors once BSSE has been removed.4 Intrinsic incompleteness error arises from the fact that

the Schrödinger equation is being solved in just a fraction of the full Hilbert space, and no

systematic means of removal – short of simply increasing the number of basis functions –

has yet been discovered, though adaptive-basis approaches have shown some promise.5–10

Basis set superposition error, on the other hand, has a long history within the electronic

structure community.11–20 In the case of distinct non-covalently interacting units, BSSE can

be removed by performing fragment calculations within the basis of the full system, i.e. via

the counterpoise correction (CP) first introduced by Boys and Bernardi.2

The standard counterpoise correction has two principal shortcomings. First, it requires a

partitioning of the full system into a number of fragments, Nfragments; for some systems, such

as those with simple bimolecular interactions, this partitioning is straightforward, but for

many interesting systems – such as those involving substantial intramolecular interactions

– it is not. Second, although in principal a good approximation to counterpoise-corrected

results may be obtained with minimal extra e↵ort via standard energy decomposition

analyses,21,22 in practice the CP correction often ends up being quite computationally de-

manding: whereas an uncorrected binding energy requires only one calculation in the full

supersystem basis, a counterpoise-corrected one requires Nfragments + 1 such calculations.

The issues of partitioning and the inability of the CP scheme to address intramolecular

BSSE were first addressed by Galano and Alvarez-Idaboy with an atom-by-atom coun-

terpoise correction;23 Jensen later generalized this into the atomic counterpoise (ACP-n)

approach.24 In the ACP-n scheme, BSSE is estimated as a sum of atomic BSSEs, where

each atomic BSSE is calculated by considering basis functions up to n bonded atoms away.

This approach has shown some promise in addressing intramolecular BSSE, though it su↵ers

from the same partitioning problem as CP when ambiguous bonding patterns are involved –

e.g. in transition states and hydrogen-bonded systems – and the computational complexity

of the method is unchanged.
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More recently, there have been attempts to develop empirical models for BSSE, as such

approaches can potentially address both the partitioning and complexity issues. The first

such model was proposed six years ago by Faver and Merz,25,26 who constructed so-called

“proximity functions” for molecular fragments from atomic pairs. Since the targets for this

method are large biomolecules, the parameters are trained on a variety of proteinogenic

systems. To date, this is the only empirical correction for BSSE developed for correlated

wavefunction-based methods. The chief shortfall of the approach lies in its limited trans-

ferability: the parameters for modeling typical nonpolar, van der Waals-driven interactions

are significantly di↵erent than those used for modeling hydrogen bonding.

Kruse and Grimme more recently introduced the so-called geometrical counterpoise (gCP)

scheme,27 which was later combined with the DFT-D3(BJ)28,29 dispersion correction and ei-

ther an explicit – in the form of an additional short-range term – or implicit – in the form of a

modified basis set – correction for basis set incompleteness to form the HF-3c, PBEh-3c, and

HSE-3c methods.30–32 The gCP scheme loosely resembles the proximity function approach

of Faver and Merz, inasmuch as both methods are strictly pairwise atomic corrections. Un-

like the proximity function-based correction, however, gCP has gained considerable traction

within the electronic structure community,33–35 largely due to its low-cost, satisfactory trans-

ferability, and ease of use. The gCP approach is utilized in conjunction with very small basis

sets – on the order of 6-31G* – and is capable of recovering most of the BSSE in typical

systems.

Within this work, we adapt the gCP empirical correction for BSSE to the def2-SVPD

basis. We focus exclusively on the def2-SVPD basis set36,37 due to its good balance of

expense and performance; def2-SVPD has low intrinsic incompleteness error relative to

other comparably-sized bases,38 and hence seems to us to be a particularly promising basis

set for BSSE correction schemes. In addition, we develop an alternative beyond-pairwise

empirical correction for BSSE within density functional theory: DFT-C. The many-body

nature of the method accounts for the overcounting concomitant with any pairwise approach

and allows DFT-C to treat both large and small systems in a consistent manner. Whereas

gCP is developed for use with exceptionally small basis sets, with the aim of providing

semi-quantitative results, we demonstrate DFT-C can recover near-basis-set-limit results at

a fraction of the cost, particularly in the case of non-covalent interactions.
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II. THEORY AND METHODS

A. gCP

Here, we will briefly summarize the geometrical counterpoise (gCP) correction for BSSE;

for further details, see the original study by Kruse and Grimme.27 At the core of gCP lies a

function describing the decay of BSSE on atom A due to the presence of basis functions on

atom B a distance rAB away, which we denote f gCP
AB⇤(rAB). This term is given by

f gCP
AB⇤(rAB) = cAB exp

⇣
�↵r�AB

⌘
, (1)

and includes a multiplicative constant, cAB as well as a universal decay parameter ↵ and

exponent �. The contributions of all atom-ghost pairs are summed up to yield the gCP

correction for BSSE,

EgCP = �
X

A

cA
X

B 6=A

f gCP
AB⇤(rAB), (2)

where cA are atom-dependent parameters and � is an overall scaling parameter. In practice,

EgCP is just added to the total electronic energy for a given system. The gCP approach is

strictly pairwise additive with respect to nuclear centers.

B. Parameterization of gCP

Equations (1) and (2) contain several parameters: multiplicative constants cAB, linear

coe�cients cA, decay factors ↵ and �, and an overall scaling factor �. The pairwise multi-

plicative constants, cAB, are calculated as

cAB =
1p

SABNvirt
B

, (3)

where Nvirt
B is the number of virtual orbitals on atom B – given by Nvirt

B = Nbasis functions
B �

1
2N

electrons
B – and SAB is a measure of the Slater overlap between atoms A and B. The overlap

term is described in detail in the original study;27 here, we will simply note that it involves

an additional linear parameter, ⌘.

The atomic linear coe�cients, cA, are calculated within the gCP approach as “missing

energy” terms, i.e. cA is calculated as the di↵erence in restricted open-shell Hartree-Fock39
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energy between atom A in a target basis (here def2-SVPD) and a large basis, in the presence

of an external electric field to populate higher angular momentum functions. We have

utilized aug-pc-4 as the large basis.40–42

The remaining parameters – three nonlinear (↵, �, and ⌘) and one linear (�) – are ob-

tained by minimizing the error in predicted gCP BSSE relative to Boys-Bernardi BSSE with

the B3LYP43–46 density functional across the S66x8 dataset of intermolecular interactions,47,48

within the def2-SVPD basis. As in the original work, the most compressed geometries are

weighted for this optimization by a factor of 0.5 in order to emphasize equilibrium and

long-distance structures.

The optimized set of parameters is provided in the Supplemental Material; this set of

parameters allows the existing gCP approach to be utilized with the def2-SVPD basis set

for DFT. Briefly, we mention one particularly interesting aspect of the optimized parameters:

the optimal value of ⌘ – the parameter controlling atomic overlap in the gCP model – in

the def2-SVPD basis is 0.00001, which suggests that for this particular basis set, the gCP

expression can be simplified without degrading performance by simply removing the overlap

term. We have verified that this is in fact true; we present in the Supplemental Material a

simpler formulation of gCP for def2-SVPD.

C. DFT-C

In addition to re-parameterizing the gCP method for use with the def2-SVPD basis,

we also present a more complex, though physically-motivated, geometry-based empirical

approximation for BSSE, which will henceforth be referred to as DFT-C. This model is in

many ways similar to gCP.27 At its core lies a term describing the decay of BSSE on atom

A due to the presence of basis functions on atom B a distance rAB away, which we denote

fDFT-C
AB⇤ (rAB). This term is given by

fDFT-C
AB⇤ (rAB) = cAB exp

�
�↵ABr

2
AB + �ABrAB

�
, (4)

and includes a multiplicative constant, cAB, a Gaussian decay parameter, ↵AB, and an

exponential decay parameter, �AB. We expect the decay of BSSE to mirror that of the

electron density; the exponential term accounts for the standard decay expression,49 and the

Gaussian term reflects the nature of the basis functions employed. The DFT-C approach
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includes both an exponential and Gaussian term, with pair-dependent decay factors; these

di↵erences set it apart from the gCP core term given in eq. (1).

In DFT-C, we damp this atomic contribution to BSSE, much as the contribution of gCP is

damped in PBEh-3c to potentially address short-rAB issues that can arise in thermochemical

problems.31 We employ the same form of damping function as PBEh-3c,31

d(rAB) =
1

1 + k1,AB (rAB/r0,AB)
�k2,AB

, (5)

where r0,AB is the sum of the van der Waals radii of atoms A and B, and k1,AB and k2,AB

are parameters that control the precise shape of the damping function. Whereas Grimme

et al.31 set k1 = 4 and k2 = 6 for all pairs of atoms A and B by inspection, we compute

them systematically for each atom pair based on the sums of covalent and van der Waals

radii such that d(rcov,AB) = 0.05 and d(r0,AB) = 0.95. Doing so yields k1,AB = 19 and

k2,AB = 5.8889 [log (r0,AB/rcov,AB)]
�1. Moreover, we propose damping to a finite value,

rather than zero, to more accurately reflect the actual short-range behavior of BSSE; after

all, BSSE does not simply vanish in the covalent bonding distance regime. Thus, rather

than simply multiplying the contribution from eq. (4) by the damping function in eq. (5),

we define a damped contribution, gDFT-C
AB⇤ (rAB) as

gDFT-C
AB⇤ (rAB) = d(rAB)f

DFT-C
AB⇤ (rAB) + (1� d(rAB)) f

DFT-C
AB⇤ (rcov,AB). (6)

At long range, this term reduces to fDFT-C
AB⇤ (rAB), while at short range, it reduces to a

pair-dependent constant, fDFT-C
AB⇤ (rcov,AB).

Whereas the gCP correction is strictly pairwise, we incorporate into DFT-C a many-body

component. We do so in the following physically-motivated though ad hoc way, by simply

modifying each pairwise contribution by an additional term, hAB⇤({A,B, ...}), which is given

by

hAB⇤({A,B, ...}) =
"
1 +

X

C 6=A,B

Nvirt
C

Nvirt
B

terfc (rAC , rAB) terfc (rBC , rAB)

#�1

, (7)

where Nvirt
B is the number of virtual orbitals on atom B – given by Nvirt

B = Nbasis functions
B �

1
2N

electrons
B as in gCP, with N electrons

B being the number of electrons on neutral atomic B and

Nbasis functions
B corresponding to the number of basis functions centered at atom B – distances

are in atomic units, and terfc(x, y) is the attenuator defined by Dutoi and Head-Gordon,50
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terfc (x, y) = 1� 1

2
[erf (x+ y) + erf (x� y)] . (8)

This additional correction, hAB⇤({A,B, ...}), addresses the nonzero overlap between the

Hilbert space of atom B and the Hilbert spaces of all atoms C 6= A,B. As more and more

atoms are added in the vicinity of atoms A and B, the contribution of the ghost functions

centered at B to the atomic BSSE of A should decrease; eventually, once the space is

saturated, adding additional atoms (i.e. ghost functions) does not change the BSSE of atom

A. This phenomenon is not captured by a strictly pairwise approach. The many-body

correction we employ is visualized for a planar 3-atom system in Figure 1.

FIG. 1. Visualization of how adding a third atom C impacts the contribution of basis functions

centered at B to the BSSE on atom A, as per hAB⇤({A,B,C}). When atom C is su�ciently far

away from A and B (lighter areas), the model reduces to a pairwise approach. In this example, C

and B are assumed to have the same number of virtual orbitals, and A and B are located at (-1.5

a.u., -1.5 a.u.) and (1.5 a.u., 1.5 a.u.), respectively.

The final form of the DFT-C correction for BSSE is given by

EDFT-C = �
X

A

cA
X

B 6=A

gDFT-C
AB⇤ (rAB)hAB⇤ ({A,B, ...}) , (9)

where � is an overall scaling coe�cient, cA is a linear coe�cient that modifies the con-

tributions of ghost functions on all atoms B to the BSSE on A, and the damped pairwise

contribution, gDFT-C
AB⇤ (rAB), and many-body correction, hAB⇤ ({A,B, ...}), are defined in equa-
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tions (6) and (7). With the exception of the many-body term, this expression for the DFT-C

energy is mathematically similar to that for gCP – c.f. eqs. (9) and (2).

D. Parameterization of DFT-C

As can be seen from eq. (9), DFT-C has a large number of parameters. For each unique set

of atom A and ghost functions centered at atom B, there are exponential and Gaussian decay

parameters, ↵AB and �AB, and there is a multiplicative constant, cAB. These parameters

are obtained by generating BSSE curves for neutral atomic pairs AB⇤ using a form of local

spin-density approximation (LSDA), SPW92,51–54 in the def2-SVPD basis. For each unique

atom A and corresponding ghost atom B, we perform a least squares fit on a log BSSE curve

generated over the range [rcov,AB, 5rcov,AB] in units of 0.1 a0. To avoid overemphasizing the

long-distance regime – where the atomic BSSE is nearly zero, and hence the logarithm of

the BSSE is very large in magnitude – we weight each point by the inverse of the logarithm

of the BSSE at each distance. The viability of this approach is demonstrated in Figure

2 for the neon component of neon-argon BSSE. The DFT-C method does a reasonable

job of capturing BSSE throughout the entire distance regime, yielding an RMSE of 0.002

kcal/mol. Note the gCP RMSE for this system is an order of magnitude larger: the lack of

a many-body term in gCP necessitates the systematic underprediction of pairwise atomic

BSSEs. For pairs AB⇤ where the Gaussian decay parameter ↵AB optimizes to a negative

value, we set �AB = 0 and re-optimize, so as to avoid divergence in the large-rAB limit.

FIG. 2. Dependence of actual and predicted neon atom SPW92/def2-SVPD BSSEs on distance to

argon ghost functions.
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We have parameterized all 1296 combinations of the first 36 elements of the periodic

table in this manner; the resulting cAB, ↵AB, and �AB are tabulated in the Supplemental

Material. In the cases of manganese, iron, and cobalt, we have taken averages of the BSSEs

for the two competing spin states. For elements heavier than krypton, we propose using the

parameters from 4th-row analogues, as is done in gCP.

The linear coe�cients cA in eq. (9) are all unity, with the exception of those for hy-

drogen, carbon, nitrogen, and oxygen, which are fit via least-squares regression of DFT-C

predicted BSSEs to actual BSSEs at the SPW92/def2-SVPD level across the S66 dataset

of intermolecular interactions.47 The overall scaling parameter, �, is by definition unity for

LSDA, and is allowed to vary for di↵erent density functionals. We have optimized � for

several generalized gradient approximations (GGAs) and meta-GGAs, again by minimizing

the root-mean-square error (RMSE) across BSSEs in S66, using the pairwise parameters

(cAB, ↵AB, and �AB) and linear coe�cients (cA) obtained at the LSDA level. For GGA

functionals, the optimal value of � is approximately 0.9, while for meta-GGA functionals, it

is slightly lower, near 0.85. We thus propose using � = 1 for LSDA, � = 0.9 for GGAs, and

� = 0.85 for meta-GGAs.

Ultimately, almost all of the parameters associated with the DFT-C method are obtained

from toy systems – neutral atom-ghost pairs – at the LSDA level. Four linear coe�cients

are trained on S66 BSSEs, also at the LSDA level, and for non-LSDA density functionals,

we allow for one scaling parameter, which is trained on S66 BSSEs. An implementation

of this method within the python programming language is provided in the Supplemental

Material. In practice, the DFT-C correction is applied in the same manner as gCP: the term

from eq. 9 is simply added to the total electronic energy for a given system.

E. Datasets and Computational Details

To assess the performance of the gCP and DFT-C methods, we employ a subset of

the comprehensive database assembled by Mardirossian and Head-Gordon.55 The subset we

utilize contains 3402 data points distributed over 48 distinct datasets. These smaller con-

stituent datasets are classified according to five distinct datatypes: NCED (easy non-covalent

interactions of dimers), NCEC (easy non-covalent interactions of clusters), NCD (di�cult

non-covalent interactions of dimers), IE (easy isomerization energies), and RG10 (binding
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curves of rare gas dimers). Unlike “easy” interactions, “di�cult” interactions are charac-

terized by strong correlation or self-interaction error. A summary of the datatypes may be

found in Table I.

TABLE I. Summary of datatypes. For more details, see Ref. 55.

Datatype # Constituent Datasets References

NCED 1744 S66, A24, DS14, HB15, HSG, NBC10, S22, X40, A21x12, BzDC215, HW30, NC15,

S66x8, 3B-69-DIM, AlkBind12, CO2Nitrogen16, HB49, Ionic43

47,48,56–77

NCEC 243 H2O6Bind8, HW6Cl, HW6F, FmH2O10, Shields38, SW49Bind345, SW49Bind6, WA-

TER27, H2O20Bind4, 3B-69-TRIM, CE20, H2O20Bind10

71,78–87

NCD 91 TA13, XB18, Bauza30, CT20, XB51 88–92

IE 755 AlkIsomer11, Butanediol65, ACONF, CYCONF, Pentane14, SW49Rel345, SW49Rel6,

H2O16Rel5, H2O20Rel10, H2O20Rel4, Melatonin52, YMPJ519

79,81–85,93–100

RG10 569 RG10 101

In addition to the version of LSDA on which DFT-C is parameterized – SPW9251–54 – we

consider in this study three GGA and three meta-GGA functionals. At the GGA level, we

examine a pure functional, PBE;102 a global hybrid, B3LYP43–46 – the functional with which

gCP is parameterized – and a range-separated hybrid, !B97X-V.103 At the meta-GGA level,

we test a pure functional, B97M-V;104 a global hybrid, M06-2X;105 and a range-separated

hybrid, !B97M-V.55

All density functional calculations are performed in the def2-SVPD basis.36,37 A fine

Lebedev integration grid of 99 radial shells – each with 590 angular points – is used to

compute semi-local components of exchange and correlation, while non-local correlation in

the VV10-containing functionals is calculated with the coarser SG-1 grid.106 All calculations

are performed within a development version of Q-Chem 4.4.107

III. RESULTS AND DISCUSSION

In this study, we have developed two geometry-based empirical corrections for BSSE in

the def2-SVPD basis: gCP and DFT-C. This particular basis was chosen based on its low

intrinsic basis set incompleteness error; BSSE-corrected results obtained within this basis

are quite near the basis set limit. This is illustrated in Figure 3, wherein root-mean-square

errors (RMSEs) for B97M-V with (CP) and without (noCP) counterpoise correction against

B97M-V/def2-QZVPPD across the various non-covalent datatypes of Table I are shown.

Within the def2-SVP basis, even when BSSE is removed (i.e. the CP SVP specification in
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Figure 3), the remaining basis set incompleteness error is quite large – significantly larger

than method errors for typical density functionals. This indicates the def2-SVP basis is

not suitable for a high-accuracy BSSE correction scheme; its utility would ultimately be

contingent on significant cancellation of method and basis set errors. On the other hand,

intrinsic incompleteness error in the def2-SVPD basis is quite small, and so a BSSE correction

scheme developed in this basis can, in principle, allow for quantitative reproduction of

large-basis results.

FIG. 3. Root-mean-square errors of B97M-V with (CP) and without (noCP) the Boys-Bernardi

correction for BSSE in two small basis sets relative to B97M-V in the def2-QZVPPD basis, near the

basis set limit. SVP and SVPD correspond to def2-SVP and def2-SVPD, respectively. Methods

in the chart are ordered from lowest overall RMSE at the top, to highest overall RMSE at the

bottom. A table of values is provided below the chart to facilitate quantitative comparison.

In addition to developing the DFT-C method, we have also parameterized the existing

gCP scheme within the def2-SVPD basis for comparison. The first of these assessments is

shown in Figure 4, wherein we have plotted for the three non-covalent datatypes from Table

4 normalized root-mean-square errors (NRMSEs) for DFT-C and gCP predicted BSSEs at
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the LSDA level of DFT. The normalized RMSE is simply the RMSE divided by the mean

of the reference data, and hence provides a measure of relative error. Its use facilitates

comparison between e.g. NCED and NCEC, since the energy scales of those two datatypes

di↵er by more than an order of magnitude.

FIG. 4. Normalized root-mean-square errors (NRMSEs) of gCP and DFT-C predicted BSSEs

versus Boys and Bernardi BSSEs at the LSDA level of DFT in the def2-SVPD basis. The datatypes

NCED, NCD, and NCEC are defined in Table I. The normalized root-mean-square error is obtained

by dividing the RMSE by the mean reference value in the dataset, as described in the text. Direct

use of LSDA/def2-SVPD without any correction would result in 100% NRMSE.

Within Figure 4, it is evident that both gCP and DFT-C reproduce Boys-Bernardi BSSEs

at the LSDA level reasonably well; either correction is a substantial improvement over no

correction. The performance of DFT-C on molecular dimers is particularly promising, as is

its consistency across the various datatypes: the lowest DFT-C NRMSE in SPW92 is 25%,

for NCED, and the highest is 33% (NCD). On the other hand, the performance of gCP

is quite variable; the method boasts an exceptionally low NRMSE of 19% across NCEC,

but a significantly worse NRMSE of 56% for NCD. Neither correction can be considered a

quantitative replacement for the full counterpoise correction.

This same sort of comparison is made for three popular GGA functionals in Figure 5.

Therein, NRMSEs for DFT-C and gCP BSSEs versus actual BSSEs obtained with a pure

functional (PBE), a global hybrid (B3LYP), and a range-separated hybrid with non-local
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correlation (!B97X-V) may be found. It is clear that for all three density functionals,

both DFT-C and gCP are quite consistent with regards to their performances across the

various datatypes. Moreover, comparing with Figure 4, this consistency extends across the

LSDA-GGA gap for DFT-C, which bodes well for its transferablity.

FIG. 5. Normalized root-mean-square errors (NRMSEs) of gCP and DFT-C predicted BSSEs

versus Boys and Bernardi BSSEs for three GGA density functionals in the def2-SVPD basis. For

further details, see Figure 4.

This same level of consistency is not seen for gCP, however: whereas gCP reproduces

LSDA cluster BSSEs with unparalleled accuracy, the method is not nearly as good for

clusters at the GGA level: the gCP NRMSE across NCEC in !B97X-V is more than double

that in SPW92. This is a consequence of the fact that gCP tends to overestimate BSSE in

molecular clusters, and BSSEs obtained at the LSDA level are on average larger than those

at the GGA level. The exceptional performance of gCP on SPW92 cluster BSSEs may thus

be understood to be largely a consequence of the o↵setting of these two phenomena.

It is also evident from Figure 5 that at the GGA level, DFT-C a↵ords significant gains

over gCP regardless of datatype or density functional. This is quite promising, as DFT-C

is parameterized almost entirely at the LSDA level of theory, with only the overall scaling

parameter changing from � = 1 to � = 0.9. On the other hand, gCP is parameterized at the

GGA level, specifically with B3LYP. It is still true that use of gCP is significantly better

than no correction at all.

In Figure 6, we further assess the transferability of the gCP and DFT-C BSSE cor-

rection schemes across three distinct meta-GGAs: a pure meta-GGA B97M-V, a global
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hybrid M06-2X, and a range-separated hybrid !B97M-V. Again, we see that across the

three meta-GGA functionals, the relative performances of gCP and DFT-C are similar: for

all three functionals, gCP exhibits a NRMSE of around 35% for NCED, 50% for NCD, and

60% for NCEC; the corresponding NRMSEs for DFT-C are 25%, 35%, and 20%. Similarly,

we see the same sort of consistency for the DFT-C approach at the meta-GGA level as

was seen at the GGA and LSDA levels (c.f. Figures 5 and 4). On the other hand, gCP

is slightly worse at describing molecular clusters at the meta-GGA level than it was at the

GGA level. Again, this can be traced back to the facts that gCP systematically over-predicts

BSSE in molecular clusters, and meta-GGA BSSEs tend to be even lower than their GGA

counterparts. This overcorrection by gCP can in turn be attributed to its strictly pairwise

nature; due to the inclusion of a many-body correction, the DFT-C approach does not su↵er

from this overcounting issue. Note that both gCP and DFT-C can be applied here without

modification even to the Minnesota family of density functionals – which are renowned for

their non-intuitive and slow convergence of BSSE108,109 – since the def2-SVPD basis set is to

small to capture the unphysical behavior of some of the inhomogeneity correction factors.

This same transferability would not be expected in larger, e.g. triple-zeta, basis sets.

FIG. 6. Normalized root-mean-square errors (NRMSEs) of gCP and DFT-C predicted BSSEs

versus Boys and Bernardi BSSEs for three meta-GGA density functionals in the def2-SVPD basis.

For further details, see Figure 4.

Across the seven density functionals examined, the average NRMSE of the DFT-C ap-

proach across NCED is 30%, compared to the 42% of gCP; this corresponds to an im-
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provement of more than 25%. For the NCD datatype, the gCP average NRMSE is 59%,

compared to 38% – an improvement of 35%. Across the NCEC set of molecular clusters, we

see a 46% improvement for DFT-C over gCP: a reduction in average NRMSE from 52% to

28%. It is clear that for a wide variety of systems, across a diverse set of density functionals,

in the def2-SVPD basis, the DFT-C method is satisfactorily transferable and represents a

significant improvement over gCP for the reproduction of Boys-Bernardi BSSEs. The re-

maining DFT-C error of course represents the remaining gap to perfect reproduction of the

Boys-Bernardi counterpoise correction.

Thus far, with the exception of the basis set comparison in Figure 3, all errors have been

expressed relative to “exact” BSSEs. Although such metrics are relevant for this particular

work, since the DFT-C and gCP methods are designed and trained to reproduce BSSEs, they

are not of the same broad interest as, say, errors relative to high-level electronic structure

methods. In Figure 7, we show root-mean-square errors (RMSEs) across the five datatypes

from Table I for the B97M-V functional relative to high-level (generally CCSD(T)/CBS) re-

sults. The noCP and CP designations correspond to uncorrected and counterpoise-corrected

B97M-V/def2-SVPD, respectively, and CBS corresponds to B97M-V/def2-QZVPPD – ef-

fectively B97M-V at the basis set limit. DFT-C and gCP refer to B97M-V/def2-SVPD with

the corresponding approximation for BSSE included.

From Figure 7, it is immediately evident that any sort of BSSE correction is preferable

to no correction. By correcting using the standard Boys-Bernardi approach, we are able

to eliminate 90% of basis set error for NCED, 71% for NCD, 97% for NCEC, and even

improve upon CBS results for RG10. Unfortunately, the standard counterpoise correction

can not be applied for the vast majority of isomerization energies – it can only be applied

for relative relative energies, such as relative binding energies – and so the CP and noCP

results are almost identical for IE. On the other hand, both gCP and DFT-C o↵er solid

improvements over noCP for every datatype examined, including isomerization energies, for

which we are able to eliminate roughly 60% of basis set error. Errors across the individual

datasets comprising each aggregate datatype are provided in Figure 8.

From Figure 8, it is apparent that there exist datasets in NCED for which gCP out-

performs DFT-C; likewise, DFT-C outperforms gCP on a subset of IE. Nevertheless, for

B97M-V/def2-SVPD, the DFT-C approach generally o↵ers modest improvements over gCP

for molecular dimers (NCED, NCD, and RG10), a significant improvement for molecular
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FIG. 7. Root-mean-square errors of B97M-V versus high-level reference values at five levels of

theory: uncorrected in the def2-SVPD basis (noCP); counterpoise-corrected in def2-SVPD (CP);

with the geometrical counterpoise correction in def2-SVPD (gCP); with the correction introduced

in this work in the def2-SVPD basis (DFT-C); and near the complete-basis set limit (CBS), in

def2-QZVPPD. Methods in the chart are ordered from lowest overall RMSE at the top, to highest

overall RMSE at the bottom. A table of values is provided below the chart to facilitate quantitative

comparison.

clusters (NCEC), and is slightly inferior for isomerization energies (IE). The DFT-C method

outperforms the Boy-Bernardi counterpoise correction across the full dataset, with an overall

RMSE of 0.56 kcal/mol compared to a CP RMSE of 0.63 RMSE; the large improvements

it a↵ords for NCEC and IE o↵set the small losses on NCED and NCD. As such, DFT-C is

a viable alternative to the traditional counterpoise correction in the def2-SVPD basis set,

yielding similar results to CP with e↵ectively no increase in cost over noCP.

To further illustrate the power of the DFT-C BSSE-correction scheme, in Figure 9 we

show RMSEs across the four aggregate datatypes for B97M-V with (B97M-V-C) and without

(B97M-V) the DFT-C correction for BSSE in the def2-SVPD basis, as well as for four popular

pure meta-GGA density functionals – B97M-V,104 MS2-D3(op),110,111 M06-L,112 and TM,113

– near the CBS limit, in the def2-QZVPPD basis. From Figure 9, it is clear that although
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FIG. 8. Root-mean-square errors of B97M-V/def2-SVPD versus “exact” reference values with

no correction (noCP), the standard counterpoise correction (CP), the geometrical counterpoise

correction (gCP), and the treatment introduced here (DFT-C). All RMSEs are in units of kcal/mol.

Each row is color-coded for ease of reading, with darker cells corresponding to lower RMSEs. From

top to bottom, the blocks correspond to the NCED, NCD, NCEC, IE, and RG10 datatypes. Note

for SW49 and most of IE, the standard counterpoise correction is not possible, and so for these

datasets the noCP and CP methods are identical.
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B97M-V/def2-SVPD is not competitive with standard meta-GGAs at the basis set limit,

B97M-V-C/def2-SVPD certainly is – despite requiring a small fraction of the computational

e↵ort.
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FIG. 9. Root-mean-square errors in kcal/mol of several pure meta-GGA density functionals relative

to high-level reference values. B97M-V-C corresponds to B97M-V with the DFT-C correction.

Results for the additional density functionals are taken from a previous study.111 SVPD corresponds

to def2-SVPD, and QZVPPD corresponds to def2-QZVPPD. Each datatype category is color-coded,

with the darkest color corresponding to the lowest RMSE within that category.

IV. DISCUSSION AND CONCLUSIONS

In this study, we have introduced a physically-motivated empirical correction for basis

set superposition error within the def2-SVPD basis set: DFT-C. This correction di↵ers from

the existing gCP approach – which we have also re-parameterized for use in the def2-SVPD

basis –in two critical areas. First, whereas the linear coe�cients within gCP include all man-

ifestations of basis set incompleteness error, the DFT-C approach is constructed exclusively

from basis set superposition errors. Second, although gCP is a strictly pairwise correction, in

DFT-C each pairwise contribution is reduced by a many-body term to ameliorate the over-

counting concomitant with the non-orthogonality of the Hilbert spaces of nearby atoms. We

have evaluated both gCP and DFT-C across a diverse dataset containing 3402 non-covalent

interactions and isomerization energies.
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This new method, DFT-C, yields significantly more accurate BSSEs than gCP for a wide

variety of interaction motifs. Moreover, the correction is transferable. DFT-C exhibits

roughly the same relative performances across the various non-covalent datatypes regardless

of the particular density functional with which it is paired: for non-covalently interacting

dimers, DFT-C o↵ers a modest improvement over gCP; in the case of molecular clusters

– particularly when a meta-GGA functional is employed – the improvement is more pro-

nounced, which is likely attributable to the many-body nature of the method.

Whereas gCP has been developed as a general purpose tool that can be relatively easily

adapted to any basis set, the DFT-C approach is much more complicated and specialized;

tabulating the many pairwise coe�cients and decay parameters is a nontrivial task. In

this particular work, we have have introduced a correction for def2-SVPD, a double-zeta

basis set that has disproportionately low intrinsic basis set incompleteness error for how few

basis functions it contains.38 We are also exploring the possibility of extending this method

to triple-zeta basis sets in order to truly push the basis set limit; such may be the focus

of work to come. Additionally, we are exploring the impact of the DFT-C correction on

thermochemical energies and equilibrium geometries.

Much as gCP is employed as a component of a small-basis functional in PBEh-3c, so too

could DFT-C be adapted, with either some subset of the linear parameters cA or simply

the overall scaling parameter � being allowed to vary. Even without modification, however,

the method is immensely powerful; we have demonstrated it can be paired with an existing

functional, B97M-V, to yield def2-SVPD results on par with def2-QZVPPD results for other

state-of-the-art pure meta-GGA density functionals. DFT-C should prove immensely useful

for recovering large-basis results for many energetic properties with small-basis e↵ort – the

correction scales with the number of atoms, not the number of basis functions, after all, and

is essentially free on the scale of an electronic structure calculation – and it can be paired

without modification with any density functional. This could allow us to obtain high-quality

results for large systems which are currently out of the domain of quantitative electronic

structure theory.
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V. SUPPLEMENTARY MATERIAL

See supplemental material at [URL will be inserted by AIP] for a simple python imple-

mentation of the DFT-C method, as well as parameterizations for both DFT-C and gCP

within the def2-SVPD basis and several additional tables and figures.
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84G. S. Fanourgakis, E. Aprà, and S. S. Xantheas, J. Chem. Phys. 121, 2655 (2004).

85T. Anacker and J. Friedrich, J. Comput. Chem. 35, 634 (2014).

86A. Karton, R. J. O’Reilly, B. Chan, and L. Radom, J. Chem. Theory Comput. 8, 3128

(2012).

87B. Chan, A. T. B. Gilbert, P. M. W. Gill, and L. Radom, J. Chem. Theory Comput. 10,

3777 (2014).

88P. R. Tentscher and J. S. Arey, J. Chem. Theory Comput. 9, 1568 (2013).

89S. Kozuch and J. M. L. Martin, J. Chem. Theory Comput. 9, 1918 (2013).
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