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Abstract: Quantitative estimates of the impacts of climate change on economic outcomes are an 

important input to public policy.  We show that the vast majority of existing estimates fail to 

account for well-established uncertainty in future temperature and rainfall changes, leading to 

potentially misleading projections. We re-examine seven well-cited studies and show that 

accounting for climate uncertainty leads to a much larger range of projected climate impacts and 

a greater likelihood of “worst-case” outcomes, an important policy parameter.  Incorporating 

climate uncertainty into future economic impact assessments will be critical for providing the 

best possible information on potential impacts. 
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Introduction 

Leading economics and social science journals have published an increasing number of articles 

in recent years on the projected effects of global climate change on important outcomes, 

including aggregate economic activity, agriculture and health. Results of these studies have 

featured prominently in public policy debates, informing decisions about appropriate investments 

in greenhouse gas emissions reductions as well as in measures designed to help societies adapt to 

a changing climate. Such investments represent potentially large amounts of resources. For 

instance, a high profile recent assessment concluded that expected future climate damages 

warrant an immediate annual investment of 1-2% of global GDP to avoid the worst effects of 

climate change (Stern 2007).1 Similarly, the recent US$100 billion pledged in annual transfers 

from rich to poor countries to help the latter adapt to expected climate impacts is close to the 

total current annual foreign aid transfer from rich to poor countries.2  Generating credible 

estimates of climate impacts is thus of considerable public concern. 

As in empirical work more broadly, climate impact estimates could be expected to 

provide both a “best guess” of potential impacts – that is, an unbiased point estimate – as well as 

a sense of the uncertainty around this estimate.  Unfortunately, a methodological flaw common 

in many recent impact studies results in them often providing neither the “best guess” of possible 

impacts nor an appropriate characterization of the uncertainty. To quantify potential impacts, 

these studies typically combine estimates of the historical relationship between climate variables 

                                                        
1
 In 2008, Stern increased the original 1%-of-GDP figure to 2%.  See 

http://www.guardian.co.uk/environment/2008/jun/26/climatechange.scienceofclimatechange 

2
 E.g., see http://unfccc.int/resource/docs/2009/cop15/eng/l07.pdf.  Total foreign aid flows in 

2009 equaled roughly $120 billion (www.oecd.org/dac/stats/data). 

http://unfccc.int/resource/docs/2009/cop15/eng/l07.pdf
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and outcomes of interest with projections of future changes in climate, the latter typically derived 

from global climate models.  Although such studies are typically careful to document the 

statistical uncertainty inherent in the historical relationship between climate variables and 

outcomes of interest, they rarely account for the large degree of climate uncertainty found in 

existing projections of climate change itself. Existing studies overwhelmingly rely on projections 

from only one or a handful of climate models, despite the availability of over 20 such models 

that are in wide use in the climate science community, the frequently large discrepancies across 

models, and the lack of evidence that any particular subset of models is more reliable than others 

for long-term projections (Randall et al. 2007; Meehl et al. 2007). Our survey of this growing 

literature (discussed below) reveals that of the nearly 200 papers that make quantitative climate 

impact projections for economic, political or social outcomes, the median number of climate 

models used is just two, with disproportionate dependence on only a few of the over 20 

recognized models.  Many studies rely on a single model, the Hadley Centre Climate Model3, 

despite the lack of systematic evidence that it is any more trustworthy than alternatives, and the 

ready availability of data from at least 15 models since at least 2000. 

Because climate models can disagree on both the magnitude and even the sign of future 

changes in key climate variables, point estimates using a single projection of future climate can 

mislead, and the range of possible outcomes around this point estimate will be substantially 

understated if the full extent of climate uncertainty is not taken into account.  Failure to 

incorporate this uncertainty into impact studies thus renders much of the rapidly growing 

literature on the economics of climate change a potentially poor guide for public policy.  

                                                        
3
This includes earlier generations of the Hadley Model, now superseded by more recent 

modeling output. See (Gordon et al. 2000; Johns et al. 2006; Johns et al. 1997) 
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In this article, we – a team of climate scientists and social scientists – provide a readily 

useable analytical approach that addresses the role of climate uncertainty in estimates of climate 

change impacts. To illustrate our approach, we re-examine data from seven well-cited articles in 

the climate impacts literature that explore potential impacts on various outcomes, including 

agricultural productivity, economic growth, and civil conflict. To isolate the role of climate 

uncertainty from other study characteristics that might also affect impact estimates – for instance, 

authors’ choices about the study sample or econometric specification – we remain agnostic on 

these choices and focus attention on the authors’ own preferred analytical approach in each 

study.  The results we present here are thus not meant to provide definitive impact projections for 

particular outcomes, but instead to demonstrate the importance of accounting for climate 

uncertainty in generating such projections. 

We show that accounting for climate uncertainty in these studies is consequential, 

yielding different point estimates, a much wider range of projected impacts, and far more 

negative “worst case scenarios”, relative to an approach that only considers uncertainty in the 

historical relationship between climate variables (such as temperature and precipitation) and the 

outcome of interest.  In fact, even with perfect knowledge of the mapping from climate to 

outcomes, climate uncertainty alone generates a wide range of potential impacts: depending on 

the choice of climate model, impacts of climate on U.S. farmland values can shift up or down by 

half a trillion dollars by the mid-21
st
 century, GDP per capita growth in poor countries could 

decline over that period anywhere between a fifth to a half (relative to a world without climate 

change), and the incidence of African civil conflict could increase by “just” 40% or could 

double.  For analysts and policy-makers interested in the “left tail” of the climate change impact 
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distribution (Weitzman 2009), we show that failing to account for climate uncertainty greatly 

understates the severity of the “worst case” scenario in most articles we examine. 

There are also instances when accounting for climate uncertainty is less important.  In 

particular, when an analysis can rule out a meaningful historical relationship between climate 

and the outcome of interest – i.e., the relationship between climate and the outcome is a “precise 

zero” – then any change in future climate will be projected to have similarly minimal impacts on 

that outcome.  In other words, and unsurprisingly, when climate does not affect a particular 

outcome, neither does climate uncertainty.  Nevertheless, because most papers in this literature 

either do find meaningful historical impacts of climate, or at least are unable to definitively rule 

them out, our results suggest that accounting for climate uncertainty will substantially shape 

impact estimates in most settings of interest. 

The structure of the remainder of the paper is as follows.  Section 2 presents a thorough 

literature review that documents the use of global climate models in economics and social 

science research, and presents novel quantitative evidence on the widespread failure of recent 

studies to take climate uncertainty into account.  Section 3 presents our approach and quantifies 

the importance of accounting for climate uncertainty when estimating potential impacts across a 

range of economic outcomes. The final section concludes with specific suggestions for how 

climate uncertainty should be incorporated into future research. 

 

2. Climate models in recent economics and social science research 

2.1 The science of modeling climate change 

A basic overview of climate science models and terminology is useful before we discuss the 

recent economics literature on the impacts of climate change.  The science of understanding past 
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changes in climate and projecting possible future changes has evolved rapidly in recent years.  

The main tools for projecting future climate are coupled General Circulation Models (GCMs), 

which are detailed computer models that numerically approximate fundamental physical laws at 

time and space scales appropriate for representing global climate (Randall et al. 2007). These 

models are “coupled” in the sense that the interaction of different components of the climate 

system – the ocean with the atmosphere, for example – is explicitly included in the numerical 

calculations.  Many such models are currently in use, reflecting efforts by different research 

groups around the world to develop ever more refined representations of the complex physical 

processes that determine the state of the climate. 

There are two basic sources of uncertainty in model projections of future changes in 

climate: (i) imperfect knowledge of the future trajectories of variables that might affect the 

climate system (most notably, greenhouse gas emissions), and (ii) imperfect knowledge of how 

changes in these variables translate into changes in climate.  The former we will refer to below as 

“emissions uncertainty”, and the latter simply as “climate uncertainty”.  

Emissions uncertainty is typically captured by running a given climate model under 

multiple future emissions “scenarios”.  To facilitate cross-model comparability, the 

Intergovernmental Panel on Climate Change (IPCC) developed a standardized set of these 

scenarios, some subset of which almost all modeling groups use as inputs into their modeling 

efforts.  Known as the SRES scenarios (from the Special Report on Emissions Scenarios), they 

employ different assumptions about economic growth and technological change to span a range 

of different rates of change in anthropogenic (man-made) radiative “forcing”.  These scenarios 

provide the basis for the various climate model projections reported in the IPCC’s recent 

assessment of the “state of the science”, the 2007 Fourth Assessment Report, in part for which it 
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was awarded the Nobel Prize.4  Conditional on the use of a particular emissions scenario, 

“climate uncertainty” derives from the different modeling choices climate science research 

groups make about how to best represent the underlying physical relationships and about what 

baseline conditions should be used to initialize the models.  

While emissions are uncertain from the perspective of the econometrician, they are in 

principle a policy choice and are typically treated differently in the climate science community 

than is the uncertainty in how the climate system responds to a given level of emissions.  In 

particular, even given a perfectly defined trajectory of anthropogenic emissions, climate 

projections will still be subject to uncertainty arising from lack of perfect knowledge of the 

physical processes at work (often termed model uncertainty) and from inherent, chaotic 

variability (internal variability) within the climate system which is manifest in a large sensitivity 

to initial conditions. Although these uncertainties may be reduced through further research, the 

rate of progress has been fairly slow and there are fundamental limits to the reduction of 

uncertainty associated with initial conditions (Deser et al. 2012). Therefore, to ensure that we are 

not conflating policy uncertainty with more fundamental physical uncertainty, we focus 

primarily on the role of the latter in what follows. 

To begin illustrating the extent of climate uncertainty, Figure 1 presents projections of 

climate change in primary U.S. agricultural regions between 2000 and 2080-2100, using output 

                                                        
4
 A new framework for emissions scenarios is now being used to allow exploration of a wider 

range of possible climate policies and more rapid response to relevant research for future IPCC 

assessments (Moss et al. 2010). 
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from 20 different climate models contributing to the IPCC’s Fourth Assessment Report.5  

Climate models uniformly predict that temperatures will warm over U.S. agricultural regions, but 

disagree on both the sign and magnitude of precipitation changes.  Furthermore, within an 

emissions scenario the variation in model predictions can be large. In the oft-used A1B 

scenario6, for instance, the projected mean temperature across the full ensemble of 20 models 

increases by 3.5 deg C (6.3 deg F), but the range containing 95% of the predictions is large, from 

roughly 2 deg C (3.6 deg F) to 6 deg C (10.8 deg F).  For precipitation, the ensemble mean 

projected change is close to zero, but individual models project growing season precipitation 

rising or falling by as much as 20%. Recall that these differences across models are driven by 

                                                        
5
 Actual model output is compiled and made publicly available in a standard data format by the 

Coupled Model Intercomparison Project of the World Climate Research Programme 

(http://cmip-pcmdi.llnl.gov/).  The models used in this paper are BCCR, CCCMA.t63, 

NCAR.CCSM, CCRM, CSIRO, ECHAM, GFDL_CM2.0, GFDL_CM2.1, GISS.AOM, 

GISS.EH, GISS.ER, HADcm3, HADGEM1, IAP, INMCM3, IPSL, MIROC.Hires, 

MIROC.Medres, MRI, and NCAR.PCM, which together constitute nearly all of the available 

ensemble, and the models with the appropriate combination of 20
th

 and 21
st
 century runs for our 

analysis at the time of writing. Note that not all models report projections for all emissions 

scenarios: we have access to 18 models reporting projections for both the A1B and B1 scenarios 

and 15 models reporting for the A2 scenario.  For a useful overview of available model output, 

refer to: http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php.  

6
 The popularity of the A1B scenario is due to its assumptions of robust economic growth, 

moderate increases in global population, rapid adoption of technology, and “balanced” reliance 

on fuel sources (hence "B"). 

http://cmip-pcmdi.llnl.gov/
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assumptions made in the scientific modeling of climate rather than uncertainty about future 

greenhouse gas emissions. 

 An immediate question is how researchers should treat this range of climate projections.  

One tempting solution, and the implicit (or explicit) approach of the vast majority of the 

literature surveyed below, is to identify a single model or small subset of models that appear 

more “trustworthy”, and use only their output in impact projections. This approach 

underestimates the uncertainty associated with long-term climate projection in at least two ways. 

First, in cases where only a single realization (that is, one “run” from a single set of initial 

conditions) for a single model is used, the uncertainty arising from internal variability (i.e., 

sensitivity to initial conditions) is neglected. This uncertainty due to internal variability can be 

large relative to other sources of uncertainty, especially for projections over the next few decades 

and for precipitation (Hawkins and Sutton 2009). Second, even when multiple realizations of a 

single model are used, an analysis based on a single model ignores the uncertainty associated 

with incomplete knowledge of all relevant physical processes (i.e., model uncertainty). Since the 

climate science literature finds little evidence that particular models consistently outperform 

others, or that any measure of performance on past climate observations helps to meaningfully 

narrow the future range of climate projections (Knutti 2010; Tebaldi and Knutti 2007; Gleckler, 

Taylor, and Doutriaux 2008), there is no reasonable climate scientific rationale for restricting 

analysis to a single model or small number of models.  In contrast to the recent economics of 

climate change literature, and as evidence of this point, most studies of future climate impacts 

carried out by climate scientists are characterized by model “democracy” (Knutti 2010). In this 

method, each model that meets IPCC standards gets one “vote”, and the votes are combined into 

an ensemble projection whose distribution is then characterized (Meehl et al. 2007).  
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2.2 The existing social science literature on climate change impacts  

We conducted an extensive review of the climate impact literature, with particular attention to 

papers that use climate model information to make quantitative projections about the impacts of 

climate change on economic, political and social outcomes. We adopted a broad definition of 

“climate model”, including in our review those papers using explicit output from GCMs (the 

majority) as well as other papers that used quantitative climate projections of any kind, such as 

simple “uniform” warming scenarios of, say, a 1 deg C increase in temperature. Outcomes of 

interest included estimates of sector-specific or economy-wide damages resulting from climate 

change, as well as estimates of climate impacts on outcomes with clear economic consequences, 

such as on agricultural productivity, water resources, human morbidity and mortality, or violent 

conflict.  We limited our search to peer-reviewed published articles as well as unpublished 

papers in well-known working paper series, such as the National Bureau of Economic Research 

and the World Bank’s Policy Research series.  

These search criteria yielded a large number of studies. Our review is almost surely an 

underestimate of the total number of papers in this literature, but captures the most highly cited 

work as well as much of the recent work (over half of the papers we reviewed were published in 

2007 or later).7  The total number of studies we review are shown in the left panel of Figure 2.  

As shown in the figure, studies focusing on agricultural impacts account for the majority of the 

published studies, although their share has fallen in recent years. 

                                                        
7
 Our review of the literature extended through August 2012, so misses articles published since 

then. All data used in this literature review and our analysis presented in this paper can be found 

at http://emiguel.econ.berkeley.edu/research. 

http://emiguel.econ.berkeley.edu/research
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 Social scientists’ use of climate models is surprising in light of climate scientists’ general 

preference for the democratic use of climate model output.  Among the nearly 200 papers that 

made quantitative projections of future climate impacts, the median number of climate models 

used is just two (Table 1).  Studies on the agricultural impacts of climate change – accounting for 

53% of all articles – do little better: the median number of climate models used is three. Research 

on climate impacts in other sectors, such as health and water resources, show similar patterns. 

 The median number of climate models used has also been roughly unchanged since 

scientific concern about climate change began in earnest in the early 1990s, as shown in the right 

panel of Figure 2.  Importantly, this is despite the fact that since at least 2000, output from at 

least 15 climate models has been publicly available in a central online database.8 

 It might be more defensible to use only a small subset of the available climate model 

ensemble if researchers drew their subset of models at random. For instance, given the 

distribution of temperature projections for U.S. agriculture, simple simulations suggest that two 

models drawn at random will, in expectation, capture roughly 35% of the total ensemble range of 

temperature projections (results available upon request).  However, researchers do not appear to 

be drawing models randomly.  Despite the availability of over 20 IPCC-recognized models, 

researchers show a strong preference for models from one particular research group, the Hadley 

Centre (in the United Kingdom), perhaps because their data had historically been available to 

                                                        
8
 Model output is compiled and made publicly available at http://cmip-pcmdi.llnl.gov/, as 

discussed above.   

http://cmip-pcmdi.llnl.gov/
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researchers in a particularly user-friendly format. Roughly half of the studies we reviewed used 

Hadley models, and nearly a sixth of all the studies used only a Hadley model.9 

This use of models is particularly troubling given that projections from the Hadley 

models do not always reflect the central tendency of the full ensemble of climate models.  As 

Figure 1 shows for U.S. agricultural regions, precipitation projections from the most recent 

coupled model from the Hadley Centre are near the ensemble mean, but temperature projections 

are outside the ensemble interquartile range.  Again, the climate literature offers no evidence that 

the Hadley projections are any more (or less) trustworthy than other models, implying that the 

singular use of Hadley likely yields a poor representation of the range of possible outcomes.  We 

next explore what the over-use of the Hadley model – or any other model or small subset of 

models, for that matter – implies for projections of climate impacts. 

 

3. Quantifying climate uncertainty 

3.1 The basic approach 

Studies typically proceed in two steps to quantify potential impacts of climate change on 

outcomes of interest: first, estimate the historical relationship between climate variables and the 

outcome, and then evaluate these estimates at future changes in climate.  To fix ideas, consider 

the regression specification: 

       (  )              (1) 

where outcome y in geographic unit i is a function of climate in that location ci, covariates xi and 

an error term.  In the simplest setup, researchers model outcomes as a simple linear function of 

                                                        
9
 This again includes earlier variants of the Hadley Model, superseded by more recent output 

from their team. 
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temperature and precipitation,  (  )            , with the latter, for example, representing 

the average temperature or total precipitation over an agricultural growing season in a given 

location.  The   terms are estimated using historical data, and then the projected impacts of 

climate change are calculated by multiplying these coefficient estimates by projected changes in 

the relevant climate variables over time (   and    here) as derived from global climate models. 

 The proper derivation of these changes is worth noting. For instance,    by “end-of-

century” (i.e. 2080-2100) is calculated by differencing climate model projected average 

temperature over 2080-2100 in a given area and projected average temperature in that area over 

the relevant period of historical data, say, 1980-2000.  The latter are “projected” because climate 

model simulations typically exhibit biases for current climate in some regions, meaning observed 

present-day temperatures and modeled present-day temperatures might not be the same.  

Differencing future model projected temperatures and current observed temperatures would 

introduce bias into estimates of temperature changes, and thus the commonly accepted approach 

is to difference future and current modeled temperature.10  To quantify climate uncertainty, this 

calculation is then repeated for each climate model in the IPCC “ensemble” mentioned above.   

The implicit assumption in this approach is that past responses to climate as captured in 

the     reflect how outcomes will respond in the future to similar changes in climate, that is, that 

any future adaptations that agents are able to make in the face of a changing climate are fully 

reflected in their observed ability to adapt to past changes. While this assumption appears strong, 

scholars have noted that in at least two domains of interest – agricultural productivity and 

economic growth – there is surprisingly little evidence that outcomes are less sensitive to long-

run shifts in climate than they are to short-run shifts, implying limited adaptation (Schlenker and 

                                                        
10

See Auffhammer et al. (2011) for a recent discussion of the appropriate use of climate data. 
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Roberts 2009; Burke and Emerick 2013; Dell, Jones, and Olken 2012). Perhaps more 

importantly, it is in principle possible to assume any level of future adaptation that the analyst 

desires by scaling the     up or down to the desired level.  For our purposes here, we follow the 

studies we review in assuming that future adaptation to climate is reflected in past climate 

sensitivities, and multiply the     estimated using historical data by future changes in climate to 

generate projected impacts. 

 

3.2 Climate impacts on agriculture, economic growth, and civil conflict 

We apply our approach to seven published studies. In keeping with the larger literature, most of 

the studies we examine focus on potential climate impacts on agriculture, but we also revisit 

studies that examine impacts on economic growth and civil conflict. Table 2 provides details on 

their outcome measures, sample, climate model choices, regressions specifications and 

functional form for historical climate (in columns 1-5). At the time of writing, these articles have 

been cited a collective total of over 2000 times.11 We first provide a brief overview of the 

studies, and then demonstrate the importance of climate uncertainty for their projected impacts.  

As noted above, the social science literature on climate impacts has focused 

disproportionately on agriculture (Table 1).  This is particularly true in economics, where the 

most cited climate change impacts papers focus almost exclusively on potential damages in U.S. 

agriculture. Such a focus is understandable: temperature and precipitation enter directly into the 

agricultural production function, and while U.S. agriculture is not uniquely affected by climate, 

the U.S. is the world’s largest exporter of agricultural goods and one of its largest overall 

                                                        
11

 Based on Google Scholar (as of October 2013). 
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producers.12  The outsized impact that fluctuations in U.S. agricultural production have on global 

food markets thus makes climate impacts there a significant global public policy concern. 

In a seminal paper, Mendelsohn, Nordhaus and Shaw (1994) (henceforth MNS) use a 

hedonic approach to relate agricultural land values in U.S. counties to average local climate.  If 

land markets are well-functioning (which is a reasonable assumption in the U.S.), then the 

hedonic approach should capture the impact of changes in climate on agricultural production 

value, net of any adaptive measures that farmers can take in response to a changing climate (e.g., 

planting different crops or even switching to non-crop income sources).  MNS find a muted 

response of land values to climate, and project that climate change could on net in fact benefit 

U.S. agriculture. 

The limitation of this cross-sectional approach is that average local climate could 

correlate with many other unobserved factors that also affect land values, biasing coefficients on 

climate variables in an unknown direction.  In follow-up work, Schlenker, Hanemann, and 

Fischer (2005) (henceforth SHF) show that irrigation was an important omitted variable in the 

MNS study, and that accounting for irrigation leads to much more negative projected climate 

impact estimates for U.S. agriculture. More recent work has used panel data to further address 

omitted variables concerns.  Deschenes and Greenstone (2007) (henceforth DG) relate county-

level deviations in weather to deviations in agricultural profits, finding a limited effect of 

weather on profits and thus small potential impacts of future climate change on U.S. agricultural 

profitability.  Building on DG, Fisher, Hanemann, Roberts, and Schlenker (2012) (henceforth 

                                                        
12

 For instance, based on the most recent (2008) data from the UN Food and Agricultural 

Organization, the U.S. is the second largest cereal producer (behind China) and by far the largest 

exporter.  See: http://faostat.fao.org. 
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FHRS) adopt DG’s county fixed-effects strategy but take issue with DG’s data and specification, 

and show that under alternate specifications and updated data, future climate impacts on 

productivity and profitability could be quite negative.13 

 Importantly, these four studies (MNS, SHF, DG, and FHRS) all appeared in the same 

leading economics research journal (the American Economic Review), and all projected impacts 

using a single climate model, the Hadley model. There remain substantial disagreements among 

these studies concerning the appropriate econometric specification of the historical relationship 

between climate and agricultural outcomes. However, we remain agnostic on these differences in 

this paper and quantify impacts as would have been obtained by the study authors themselves 

had they adopted our approach to dealing with climate uncertainty. 

 We also revisit three other papers examining potential impacts outside of U.S. 

agriculture.  Schlenker and Lobell (2010) (henceforth SL) use a panel of African countries over 

1961-2002 to estimate climate change impacts on the productivity of the primary African crops, 

finding large historical sensitivities to temperature increases and thus substantial potential losses 

under future climate change. Burke, Miguel, Satyanath, Dykema, and Lobell (2009) (BMSDL) 

also use a panel of African countries but explore the role of climate in civil war.  They find that 

civil war has been strongly responsive to past variation in temperature in Africa, and that future 

warming could increase the incidence of war.  Both SL and BMSDL use multiple climate models 

(16 and 20, respectively) to project impacts, but we can apply the same approach as in the other 

                                                        
13

 In a response to FHRS, Deschenes and Greenstone (2012) defend their econometric 

specification choice of controlling for unobserved state-by-year shocks, although using updated 

data they find somewhat more negative projected climate impacts on agricultural profits than in 

their 2007 paper. 



 
 

17 

studies to quantify the importance of climate uncertainty in overall impact projections, and to get 

a sense of how SL and BMSDL’s conclusions might have changed had they not used a large 

number of climate models. 

 Finally, Dell, Jones and Olken (2012) use a global panel of countries over 1950-2003 and 

document a strong negative relationship between economic growth and warmer-than-average 

temperatures in poor countries (but not rich countries).  In the well-cited working paper version 

of the article (Dell et al. 2008), they project climate impacts on end-of-century GDP levels using 

a single climate model, finding large effects on per capita incomes in poor countries but limited 

overall impact on global GDP as a whole. (The lack of an effect on global GDP results from their 

finding that rich countries were largely unaffected by changes in temperature over their study 

period, and rich countries account for the vast majority of global income.) 

 

3.3 Quantifying the importance of climate uncertainty 

For each of the seven studies we re-examine, in Figure 3 we estimate the impacts by mid-century 

(2040-2060) associated with each of 15 to 18 different climate models for each of three emission 

scenarios, relative to a 1980-2000 baseline; note that not all climate models report projections for 

all emissions scenarios, leading to slight variation in the models by scenario. The Hadley model 

with an A1B emission scenario is highlighted as a dark vertical line given the prominence of this 

model-scenario combination in the literature (Table 1). Even ignoring regression uncertainty (as 

we do in this figure), there is a large range of projections owing to the different climate models.14  

                                                        
14

 Emissions are a policy choice and as such are a different source of uncertainty, but as we show 

in Figure 3, no matter which emissions choice is made, climate model uncertainty remains very 

large. To quantify this uncertainty below, we mainly focus on the A1B scenario in Figure 4. 
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In three of the seven studies, the range of projected impacts (under the A1B scenario) includes 

both positive and negative estimated effects, as also shown in Table 2 (column 6).  

We next quantify the role of climate uncertainty relative to regression uncertainty, by 

estimating the range of projected impacts when (i) climate is varied across models (running a 

given emissions scenario) but regression coefficients are fixed at their point estimates (as in 

Figure 3), (ii) climate is fixed at the model giving the median estimated impact for a given 

emissions scenario, but regression coefficients are resampled to reflect regression uncertainty (as 

estimated by bootstrapping the main specification in each study, sampling observations 1000 

times with replacement), or (iii) both climate and regression coefficients are varied, to reflect 

uncertainty in both factors. For the A1B scenario which is reported by 18 models, (iii) is then a 

vector of 18,000 bootstrap replications (1000 per model), from which we take the 2.5
th

 and 97.5
th

 

percentiles to calculate the range containing 95% of projected estimates.15  This is a natural set 
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 We note that this interval could be disjoint in principle – e.g., the interval [-10%,-5%] could 

contain 95% of projected impacts for one climate model and [5%,10%] could contain 95% of 

projected impacts for a second model. In this case, focusing on the range from the 2.5
th

 percentile 

to the 97.5
th

 percentile across the two models would be highly misleading, incorrectly 

suggesting, for instance, that a zero effect of climate is likely.  In this case, it would be 

appropriate to report the relevant disjoint intervals separately; we thank the editor David Lee for 

this point.  However, in none of the empirical cases we examine in this paper is there an instance 

where the range containing 95% of projected estimates from for one model is disjoint from the 

range for the other models we consider. This is a result of the rather smooth distribution of 

temperature and precipitation projections across the full model ensemble (see figure 1), together 
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of values of consider given the equal weight we place on all climate models in the ensemble. To 

then measure how much climate uncertainty adds to the overall variation in projected effects 

beyond the effect of regression uncertainty alone, we compare the size of this interval to the 

comparable interval from (ii).
16

 These results are presented in Figure 4 and column 7 of Table 2. 

The range containing 95% of estimates increases only moderately when climate 

uncertainty is accounted for in the two studies using African data. This mainly reflects the fact 

that regression uncertainty in the historical relationships was already quite large for those studies. 

For the four studies focused on U.S. agriculture impacts, however, the regression uncertainty was 

relatively small and accounting for climate uncertainty greatly increases the range containing 

95% of projected impacts.  In SHF and FHRS, this range for the mid-21
st
 century projections 

increases five-fold when accounting for both climate and regression uncertainty (relative to when 

                                                                                                                                                                                   
with the fact that the historical relationships are quite imprecisely estimated in many cases, 

leading to extensive overlap.  

16
 Here, the overall variation in projected effects captures the range of projected impacts as 

evaluated from the bootstrap replications when both the regression coefficients and the climate 

projections are varied. This approach to the utilization of the climate projections from the 20 

different climate models within the bootstrapping procedure is consistent with the assumption 

that these models represent independent samples of the underlying distribution of future climate. 

Treating an ensemble of models in this way is a well-studied means of facilitating a probabilistic 

approach to future projections in the climate science literature (CCSP, 2009), and in our case, 

provides a mean of quantitatively combining the variability derived from historical relationships 

and from climate projections.  
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focused solely on regression uncertainty).  DJO is an intermediate case, with the range increasing 

by 30% when climate uncertainty is considered. 

It is beyond the scope of this study to determine whether the increasing uncertainty 

generated by considering climate uncertainty should change the main conclusions or policy 

recommendations of the individual articles we re-examine. Yet we note that the broader 

implications of uncertainty will often depend on just how bad the “worst-case” outcomes are. 

Specifically, if increased uncertainty was entirely in the direction of more positive outcomes, 

then the increased uncertainty would likely reduce the perceived need for public action on 

climate change.  However, if widening both “tails” of the distribution of projected outcomes 

increases the perceived risk of “catastrophic” left-tail outcomes, then additional uncertainty 

could imply a greater need for action (see Weitzman 2009, and the contrasting views in 

Weitzman 2011 and Pindyck 2011).  

In column 8 of Table 2, we attempt to capture left-tail climate realizations by comparing 

the 2.5
th

 percentile outcome that accounts for climate uncertainty versus that which does not. In 

four of the seven articles we re-examine, this “worst-case” outcome is at least twice as large in 

magnitude (and negative). For example, the 2.5
th

 percentile outcome for corn yields in FHRS by 

mid-century decreases from -20% to nearly -50% when we account for climate uncertainty, and 

the shift is similarly large and negative for land values in MNS and SHF, and even larger for DG.  

Once again, the changes are less pronounced for the studies using African data. 

 

4.  Conclusion 

A rapidly growing research literature estimates the future economic, political and social impacts 

of climate change. We survey the existing literature and find that very few studies employ 
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anything close to the full ensemble of approximately 20 climate change models that have 

undergone vigorous testing within the community of climate scientists. In fact, the median study 

uses just two such models, with the most influential recent studies on U.S. agriculture focusing 

on a single model (Hadley). As a result, most studies in the burgeoning literature on the 

economics of climate change do not capture the full range of plausible future climate variation, 

making their findings seem more precise than they actually are, and as a result making them less 

credible among climate scientists and potentially misleading for policymakers. 

 We feel that the methodological approach presented here addresses a fundamental 

shortcoming in this emerging literature. Using seven well-cited recent articles spanning a range 

of outcomes as examples, we show that failing to account for climate uncertainty can frequently 

lead to underestimating the range of projected climate impacts, especially when the underlying 

historical relationships are precisely estimated, as is often the case for studies using large high-

quality historical datasets from the United States. One consequence is that analysts may severely 

underestimate the thickness of the tails of the distribution of future outcomes, with four out of 

the seven studies understating a “worst-case” (2.5
th

 percentile) outcome by at least a factor of 

two when failing to consider climate uncertainty. 

Fully accounting for climate uncertainty sometimes generates very wide ranges of 

estimated climate change impacts, but this greater degree of uncertainty is more defensible from 

the point of view of climate science. Studies that focus on a single or small handful of climate 

models generate a false sense of confidence about the likely future impacts of climate change, 

when in fact impacts are actually far less certain.  The ability to choose among a wide set of 

critically evaluated climate models, with their often divergent projected temperature and 
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precipitation changes, could also leave researchers that select just one or a few such models open 

to the charge of cherry-picking. 

We thus feel that the most valid analytical approach for future social science research on 

climate change impacts is the “democratic” standard we adopt in this paper, giving each IPCC 

model a single “vote” when carrying out the analysis, at least until such time when there is 

sufficient scientific consensus regarding the superiority of a particular model or set of models.  

Implementing the simple approach presented here should make future research on the economics 

of climate change more credible to the policymakers who depend on this growing body of 

research to make important public policy decisions, even if it means that the answers we 

researchers can provide are less certain.  
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Table 1: Studies making quantitative climate change predictions regarding economic and social outcomes 

     

Panel A: All studies Number of 

studies 

Median 

number of 

climate 

models used  

Mean 

number of 

climate 

models used 

% of studies 

that use 

Hadley 

Model 

% of studies that 

use only Hadley 

Model 

Total 188 2 4 40 13 

By sector: (% of total)     

     Agriculture 53 3 4 37 12 

     Health  15 1 2 52 28 

     Water  6 2.5 5 58 0 

     Multiple 14 2 5 35 8 

     Other 12 1 3 32 14 
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Panel B: Studies since 2005 Number of 

studies 

Median 

number of 

climate 

models used  

Mean 

number of 

climate 

models used 

% of studies 

that use 

Hadley 

Model 

% of studies that 

use only Hadley 

Model 

Total 126 2 4.3 42 11 

By sector: (% of total)     

     Agriculture 51 3 4 48 14 

     Health  13 1 2 38 19 

     Water  7 2 6 44 0 

     Multiple 14 2.5 6 39 6 

     Other 15 1 3 26 5 

Note:  The literature review was conducted through August 2012; see text for details. "Hadley Model" includes multiple 

versions of the Hadley Model. 
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Table 2: Articles re-examined in this study 

Article (in 

chronological 

order) 

Outcome 

(1) 

Sample 

(2) 

Climate 

models 

used 

(3) 

Regression 

specification used to 

generate projections 

(4) 

Functional form 

for historical 

climate 

(5) 

Range of 

estimates, 

climate 

uncertainty 

alone, % 

(6) 

(Climate + 

Regression 

uncertainty) 

/ 

Regression 

uncertainty, 

% increase 

(7) 

(Climate + 

Regression 

uncertainty) 

2.5
th

 

percentile / 

Regression 

uncertainty 

2.5
th

 

percentile 

(8) 

Mendelsohn, 

Nordhaus and 

Shaw 1994 

(MNS) 

Farmland 

values 

Cross-section 

of U.S. 

counties, 

1982 

1 

Table 3, spec. 4: 

with crop revenue 

weights 

Monthly 

temperature, 

precipitation  

 

(-33, 37) 86% 2.0 

Schlenker, Farmland Cross-section 1 Table 2, spec. 1: Monthly (-100, 18) 452% 2.5 



 

30 

 

Hanemann and 

Fisher 2005 

(SHF) 

values of U.S. 

counties, 

1982 

dryland rural 

counties 

temperature, 

precipitation  

 

Deschenes and 

Greenstone 

2007 

(DG) 

Agricultural 

profits 

Panel of  

U.S. counties, 

1982-2002 

1 

Table 4, spec. 5: 

state x year FE with 

soil controls 

Quadratic in 

growing degree 

days, total 

precipitation 

(-6, 6) 367% 8.3 

Burke, Miguel, 

Satyanath, 

Dykema and 

Lobell 2009 

(BMSDL) 

Civil war 

Panel of  

African 

countries,  

1981-2002 

20 

Table 1, spec. 1: 

country FE, 

quadratic time trend 

Annual average 

temperature, 

total 

precipitation 

(53, 117) 2% 1.0 

Schlenker and 

Lobell 2010 

(SL) 

Corn yields 

Panel of  

African 

countries, 

1961-2002 

16 

Linear specification 

with temperature 

and precipitation, 

country FE, time 

Annual average 

temperature, 

total 

precipitation 

(-23, -9) 21% 1.1 
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trends 

Fisher, 

Hanemann, 

Roberts and 

Schlenker 2010 

(FHRS) 

Corn yields 

Panel of  

U.S. counties, 

1982-2002 

1 

Table 1, spec. 1b: 

county and year FE 

with soil controls 

Quadratic in 

growing degree 

days, total 

precipitation 

(-47, -8) 462% 2.2 

Dell, Jones and 

Olken 2012 

(DJO) 

GDP 

growth 

Panel of  

countries,  

1950-2008 

1 

Table 2, spec. 2: 

country FE, region 

x year FE, poor x 

year FE 

Annual average 

temperature, 

total 

precipitation 

(-50, -22) 28% 1.1 

Notes: Cols. 6-8 are for the A1B scenario. In col. 7 we present the % increase in the range containing 95% of projected impacts for climate 

uncertainty plus regression uncertainty versus the range containing 95% of projected impacts under regression uncertainty alone. In col. 8 we 

present the ratio of the 2.5
th

 percentile of the distribution of outcomes under climate uncertainty plus regression uncertainty versus the 2.5
th

 

percentile of outcomes under regression uncertainty al
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Figure 1: Projections of end-of-century (2080-2100) climate change over U.S. corn growing 

area, by climate model and emissions scenario, relative to a 1980-2000 baseline.  

White colors represent the B1 emissions scenario, light grey colors the A1B scenario, and dark 

grey the A2 scenario, with projections of change in growing season temperature (in deg C) on 

the X-axis and percent change in precipitation (% change) on the Y-axis. Lines connect the 

projections for a given model across the three emissions scenarios, with projections for the 

Hadley model (HadCM3 A1B) shown as triangles. Boxplots summarize the distribution of 

projected changes by scenario, with dark lines indicating the median projection, boxes the 

interquartile range, and whiskers the range containing 95% of estimates. 
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Figure 2: Use of climate model data in existing social science literature 

 

Left panel: Cumulative number of studies making quantitative projections about climate impacts 

on socioeconomic outcomes, with agricultural studies in dark grey and other studies in light grey.   

 

Right panel: mean (dashed line) and median (solid black line) number of climate models used by 

these studies over time (three-year moving average).  The solid grey line represents the total 

number of climate models available to researchers since 2000, when quantifying their 

availability becomes tractable. 
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Figure 3: Projections of climate change impacts on outcomes across climate models and 

emissions scenarios by mid-century (2040-2060), relative to a 1980-2000 baseline.  

Each grey vertical line represents projected impacts derived from a single climate model running 

a single emissions scenario, assuming perfect knowledge of how the outcome responds to 
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changes in climate (that is, no regression uncertainty). Dark black lines represent projected 

impacts from the Hadley model running the A1B scenario (HadCM3 A1B). 
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 Figure 4: Importance of climate and regression uncertainty in projections of climate impacts, by 

 mid-century (2040-2060) and end-of-century (2080-2100), relative to a 1980-2000 baseline.  
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 White boxplots show the uncertainty in impact projections resulting from regression uncertainty 

 in the historical relationship between the outcome and climate, with changes in climate fixed at 

 the median projection. Light grey boxplots summarize projection uncertainty resulting from 

 different model projections of how the climate will respond under the A1B emissions scenario, 

 with responses to climate fixed at regression point estimates. Dark grey boxplots combine these 

 two sources of uncertainty (climate plus regression uncertainty). Dark lines represent the median 

 projection, the box the interquartile range, and whiskers the range containing 95% of projections. 

 Numbers in brackets on the left of each panel show the percentage increase in the range 

 containing 95% of estimates for climate plus regression uncertainty versus under regression 

 uncertainty alone. 
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Appendix 
 

 
 

Appendix Figure 1: Projections of end-of-century (2080-2100) climate change over African 

corn (maize) growing area, by climate model and emissions scenario, relative to a 1980-2000 

baseline.  White colors represent the B1 emissions scenario, light grey colors the A1B 

scenario, and dark grey the A2 scenario, with projections of change in growing season 

temperature (in deg C) on the X-axis and percent change in precipitation (% change) on the 

Y-axis. Lines connect the projections for a given model across the three emissions scenarios, 

with projections for the Hadley model (HadCM3 A1B) shown as triangles. Boxplots 
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summarize the distribution of projected changes by scenario, with dark lines indicating the 

median projection, boxes the interquartile range, and whiskers the range containing 95% of 

estimates. 

 




