
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Muninn: a Versioning Flash Key-Value Store Using an Object-based Storage Model

Permalink
https://escholarship.org/uc/item/4mp2h1hz

ISBN
9781450329200

Authors
Kang, Yangwook
Pitchumani, Rekha
Marlette, Thomas
et al.

Publication Date
2014-06-30

DOI
10.1145/2611354.2611364

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4mp2h1hz
https://escholarship.org/uc/item/4mp2h1hz#author
https://escholarship.org
http://www.cdlib.org/

Muninn: a Versioning Flash Key-Value Store Using an
Object-based Storage Model

Yangwook Kang Rekha Pitchumani Thomas Marlette Ethan L. Miller
Center For Research In Storage Systems

University of California, Santa Cruz
{ywkang,rekhap,tmarlette,elm}@cs.ucsc.edu

ABSTRACT

While non-volatile memory (NVRAM) devices have the po-
tential to alleviate the trade-off between performance, scal-
ability, and energy in storage and memory subsystems, a
block interface and storage subsystems designed for slow I/O
devices make it difficult to efficiently exploit NVRAMs in a
portable and extensible way.
We propose an object-based storage model as a way of

addressing the shortfalls of the current interfaces. Through
the design of Muninn, an object-based versioning key-value
store, we demonstrate that an in-device NVRAM manage-
ment layer can be as efficient as that of NVRAM-aware
key-value stores while not requiring host resources or host
changes, and enabling tightly-coupled optimizations. Muninn
is also designed to show that versioning can be added to a
file system transparently with minimal host-side changes.
As a flash key-value store, it achieves better life-time and
low read/write amplification by eliminating internal data
movements and per-object metadata updates using Bloom
filters and hash functions. By doing so, it achieves as few as
1.5 flash page reads per look up and 0.26 flash page writes
per insert on average with 50million 1KB key-value pairs
without incurring data re-organization. This is close to the
minimum number of flash accesses required to read and store
the 1KB key-value pairs, thus increasing performance and
lifetime of flash media.

Categories and Subject Descriptors

D.4.2 [Operating Systems]: Storage Management

General Terms

Design, Experimentation, Measurement

Keywords

Object-based storage device, Flash memory, Key-value store,
Versioning

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
SYSTOR ’14, June 10-12 2014, Haifa, Israel

Copyright 2014 ACM 978-1-4503-2920-0/14/06 ...$15.00.
DOI 10.1145/2611354.2611364

1. INTRODUCTION
Non-Volatile Random Access Memories (NVRAMs) are

becoming increasingly important in the storage hierarchy as
the need for energy-efficient and high performance storage
increases in both consumer and enterprise markets. Con-
sumer products, such as laptops and smart phones, are adopt-
ing flash memory to enhance their battery life and response
time instead of hard drives. Enterprise SSDs (Solid State
Disks) are used as replacements for 10,000/15,000 RPM hard
drives. Beyond flash memory, several other types of non-
volatile memories such as Phase Change RAM (PRAM),
Spin-Torque Transfer RAM (STT-RAM), Nano RAM and
memristors are competing to be the future storage and/or
memory medium [26].

Despite the increasing importance of NVRAMs, storage
and memory subsystems in current operating systems are
not yet fully ready to embrace this technology shift, be-
cause of the assumption of slow block-based I/O devices
in the design of core I/O subsystems [8]. At the device
level, the design of device subsystems such as mapping and
wear-leveling is restricted and complicated due to the limited
flexibility of a block-based interface, providing sub-optimal
performance [22]. Several optimizations such as nameless
writes [35] and DFS [20] are proposed to alleviate these ef-
ficiency issues, but they require changes in the data man-
agement layer in the host systems whenever a new type of
NVRAM becomes available. Supporting heterogeneous de-
vices would be even more difficult, because it may require
multiple management layers or extended file systems for the
NVRAM.

We propose the use of the object-based storage model for
NVRAMs to address the shortcomings of current NVRAM
interfaces. This model offloads the NVRAM data manage-
ment layer from a file system to a device and provides an
object interface, which supports variable-length requests.
By isolating the NVRAM specific technology behind a rich
object interface, it allows a file system to be independent
from the underlying storage medium, enabling an easy tran-
sition between different NVRAM technologies. Heteroge-
neous NVRAM devices and hybrid NVRAM devices such as
PRAM-Flash hybrid and Flash-HDD hybrid [32] can also
be transparently supported without redesigning or modi-
fying a local file system. Performance-wise, the in-device
NVRAM management layer can be as efficient as native file
systems designed for a specific type of NVRAM, while allow-
ing tightly-coupled hardware optimizations and eliminating
the duplicate translation layers in the data path. In addi-
tion, its capability of handling variable-length objects and

the associated metadata allows storage systems to support
a wide variety of device types including key-value stores and
active disks without altering a device-host interface.
We designed Muninn to demonstrate the design flexibil-

ity, efficiency, and extensibility of the object based storage
model as a new storage interface for non-volatile storage
devices. For extensibility, we show Muninn can add new
features to existing file systems or applications without al-
tering them. To demonstrate this, we add a versioning sup-
port to Muninn that can be transparently applied to ex-
isting file systems. For efficiency and flexibility, in the de-
sign of key-value management policies, we try improve read
and write amplifications of a key-value store by eliminating
on-flash per-object metadata and internal data movements
using Bloom filters and hash-based data placement. This
may incur more read operations when compared to the map-
ping layer in SSDs due to the possibility of false positives
in the Bloom filter. However, we expect it could increase
the lifetime of devices by reducing the number of writes and
frequent cleaning. Additionally, Muninn can help a host
system achieve better scalability; the host no longer needs
to manage the exact mappings between a key and a logical
block number per device.
In contrast to host-side key-value stores like SILT [27],

Muninn can be configured to fit in a dedicated in-device
memory, requiring no internal data movement on flash. By
directly managing flash memory, it can avoid the overheads
from having two index structures; one for key-value store,
and another for SSDs. Our results show that without re-
quiring any background operation, Muninn achieves 1.5 page
reads per look up and 0.26 page writes per insert on average
while inserting 50million 1KB key-value pairs and reading
25million pairs back on a flash memory with 4KB pages.
Considering that the minimum numbers of flash accesses for
just reading and storing one key-value pair are 1 page read
and 0.25 page write in this configuration, it shows that the
flash storage management overhead can be minimized while
providing additional features such as versioning and com-
pression. We make three contributions in this paper:

• We design Muninn, which is a versioning key-value
store built on the object-based storage model. We
show that Muninn can add versioning transparent to
existing file systems while achieving low read/write
amplifications.

• We introduce the hash-based data placement policy for
flash memory, which eliminates the need for per-object
metadata and a direct logical to physical mapping, re-
ducing write amplification.

• We show that object-level access to flash storage can
be efficient.

2. BACKGROUND AND RELATED WORK
We first describe the evolution of NVRAM storage sys-

tems, focusing on their design issues and interface changes.
We then discuss versioning file systems, key-value stores,
and Bloom filters that influence the design of our Muninn.

2.1 Evolution of NVRAM System Designs
As NAND flash memory became cheaper and large enough

to replace programmable read-only memory and battery-
backed SRAMs in late 90s, and eventually data storages in

mid 2000s, many flash-aware file systems such as YAFFS [1],
UBIFS [19], and RCFFS [21] were designed and implemented
for embedded systems. Since both the file system and hard-
ware are deployed together, flash-aware file systems pro-
vided tightly-coupled optimization, an efficient placement
and cleaning policies. To further improve the lifetime and
performance of these devices, several file system specific ex-
tensions using byte-addressable NVRAM have been stud-
ied [24, 14]. Condit et al. propose a PRAM file system that
directly places byte-addressable NVRAMs such as PRAM
and MRAM on the main memory bus, and uses them as
a backing store [11]. While these systems have the most
efficient architecture to handle NVRAMs, they are mostly
used in embedded systems or custom designed systems due
to their limited portability, compatibility, and dependency
between a file system and a device.

In modern SSDs, the compatibility issue has been solved
by adding an indirection layer between a legacy file system
and storage medium in a device. This sector-to-page map-
ping layer, called the Flash Translation Layer (FTL), allows
legacy file systems to access an SSD as a block-based storage
device. However, due to the lack of file system semantics, the
efficiency of data structures in SSDs is typically lower than
that in flash-aware file systems. In the data path, while the
data allocation layer in a legacy file system is still processed
incurring some overhead, its results are remapped and not
used inside the device.

There have been many efforts to improve the efficiency
of FTLs, mostly focusing on detecting and handling various
types of workloads [10, 30]. Some of the recent approaches
also look at the contents of the workload to further optimize
the device [9, 17].

While these optimizations can improve the inefficiency of
FTLs, the problems with duplicate translation layers and
limited file system semantics cannot be solved without an
interface change. Nameless writes [35] remove a file sys-
tem address translation by extending a block interface to
inform the file system whenever the location of data changes.
DFS [20] uses an another approach to this problem, which
moves the flash translation layer to the virtualized flash layer
in a host operating system. In these approaches, however,
significant changes in the operating systems code are re-
quired, and more importantly, these changes are not inde-
pendent from the NVRAM medium.

The object-based storage model has been used mostly in
large-scale distributed storage systems to improve scalabil-
ity by adding intelligence to the devices [7, 15]. For use
as a NVRAM interface, Rajimwale et al. [31] suggest some
optimization techniques such as informed cleaning, and pri-
ority I/O scheduling. Kang et al. [22] study the effects of
various data placement policies in this model, and other
flash-oriented optimizations. We show that this model can
support various types of NVRAM I/O devices including a
specialized device like a key-value store, providing a new
feature to the system in a portable and efficient way.

2.2 Versioning Flash Systems
Since flash memory requires out-of-place updates, every

flash device has multiple versions of the modified data at
least for some time. However, few flash storage systems
offer versioning, because they must preserve write order,
which is not easy in most FTL schemes. They also need
to store metadata and provide additional user commands

such as snapshot and rollback. For example, Lightweight
Time-shift FTL (LTFTL) [33] can create version states at
any time and go back in time to desired states. However,
because it is based on block-based FTL, snapshots can be
supported, but finer-grained full versioning such as per-file
versioning and per-directory versioning is not possible. In
contrast, our object-based versioning system provides both
a per-object versioning and a system-wide snapshot trans-
parently using the flash space that was already used. Similar
to Muninn, Tango [4] provides snapshots, but it is designed
to support consistent replication without using complex dis-
tributed protocols, not focusing on directly managing flash
memory or providing per-object versioning.

2.3 Key-Value Stores
Key-value stores are specialized storage systems optimized

for insert and retrieval of small data associated with a fixed
length key, replacing the need for complex database sys-
tems. These key-value stores are designed to run on a host
using SSDs, so reducing host system resource usage is one
of the main design factors in this system to achieve not only
performance, but also scalability. FlashStore [12] is a key-
value store used as a cache for hard-disk based key-value
storage system. It uses a single in-memory hash table to in-
dex all keys on flash and hence achieve one read per lookup.
SkimpyStash [13] indexes the flash via a hash table with lin-
ear chaining to achieve low memory footprint. However, it
requires on average 5 flash reads per lookup. BufferHash [3]
maintains multiple hash tables—one in memory and the oth-
ers on flash memory— and uses a small set of Bloom fil-
ters (BF) to indicate whether a key might be present in a
hash table. BloomStore [28] is a recent key-value store based
entirely on Bloom filters. They append incoming key-value
pairs to Flash page and maintains one BF per flash page.
Hence, the system contains many BFs and lookups have to
search all the BFs in parallel and in batches to locate a key.
Aiming to achieve low memory footprint, they store large
amounts of older BFs in flash and read them in for lookups,
increasing read amplification. The increased false positive
rate of having multiple BFs has not been addressed properly.
SILT [27] achieves a low memory footprint and a low read
and write amplification using log store, hash store and sorted
store. However, the number of flash read and write accesses
can be much higher than a per-request amplification factor
due to background processes, moving data between stores.
Also, its read/write amplification factor does not consider
the page accesses by an SSD. Supporting failure recovery
and deletion can be also difficult. In contrast, our system
stores each key-value pair only once and does not use any
background process to manage the written key-value pair.

2.4 Hashing and Bloom filters
The characteristics of flash memory and byte-addressable

NVRAMs make hashing an interesting choice today, because
the access latency is the same regardless of its address. In
addition, it can minimize the metadata overhead by not stor-
ing the actual key-page mapping. Our scheme uses multiple
hash functions associated with multiple BFs [6] to achieve
better space utilization.
Among various types of BFs, our Bloom filter structures

are similar to Dynamic BFs [16] and Scalable BFs [2] in a
way that multiple small-size BFs exist instead of a large BF.
Dynamic BFs increase or decrease their sizes as the number

O
bj

ec
t I

nt
er

fa
ce

Block Management Layer

Data Placement Policy

Index Structure

Cleaner

Wear-Leveling

Reliability

Security

SCMs

read

write

create

delete

Figure 1: NVRAM OSD exposing T10 object inter-
face

of keys in each BF changes. To reduce the compounded
error probability, the false positive rate of each Bloom filter
keeps decreasing as the number of BFs increases in Scalable
BFs. Muninn’s per segment BF is most similar in design to
the BF based summaries [25].

3. OBJECT-BASED STORAGE MODEL
The object-based model [15] consists of two main com-

ponents: an object-based file system and an object-based
storage device (OSD). Unlike a typical file system, an object-
based file system only provides the name resolution, offload-
ing the storage management layer to the OSD. By isolating
device-specific technology behind a metadata rich object in-
terface, the file system becomes independent of the under-
lying storage medium while being able to deliver full file
system level semantics to the devices. Thus, the NVRAM
management layer in the device can be designed similar to
that of a native NVRAM-aware file system while enabling
co-optimization between the data management layer and
NVRAM hardware. In addition, a single object-based file
system can support multiple heterogeneous OSDs, enabling
a drop-in replacement for new types of NVRAM devices
without altering any host subsystem.

When a hybrid NVRAM device becomes available, for ex-
ample, both NVRAM-aware systems and FTL-based sys-
tems would require a host system change. A host file system
and its I/O subsystems need to understand the character-
istics of multiple NVRAM medium in NVRAM-aware sys-
tems. FTL-based systems would require an intelligent layer
in a host system that can deliver file-system or user-level
semantics to the device, otherwise, the use of NVRAMs is
limited to a write buffer for file system blocks. Nameless
writes [35], is one way of delivering semantics. However,
it will still require a host system modification whenever a
target NVRAM media changes because the optimizations
change.

Interface The file system and OSDs communicate via
an object-interface, which exposes various types of object
commands as depicted in Figure 1. Each operation takes an
object, which includes variable-length data and metadata as-
sociated with the data, describing one file-level or user-level
I/O request. By exposing various operations to capture file
system operations, this eliminates the needs for host system
utilities such as TRIM, which informs the devices whenever
a file is deleted. The format of an object and types of object
commands are standardized by ANSI T10 [29].

However, one of the major issues of the current standard is
that basic object I/O operations such as read, write and ob-
ject grouping (collection) are supported, limiting the range
of available device features. For example, an in-device search
operation, as introduced for Smart SSDs [23], cannot be rep-
resented easily with the standard command sets. Therefore,
we suggest allowing devices to publish their features to a
host system when mounting, and letting a host subscribe
the features to be used. Additionally, an execute command
are required to use a feature on demand.
Flat namespaceObjects are identified by a 128-bit unique

identifier, not by human-readable names. There is no hierar-
chy between objects, offering more flexibility when assigning
and distributing objects. For example, the file system can
assign a certain range of object identifiers to each distributed
node so it can retrieve the node that stores an object by
looking at its identifier, making searching and sharing easy.
However, this does not prevent a host system from creating
a hierarchy on top of OSDs, because directory hierarchies
and name resolution is still managed by a host system. Our
versioning system does not use a hierarchy, but we encoded
a version information in an object identifier so users can eas-
ily control versions of key-value pairs without any support
from a host file system or an additional library.
User interface The object-based storage model can sup-

port both POSIX interface and an object-interface as a user
interface. When the POSIX interface is used, the Virtual
File System (VFS) in an operating system passes an inode
number and an offset to an object-based file system. Then,
the file system generates an object identifier, and sends data,
and necessary metadata for the given type of request to the
OSD via an object interface. When an application directly
accesses the OSD via an object interface, the application
can send higher level information to optimize its data path.
For example, full text searching can be executed within a
device, sending only the results of the search to the host,
not the whole contents of an object [23].
Cost While providing advanced and efficient data pro-

cessing in this model, the hardware manufacturing cost of
an object-based device can remain as low as SSDs, because
SSDs already have multiple powerful embedded processors,
large memory, and multiple high-bandwidth independent
I/O channels to the underlying medium to process map-
ping and wear-leveling [23]. Handling object requests and
the sparse namespace are the only additional overhead to
the SSD. Also, considering the estimated cost of an iPhone
4 processor is around $10 [18], adding more powerful pro-
cessors for advanced data management would not increase
the cost of OSDs much.
Object-based key-value stores provides several advantages

over typical user-level key-value stores. First, the use of
host-system resources such as CPU and memory is mini-
mized, relaxing the design constraints on memory and com-
putations. Second, the FTL of an SSD and the mapping
table of a user-level key-value store can be merged and opti-
mized for the underlying hardware. Third, small objects can
be better supported; upper-level semantics such as object
size and the type of operations are available in OSDs while
SSDs can only see sector numbers. Lastly, an object-based
key-value stores can be seen as new stackable file systems,
providing additional features transparent to the existing file
system.

4. Muninn
We designed Muninn to demonstrate the design flexibil-

ity, efficiency, and extensibility of the object based storage
model as a new storage interface for non-volatile storage de-
vices. To show the extensibility of the object interface, we
transparently bring new features to existing file systems or
applications in an efficient way. We show design flexibility
and efficiency through our design of key-value management
policies that forego traditional logical-to-physical mapping
layers in favor of Bloom filters and hash based data place-
ment. Its data management layer is designed to reduce the
average read and write amplification and improve life-time
of a device by reducing metadata updates sacrificing some
read performance for not frequently accessed objects.

The design constraints of Muninn are different than that
of most host-side key-value stores. While lowering per-key
memory usage is a primary goal of most host-side key-value
stores, Muninn makes this memory utilization a configurable
parameter because a in-device memory is used to process
key-value pairs, not shared by other devices or processes.
Thus, instead of moving and sorting data around the multi-
ple internal stores for reduced memory usage, in-device key-
value stores can focus on increasing life-time by reducing
unnecessary data movements. Additionally, data placement
and cleaning policies can be specialized for the purpose of
the device, selectively cleaning data blocks and reducing the
number of reads or writes per key.

Muninn adds versioning transparent to the existing file
system while being accessible from file system utilities through
an object interface for advanced management. A versioning
feature was chosen because a history of updates can be main-
tained at a low cost in flash memory where overwritten data
is remained until it is cleaned due to out-of-place update
requirements. We use a chain of BFs to preserve the update
history, and find an object. Similarly, instead of storing the
physical address of an object, we use a hash function to place
and find data in a flash block.

We first describe how the host systems and device appli-
cations communicate, and then explain how we insert and
search data in flash memory using hash functions and Bloom
filters in Section 4.2 and 4.3. We discuss how we preserve
the write order to support versioning in Section 4.4. Lastly,
we explain the design of a merger and the consistency of
in-memory metadata.

4.1 Host-Device Communications
Since an OSD can be thought of as a key-value store that

supports a fixed-length key and a variable-length value, file
systems or applications can use existing read and write op-
erations to access key-value pairs. However, we need some
extra commands to manage versions. For example, mount-
ing a device with a specific version or undoing some changes
on a specific object requires a special command. To support
this, we make use of an execute as described in Section 3.

The version number of an object is encoded in an object
ID, not stored as metadata to eliminate the need for keep-
ing object metadata on flash. In our experiment where one
instance of Muninn exists, we use a 64-bit object ID, which
consists of a 32-bit identifier, a 16-bit version number, and a
16-bit offset; it can hold up to 4 billion objects and provide
up to 64K different versions to each object. The offset is used
by the device to split large objects into multiple pieces; each
object can have up to 64K flash pages. However, for bet-

segment 0

segment 3

segment 5

BF1 BF2BF0

flush

overflow map

bloom filters

bloom

filters

overflow

map

segment

number

(a) Active version table

0

3

..

..

de-duplicate

overflow

maps

vertically

concatenated

5 ..

column based

bloom filters

segment

numbers

BF1 BF2BF0

BF1 BF2BF0

BF1 BF2BF0

time t1

time t2

time t3

(b) read-only version table

Figure 2: Overview of Muninn

ter scalability in distributed storage systems, a 64-bit object
identifier can be used and objects can be distributed with-
out requiring a mapping table using stateless distribution
strategies such as CRUSH [34].
To snapshot and revert, file systems can increase or de-

crease the version number in an object ID; it can maintain
a global version number that is incremented periodically so
all objects that are written in the same period of time can
have the same version number. To rollback some changes for
an object, users can set the negative version number, which
represents the number of modifications to be cancelled.
We support legacy file systems by constructing an object

ID from a partition ID and a LBA; a partition ID becomes
an identifier and a LBA is considered as an offset of an ob-
ject. This conversion is done by the kernel module that runs
between a file system and a device. Additionally, it takes an
ioctl command that allows applications to modify the cur-
rent version number.

4.2 Hash-based Data Placement
Muninn places key-value pairs using hash functions to

eliminate a direct mapping between logical and physical ad-
dresses and the need for per key-value pair metadata. When
initializing a device, a flash memory is logically split into
fixed-length segments whose size is a multiple of a flash
erase block. Each segment consists of a fixed number of
flash pages, which is a minimum unit of writing in flash
memory. This ensures that no key-value pairs are writ-
ten across segments, allowing segments to be erased inde-
pendently. Therefore, the physical address of a key-value
pair can be represented by a segment number, a page offset
(within a segment), and an offset (within a page).
On writes, the physical address of a key-value pair is de-

termined by hash functions and only the raw key-value pair
is written to flash memory. In-memory dirty data for search-
ing will be flushed later for consistency as described in Sec-
tion 4.5. However, using hash-based placement creates sev-
eral issues in flash storage system design. First, when a
hash collision happens, the system needs a way to relocate
the key-value pair and remember the new location. Second,
distributing key-value pairs across the entire flash device is
not practical, because it would require an in-memory write
buffer for every flash page if the size of a key-value pair is
not exactly the same as that of a flash page. Third, segment
utilization can be low under a hot-cold workload where some
objects are more popular than others, generating many col-
lisions in the same location.

K2, Val

K1, Val

K3, Val

H1

H2

H3

K1, Val

K2, Val

K3, Val

Segment Bloom filters

BF1

BF2

BF3

Overflow

BF
K3 is

overflowed

Figure 3: Insert a key-value pair to an active version
table

4.2.1 Insert and Delete

To address the issue with key-value pair distribution, we
maintain a small group of active segments in the data struc-
ture called the active version table where key-value pairs can
be written as depicted in Figure 2(a). Each row contains in-
formation about a segment, and the segment that stores a
key-value pair is determined by using the last one byte of
a hash of a key. Having multiple rows has two purposes:
distributing hot keys across a small set of segments lowering
the chance of collisions, and reducing the search space to
find a key-value pair.

Within a segment, Muninn addresses collisions using mul-
tiple BFs and associated hash function to give multiple lo-
cations to frequently updated keys within a segment. More
specifically, as shown in Figure 3, if a BF becomes full or the
corresponding page offset is already written, the hash func-
tion associated with the next Bloom filter is used to place
data. For example, if a key exists in the first and second
BFs of a segment, we know that the same key-value pair
was written twice, and the hash function associated with
the second Bloom filter contains the latest version. Once
the hash function to use is determined, we take the modulo
operation between the output of the hash function and the
number of pages in a segment to determine a page offset.

When a key cannot be placed by using hash functions
associated with BFs, the key is considered an overflowed
key. Muninn stores a hash of a key and a n-bit bitmap for
each overflowed key to provide an additional n different hash
functions each overflowed key can use; the position of a bit
in a bitmap represents the ID of hash functions.

By giving multiple locations to hot keys, Muninn can keep
the segment utilization high even under hot-cold workloads.
However, since the overflowed keys require at least 6 bytes
per key, the maximum size of an overflow map is fixed, and
the size of normal BFs is configured to minimize the size of
an overflow Bloom filter and an overflow map.

To preserve the write order, we sequentially allocate key-
value pairs in a bitmap so the last bit set indicates the last
hash function ID for the key. Similarly, key-value pairs are
written sequentially within a page so a larger offset repre-
sents later in time. When storing a variable-length value, it
additionally stores the size of the data into the page.

Deleting a key is the same as inserting the key with a
special value indicating that the key is deleted. Thus, when
a search function finds the pair with this special pattern as
the most recent result, it returns not-found, instead of this
special value.

011011
vertically

combined

10100 1100 101

100111 01100 1010 000

011000 10101 1100 101

BF4BF1

Active version table 0th-rows

time t1

time t2

time t3

010 101 101 010 110 110 101 010 111 000 001 …

BF2 BF3

column-based BF1 column-based BF2

Figure 4: Flushing BFs to a read-only table

4.3 Search
To find the physical location of a key-value pair, Muninn

needs to check multiple BFs to identify the hash function
originally used to place the key-value pair. However, search-
ing individual BFs is an inefficient operation because up
to one word access might be required for each bit checked.
Therefore, we adopt another data structures called the read-
only version table, which is optimized for searching multiple
BFs at a time as shown in 2(b).
Once there is not enough space to place a key-value pair

in a segment in an active version table, the corresponding
row is flushed to the read-only version table. Since the key-
value pair is already written to the segment, only the BFs
and an overflow map are moved to the table. First, the
flushed standard BFs are added to the column-based BFs
where multiple BFs can be searched at once with a mini-
mum number of memory word accesses. Figure 4 shows the
process of combining the the three sets of BFs of row 0,
flushed at time t1, t2, and t3. The bits of BF1 at position
k, get combined to form a 3-bit word at position k in the
column-based BF1.
The column-based BFs improve search performance by

converting bit accesses to byte or word accesses. The num-
ber of BFs to be combined is determined by considering the
memory access efficiency; the size of each column can be
byte-aligned (8) or word-aligned (32 or 64) depending on
the target architecture. In Muninn, we use a word size col-
umn, because it is the most efficient in terms of a cache-line
efficiency.
To find a key-value pair, Muninn searches the active ver-

sion table and the read-only version tables. Muninn first
determines the row index using the hash of the key, and
then searches the multiple BFs of the row in a reverse order.
This is because a Bloom filter with higher index contains a
newer version of the key. When the key is found in the BFs
for overflowed keys, it retrieves the physical address of the
key from the overflow map. If the key is in the BFs for non-
overflowed keys, it uses the corresponding hash function to
calculate the page address.
When the key is not found in the active version table,

BFs in read-only version tables are searched. It is similar
to search standard BFs, but each bit in a standard Bloom
filter becomes a set of bits that came from each standard
BF, added to the combined BF. Checking whether a key is
present in a single Bloom filter involves examining whether
k bit positions determined by k hash functions are all set.
Hence, for each read-only version table, k columns deter-
mined by k hash functions are read, and a bitwise AND
operation is performed. The 1s in this result vector repre-

Figure 5: Searching a key-value pair in a read-only
version table

sents the indices of the BFs that may contain the key-value
pair as shown in Figure 5. It becomes then straightforward
to retrieve the segment number and the page offset for the
key-value pair from the table.

Performance-wise, searching for a non-existing key would
show the worst case performance, because Muninn has to
read all read-only only tables belongs to the current ver-
sion. The best case performance can be achieved when the
keys are found in one of the recent read-only tables. This
means newer key-value pairs can be quickly retrieved, and
older key-value pairs that are never updated would require
multiple flash page reads.

The number of unnecessary reads is also affected by the
false-positive rate of each BF, and the number of BFs to be
searched to find a key. Thus, the size of the memory, number
of table rows, and a decreasing factor of a false positive rate
should be carefully set, considering the trade off between the
number of reads and the size of memory. For example, in
consumer products, the system could be configured to have
high false-positive rate, saving memory space but requiring
more reads. Caching some old, but not updated objects can
be cached or rewritten for better performance and memory
usage. In enterprise products, all version tables could reside
in memory, resulting in a low false positive rate. The effects
of each variable are analyzed in Section 5 and evaluated in
Section 6.

4.4 Version Management Layer
To support snapshots and rollback, we have two data

structures; a user version structure stores the version num-
ber given by a user and an internal version structure is a
merge unit that contains a time-ordered list of a fixed num-
ber of read-only tables. A user version number increases as
a version number in an object ID increases and an internal
version number increases when the number of read-only ta-
bles added to the current internal version structure exceeds
a threshold, as shown in Figure 6.

When all rows in a read-only table become full, the table
is added to the head of a time-ordered list of the current in-
ternal version structure and a new read-only table is created.
When searching for a key-value pair, Muninn first searches
the read-only tables attached to the current internal version
structure. If a key is not found, it keeps searching older
version structures until a match is found.

When a user version number is increased, the active, read-
only version tables, and current internal version structure

Internal Version 0

Internal Version 1

Internal Version 2

Internal Version 3

User version 1

User version 2

User version 3

Internal Version 4

Internal Version 5

read only tables

internal versions

user versions

Figure 6: User versions and internal versions

are finalized to create a snapshot. A new user version struc-
ture is then created to store the internal, just finalized, ver-
sion number. This represents the highest internal version
number users can access in the version; any internal version
that is lower than this can be accessed by this user version.
For example, if the user version number is 2, it can access
internal versions from 0 to 2.
Reverting to one of the previous snapshots would just re-

quire changing a user version number. If a user wants to
undo N changes to an object, a device searches the key-value
pair skipping the N objects, and then rewrites the object so
it can be searched first next time.

4.4.1 Version-aware Merge

Muninn does not automatically reclaim space because it
needs to keep the old versions of key-value pairs, including
deleted ones. However, it can merge old versions upon a
user request to free some space and achieve better search
performance.
The unit of merging in Muninn is the internal version

node, which is designed to have a fixed number of read-only
tables that are written around the same period. The merge
process tries to check the liveness of key-value pairs and re-
claim space for old versions except for the newest one in an
internal version. We use this fixed partitioning because the
liveness of the key-value pair cannot be determined without
looking at the other segments that might contain the same
key, but searching the entire segment for merging would in-
cur lots of read overhead.
The version-aware merger uses two thresholds to select the

target internal version and the segments: internal-version
utilization and segment utilization. The internal-version uti-
lization is calculated by performing a bitwise AND operation
among all the combined BFs in the same internal version,
and counting the bit sets. Since the same key will set the
same bit position in BFs, the number of bit sets can indi-
cate the number of the same keys across multiple read-only
tables.
After selecting the target internal version, it searches the

live keys from the read-only version tables belong to the
target internal version considering the utilization of each
segment. The segment utilization is estimated when the
corresponding row is flushed to a read-only table, by the
sum of the number of keys inserted to each Bloom filter,
and the number of hash collisions in the row. The number
of keys will indicate the empty space not used by any keys,
and the number of hash collisions represents the possibility
of the existence of duplicated keys. The effects of these two
merging thresholds are evaluated in Section 6.

Symbol Description
fpr int Initial false positive rate
hashes Number of hash functions for data place-

ment
oBF Number of overflow BFs
r False Positive Rate reduction rate
rows Number of table rows
combined Number of rows combined to form a read

only table

Table 1: Design parameters

One of the disadvantage of a user-triggered merging is
that it may require frequent user interaction to keep the
free space of each each device at a certain level. While this
can be alleviated by allowing the device to automatically
merge the oldest internal version when there is not enough
free space, it may also incur a potential security issue where
some of the update history of a certain object can be deleted
by overwriting it. However, in any case, the overhead of
merging is not greater than that of cleaning in SSDs, and
merging can improve the worst case search performance by
moving old live key-value pairs up to the most recent active
segment.

4.5 Consistency
If capacitors in a device are not big enough to dump all in-

memory data structures to flash on a power failure, Muninn
can be configured to store a read-only version table, a user
version, and an internal version as soon as they become fully
written to ensure metadata consistency. These read-only
tables do not need to be updated once written so they are
treated as normal data segments, and its physical page ad-
dress is never invalidated. Thus, during runtime, only one
active version table and one read-only version table remain
dirty, and we assume that its dirty pages can be flushed to
flash, and the metadata containing the locations of the cur-
rent internal version structure and the active version table
can be added to one of the reserved segments upon a power
failure.

5. ANALYSIS
We discuss the three important design parameters in Muninn:

segment utilization (SU), false positive rate (FPR), and mem-
ory usage (MU). The total amount of physical memory of a
Muninn device needs to be chosen depending on a desired
FPR and SU. We explain the relationship between these pa-
rameters in this section, and show the sensitivity of these
variables with the experimental results in the next section.
The adjustable parameters of Muninn are summarized in
Table 1.

Segment Utilization (SU) SU depends on the utiliza-
tion U achievable for the said set of keys, hashes, the number
of hash functions used for data placement and oBF , number
of overflow BFs.

SU =
data written to a flash segment

segment size
(1)

SU ∝ hashes · Uhash + oBF · Uoverflowmap (2)

False Positive Rate (FPR) As more read-only version
tables are generated, Muninn needs to search more BFs.

Lets look at a case where fpr is the false positive probability
of one Bloom filter and there are n such BFs, and determine
the false positive probability of an item x not present in
all n BFs. Then, the probability that not all the address
bit positions of x in each of the n BFs are set to a non-
zero value is (1 − fpr)n . The combined fpr is given by the
probability that all the address bit positions of the item x
are set to a non-zero value in at least one of the n BFs is
1− (1− fpr)n [16, 2].
The FPR of a single read only table fprRO depends on

the initial FPR of a single Bloom filter fpr int , the number of
BFs in a single row (hashes + oBF) and the number of rows
combined to form a single read only table combined and can
be given by

fprRO = 1− (1− fpr int)
(hashes+oBF)·combined (3)

Since we tighten the FPR of a single Bloom filter for each
read only table created by a factor r , the system FPR fpr sys
depends on r and the number of read only tables nrot and
can be given by

fpr sys = 1−

nrot−1∏

i=0

(1− fprRO · r i) (4)

Memory Overhead (MO) The total memory consumed
by the system is divided into two parts: the memory required
for buffering the write requests and the memory consumed
by the BFs. Let m be the memory consumed by a read
only table and it can be easily calculated given the Bloom
filter fpr , the number of table rows rows and number of
rows combined to form a single read only table combined .
Let s be the factor by which the memory m increases as fpr
decreases and depends on the rate r .

MO =
(rows · Sz seg) + (m · nrot · (1 + s + s2...+ snrot))

number of items
(5)

6. EVALUATION
In this section, we explore the performance and memory

usage characteristics of Muninn. The experiments are de-
signed to understand the benefits and limitations of hash-
based allocation and the use of BFs in terms of read/write
amplification factors and the number of operations per sec-
ond.
Our experiments were conducted on a Linux machine with

128GB of memory. 64GB is used to simulate flash memory
with 4KB pages and 256KB erase blocks (15µs are added to
each read/write access); it is configured to be lower than a
typical SSD latency, because it does not include the overhead
of mapping and communication layers and an internal I/O
bandwidth is higher than a host-device bandwidth [23]. For
Muninn, the size of a segment is set to 1MB. The number
of table rows are set to 128, meaning at maximum 128 MB
of memory is used as a page write buffer; this amount does
not increase in proportion to the number of keys. When
versioning is not used, the page write buffers are also used
as a write cache to be able to absorb the extreme burst
updates of the same key, i. e. 100 updates of the same key-
value pair within a second. Otherwise, it is used to buffer
the small writes to fill flash pages.
Muninn has been implemented as an ISCSI OSD target

device that supports a subset of the T10 OSD commands

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sequential
BF memory SU

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

B
F
M
em
or
y
(b
yt
es
 p
er
 k
ey
)

Random

N16/15 S16/15 N16/16 S16/16 N8/7 S8/7 N8/8 S8/8
BF Configurations

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Hot

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

Se
gm
en
t
U
ti
liz
at
io
n
(S
U
)

0.0
0.2
0.4
0.6
0.8
1.0

Figure 7: Segment utilization and memory usage;
the S8/7 case used the smallest amount of memory
while achieving 92% segment utilization.

to make our device usable under the current architecture.
However, during evaluation, we noticed that the delay of
the ISCSI protocol layer was often bigger than the delays of
our object operations, polluting the results: it was not easy
to accurately exclude the ISCSI delays. Thus, instead of us-
ing the ISCSI layer, we create a benchmark tool that directly
sends the requests via an object interface. The workloads for
this benchmark tool were generated using the Basho bench-
mark [5], which is a benchmark tool for key-value stores
supporting various kinds of object distributions. It is config-
ured to generate a 1KB key-value workload using sequential,
random, and pareto distributions in order to understand the
efficiency of our hash-based allocation scheme under various
workloads. Specifically, the pareto distribution is designed
to be the worst case, because 20% of the keys are updated
80% of the time. We use a single thread to execute each
type of workloads of 50million key-value pairs.

6.1 Segment Utilization and Memory Usage
The first experiment we conducted was to measure the

segment utilization and memory usage varying the number
and types of per-segment BFs. A regular BF keeps the mem-
ory overheads low, but offers only one bucket for a key, lim-
iting the key’s chances of finding free space. In contrast, the
overflow BF gives additional places for key-value pairs, but
increases the memory overheads. Our goal is to achieve a
balance between the two.

Figure 7 shows the results of our experiments to find the
balance using the three different distributions. The x-axis
represents the number of BFs for each segment and the
skewness of their size; one BF was dedicated for storing
overflowed keys in the 16/15 and 8/7 cases and no sepa-
rate overflowed key processing was done for 16/16 and 8/8
cases. The prefix S and N indicate whether the maximum
number of keys per BFs is skewed or not.

Both 8/8 and 16/16 cases suffer from a low segment uti-
lization due to the limited number of locations available for
collided keys, but we can see that in the 8/7 and 16/15 cases,
an overflow map is successfully alleviating the issue without
increasing the memory usage much. It also shows that using
different size BFs uses less memory. This is because more
key-value pairs can be placed by the normal BFs; we make

1.2

1.6

2.0

2.4

2.8

3.2

3.6

4.0

4.4

4.8

5.2

5.6

6.0
N
um

be
r
of
 fl
as
h
re
ad
s
pe
r
lo
ok
up

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.98 1.00 1.02 1.04
FPR Factor

1.5

2.0

2.5

3.0

BF
 b
yt
es
 p
er
 k
ey

Figure 8: Effects of false positive rate on memory
overheads and read amplification

the first Bloom filter, which is the largest, to serve the most
of the keys and adjust the size of the other smaller BFs
to serve the rest. Among various configurations, we found
that the S8/7 case used the smallest amount of memory
while achieving more than 92% segment utilization similar
to N16/15 and S16/15, and used it for the rest of the exper-
iments.

6.2 False Positive Rate
We measured the number of flash reads and the number of

bytes used per key to see the effects of the initial false posi-
tive rate and its increasing or decreasing factor. Each trace
is configured to generate the worst-case search performance;
only the key-value pairs in the oldest table are accessed. Fig-
ure 8 shows the number of flash reads per lookup and the
memory occupied by the BFs, varying the initial FPR and
FPR factor. We found that the number of reads is more
sensitive to the initial FPR than memory usage, so lowering
initial FPR would not increase its memory usage propor-
tionally. Therefore, to save memory, our policy was to pick
the highest initial FPR that provides less than 2 pages per
read and increase FPR slightly over time so old read-only
tables can have a lower FPR then recent read-only tables.
More specifically, we use an initial FPR of 0.0005 and a FPR
factor of 1.01 for the rest of the evaluation.

6.3 Read/Write Amplification and Performance
Using the design parameters chosen from the above exper-

iments, we measured read and write amplification, and the
number of flash accesses per operation in four categories, as
shown in Figure 9. When inserting a key-value pair, it shows
that Muninn requires 0.26 flash writes per operation, which
is near optimal because the size of the key-value is 1KB and
the flash page is 4KB; a write of a 1KB value must write at
least 1/4 of a 4KB page, absent data compression. The high
insert performance clearly shows the benefit of a hash-based
allocation. The key-value pairs can be placed with two hash
function calculations and a few Bloom filter operations; no
index structure is maintained and flushed to flash like SSDs
and other key-value stores, and no background operations
exist as in SILT. In this configuration adjusted to achieve
the worst-case read amplification of 2 and a nearly optimal
write amplification, Muninn used around 2.5 bytes per key,
requiring 250MBs of in-device DRAM for 100M keys.

Insert
0

50000

100000

150000

200000

250000

O
pe

ra
tio

ns
 p
er
 s
ec

on
d

Search Best Search Average Search Worst

Operations per second Flash Access

0.0

0.5

1.0

1.5

2.0

Fl
as

h
ac

ce
ss
es

 p
er
 o
pe

ra
tio

n

Figure 9: Read/Write amplification

Our lookup performance, on the other hand, varies de-
pending on the location of data to be retrieved. In the best
case where all requested key-value pairs are located in the
first few read-only version tables, Muninn achieves very high
read performance over 69,000 operations per second on a sin-
gle I/O thread with no read cache. However, in the worst
case where all data is in the oldest read-only table, it suffers
from false-positive reads and lots of Bloom filter operations,
and achieves only 20,000 operations per second. In the av-
erage case where the requested are evenly scattered across
the device, it performed 34,000 operations per second. In
this configuration, we tuned the system to achieve less than
2 page reads per look up, but the performance can be opti-
mized further by reducing the number of BFs or increasing
the number of rows per table.

Although the latency of lookup operations varies, the av-
erage performance of Muninn is compatible to the existing
key-value stores such as SILT and Bloomstore while provid-
ing full-versioning. With 4 instances of SILTs, it performs
23K inserts/second and 46K lookups/second for 1KB key-
value pairs. Bloomstore performs 25k to 77k operations per
second using 64B key-value pairs, retrieving 4.8MB of data
per second, which is similar to SILTs in terms of through-
put. Muninn also achieves similar lookup performance while
providing much higher insert performance.

6.4 Versioning Overhead
Supporting versioning does not add much additional over-

head to the flash device because of its out-of-place data
placement; all the previous data is left in flash until it is
cleaned. Since Muninn can retrieve the locations of any
previous key-value pair without incurring additional costs
compared to normal key-value retrieval, versioning does not
add an operational cost.

However, when more than 20-30 updates to the same key
are given in a very short period of time, storing every single
update of the key will increase the space usage and merge
overhead, because Muninn can only provide a fixed number
of places for each key in a segment; we configure it to 24 in
this experiments. Once the same key is written more than
24 times to the same segment, it can be finalized leaving
the most of the space empty to limit the size of the memory
used by write buffers.

We ran both random and pareto distribution with and
without overwrites in the page write buffer. With pareto
distribution, when overwrites are enabled, it shows 94.1%
segment utilization and uses 2.143 bytes per key. After dis-

0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000
amount of live data in one internal version

0
40
80

120
160
200
240
280
320
360
400
440
480
520
560
600
640
680
720
760

nu
m
be

r
of
 b
it
se

ts
8 tables 4 tables

Figure 10: Cleaning threshold for selecting a target
internal version

abling the overwrites, the segment utilization comes down
to 65.2% and the bytes per key is increased to 3.1. This can
be solved by fixing the size of the write buffer and use the
buffer until it becomes fully filled. Turning the overwrites
on does not increase the memory usage, but loses some up-
date histories of the very hot keys. When using the random
distribution, regardless of the page write buffer, both shows
around 94.1% utilization and around 2.14 bytes per key.

6.5 Cleaning Threshold
When a user requests a merge, Muninn scans the inter-

nal versions from the oldest to the newest to select a target
internal version to be cleaned, using threshold values; seg-
ment utilization and the number of bit sets in the combined
Bloom filter. The segment utilization is calculated by count-
ing the unused space in normal BFs when flushing a row, and
the number of bit sets is measured upon a merge request to
estimate the number of live data within an internal version.
Figure 10 shows the relationship between the number of

bit sets in the combined Bloom filter and the amount of
live data in each read-only version table. In both internal
version sizes, it shows the number of bit sets gets higher
as the number of live data reduces. Based on this, we set
the threshold to skip the internal version whose expected
amount of live data is around 80%. Once the internal version
is selected, we investigate the segment utilization of each
segment to determine whether it needs to be cleaned or not.

7. CONCLUSION
We introduce Muninn, a full-versioning key-value store us-

ing the object-based storage model. By offloading the key-
value pair management into the device with a rich interface,
it achieves scalability, extensibility and efficiency. Muninn
is designed to demonstrate those properties. It can add ver-
sioning to existing applications without altering their design
using a version number is encoded in an object ID. For ef-
ficiency, Muninn shows the use of Bloom filters and hash
functions to place and search key-value pairs, eliminating
the need of per-object metadata or a direct mapping be-
tween LBAs and physical addresses. Our results show that
Muninn achieves as few as 1.5 flash page reads per look up
and 0.26 flash page writes per insert on average case, pro-
viding versioning.

8. ACKNOWLEDGMENTS

This research was supported in part by the National Sci-
ence Foundation under award IIP-1266400 and industrial
members of the Center for Research in Storage Systems(CRSS).
We would like to thank our industrial sponsors, including
EMC, Hewlett Packard Laboratories, Hitachi, Huawei, Intel
Corporation, LSI, NetApp, Permabit Technology, SanDisk,
and Seagate Technology for their generous support.

References

[1] Aleph One Ltd. YAFFS: Yet another flash file system.
http://www.yaffs.net.

[2] P. S. Almeida, C. Baquero, N. Preguiça, and D. Hutchi-
son. Scalable Bloom Filters. Information Processing
Letters, 101(6):255–261, Mar. 2007.

[3] A. Anand, C. Muthukrishnan, S. Kappes, A. Akella,
and S. Nath. Cheap and large CAMs for high perfor-
mance data-intensive networked systems. In Proceed-
ings of the 7th USENIX conference on Networked sys-
tems design and implementation, NSDI’10, pages 29–
29. USENIX Association, 2010.

[4] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu,
V. Prabhakaran, M. Wei, J. D. Davis, S. Rao, T. Zou,
and A. Zuck. Tango: Distributed data structures over a
shared log. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, SOSP ’13,
pages 325–340, New York, NY, USA, 2013. ACM.

[5] Basho Technologies Inc. Basho benchmark.
http://docs.basho.com/riak/latest/cookbooks/Benchmarking.

[6] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, July 1970.

[7] L.-F. Cabrera and D. D. E. Long. Swift: Using dis-
tributed disk striping to provide high I/O data rates.
Computing Systems, 4(4):405–436, 1991.

[8] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K.
Gupta, and S. Swanson. Moneta: A high-performance
storage array architecture for next-generation, non-
volatile memories. 2012 45th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, 0:385–395,
2010.

[9] F. Chen, T. Luo, and X. Zhang. CAFTL: A Content-
Aware Flash Translation Layer Enhancing the Lifespan
of Flash Memory based Solid State Drives. In Proceed-
ings of the 9th USENIX Conference on File and Storage
Technologies (FAST), 2011.

[10] H. J. Choi, S.-H. Lim, , and K. H. Park. JFTL: A flash
translation layer based on a journal remapping for flash
memory. ACM Trans on Storage, 4(4), Jan. 2009.

[11] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better I/O through byte-
addressable, persistent memory. In Proceedings of the
22nd ACM Symposium on Operating Systems Princi-
ples (SOSP ’09), pages 133–146, Oct. 2009.

[12] B. Debnath, S. Sengupta, and J. Li. FlashStore: High
Throughput Persistent Key-Value Store. Proc. VLDB
Endow., 3:1414–1425, Sept 2010.

[13] B. Debnath, S. Sengupta, and J. Li. SkimpyStash:
RAM space skimpy key-value store on flash-based stor-
age. In Proceedings of the 2011 ACM SIGMOD Inter-
national Conference on Management of data, SIGMOD
’11, pages 25–36. ACM, 2011.

[14] I. H. Doh, J. Choi, D. Lee, and S. H. Noh. Exploiting
non-volatile RAM to enhance flash file system perfor-
mance. In 7th ACM & IEEE Conference on Embedded
Software (EMSOFT ’07), pages 164–173, 2007.

[15] G. A. Gibson and R. Van Meter. Network attached
storage architecture. Communications of the ACM,
43(11):37–45, 2000.

[16] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo. The
Dynamic Bloom Filters. IEEE Transactions on Knowl-
edge and Data Engineering, 22(1):120–133, Jan. 2010.

[17] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasubra-
maniam. Leveraging value locality in optimizing NAND
flash-based SSDs. In Proceedings of the 9th USENIX
Conference on File and Storage Technologies (FAST),
Feb. 2011.

[18] A. Hesseldahl. Apple iphone 4 parts cost about
$188. http://www.businessweek.com/technology/

content/jun2010/tc20100627_763714.htm.

[19] A. Hunter. A brief introduction to the
design of UBIFS. http://www.linux-
mtd.infradead.org/doc/ubifs whitepaper.pdf.

[20] W. K. Josephson, L. A. Bongo, K. Li, and D. Flynn.
DFS: A file system for virtualized flash storage. ACM
Transactions on Storage, 6(3), Sept. 2010.

[21] Y. Kang and E. L. Miller. Adding aggressive error cor-
rection to a high-performance compressing flash file sys-
tem. In 9th ACM & IEEE Conference on Embedded
Software (EMSOFT ’09), Oct. 2009.

[22] Y. Kang, J. Yang, and E. L. Miller. Object-based SCM:
An efficient interface for Storage Class Memories. In
Mass Storage Systems and Technologies (MSST), pages
1–12, may 2011.

[23] Y. Kang, Yangsuk-Kee, E. L. Miller, and C. Park. En-
abling cost-effective data processing with smart ssd. In
Mass Storage Systems and Technologies (MSST), may
2013.

[24] J. K. Kim, H. G. Lee, S. Choi, and K. I. Bahng. A
PRAM and NAND flash hybrid architecture for high-
performance embedded storage subsystems. In 8th
ACM & IEEE Conference on Embedded Software (EM-
SOFT ’08), pages 31–40, 2008.

[25] A. Kirsch and M. Mitzenmacher. Simple summaries
for hashing with choices. IEEE/ACM Transactions on
Networking, 16(1):218–231, Feb. 2008.

[26] M. Kryder and C. S. Kim. After hard drives - what
comes next? Magnetics, IEEE Transactions on,
45(10):3406 –3413, Oct 2009.

[27] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky.
SILT: a memory-efficient, high-performance key-value
store. In Proceedings of the 23st ACM Symposium on
Operating Systems Principles (SOSP ’11), Oct. 2011.

[28] G. Lu, Y. J. Nam, and D. H. Du. BloomStore: Bloom-
Filter based memory-efficient key-value store for index-
ing of data deduplication on flash. In Mass Storage
Systems and Technologies (MSST), pages 1 –11, april
2012.

[29] D. Nagle, M. E. Factor, S. Iren, D. Naor, E. Riedel,
O. Rodeh, and J. Satran. The ANSI T10 object-based
storage standard and current implementations. IBM
Journal of Research and Development, 52(4):401–411,
2008.

[30] S.-Y. Park, D. Jung, J.-U. Kang, J.-S. Kim, and J. Lee.
CFLRU: a replacement algorithm for flash memory. In
Proc. of the 2006 International Conference on Compil-
ers, Architecture and Synthesis for Embedded Systems,
pages 234–241, 2006.

[31] A. Rajimwale, V. Prabhakaran, and J. D. Davis. Block
management in solid-state devices. In Proceedings of
the 2009 USENIX Annual Technical Conference, June
2009.

[32] Seagate. Seagate laptop SSHD. http://www.seagate.
com/internal-hard-drives/laptop-hard-drives/

laptop-solid-state-hybrid-drive/#features.

[33] K. Sun, S. Baek, J. Choi, D. Lee, S. H. Noh, and S. L.
Min. LTFTL: Lightweight Time-shift Flash Translation
Layer for Flash Memory based Embedded Storage. In
8th ACM & IEEE Conference on Embedded Software
(EMSOFT ’08), pages 51–58, 2008.

[34] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn.
CRUSH: Controlled, scalable, decentralized placement
of replicated data. In Proceedings of SC ’06, Tampa,
FL, Nov. 2006. ACM.

[35] Y. Zhang, L. P. Arulraj, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. De-indirection for flash-based
ssds with nameless writes. In Proceedings of the 10th
USENIX conference on File and Storage Technolo-
gies, FAST’12, pages 1–1, Berkeley, CA, USA, 2012.
USENIX Association.

http://www.businessweek.com/technology/content/jun2010/tc20100627_763714.htm
http://www.businessweek.com/technology/content/jun2010/tc20100627_763714.htm
http://www.seagate.com/internal-hard-drives/laptop-hard-drives/laptop-solid-state-hybrid-drive/#features
http://www.seagate.com/internal-hard-drives/laptop-hard-drives/laptop-solid-state-hybrid-drive/#features
http://www.seagate.com/internal-hard-drives/laptop-hard-drives/laptop-solid-state-hybrid-drive/#features

	Introduction
	Background and Related Work
	Evolution of NVRAM System Designs
	Versioning Flash Systems
	Key-Value Stores
	Hashing and Bloom filters

	Object-based Storage Model
	Muninn
	Host-Device Communications
	Hash-based Data Placement
	Insert and Delete

	Search
	Version Management Layer
	Version-aware Merge

	Consistency

	Analysis
	Evaluation
	Segment Utilization and Memory Usage
	False Positive Rate
	Read/Write Amplification and Performance
	Versioning Overhead
	Cleaning Threshold

	Conclusion
	Acknowledgments

