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Abstract

INTRODUCTION: Speech-based testing shows promise for sensitive and scalable

objective screening for Alzheimer’s disease (AD), but research to date offers limited

evidence of generalizability.

METHODS: Data were taken from the AMYPRED (Amyloid Prediction in Early Stage

Alzheimer’s Disease fromAcoustic and Linguistic Patterns of Speech) studies (N=101,

N = 46 mild cognitive impairment [MCI]) and Alzheimer’s Disease Neuroimaging Ini-

tiative 4 (ADNI4) remote digital (N = 426, N = 58 self-reported MCI, mild AD or

dementia) and in-clinic (N = 57, N = 13 MCI) cohorts, in which participants provided

audio-recorded responses to automated remote story recall tasks in the Storyteller

test battery. Text similarity, lexical, temporal, and acoustic speech feature sets were

extracted.Models predicting early ADwere developed in AMYPRED and tested out of

sample in the demographicallymore diverse cohorts inADNI4 (>33% fromhistorically

underrepresented populations).

RESULTS: Speech models generalized well to unseen data in ADNI4 remote and

in-clinic cohorts. The best-performing models evaluated text-based metrics (text

similarity, lexical features: area under the curve 0.71–0.84 across cohorts).

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.
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of Health, Grant/AwardNumber: U19

AG024904 DISCUSSION:Speech-basedpredictionsof earlyADfromStoryteller generalize across

diverse samples.

KEYWORDS

Alzheimer’s Disease Neuroimaging Initiative, digital recruitment, generalizability, mild cognitive
impairment, speech-based testing

Highlights

∙ The Storyteller speech-based test is an objective digital prescreener for Alzheimer’s

Disease Neuroimaging Initiative 4 (ADNI4).

∙ Speech-based models predictive of Alzheimer’s disease (AD) were developed in the

AMYPRED (Amyloid Prediction in Early Stage Alzheimer’s Disease from Acoustic

and Linguistic Patterns of Speech) sample (N= 101).

∙ Models were tested out of sample in ADNI4 in-clinic (N = 57) and remote (N = 426)

cohorts.

∙ Models showed good generalization out of sample.

∙ Models evaluating text matching and lexical features were most predictive of early

AD.

1 BACKGROUND

Alzheimer’s disease (AD) is themost commoncauseof dementiaworld-

wide, with a community point prevalence of ≈ 4% in adults aged> 60.1

The health burden of AD is set to increase, with an aging worldwide

population,2 and rates of AD are projected to almost double every 20

years.3

There is increased pressure to find scalable methods for identifying

patients at early stages of the disease. This is driven by new preventa-

tive AD treatments coming to market primarily developed for earlier

disease stages,4,5 and a range of new disease-modifying drugs in the

development pipeline.6

Neuropsychological testing, often administered in a question-and-

answer format, has been extensively used to identify individuals at risk

of AD. However, analysis of speech itself is emerging as a target for

measuring subtle cognitive impairment and decline.7 Administration

and analysis of speech-based testing can be fully automated,8 provid-

ing a scalable means for broader screening activities. This approach

could be married with new, highly accurate blood-based tests for

identifying disease-specific biomarkers,9,10 promising to further bring

down the staffing burden and related costs of identifying AD-related

pathological changes.

This approach is used in the Alzheimer’s Disease Neuroimag-

ing Initiative 4 (ADNI4), in which a large group of participants

are recruited and assessed online before funneling those with

cognitive impairment or self-reported cognitive decline for more

in-depth clinical and biomarker evaluations.11 Novoic’s Storyteller,

an automated story recall task, is being used as part of the online

screening efforts in ADNI4.11 Storyteller’s generalized matching

algorithm (G-Match) provides a fully automated method for eval-

uating proportional recall in story recall tasks sensitive to early

AD.8

Beyond proportional recall, research has documented changes in

speech and language occurring early in AD, including but not lim-

ited to changes in lexical variation, repetitions, the use of indefinite

terms, noun and pronoun use, syntactic complexity, word finding dif-

ficulties, speech rate, pausing, and a range of acoustic measures,12–16

some of which have also been reported as differing in relation to AD

biomarker (amyloid and tau) status.17–20 Subtle signals like these have

the potential to be embedded within larger machine learning or arti-

ficial intelligence (AI)-based models to improve overall predictiveness

and sensitivity,21,22 with the availability of sufficient data.

However, studies of speech and language patterns in AD to date

have typically been carried out within relatively small samples,23–26

with data collected on prespecified devices, and with limited evidence

regarding the generalizability of the speech features analyzed, with

some exceptions.27–29 When speech feature sets, from the thousands

that are available, are curated and optimized, there is a risk of over-

fitting data and generating spurious results.30 Additionally, aspects of

speech and language also reflect the speaker’s mother tongue, dialect,

culture, social status, education, sex, race, and age.31 Identifying pat-

terns in speech and language that are associated with early AD, and

that generalize across different population groups, is key to accurate,

equitable, and scalable prescreening.

ADNI collects high-quality standardized datasets across a variety

of data modalities, and now also in a more diverse and representative

participant sample,11 to share with researchers to advance the AD

field. Now, with Storyteller, speech data become one of these datasets.

Analogous to how blood samples stored in the past can be reana-

lyzed using the latest technologies, speech can also be reanalyzed as
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methodologies improve, for example, with advances in AI methods

using newer large languagemodels.

The current paper evaluates the feasibility of a large-scale device-

agnostic speech-based data collection initiative, and the generalizabil-

ity of speech-based prediction models when applied to this context.

Using Storyteller’s automated story recall tasks, we first develop mod-

els to predict clinical groups with and without cognitive impairment

(mild cognitive impairment [MCI] or mild AD dementia) in the Amyloid

Prediction in Early Stage Alzheimer’s Disease from Acoustic and Lin-

guistic Patterns of Speech (AMYPRED) clinical study (NCT04828122,

NCT04928976). The results are validated out of sample in ADNI4

(NCT05617014, data extraction date: April 19, 2024) in a smaller

sample with clinical labels, and in a larger sample with self-reported

diagnosis, allowing evaluation of generalizability across these studies

and demographic groups.

2 METHODS

The current study takes participant samples from three different

cohorts, described in more detail below. This includes the AMYPRED

cohort (Section 2.1), and ADNI4 in-clinic and remote cohorts (Sec-

tion 2.2). Details on study-specific inclusion and exclusion criteria are

provided in brief in the relevant sections, and a comparison of key sam-

pling criteria is provided in Table S1 in supporting information, allowing

a comparison of recruitment characteristics and inclusion and exclu-

sion criteria. Participants across all groups were assessed in English,

using English-language variants of test materials.

2.1 AMYPRED

2.1.1 Sample

Data were taken from the AMYPRED-UK and AMYPRED-US sister

studies. Fuller details on sample characterization andmethods are pro-

vided in Skirrow et al.8 and Fristed et al.21,22 Two hundred participants

were recruitedas a convenience sample fromtrial participant registries

between November 2020 and August 2021. Only participants with

confirmed amyloid beta biomarker status by positron emission tomog-

raphy (PET) or cerebrospinal fluid test, and with established clinical

diagnostic status (cognitively unimpaired [CU] or diagnosed with MCI

or mild AD the previous 5 years) were approached. MCI due to AD and

mild ADdiagnosesweremade following the 2011National Institute on

Aging–Alzheimer’s Association core clinical criteria.32 Exclusion and

inclusion criteria can be found in Table S1.

2.1.2 Assessments

Participants completed clinical assessments via a secure Zoom link

(UK) or in clinic (US), together with a trained psychometrician, dur-

ing which a battery of clinical tests were administered and explored

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

using traditional (e.g., PubMed) sources. Speech and lan-

guage changes are reported in Alzheimer’s disease (AD),

often in participants in the (more progressed) dementia

stages of the disease, when speech is frequently evalu-

ated in small samples and/or tested using cross-validation

methods, limiting generalizability.

2. Interpretation: Our results show out-of-sample gen-

eralization of speech-based models to predict cogni-

tive impairment (both clinically determined and self-

reported) as evaluated with the Novoic Storyteller test

battery. Importantly the results generalize well across

diverse samples, and in tests administered across a wider

range of common devices and browsers, supporting scal-

ability.

3. Future directions: Research will continue to evaluate the

generalizability and sensitivity of speech-based screening

in the context of Alzheimer’s Disease Neuroimaging Ini-

tiative 4’s multi-tier screening and enrichment approach.

Larger samples will allow the development and validation

of more sophisticated speech-based models, including

those detecting more subtle clinical presentations, and

associated with AD biomarker status.

elsewhere.8 During the supervised clinical assessments, participants

were supported with downloading the Novoic native application on

their ownmobile devices by study staff. TheNovoic appwas developed

for self-administration of speech-based cognitive tests on participants’

mobile smartphones, running on Android 7 and above or iOS 11 and

above.

After their clinical assessments, participants were encouraged to

engage in optional remote once-daily speech-based assessments using

the app for up to 8 days. Remote assessments included the Automated

Story Recall Task (ASRT) administered daily at the beginning of each

assessment session. ASRTswere administered inUKEnglish story vari-

ants for the UK study and in US English story variants for the US

study.

When completing ASRTs, participants listen to prerecorded stories

and are instructed to retell these in as much detail as they can remem-

ber, immediately after the presentation of each story and after a delay.

Task responses are recorded and automatically uploaded to a secure

server.

Data were taken from remotely administered ASRTs in AMYPRED.

In AMYPRED, ASRTs were administered in threes, with an immedi-

ate recall of three different stories sequentially, followed by a delayed

recall of each story after the completion of all immediate recalls.

For the current analyses, data were extracted from two immedi-

ate recalls of ASRT stories s1 and s2 (described in Skirrow et al.8) and
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one delayed recall (story s1) administered in the same test session

providing a cross-sectional dataset, to emulate a brief screening set-up.

2.2 ADNI4

2.2.1 Sample

Data used in the preparation of this article were obtained from the

ADNI database (adni.loni.usc.edu). The ADNI was launched in 2003 as

a public–private partnership, led by Principal Investigator Michael W.

Weiner, MD. The primary goal of ADNI has been to test whether serial

magnetic resonance imaging (MRI), PET, other biological markers, and

clinical and neuropsychological assessment can be combined to mea-

sure the progression of MCI and early AD. For up-to-date information,

see www.adni-info.org.

The ADNI4 remote digital cohort is a large study cohort (target of

20,000 + participants), recruited and screened online, with the goal of

enrolling 50% to 60% of new participants as individuals from histori-

cally underrepresented populations (URPs).11 A detailed overview of

the remote digital cohort can be found inMiller et al., this Special Issue.

The study protocol and inclusion and exclusion criteria are detailed

on the ADNI website (https://adni.loni.usc.edu/methods/documents/),

and a summary can also be found in Table S1.

Out of the 20,000 participants recruited into the digital cohort, a

subset of ≈ 4000 will be selected to provide a blood sample for plasma

biomarker analysis, of which a further subset will be referred to in-

depth characterization in clinic at ADNI clinical sites to enroll ≈ 500

new participants into the core study.11 The newly recruited cohort will

be joined by an estimated 500 participants who completed prior ADNI

studies and will roll over into the ADNI4 study. Participants in the CU

and MCI diagnostic arms of the in-clinic ADNI4 study are invited to

complete remote assessments, including theNovoic Storyteller test, at

baseline and 6-month intervals via the ADNI online study platform.

Although data collection in ADNI4 is ongoing across both in-clinic

and cohorts, in the current study, cross-sectional data were taken from

a subsample of participants completing their first, baseline Storyteller

assessments up to April 19, 2024, at which time data was locked and

exported.

2.2.2 In-clinic assessments

In-clinic assessments were completed by roll-over participants from

prior ADNI studies, including a clinical workup, in which their clini-

cal status was evaluated, with participants designated as either being

CU or having a diagnosis of MCI or AD dementia according to study

protocols (https://adni.loni.usc.edu/methods/documents/). Evaluations

included in-clinic administration of the Clinical Dementia Rating (CDR)

scale33 and theMini-Mental State Examination (MMSE).34

In-clinic participants also completed remote assessments and data

collection procedures, as described below in more detail in Sec-

tion 2.2.3, with the exception that self-reported diagnostic or med-

ication information was not collected for in-clinic participants using

the ADNI online platform. The in-clinic ADNI4 participants join the

ADNI online study to answer basic demographics questions, self-

report memory concern and memory decline questions, and complete

the Everyday Cognition 12-item scale (ECog-12)35,36 and the Novoic

Storyteller test.

2.2.3 Remote assessments

ADNI4 remote digital cohort participants provided data from remote

digital assessment through an online portal based on the Brain Health

Registry infrastructure,37 which collects a range of information, includ-

ing participant demographics, medical history related to study exclu-

sionary criteria, self-report questions, and a measure of subjective

cognitive/functional decline (ECog-1235,36), with updated language to

improve relevance to older more diverse adults.

Self-report questions, evaluated only in the remote digital sample

as a proxy for diagnosis, included: self-reported clinical diagnosis of

MCI, AD, or dementia, and having received a prescribedmedication for

memory problems or cognitive impairment.

One of the final tasks administered in the ADNI online portal is the

Novoic Storyteller test. Storyteller is a remotely administered speech-

based cognitive test battery, leveraging the ASRTs, validated in the

AMYPRED studies.8 In ADNI4, the Storyteller battery comprises the

following tasks: immediate recall of two different stories sequentially

(ASRT story s1 and story s2), a category fluency distractor task (ani-

mals), followed by the delayed recall of the first story presented (story

s1). The current study evaluates data from story recall tasks only, in US

English ASRT story variants. Fluency tasks will be evaluated in more

detail in separate analyses.

Compared to the legacy native app, the application visuals in Sto-

ryteller have been redesigned to further improve ease of use, and

the application can now be accessed from a wide range of common

devices via URL or Weblink (see Supplementary Materials, Section 2

in supporting information, for device and browser compatibility), or

integrated into online portals such as those in ADNI4 via a Software

Development Kit (SDK), reducing burden on participants in terms of

navigating downloads and access permissions on their devices. A visual

representation of the Storyteller screens can be found in Figure S1 in

supporting information.

Information on which devices and browsers were used to access

Storyteller was collected from user agent strings. Information on the

usability of Storyteller was collected via a participant satisfaction

survey at the end of the task, evaluated using a 5-point scale cus-

tomer satisfaction question format (“Did you enjoy Storyteller?”), with

frowning to smiley emoji response options (1 = not at all, 5 = very

much).

2.3 Speech data preprocessing

Only participants completing Storyteller assessments were included in

the current analysis. An overview of the fuller remote digital cohort,

https://adni.loni.usc.edu/methods/documents/
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including those who did not complete Storyteller, is reported in Miller

et al., this Special Issue.

Participants who completed the Storyteller battery, but with no

audible speech data or with transcription or feature extraction fail-

ure were excluded. The speech was analyzed using the following

key approaches, described below, with resulting data available for

researchers to access via the Laboratory of Neuro Imaging (LONI)

system.

2.3.1 Automated transcription

ASRT speech data was automatically transcribed using Google’s

speech-to-text automatic speech recognition (ASR) system,38 and

analyzed with Novoic’s proprietary speech analysis software. In

AMYPRED, data were also transcribed manually following a stan-

dardized procedure, including specified verbatim transcription of

commentary, filled pauses, and partial words.

Transcription accuracy in AMYPRED data was evaluated with

word error rate (WER), calculated using the HuggingFace Evaluate

package39 as the average number of ASR errors per manually tran-

scribed word. This was calculated after removing punctuation, setting

all text characters to lowercase, and removing filled pauses and partial

words from transcripts before comparison.

2.3.2 Text similarity analysis

Text similarity analysis was completed using a generalized matching

score (referred to here for brevity as “G-match”). G-match was com-

puted in Python as the weighted sum of the cosine similarity between

the embeddings of original ASRT text and the transcribed retellings,8

based on a pretrained large multilingual language model. G-match

quantifies the similarity across the two texts, with potential scores

ranging from 0 to 100 (best performance score). G-match scores were

generated separately for each story recall on Storyteller and averaged

across the three-story recalls.

2.3.3 Feature extraction

More than 50 prespecified speech features based on the research

literature, and showing evidence of sensitivity to early-stage AD or

other neurological and psychiatric conditions,12–16 were extracted

using Surfboard40 andBlaBla41 feature extraction packages. An abbre-

viated list of extracted features is provided in Table 1, with a fuller list

in Table S2 in supporting information. These were analyzed together

and separately according to feature domain, with lexical features

including information relating to the language and the types of words

used, temporal relating to timing-related features in speech (pauses,

speech rate, and duration), and spectral features relating to the audio

characteristics of the voice itself.

Individual features were extracted for each story recall task. Fea-

tureswerenormalized for each taskwithin training data folds,whereby

z scores for each task–feature dyad were derived for each participant.

TABLE 1 Overview of speechmetrics and domains extracted for
analysis.

Feature domains

Text

similarity Lexical features

Temporal

features Spectral features

G-match Number of words

Idea density

Pronoun/noun

ratio

Noun rate

Uniqueword ratio

Speech duration

Speech rate

Total number of

long pauses

(> 200ms)

Total number of

pauses

Total pause time

F0 (mean and SD)

Harmonics-to-

noise

ratio

MFCC 1 toMFCC

13 (mean and SD)

Jitter (5 features)

Shimmer (5

features)

Abbreviations: F0, fundamental frequency; G-match, generalized match-

ing algorithm; MFCC, mel-frequency cepstral coefficients; SD, standard

deviation.

Adjusting the feature distributions in this way helps models to train

more robustly. Test folds are similarly normalized according to training

datameans and standard deviations.

Normalized features were then averaged across tasks to improve

the robustness of speech features, with each story recall serving as

a repeated administration. Normalized, averaged features were then

finally concatenated, resulting in a vector of dimension (number of fea-

tures in the group) for each feature group. In addition, a combined

feature group was evaluated, combining features across all feature

domains (text similarity, lexical, temporal, and spectral features).

2.4 Model development and analysis

2.4.1 Defining clinical groups

Clinical groups were defined by the available data in each cohort:

1. Participants in AMYPRED and ADNI4 in-clinic cohorts were evalu-

ated clinically andhad clinically confirmeddiagnostic labels (CUand

MCI), which were used as diagnostic labels in predictivemodels.

2. In the ADNI4 digital cohort sample, only self-reported diagno-

sis of AD, MCI, or dementia was available. This was used as

a proxy for clinical diagnostic labels in predictive models. Sec-

ondary, exploratory analysis was completed in relation to a simple

(yes/no/I don’t know/prefer not to say) self-reported question on

prescription of medications for cognitive impairment or memory

problems (“Have you ever been prescribed a medication for cogni-

tive impairment or memory problems by a health-care provider?”).

No additional information on medication types was provided by

participants.

2.4.2 G-match

G-match score was used to predict clinical group directly using

receiver operating characteristic (ROC) analysis, by evaluating sensi-

tivity and specificity at each G-match score value. This process was
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carried out separately across the three cohorts (AMYPRED, ADNI4 in-

clinic, ADNI4 remote digital cohort). Note that for G-match (a single

extracted feature) no trainingwas carried out to optimize performance

in the AMYPRED data or other cohorts.

Area under the ROC curve (AUC) is reported. Ninety-five per-

cent confidence intervals for AUCs were computed as the margin of

error between 2.5th and 97.5th centile from 1000 randomly sampled

bootstrap samples with replacement from the original dataset. Pos-

itive predictive value (PPV) and negative predictive value (NPV) are

reported for a range of sensitivities (target 0.7, 0.8, and 0.9) and associ-

ated specificities. To investigate generalizability ofG-match thresholds,

a set of thresholds determined using the same target sensitivities in

AMYPRED were applied to the two ADNI4 cohorts, and the result-

ing sensitivities, specificities, PPVs, and NPVs in ADNI4 cohorts are

reported.

2.4.3 Within-sample generation and
cross-validation of speech biomarker models in
AMYPRED

The predictiveness of speech-based models was evaluated within

AMYPRED. Feature vectors for lexical, temporal, acoustic, and com-

bined features were used to train logistic regressionmodels predicting

clinical groups (MCI/mild AD and CU), evaluated with 5-fold cross-

validation to generate ROC curves. For G-match, a single extracted

feature, no training was carried out to optimize performance. Rather,

the ROC curve was generated as described in Section 2.5.2 but on

the five test folds to provide a direct comparison to the other models.

Ninety-five percent confidence intervals were computed as themargin

of error between the 2.5th and 97.5th centile by bootstrapping with

replacement 1000 mean AUCs from the 5-fold cross-validation. The

statistical significance of differences between AUCs was computed

using theWilcoxon signed-rank test. 36

2.4.4 Out-of-sample generalization of speech
biomarkers in ADNI-4

Out-of-sample predictions from AMYPRED were produced using

methods equivalent to those described above in Section 2.5.3, with the

exception that for multi-feature domains a single predictivemodel was

generated for each feature set in the AMYPRED data. These models

developed inAMYPREDwereused topredict previouslyunseendata in

ADNI-4. The statistical significance of differences between AUCs was

computed using permutation testing. Ninety-five percent confidence

intervals for AUCs were computed in the same way as described in

Section 2.5.2.

2.4.5 Demographic comparison

All models were evaluated relative to a demographic comparison, com-

bining age, sex, and years of education as input to a logistic regression

model analysis using an identical set-up to the feature-based models

described above.

3 RESULTS

3.1 Participants

3.1.1 AMYPRED participants

Out of 200 participants in the AMPRED study, 101 participants com-

pleted the prespecified optional remote assessment session, including

46 individuals with a clinical diagnosis of MCI, and 55 who were CU.

Characteristics of participants completing remote clinical assessments

versus those who did not complete remote assessments have already

been reported in detail previously.8

3.1.2 ADNI4 participants

From the remote digital cohort, out of 914who joined the study online

and completed at least one remote assessment consented to complete

remote assessments (demographics questionnaire is the first study

task), 447 completed Storyteller (49% of consenting participants). An

analysis of completion rates in the full remote digital cohort is provided

byMiller et al. (this issue).

From the in-clinic cohort, out of 113 invited and of the 80 that

joined and consented to complete remote assessments, 60 completed

Novoic Storyteller (54% of invited and 75% of consenting participants,

respectively).

Overall, 503 participants in ADNI4 provided responses to Sto-

ryteller, full demographic information (age, sex, years of education),

and had either confirmed diagnosis via in-clinic assessment (N = 58),

or self-reported diagnosis in the remote digital cohort (N = 444).

Consort diagrams are provided in Figures S2 and S3 in supporting

information.

Data from 20 participants (4%) with transcription or feature extrac-

tion failure from audio were excluded. The final usable ADNI4 sample

overall comprised 483 participants from ADNI4, including 57 with

complete in-clinic diagnostic evaluations (44 CU, 13 MCI), and 426

from the remote digital cohort (368 self-reporting as CU or diagnosis

not known, and 58 with self-report of MCI, AD, or dementia). Of those

self-reporting a diagnosis, 50% (29/58) also reported currently being

prescribed medication for memory problems or cognitive impairment

by their health-care provider, compared to 0.8% who did not report a

diagnosis (3/368).

The ADNI4 cohorts had a better representation of individuals

from historically URPs than AMYPRED. In the included sample

that completed Storyteller, 38.5% of the ADNI4 digital cohort and

33.3% of the in-clinic ADNI sample self-reported an ethnocul-

tural URP background, compared to just under 2% in AMYPRED.

Demographic information for all three samples is provided in

Table 2.
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TABLE 2 Sample characteristics of AMYPRED, ADNI4 in-clinic participants, and ADNI4 digital cohort.

Cohort, group

AMYPRED (N= 101) ADNI4 in-clinic cohort (N= 57)

ADNI4 remote digital cohort

(N= 426)

CU MCI/mild AD CU MCI

CU or no known

diagnosis

(self-report)

MCI, AD, or

dementia

(self-report)

Total (N) 55 46 44 13 368 58

Female,N (%)/male,N (%) 34 (61.8%)/21

(38.2%)

22 (47.8%)/24

(52.2%)

27 (61.4%)/17

(38.6%)

5 (38.5%)/8

(61.5%)

284 (77.2%)/84

(22.8%)

37 (63.8%)/21

(36.2%)

Age, mean (SD) 69.89 (4.12) 68.93 (7.47) 73.70 (7.78) 75.00 (7.54) 66.48 (6.91) 69.71 (7.29)

Years of education, mean (SD) 15.12 (3.58) 15.26 (2.82) 17.16 (2.15) 15.62 (2.50) 16.26 (2.47) 15.72 (2.40)

MMSE, mean (SD) 29.02 (1.05) 27.29 (1.9) 29.32 (0.69)a 27.83 (1.70)b – –

CDR-G, mean (SD) 0.10 (0.2) 0.51 (0.13) 0.06 (0.17)c 0.50 (0.00)d – –

Race/ethnicity,N (%)

Black or African American 1 (1.8%) – 11 (25%) 2 (15.3%) 113 (30.7%) 5 (8.6%)

Asian 1 (1.8%) – 2 (4.5%) – 8 (2.2%) 2 (3.4%)

Native American – – – – 1 (0.3%) –

Pacific Islander – – – – 2 (0.5%) –

Mixed race – – 1 (2.3%) – 10 (2.7%) 1 (1.7%)

Latino/a – – 3 (6.8%) – 25 (6.8%) 3 (5.2%)

Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; AMYPRED, Amyloid Prediction in Early Stage Alzheimer’s Dis-

ease from Acoustic and Linguistic Patterns of Speech; CDR-G, Clinical Dementia Rating, Global score; CU, cognitively unimpaired; MCI, mild cognitive

impairment;MMSE,Mini-Mental State Examination;N, number; SD, standard deviation.
aData available in a subsample ofN= 26.
bData available inN= 12.
cData available inN= 25.
dData available inN= 12.

3.2 Devices and browsers in ADNI4

In ADNI4, participants accessed Storyteller on awide range of devices,

as revealed through user agent strings, collected during task com-

pletion. This included Windows devices (26.7%), MacOS X devices

(18.8%), iPhones (33.3%), Android phones (16.6%), and iPads (3.5%).

Just under half of participants accessed Storyteller with Safari (44.7%),

followedbyChrome (38.9%),with fewer onEdge (9.5%), Firefox (3.7%),

and Samsung Internet (1.9%).

3.3 Usability

The usability of the Novoic native app in AMYPRED has been reported

before.8 Within the Storyteller test battery in ADNI4, responses were

broadly positive for 58% of respondents, and neutral or positive for

88% (Figure 1). A breakdown of distributions by diagnostic and self-

reported diagnostic groups is provided in Figure S4 in supporting

information.

Comparingparticipant satisfactionwith the test (“Did youenjoySto-

ryteller?” on a 5-point scale) between groups, in the in-clinic sample

ratings for the Storyteller test experiencewere similar forMCI and CU

groups (mean of 3.45 and 3.20, respectively, P = 0.63); in the remote

digital sample ratings differed between those who reported a diagno-

sis of MCI, AD, or dementia and those who did not (mean of 3.37 and

3.88, respectively, P= 0.0003).

Participant-reported enjoyment of the test did not differ by sex

(mean 3.73 for men, 3.76 for women, P = 0.92), but participants from

URP groups reportedmoderately better satisfactionwith the test than

White non-Hispanic participants (URPmean 3.88,White non-Hispanic

mean 3.67, P = 0.03). Enjoyment of Storyteller did not correlate with

years in education (rho = 0.03, P = 0.43), but did correlate with

age, with a weak but significant correlation showing lower levels of

enjoyment with older age (rho= –0.18, P< 0.0001).

3.4 Transcription accuracy

In AMYPRED average WER across participant recordings for auto-

matic transcripts compared tomanual transcripts was 0.10. Equivalent

information for ADNI4 is not yet available.

3.5 Speech features

An overview of extracted speech features (means and standard devia-

tions) by clinical group and cohort is provided in Table S3 in supporting

information.
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F IGURE 1 Participant feedback after completing the Storyteller test battery.

3.6 Text similarity analysis: G-match

A comparison of G-match score distributions across cohorts is shown

in density plots in Figure 2, which plots the relative frequency of scores

according to score intervals and shows the separation between the

clinical groups.

G-match shows good predictive performance in all three cohorts

(Figure 3), with AUCs of 0.82 (95% confidence interval [CI] = 0.74–

0.89) in theAMYPREDcohort, 0.73 (95%CI=0.58–0.86) in theADNI4

in-clinic cohort, and 0.75 (95% CI = 0.67–0.82) in the ADNI4 remote

digital cohort.

A selectionof sensitivities, specificities,NPVs, PPVs, and their corre-

sponding G-match thresholds are given in Table 3, representing target

sensitivities of 0.7, 0.8, and 0.9. Thresholds for comparable sensitiv-

ity levels across the cohorts were similar for the two ADNI cohorts

and higher for the AMYPRED (also seen in distributional differences

in Figure 2; for example, a sensitivity of≈ 0.7was seen at a threshold of

66.9 forAMYPRED, and57.7 and57.8, respectively, forADNI4 in-clinic

and remotedigital cohorts). To illustrate out-of-sample generalizability,

G-match thresholds taken from AMYPRED and tested on the ADNI4

cohorts are given in Table S4 in supporting information.

3.7 Within-sample generation and
cross-validation of speech biomarker models in
AMYPRED

Results from the comparison of the speech biomarker models within

AMYPRED are presented in Figure 4A. The results show good perfor-

mance of the G-matchmetric (AUC= 0.84, 95%CI= 0.77–0.90), albeit

with a subtly different AUC to that shown in Section 3.4 due to the

different analysis methodology, and also good predictiveness of lexical

(AUC= 0.79, 95%CI= 0.71–0.88) and temporal features (AUC= 0.70,

95% CI = 0.56–0.78). More modest predictions are seen for spectral

features (AUC=0.61, 95%CI=0.59–0.63). Combining all features into

one predictive model did not improve predictiveness beyond separate

feature domains (AUC = 0.70, 95% CI = 0.66–0.73). The demographic

comparison performs at the chance level. The statistical significance of

differences between AUCs was not apparent (minimum P = 0.06, see

Table S5 in supporting information).

3.8 Out-of-sample generalization of speech
biomarker models in ADNI4

Overall, the speech biomarkers generated show good out-of-sample

generalization to previously unseen data in ADNI4. Figure 4B shows

predictions of clinical diagnostic labels of MCI in the ADNI4 in-clinic

data (Figure 4B). The G-match metric (AUC = 0.73, 95% CI = 0.58–

0.85), was moderately outperformed by lexical features (AUC = 0.79,

95% CI = 0.62–0.92). Temporal features (AUC = 0.68, 95% CI = 0.55–

0.82) and spectral features (AUC = 0.63, 95% CI = 0.46–0.78) showed

similarly lower strengths of prediction as shown within the AMYPRED

sample. The statistical significance of differences between AUCs was

not apparent, except comparison between models evaluating lexical

features and demographics (P= 0.05, see Table S5).

Similar results were also shown for self-reported diagnostic labels

in the larger remote digital cohort (Figure 4C), with out-of-sample

generalization to self-reported diagnosis (MCI, AD, or dementia) with

an AUC of 0.75 (95% CI = 0.68–0.82) for G-match, and consistent

performance of lexical (AUC = 0.71, 95% CI = 0.64–0.79), temporal

(AUC = 0.69, 95% CI = 0.61–0.76), and spectral features (AUC = 0.56,

95% CI = 0.48–0.64) to those shown in the prior models. With the

larger sample size for the remote digital ADNI4 cohort with self-

reported diagnostic labels, statistically significant differences were

seen between AUCs, with G-match outperforming all other models
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F IGURE 2 Density plot of G-match, an automatically derived text similarity metric comparing source text and the participant’s retelling, for
groups in each of the three cohorts. AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; AMYPRED, Amyloid Prediction
in Early Stage Alzheimer’s Disease fromAcoustic and Linguistic Patterns of Speech; G-match, generalizedmatching algorithm;MCI, mild cognitive
impairment

(min P < 0.05) except lexical features (P = 0.24), and lexical fea-

tures outperforming the spectral features model (P < 0.001). All

speech-feature models performed significantly better than the demo-

graphic comparison (min P < 0.01), except the spectral features model

(P = 0.28). A full overview of AUC comparison statistics is provided in

Table S5.

Results were similar for predicting participant reports of having

been in receipt of a prescription for medication for cognitive impair-

ment or memory problems by a health-care provider (Figure S5 in

supporting information). The strongest predictions were seen for G-

match and lexical features (both AUC = 0.76; 95% CI = 0.67–0.84, and

0.68–0.84, respectively), followed by temporal features (AUC = 0.68,

95% CI = 0.58–0.78), all features combined (AUC = 0.65, 95%

CI = 0.54–0.75), demographics and spectral features (AUC = 0.59,

95% CI = 0.48–0.70, and AUC = 0.55, 95% CI = 0.45–0.66,

respectively). Overall, models combining features across all feature

domains did not afford additional predictive power, with the AUC

sitting somewhere between the most and least predictive feature

sets.

4 DISCUSSION

4.1 Summary

Overall, the results show excellent generalizability of simple speech-

based testing prediction models of early AD across diverse samples,

recruitment and assessment strategies, and assessment devices.
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F IGURE 3 ROC curves and AUCs for the prediction ofMCI, AD, or dementia diagnoses using the G-matchmetric (an automatically derived
text similarity metric comparing source text and retelling) as a predictor in each of the three cohorts. AD, Alzheimer’s disease; ADNI, Alzheimer’s
Disease Neuroimaging Initiative; AMYPRED, Amyloid Prediction in Early Stage Alzheimer’s Disease fromAcoustic and Linguistic Patterns of
Speech; AUC, area under the curve; CI, confidence interval; G-match, generalizedmatching algorithm;MCI, mild cognitive impairment; ROC,
receiver operating characteristic

TABLE 3 Selected sensitivities (at 0.70, 0.80, 0.90), and associated specificities, PPVs, and NPVs for predicting diagnosis (clinical or
self-reported), as well as their corresponding G-match thresholds in each of the three cohorts.

Cohort

Target

sensitivity

Actual

sensitivity Specificity PPV NPV

G-match

score

threshold

AMYPRED 0.70 0.72 0.75 0.70 0.76 66.9

0.80 0.80 0.67 0.67 0.80 69.9

0.90 0.87 0.53 0.61 0.83 71.8

ADNI4 in-clinic

cohort

0.70 0.69 0.73 0.43 0.89 57.7

0.80 0.77 0.68 0.42 0.91 59.3

0.90 0.92 0.43 0.32 0.95 69.2

ADNI4 remote digital

cohort

0.70 0.71 0.69 0.27 0.94 57.8

0.80 0.79 0.62 0.25 0.95 60.1

0.90 0.90 0.48 0.21 0.97 64.7

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; AMYPRED, Amyloid Prediction in Early Stage Alzheimer’s Disease from Acoustic and

Linguistic Patterns of Speech; G-match, generalizedmatching algorithm; NPV, negative predictive values; PPV, positive predictive values.

Although all samples evaluated were tested remotely using the

same tasks, the samples differed across their demographic charac-

teristics (Table 2), country and methods of recruitment, inclusion and

exclusion criteria (Table S1), application type, and breadth of devices

used for testing (Section3.2). Thebest-performing speechmodelswere

for G-match, currently in use in ADNI4 prescreening recommenda-

tions (to categorizeparticipants as cognitively impairedornotbasedon

their story recall performance), and lexical features. Generally, the pat-

tern and strength of association of the different speech-based metrics

were consistent across out-of-sample validation analyses, supporting

the generalizability of the findings.

Although all models performed consistently in ROC analyses across

the different cohorts evaluated, what was seen for G-match in particu-

larwas a shift in the absolute scores associatedwith specific sensitivity

thresholds, and the overall shift in the distribution of scores between

AMYPRED and ADNI4. There may have been several contributing fac-

tors here, including practice effects as AMYPRED participants were

well versed in the task during data collection. The results indicate that

although the methods generalize well, thresholds in the original sam-

plemaynot bebroadly representative andmayneed tobe re-evaluated

and adjusted in new populations or use cases.

4.2 Usability of Storyteller test

Most participants (88%) reported a neutral or positive experiencewith

Storyteller, with 66% reporting some enjoyment of the test. However,

user feedback was collected at the end of the assessment, which lim-

its our understanding of the overall user experience for those who

droppedout earlier. Additional efforts arenowrequired toevaluate the
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F IGURE 4 Prediction ofMCI across cohorts evaluating a range of speech-based featuremodels, ROC curves on the left, with AUCs, 95%
confidence intervals, and Sensitivity (Sn) and Specificity (Sp) at Youden index, tabulated on the right: (A) within-sample prediction of clinical
diagnostic status within the AMYPRED sample (5-fold validation analysis); (B) out-of-sample prediction ofMCI clinical status in the ADNI4
in-clinic cohort; (C) out-of-sample prediction of self-reported diagnosis (MCI, AD, or dementia) in the ADNI4 remote digital cohort. G-match:
automatically derived text similarity metric comparing source text and retelling. ADNI, Alzheimer’s Disease Neuroimaging Initiative; AMYPRED,
Amyloid Prediction in Early Stage Alzheimer’s Disease fromAcoustic and Linguistic Patterns of Speech; AUC, area under the curve; CI, confidence
interval; G-match, generalizedmatching algorithm;MCI, mild cognitive impairment; ROC, receiver operating characteristic
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broader user experience, and reasons for dropout for participants who

do not complete the test.

Modestly lower overall satisfaction was reported by older partic-

ipants and those with a self-reported diagnosis. This may be related

to greater difficulty in completing the tasks or navigation of the web

application, due to cognitive impairment or lower familiarity with

technology. Importantly, therewas no evidence of greater or lesser sat-

isfaction in relation to sex or education level, and satisfaction with the

test was modestly higher in URPs than in non-URP populations, indi-

cating that the test is generally well received across a diverse range of

individuals.

4.3 Comparison of speech models

The most strongly predictive speech-based feature models were text-

matching (G-match) and lexical features, followedby temporal features

and finally spectral features. The results and ranking of model perfor-

mance were remarkably robust across all the analyses completed. This

is generally in keeping with the AD literature, in which some of the

most consistently reported speech features associated with AD may

be captured in transcription,12–16 including, for example, word produc-

tion and complexity, semantic content, lexical diversity, content density

of speech, and the over- and under-use of certain word classes (e.g.,

nouns, verbs, pronouns).

Overall, a lesser signal was seen for temporal features (pauses,

speech rate, and speech duration) in isolation, in keeping with some

prior research,42 although evidence suggests that pause informa-

tion may augment signal in large language models for detecting AD

signatures.43 Vocal acoustic changes in AD are not as commonly

reported in the early stages of the disease (e.g., MCI) compared to the

more progressed AD dementia stages.16 However, the more modest

sensitivity of spectral and temporal features must be considered in

the context of the methodological limitations for data control, caused

by the remote, uncontrolled setting of assessments and variations in

microphone across devices (discussed further in Section 4.6).

4.4 Generalizability and diversity

Generalizability is of key importance when considered in the context

of scalability. Speech-based screening and diagnostic testing will only

be truly useful if it works well in a broad range of demographic groups.

Because aspects of speech and language also reflect a range of demo-

graphic features of the speaker (their dialect, culture, social status, sex,

race, and age),31 identifying patterns in speech and language that are

consistently associated with disease signatures across different pop-

ulation groups is key to accurate, equitable, unbiased, and scalable

prescreening.

In the context of the availability of thousands of speech features,

which are curated andoptimized into feature sets, there is a risk of gen-

erating spurious results.30 This problem is exacerbated in the context

of data sparsity, in which due to small sample sizes, validation analy-

sis is frequently carried out using internal cross-validation techniques

(e.g., k-fold cross-validation), where there is no held-out dataset to ver-

ify the generalizability of the findings beyond the source sample in

which predictive models are generated.25,26,44,45 Problems with inter-

nal cross-validationare common in the speech research literature, even

in some of the authors’ own publications.21,22

There are, however, some notable exceptions to this with studies

now looking across different speaker sets or languages, or holding out

small subsamples for validation.27–29 Taken together with a body of

work systematically mapping out patterns in the data,12–16 these stud-

ies are starting to show that speech-based testing is both consistent

and generalizable.

Going forward, the field requires larger, and more diverse, samples

to evaluate generalizability and equity of speech-based screeningmod-

els. This may be particularly important for models of speech detecting

more subtle variations in language use, that have been reported as sen-

sitive to AD biomarker status.21,22,46 Larger cohorts and studies such

as ADNI4 are key to validating and developing the next generation of

speech biomarkers.

4.5 Generalizability across diverse samples,
testing methods, and devices

The consistency of the results from speech-based models across the

three different samples supports the broad generalizability of the

findings to unseen data and the sensitivity of the underlying speech

features evaluated.

One of the strengths of the current study is the diversity of

the methods used in the three different samples evaluated (tabu-

lated in Table S1). Model development was carried out exclusively

in AMYPRED, a racially homogenous but mixed US- and UK-English

dialect-speaking sample.21 The participants were established research

volunteers andwere familiar with, andwell supported in, the use of the

native application that delivered their remote testing.

By contrast, in ADNI4 there are different recruitment strategies

currently predominating in identifying in-clinic and remotely recruited

participants. The remote digital cohort for ADNI4 is a newly recruited

sample that aims specifically to improve engagement and enrollment

of URP participants,11 and has seen success in this approach (see

Miller et al., this issue; Rivera Mindt, Arenoff et al., this issue). To date,

the in-clinic cohort comprises roll-over participants from prior ADNI

phases. In both ADNI4 cohorts, at the initial time of completing Story-

teller, participants are unfamiliar with the task design and test set-up,

and the assessment is completed fully without support or supervision.

The new Storyteller application has also been developed to be admin-

istered online and is accessed via amuch broader range of devices than

before.

4.6 Limitations

Although the current results are promising, there are several key

limitations. The two ADNI4 cohorts have different strengths and
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drawbacks: diagnostic labels in the ADNI4 in-clinic sample are exter-

nally, clinically evaluated, but the sample is currently small; by contrast,

self-reported diagnostic labels in the remote digital cohort are less

robust, but the sample is much larger. As recruitment continues, future

analysis of the ADNI4 cohorts will allow for the evaluation of model

performance in a much larger clinically defined sample. Furthermore,

it will be possible to track the convergence between self-reported

diagnosis and clinical diagnosis in the sample referred for in-clinic

evaluations.

Although transcription error rates were modest in AMYPRED

(WER=0.10), further evaluationof transcriptionerror rates is required

in ADNI4. It is possible that some of the distributional differences

in text-based analytic outputs may be affected by transcription accu-

racy. This area, in addition to transcription equity across demographic

groups, requires much further research.

Participants completed assessments remotely and unsupervised,

and unprocessed speech data were collected on a range of devices

in both AMYPRED and ADNI4 studies. This will have influenced the

recorded audio quality, due to variable speaker distance from the

microphone, and different microphone hardware used. Analyses of

spectral features were therefore restricted to those less likely to be

influenced by the amplitude and intensity of the audio signal, which is

most strongly affected by speaker distance and types of microphones.

Additionally, there is limited control over the presence of addi-

tional, non–task-related audio that may have been recorded (sec-

ondary speakers, laughing, coughing, throat clearing). Improvements in

sensitivity may be expected under more controlled environments, par-

ticularly for spectral and temporal features whichmay have beenmore

strongly influenced by these uncontrolled factors.

4.7 Future directions

The larger data set of speech data in ADNI4 holds promise for further

evaluating equity of speech-based screeners and biomarkers, allow-

ing for investigation of the contributions of sex, race, ethnicity, and

education, evaluating and improving model performance in different

demographic segments.

Future challenges and opportunities lie in the context of multi-

lingual testing. The current data presented evaluates participants in

English language only, and ADNI4 will soon begin testing US-Spanish

native speakers, including Storyteller in US Spanish. The multilingual

transcription and analysis models used here provide a good basis for

comparable results across different languages, and there is fruitful

future research in evaluating cross-language speech screeners and

biomarkers to predict clinical diagnostic status.

As the size of clinical speech datasets increases, the use of more

advanced models that can learn complex relationships from data,

such as deep learning models, becomes possible. Outside of the

clinical domain, such approaches have long displaced manual fea-

ture engineering with vastly superior results, for example in natural

language processing and speech recognition applications. These

models will be able to leverage not just what is already known about

speech changes in disease, but may also uncover previously unknown

relationships.
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