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Abstract

Per- and poly-fluoroalkyl substances (PFASs) are used extensively in a broad range of industrial 

applications and consumer products. While a few legacy PFASs have been voluntarily phased 

out, over 5000 PFASs have been produced as replacements for their predecessors. The 

potential endocrine disrupting hazards of most emerging PFASs have not been comprehensively 

investigated. In silico molecular docking to the human androgen receptor (hAR) combined 

with machine learning techniques were previously applied to 5206 PFASs and predicted 

23 PFASs bind the hAR. Herein, the in silico results were validated in vitro for the five 

candidate AR ligands that were commercially available. Three manufactured PFASs namely 

(9-(nonafluorobutyl)– 2,3,6,7-tetrahydro-1 H,5 H,11 H-pyrano[2,3-f]pyrido[3,2,1-ij]quinolin-11-

one (NON), 2-(heptafluoropropyl)– 3-phenylquinoxaline (HEP), and 2,2,3,3,4,4,5,5,5-nonafluoro-
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N-(4-nitrophenyl)pentanamide (NNN) elicited significant antiandrogenic effects at relatively low 

concentrations. We further investigated the mechanism of AR inhibition and found that all 

three PFASs inhibited AR transactivation induced by testosterone through a competitive binding 

mechanism. We then examined the antiandrogenic effects of these PFASs on AR expression and 

its responsive genes. Consistently, these PFASs significantly decreased the expression of PSA 
and FKBP5 and increased the expression of AR, similar to the effects elicited by a known 

competitive AR inhibitor, hydroxyflutamide. This suggests they are competitive antagonists of 

AR activity and western blot analysis revealed these PFASs decreased intracellular AR protein in 

androgen sensitive human prostate cancer cells. Hence, the findings presented here corroborate our 

published in silico approach and indicate these emerging PFASs may adversely affect the human 

endocrine system.

Graphical Abstract
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1. Introduction

Per- and poly-fluoroalkyl substances (PFASs) are a structurally diverse group of thousands 

of synthetic chemicals composed of fluorinated carbon chains. PFASs exhibit useful 

properties including high thermal and corrosion resistance, low friction performance, and 

stain repellency. As a result, PFASs are used globally in numerous industrial applications 

(flame retardants, surfactants, and textile coatings) and consumer products (furniture, food 

packaging, and non-stick cookware) (Buck et al., 2011; Herzke et al., 2012; D’eon and 

Mabury, 2011). In addition to being pervasive, the very stable chemical bond between the 

carbon and fluorine atoms makes them extremely persistent in the environment (Toskos et 

al., 2019) and bioaccumulative in humans and wildlife (Wang et al., 2017). For example, 

the most commonly studied long chain legacy PFASs, perfluorooctanesulfonic acid (PFOS) 

and perfluorooctanoic acid (PFOA), have been detected in many environmental metrices 

such as soil, surface water, and groundwater (Murakami et al., 2009). Apart from the 

environmental residues, PFASs have been found in drinking water and indoor dust (Harrad 

et al., 2019) at relatively high levels, which highlight the potential direct human exposure to 

these chemicals (Xu et al., 2020). The U.S. Environmental Protection Agency (U.S. EPA) 

reported the maximum levels of PFOS and PFOA in drinking water were at 7000 and 
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349 ng/L, respectively (Thomaidi et al., 2020). In addition, PFOS and PFOA have been 

found in indoor dust samples up to 140 and 83 ng/g, respectively (Harrad et al., 2019). 

Strikingly, PFOA and PFOS have also been found to be ubiquitous in human samples 

such as cord blood (Apelberg et al., 2007), plasma (Fromme et al., 2010), liver tissues 

(Olsen et al., 2003), and breast milk (Abdallah et al., 2020), indicating that the issue goes 

beyond an environmental concern. In an epidemiological study of mother-infant cohort, 

plasma levels of PFASs were detected at higher levels in 6- and 19-months old infants 

compared to mothers due to being breastfed, hand-to-mouth behavior and crawling on the 

ground (Fromme et al., 2010), suggesting infants are significantly exposed to PFAS toxicity. 

Given the dynamics of developmental processes during pregnancy, infancy, and childhood, 

exposure to PFASs during these periods is speculated to have the most pronounced negative 

health effects.

Adverse health effects resulting from PFAS exposure are a major public health concern. 

Studies have shown that exposure to PFASs has been linked to prostate cancer (Imir et al., 

2021; Lundin et al., 2009), breast cancer (Tsai et al., 2020), liver disease (Bassler et al., 

2019), and immunotoxicity (Pennings et al., 2016). Furthermore, several epidemiological 

studies have shown that exposure to legacy PFASs, namely PFOS and PFOA, is associated 

with endocrine disruption (Wang et al., 2019) including effects such as lower sperm quality 

(Joensen et al., 2009). Importantly, the androgen receptor (AR) has been implicated in 

several of these diseases and adversities (Gild et al., 2018; Basaria, 2014; O’Hara and Smith, 

2015). For example, altered activation of AR is well known to contribute to lower sperm 

quality, spermatogenesis, infertility and prostate development (O’Hara and Smith, 2015). In 

addition, several epidemiological studies have shown that occupational PFAS exposure or 

living in PFAS contaminated areas (Hardell et al., 2014; Barry et al., 2013; Eriksen et al., 

2009) is associated with increased risk of prostate cancer, suggesting the potential role of 

PFASs in prostate carcinogenesis.

Despite plans to restrict and eliminate long chain legacy PFASs including PFOA and PFOS 

(Wang et al., 2013, 2015; Lindstrom et al., 2011), thousands of PFASs exist but exposure 

and hazard for these remain largely unknown. Therefore, early identification of those that 

may interfere with bioactive molecules known to cause adverse outcomes associated with 

PFASs, such as the AR, is urgently needed. We speculate that there are uncharacterized 

PFASs that have the potential to disrupt human endocrine function. Indeed, in a previous in 
silico study, 5206 PFASs were screened from the EPA’s CompTox Chemicals Dashboard (a 

web-based database of curated compounds linked to chemical structures) against different 

binding sites on human AR (hAR) (Singam et al., 2020). The combination of docking-based 

screening and machine learning models identified 23 PFASs with strong predicted binding 

affinity against hAR (Singam et al., 2020).

In the present study, we sought to validate the AR biological activity of 

five commercially available PFASs namely (9-(nonafluorobutyl)– 2,3,6,7-tetrahydro-1 

H,5 H,11 H-pyrano[2,3-f]pyrido[3,2,1-ij]quinolin-11-one (NON), 2-(heptafluoropropyl)– 

3-phenylquinoxaline (HEP), 3-fluoro-4-{(E)-[4’-(heptafluoropropyl) [1,1’-biphenyl]– 4-

yl]diazenyl} phenol (FLU), octafluoronaphthalene (OCT) and 2,2,3,3,4,4,5,5,5-nonafluoro-

N-(4-nitrophenyl)pentanamide (NNN). These manufactured PFASs are categorized into 
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the fluorinated aromatic substance subclass of PFASs (The Organisation for Economic 

Co-operation and Development OECD, 2018; Kwiatkowski et al., 2020). Specifically, NON, 

HEP, FLU, and NNN are classified in the PFAS subclass of ‘non-fluorinated aromatic 

rings with a fluorinated aliphatic side chain’, while OCT is classified as a PFAS in the 

subclass ‘fluorinated aromatic substance without a side chain’. We assessed androgenic 

and antiandrogenic activities of these chemicals in vitro using hAR mediated luciferase 

reporter gene assay. Of the five candidate AR ligands, three PFASs: NON, HEP, and 

NNN significantly disrupted the AR transactivation induced by testosterone. Furthermore, 

we investigated the mechanism of AR inhibition and the antiandrogenic effects of these 

PFASs on the expression of androgen responsive genes and intracellular AR protein levels 

in androgen sensitive human prostate cancer cells. Collectively, our findings increase 

awareness of potential endocrine disrupting outcomes caused by these emerging PFASs.

2. Materials and methods

2.1. Chemicals and reagents

All PFASs were dissolved into dimethyl sulfoxide (DMSO, ≥99.7% purity) from 

Fisher Scientific (Waltham, MA) (Table S1). Mifepristone (RU486, ≥98% purity), 

hydroxyflutamide (OHF, ≥98% purity), and testosterone (≥98% purity) were purchased from 

Sigma-Aldrich (St. Louis, MO). Enzalutamide (>98% purity) was obtained from Cayman 

Chemical (Ann Arbor, MI). 3-(4,5-dimethylthiazol-2-yl)– 2,5-diphenyltetrazolium bromide 

(MTT, ≥98% purity) was purchased from Amresco (Fountain Parkway Solon, OH).

2.2. Cell culture

The triple negative human breast cancer cell line (MDA-kb2) which highly expresses 

both endogenous AR and glucocorticoid receptor (GR), stably transfected with the murine 

mammalian tumor virus (MMTV) luciferase reporter gene construct, was obtained from 

the American Type Culture Collection (ATCC, Manassas, VA). Cells were maintained in 

Leibovitz’s medium (L-15, Gibco, Grand Island, NY) supplemented with 10% fetal bovine 

serum (FBS, Gemini, Bedford, MA) at 37 °C in a humidified incubator without CO2. 

The human prostate cancer cell line (VCaP) which expresses high levels of wild-type AR, 

was purchased from ATCC. Cells were cultured in phenol red-free Dulbecco’s Modified 

Eagle Medium (DMEM, Gibco, Grand Island, NY) supplemented with 10% FBS (Corning, 

Bedford, MA) and 1% L-glutamine (Gibco, Grand Island, NY) at 37 °C in a humidified 

incubator with 5% CO2. All PFASs had no good leaving groups such as carboxylic group 

(Went, 1988) and were dissolved in DMSO due to the high stability, good solubility and 

low cytotoxicity compared to those anticipated stabilities, solubilities and cytotoxicities in 

ethanol, dimethylformamide, or acetone at a concentration of 0.1% v/v (Jamalzadeh et al., 

2016).

2.3. Cell viability assay

The cytotoxic effect of PFASs was measured by a colorimetric MTT assay as described 

previously (Tachachartvanich et al., 2020). Briefly, MDA-kb2 cells were plated at a density 

of 3.0 × 104 cells/well in clear 96-well plates (Thermo Scientific, Waltham, MA). After 

24 h incubation, cells were treated with PFASs at concentrations ranging from 0.1 to 100 
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μM in triplicate per treatment. The optical density was assessed at 570 nm with reference 

wavelength of 650 nm using microplate spectrophotometer (Tecan Infinite® 200PRO, 

Austria). All cytotoxicity experiments were performed side-by-side with the corresponding 

cell culture assays and repeated at least three times in a separate independent setup.

2.4. AR-mediated luciferase reporter gene assay

The MDA-kb2 cells were maintained prior to the luciferase reporter gene assay as described 

in the previous study (Tachachartvanich et al., 2020). Briefly, cells were maintained in 

L-15 hormone deprived media supplemented with 10% charcoal-dextran (CD) stripped 

FBS (Hyclone, USA) for 7 days prior to the AR-mediated luciferase reporter gene assay. 

Cells were plated at a density of 3.0 × 104 cells/well in white 96-well plates (Thermo 

Scientific, Waltham, MA) and incubated for 24 h. Cell culture media containing a potent 

GR inhibitor (RU486) at 100 nM were used in all luciferase reporter gene assays to 

completely inhibit transactivation induced by glucocorticoids given AR and GR have the 

same homologous DNA-binding domains and can activate the MMTV promoter (Kolšek 

et al., 2015). In all assays, cells were treated with PFASs at concentrations ranging from 

0.1 to 100 μM. For the assay used to assess potential androgenic effects, cells were treated 

with each test chemical for 24 h without the addition of testosterone. For the assay used to 

assess potential anti-androgenic effects, cells were co-cultured with each PFAS and 625 pM 

(~EC50) testosterone.

To further examine the mechanism of AR inhibition, cells were co-cultured with the highest 

non-cytotoxic concentration of each PFAS and different concentrations of testosterone 

ranging from 9.76 pM to 10 nM. After 24 h incubation, luciferase activity was assessed 

by a microplate luminometer (Tecan Infinite® 200PRO, Austria). All experiments were 

performed in triplicate wells and repeated at least three times in a separate independent 

setup. The minimum detection limit for luciferase was 19.5 pM testosterone.

2.5. RNA isolation and gene expression assay

VCaP cells were cultured in phenol red-free DMEM supplemented with 10% charcoal-

dextran stripped FBS (10% CD FBS, Hyclone, USA) and 1% L-glutamine (Gibco, Grand 

Island, NY) for 3 days prior to PFAS treatment. Cells were plated at a density of 2.0 

× 106 cells/well in 6-well plates (CellStar, Monroe, NC) and incubated 24 h. Cells were 

then co-cultured with the highest noncytotoxic concentrations of PFASs and 625 pM 

testosterone for 24 h. After the incubation, total RNA was extracted using the RNeasy 

Mini Kit (Qiagen, Germantown, MD). Briefly, 2 μg of total RNA were reverse transcribed to 

cDNA using the SuperScript IV VILO (Thermo Scientific, Waltham, MA) and subjected to 

real-time PCR (Stratagene MxP3005, Agilent Technologies, Palo Alto, CA). The cDNA was 

amplified in 10 μL of SYBR Green real-time PCR Master Mixes (Thermofisher Scientific, 

Waltham, MA) according to the manufacturer’s protocol. Relative mRNA expression levels 

of androgen sensitive genes were evaluated using the following primers: PSA forward 

(5’-TCTGCGGCGGTGTTCTG-3’) and reverse (5’-GCCGACCCAGCAAGATCA-3’); 

FKBP5 forward (5’-CGGAAAGGAGAGGGATATTCA-3’) and reverse 

(5’-CCACATCTCTGCAGTCAAACA-3’); and AR forward (5’-

CAGTGGATGGGCTGAAAAAT-3’) and reverse (5’-GGAGCTTGGTGAGCTGGTAG-3’), 
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and were normalized to the housekeeping gene glyceraldehyde-3-phosphate 

dehydrogenase (using GAPDH forward (5’-GGATTTGGTCGTATTGGG-3’) and reverse 

(5’-GGAAGATGGTGATGGGATT-3’ primers)). All primers were obtained from Integrated 

DNA Technologies (Coralville, IA). The fold change of the target genes was compared to 

the vehicle control using the 2−ΔΔCt method (Livak and Schmittgen, 2001).

2.6. Protein extraction and immunoblotting analysis

The levels of intracellular AR protein were investigated in two different conditions: 

hormone-deprived (10% CD FBS) and normal (10% FBS) conditions. In the hormone 

deprived conditions, VCaP cells were cultured and treated as described above in the gene 

expression assay. To assess the effects of PFASs on the AR protein levels under normal 

conditions (10% FBS), cells were cultured in phenol red-free DMEM supplemented with 

10% FBS (Corning, Bedford, MA) and 1% L-glutamine (Gibco, Grand Island, NY). Cells 

were plated at a density of 2.0 × 106 cells/well in 6-well plates (CellStar, Monroe, NC) 

and incubated 24 h. Then, cells were treated with indicated concentrations of PFASs and 

enzalutamide (positive control) for 48 hr. After incubation, cells were gently washed with 

ice cold phosphate buffer saline and lysed in RIPA lysis buffer (Thermofisher Scientific, 

Waltham, MA) containing 1 × protease inhibitor (Thermofisher Scientific, Waltham, MA). 

Cell lysates were vortexed rigorously and incubated on ice for 30 min followed by 

centrifugation at 14,000g for 15 min at 4 °C. The protein concentration was determined by 

the BCA protein assay (Thermofisher Scientific, Waltham, MA). The protein lysates (30 μg) 

were incubated for 10 min at 95 °C with loading dye containing 2% of β-mercaptoethanol. 

Proteins were separated on the basis of size in sodium dodecyl sulfate (SDS) polyacrylamide 

gel electrophoresis followed by electro-transfer onto nitrocellulose membranes (0.2 μM, 

BIO-RAD, USA). The membrane was probed with the AR monoclonal antibody (MA5–

13426 Thermo Scientific, MA, USA) and the secondary antibody goat anti-mouse IgG-

horseradish peroxidase (HRP, Thermo Scientific, MA). Alpha tubulin monoclonal antibody 

conjugated with HRP (1E4C11, Thermo Scientific, MA) was used as a loading control. 

SuperSignal West Femto Maximum Sensitivity Substrate reagents (Thermo Scientific, MA) 

were added 2 min prior to the chemiluminescent blot visualization with the ChemiDoc 

Imaging System (BIO-RAD, USA). The intensity of protein bands was quantified with 

ImageJ software (US National Institutes of Health).

2.7. Statistical analysis

Data are expressed as means ± SEM of at least three experiments performed independently. 

Statistical comparisons between treatments and control were performed by one-way analysis 

of variance (ANOVA) followed by Dunnett’s multiple-comparison analysis and linear 

regression analysis to assess linear trends at a statistical threshold of p < 0.05 (GraphPad 

Prism version 8.4.0, GraphPad Software Inc., San Diego, CA, USA).

3. Results and discussion

3.1. Androgenic and antiandrogenic effects of PFASs

In the present study, we aimed to validate our previous in silico analysis which identified 

23 emerging PFASs as potential AR ligands (Singam et al., 2020) by assessing androgenic 
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and antiandrogenic activities with hAR mediated luciferase reporter gene assays. Of the 

23 candidate PFASs identified, due to the lack of commercial availability, we were able to 

locate and obtain five commercially available PFASs: NON, HEP, FLO, OCT, and NNN 

(Table S1). To assure any detected ligand activity was not confounded by cytotoxicity, 

concentrations of PFASs that produced a statistically significant reduction in cell viability 

were excluded from the analysis (Fig. 1A-1B). None of the five PFASs caused a significant 

androgenic effect when tested alone (Fig. 1C). However, three PFASs inhibited the AR 

transactivation in a concentration-dependent manner (Fig. 1D). Even though NNN had the 

highest docking score (the lowest predicted binding affinity against AR among the test 

PFASs), it was a slightly more potent inhibitor of AR, followed by HEP and NON, with 20% 

relative inhibitory concentrations (RIC20) of 2.8, 3.1, and 10.5 μM, respectively (Table 1). 

These results indicate a prominent antiandrogenic effect posed by these PFASs at relatively 

low concentrations (Fig. 1D). For FLO, its relatively high cytotoxicity (Behr et al., 2018) 

may have masked any observable effect on luciferase transactivation. In addition, OCT is 

distinct from the other four PFASs in that it is a quite small planar aromatic hydrophobic 

molecule, and may have low AR specificity.

Even though toxicological data and endocrine disrupting potential of PFOA and PFOS are 

well established, data for emerging PFAS replacements is scarce. In an epidemiological 

study conducted in Denmark, men with high circulating levels of legacy PFASs such as 

PFOS and PFOA had a significantly lower number of normal spermatozoa (6.2 million) 

compared to men with lower PFOS and PFOA levels (15.5 million). This striking difference 

in the number of normal spermatozoa can be explained by the antiandrogenic effects 

posed by PFOS and PFOA (Joensen et al., 2009; Sifakis et al., 2017). It is important to 

note that there are inconsistent reports on the potential AR antagonism of PFOA. While 

some in vitro studies reported no antagonistic effect of PFOA on AR (Rosenmai et al., 

2016), others found a significant antiandrogenic effect (Kjeldsen and Bonefeld-Jørgensen, 

2013). For example, in an in vitro study, legacy PFASs such as PFOA, perfluorononanoate 

(PFNA), perfluorodecanoate (PFDA) and perfluorohexane sulfonate (PFHxS) exerted an 

antiandrogenic effect with RIC20 values around 10, 44, 24, and 19 μM, respectively 

(Kjeldsen and Bonefeld-Jørgensen, 2013). Alarmingly, when comparing the potency of 

antiandrogenic activities among PFASs, the RIC20 values of legacy PFASs are higher 

than those of the emerging PFASs tested herein. This provides further evidence that 

some emerging PFASs are not as safe as previously thought and may have even greater 

potential to cause serious endocrine disrupting hazards than their legacy predecessors. In 

addition, it is important to note that apart from the direct inhibition at the hormone receptor, 

endocrine disruptors can elicit adverse health effects through different mechanisms such as 

disrupted steroidogenesis (Rosenmai et al., 2016; La Merrill et al., 2020; Tachachartvanich 

et al., 2018). Further studies on the potential adverse effect of the emerging PFASs on 

steroidogenesis are warranted for more comprehensive hazard characterization.

3.2. PFASs inhibit AR through an apparent competitive binding mechanism

The two main mechanisms of hormone receptor inhibition elicited by endocrine disruptors 

are competitive and noncompetitive inhibition. In competitive inhibition, the receptor is 

inhibited when antagonists competitively bind to the ligand binding pocket (the same 
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binding location as agonists) and inhibit the intrinsic activity of the receptor. In bioassays, 

competitive inhibitors typically generate a parallel shift of agonist dose response curves with 

no prominent effects on the maximal response (Vauquelin et al., 2002; Teng et al., 2013). 

In contrast, noncompetitive inhibition occurs when the antagonists bind the receptor at an 

allosteric site. In bioassays, noncompetitive inhibitors only suppress the maximal response 

but typically do not produce a shift of agonist dose-response curves (Tachachartvanich et 

al., 2020; Neubig et al., 2003). We speculated the emerging PFASs tested would inhibit 

AR through competitive inhibition as they were predicted computationally to bind the 

ligand binding domain of AR. To address this hypothesis, we investigated the mechanism 

of AR inhibition in a functional luciferase reporter gene assay. The dose response curve 

of testosterone co-cultured with OHF, a known competitive AR antagonist, is depicted 

in Fig. 2A. OHF showed the most parallel shift of dose response curve of testosterone 

with a half maximal effective concentration (EC50) of 550 pM. As expected, NON, HEP, 

and NNN caused a rightward parallel shift of the dose response curves with EC50 values 

of 722, 810, and 849 pM, respectively (Fig. 2B, C, and F). These trends are similar 

to testosterone co-cultured with OHF, indicating that these emerging PFASs inhibit AR 

binding to testosterone through competitive inhibition, corroborating the in silico analysis. 

Conversely, FLO and OCT, did not change the dose response curves even at the highest 

noncytotoxic concentrations (Fig. 2D and E), consistent with the results observed in the 

luciferase reporter gene assay that these chemicals did not exert antiandrogenic effects 

at noncytotoxic concentrations. Comparing the mechanism of AR inhibition with other 

environmental endocrine disruptors, similar to the binding mechanism of the test PFASs, 

bisphenol A (BPA) and bisphenol AF (BPAF) were found to inhibit AR transactivation 

through a competitive binding mechanism (Teng et al., 2013); however the anti-androgenic 

potency of BPA and BPAF is higher than the PFASs studied here.

3.3. PFASs form notable chemical interactions at the AR

Molecular docking is an efficient computational method used to examine intermolecular 

interactions at atomic levels between small molecules and nuclear hormone receptors (Zhang 

et al., 2015). The 2D and 3D structures of the five PFASs interacted with amino acids of 

hAR at the ligand binding domain are shown in Fig. 3. Moreover, NON, HEP, FLO, OCT, 

and NNN were predicted to bind at the ligand binding pocket with docking scores of −11.4, 

−10.74, −9.68, −9.22, and −8.3 kcal/mol, respectively (Table S1). This binding energy was 

facilitated by close proximity interactions of PFASs with numerous amino acid residues at 

the ligand binding domain of hAR, e.g. ALA748, ARG752, ASN705, GLN711, GLU681, 

GLY683, GLY708, LEU701, LEU704, LEU707, LEU873, LEU880, MET741, MET742, 

MET749, MET787, PHE764, PHE876, PRO682, TRP745, THR877, VAL685, and VAL746. 

Three of these amino acid residues in the ligand binding pocket of hAR namely, ARG752, 

ASN705 and THR877 play a pivotal role in stabilizing strong interactions between the 

receptor and endogenous androgens such as testosterone (Azhagiya Singam et al., 2019).

We next evaluated the nature of the interactions between the PFASs and amino acid 

residues. Three remarkable chemical bonds including hydrophobic, Pi-Pi stacking, and 

hydrogen bonding interactions were found to stabilize the binding between the PFASs and 

AR residues. For example, all five PFASs demonstrated a hydrophobic interaction with 
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hydrophobic amino acids in close proximity. In addition, Pi-Pi stacking was observed in 

the complex between the ligand binding domain (PHE764) and one of the phenyl rings 

of OCT. Comparing OCT with other antiandrogens that have a similar binding mode to 

AR, p,p’-dichlorodiphenylethane (p,p′-DDE) has been identified as a weak anti-androgen 

(Freyberger and Ahr, 2004) and its binding mode with AR was predicted in silico in which 

pi-pi stacking was formed with the same residue (PHE764) as OCT (Azhagiya Singam et 

al., 2019). Among the intermolecular forces, the hydrogen bonding is considered a strong 

interaction, which was found in the hydroxyl group of FLO and the nitro group of NNN with 

PRO682 and THR877, respectively. It has been reported that environmental antiandrogens 

form hydrogen bond with AR at the key amino acid residues (ARG752, ASN705 and 

THR877) significantly inhibit AR interactions with testosterone. For example, BPA forms a 

hydrogen bond with the key amino acid residue and is a potent antiandrogen compared to 

other environmental antiandrogens that do not interact with these key amino acids (Conroy-

Ben et al., 2018; Ermler et al., 2011). Interestingly, only NNN acts as a hydrogen bond 

acceptor with one of the key amino acids (THR877) at the ligand binding pocket, indicating 

this chemical can replace testosterone at the pocket site. This finding is in accordance with 

the results revealed in the luciferase and gene expression assays where NNN exerted the 

most potent anti-androgenic effects compared to other PFASs. Previous in vitro studies 

have reported that BPA suppressed AR transactivation by 50% at concentrations ranging 

from 3.8 to 10 μM (Conroy-Ben et al., 2018; Rosenmai et al., 2014); however, at 10 μM 

NNN inhibited AR transactivation around 25%, which suggests that BPA is more potent 

antiandrogenic than these PFASs.

3.4. PFASs notably alter the expression of androgen responsive genes

Upon binding of androgens, the AR functions as a ligand-dependent transcription factor 

that regulates the expression of androgen responsive genes (Ellison and Waller, 1978). 

We further investigated the endocrine disrupting effects of the emerging PFASs at the 

transcript level in highly sensitive AR responsive prostate cancer cells (VCaP). These cells 

highly express AR wild type and a wide array of known androgen-regulated genes such 

as PSA, FKBP5, and AR, which are biomarkers to evaluate functional and biological 

effects of antiandrogenic chemicals (Shaw et al., 2016; Yu et al., 2019). PSA and FKBP5 

are transcriptionally upregulated by AR agonists whereas AR mRNA levels are inhibited 

by AR agonists via transcriptional and post-transcriptional mechanisms (Burnstein, 2005). 

Due to the high sensitivity of prostate cancer cells to antiandrogens, we selected lower 

concentrations of PFASs (1 and 5 μM) for further experiments in VCaP cell model. 

Consistent with the functional luciferase reporter gene assays, NON, HEP, and NNN 

significantly and concentration dependently decreased testosterone induced expression of 

PSA and FKBP5, which are known to play an important role in the dissolution of the 

seminal fluid coagulum (Balk et al., 2003) and modulate AR functions with heat shock 

proteins (Y. Li et al., 2011; L. Li et al., 2011), respectively (Fig. 4A and B). Among 

PFASs, only NNN significantly antagonized testosterone-induced downregulation of AR 
by inversely upregulating the expression of AR, similar to the effect exhibited by a 

known AR inhibitor, OHF (Fig. 4C). We compared the potency of antiandrogenic effect 

of PFASs with other environmental antiandrogens. Kharlyngdoh et al. (2015), reported 

that three brominated flame retardants (BFRs) allyl 2,4,6-tribromophenyl ether (ATE), 2-
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bromoallyl 2,4,6-tribromophenyl ether (BATE), and 2,3-dibromopropyl2,4,6-tribromophenyl 

ether (DPTE) significantly increased AR expression at 1 μM; however, NNN did not 

significantly affect AR expression at the same concentration. This suggests NNN is a 

weaker antiandrogen compared to BFRs. Likewise, all three BFRs significantly decreased 

testosterone induced PSA expression at 1 μM. However, the lowest observed effect 

concentration of PFASs on PSA expression is 5 μM, indicating that the antiandrogenic 

effect of the PFASs is lower than BFRs. Comparing magnitude of change in the androgenic 

gene expression after PFAS exposure, FKBP5 and PSA genes are more sensitive to PFASs 

compared to AR. We highlight that FKBP5 and PSA can serve as suitable markers for the 

assessment of antiandrogenic effects of PFASs in AR sensitive human prostate cancer cells.

3.5. The observed disruption of testosterone-induced androgen responsive gene 
expression by emerging PFASs is consistent with a direct inhibition of AR activity

Despite the antiandrogenic effects of NON, HEP, and NNN observed in both the 

luciferase and gene expression assays, concern has been identified regarding potential 

ligand-independent mechanisms as some environmental endocrine disruptors can reduce 

AR luciferase transactivation independent of ligand binding to AR. For example, 

pyrifluquinazon, a newly developed insecticide, exhibited antiandrogenic effects by 

promoting the degradation of cellular AR protein but did not directly inhibit the AR binding 

(Yasunaga et al., 2013). Based on our in silico prediction of binding affinity and luciferase 

AR competitive inhibition assay, we hypothesized that the test PFASs inhibited the AR 

via the ligand-dependent competitive inhibition mechanism. To demonstrate this, we further 

examined if the change in androgen responsive genes in the previous experiment was a 

consequence of the decline of AR protein. With identical cell culture conditions (hormone 

deprived condition: media containing 10% CD FBS) conducted in the gene expression assay, 

immunoblotting results revealed that none of the PFASs significantly changed the level of 

AR protein. This suggests the PFASs do not affect AR at the protein level and instead that 

the change in gene expression observed was mediated through the direct inhibition of PFASs 

on hAR (Fig. 5A and B).

3.6. PFASs significantly decrease intracellular AR protein levels under normal culture 
conditions (in media containing 10% intact, non-CD stripped FBS)

Research studies have shown that exposure to environmental or pharmaceutical 

antiandrogenic chemicals could reduce intracellular AR protein levels (Auvin et al., 2019; 

Cha et al., 2005; L. Li et al., 2011; Y. Li et al., 2011; Huang et al., 2019). For example, 

in VCaP cells, exposure to an antiandrogenic analogue of curcumin significantly decreased 

cellular AR protein in both time and concentration dependent manners (L. Li et al., 2011; Y. 

Li et al., 2011). Here, we examined if the five PFASs affected the cellular AR level in cells 

cultured in media containing 10% FBS. As expected, the positive control, enzalutamide, 

a well characterized pharmaceutical antiandrogen, significantly lowered cellular AR levels, 

consistent with previous reports (Pollock et al., 2016). Only NON and HEP significantly 

decreased the AR protein in the prostate cancer cells after 48 h exposure, consistent 

with NON and HEP as notable antiandrogenic PFASs, and prolonged exposure to these 

PFASs can significantly affect AR protein levels (Fig. 5C and D). However, NNN did 

not significantly affect cellular AR protein levels, indicating that the antiandrogenic effects 
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exerted by NNN is mediated through a mechanism independent of effects on AR protein 

levels. While several studies have measured the levels of some of the short chain alternative 

PFASs such as F-53B, GenX, and FC-98 in the environment and humans (Li et al., 2020; 

Brandsma et al., 2019; Gebbink and van Leeuwen, 2020), numerous other emerging PFASs, 

including NON, HEP, and NNN, have no environmental fate information available. Such 

a knowledge gap has hindered the risk assessment for these compounds. Apart from the 

parent compounds, it is important to also assess the risk of the metabolites since the 

toxicity of the parent compounds may be different from their metabolites. Indeed, PFASs 

are comprised of a wide range of precursors that can be metabolized to possible toxic 

byproducts such as perfluroroalkyl acids (PFAA), which are structurally similar to their 

legacy predecessors. For example, metabolic hydrolysis of the amide bond of NNN can 

release PFAA: perfluoropentanoic acid and an aromatic amine, which have been associated 

with dermal toxicity (Han et al., 2020), liver damage, and genotoxicity (Bradshaw et al., 

2018). This emphasizes the need to fully understand the toxicity of the parent compounds 

and their metabolites. In addition, exploring the use of these PFASs in other aspects such 

as starting reagents/intermediates for the synthesis of other PFASs derived compounds could 

provide suggestive information regarding the use of these emerging PFASs.

4. Conclusion

To the best of our knowledge, this is the first report assessing the biological activity 

of emerging PFASs against hAR, with evidence indicating that these emerging PFASs 

competitively inhibit the hAR from binding to testosterone in a concentration dependent 

fashion. Although, there are no studies to date that measure levels of these PFASs in 

the environmental matrices or humans, our findings imply that these emerging PFASs 

may affect the hazard of some androgen-related diseases given they competitively inhibit 

the hAR and alter the expression of androgenic genes at relatively low concentrations in 
vitro. More importantly, the potency of antiandrogenic effects of these emerging PFASs is 

relatively higher than their legacy predecessors reported in previous in vitro studies. Future 

research should investigate the residue levels of these newly identified antiandrogenic PFASs 

in humans and their associated health outcomes related to AR signaling pathway disruption 

such as infertility, cancer, and reproductive development.
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Novelty statement

a. The significance and novelty of the work, with respect to existing literature

This research is highly significant because an excess of 5000 PFAS 

chemicals have not undergone hazard assessment, yet PFASs are ubiquitous 

contaminants of drinking water throughout the world. The urgent need 

to identify hazardous PFASs is daunting, with the existing literature only 

evaluating the hazard potential of some tens of PFAS. We evaluated over 5200 

PFASs to identify PFASs that can bind the human androgen receptor using 

novel molecular docking and machine learning techniques.

b. Why the studied material should be considered "hazardous material".

PFASs were predicted to bind human androgen receptor, which is critical in reproduction 

and cancers. Three PFASs competitively inhibited human androgen receptor and 

decreased its function.
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HIGHLIGHTS

• PFASs exhibit antiandrogenic effects in vitro at relatively low concentrations.

• PFASs inhibit human androgen receptor through a competitive binding 

mechanism.

• PFASs disrupt the expression of androgen responsive genes in human prostate 

cancer cells.

• Prolonged exposure to PFASs decreases androgen receptor protein levels in 

human prostate cancer cells.
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Fig. 1. 
Androgenic and antiandrogenic effects of PFASs in the AR mediated luciferase reporter 

gene assay. MDA-kb2 cells were treated with various concentrations of PFASs ranging from 

0.01 to 100 μM for 24 h. Cytotoxic effect of the PFASs in both the (A) androgenic and 

(B) antiandrogenic experiments was assessed by a colorimetric MTT assay. Concentrations 

of PFASs that caused a statistically significant reduction in cell viability were excluded 

from the analysis in the luciferase reporter gene assays that assessed the (C) androgenic 

and (D) antiandrogenic activities of PFASs. Values are expressed as the mean percentage 

of control ± S.E.M. from four independent experiments. Statistical analysis was performed 

using one-way ANOVA followed by a multiple comparison analysis with Dunnett’s test. 

Significance levels are represented with asterisk as following: *p < 0.05, **p < 0.01, ***p < 

0.001 and ****p < 0.0001.
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Fig. 2. 
Competitive binding mechanism of PFASs against AR. MDA-kb2 cells were treated for 

24 h with different concentrations of testosterone ranging from 9.7 pM to 10 nM (EC50 

= ~550 pM) in the absence (black line) or presence (color line) of PFASs. Dose-response 

curves of testosterone in the presence of (A) 0.05 μM OHF (positive control), a well 

characterized competitive AR antagonist, (B) 15 μM NON, (C) 15 μM HEP, (D) 1 μM 

FLO, (E) 15 μM OCT, and (F) 15 μM NNN. The fold induction was compared to vehicle 

control (0.1% v/v DMSO). Values are expressed as the mean fold induction ± S.E.M. of 

three separate independent experiments. Statistical analysis was performed using Student’s 

t-test. Significance levels are represented with asterisk as following: *p < 0.05, **p < 0.01, 

***p < 0.001 and ****p < 0.0001.
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Fig. 3. 
Docking poses of PFASs, testosterone (endogenous AR ligand), and BPA (antiandrogenic 

endocrine disruptor) formed the complex with the ligand binding domain of human AR 

(PDB: 3ZQT). (A) The location of the AR where the PFASs, testosterone, and BPA bind to 

is shown in the 3D structure. (B) Chemical interactions between the test chemicals and the 

key amino acid residues of AR are shown in the 2D structure. 2D and 3D structures were 

generated using Schrödinger and pymol packages, respectively.
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Fig. 4. 
Antiandrogenic effect of PFASs on the expression of (A) PSA, (B) FKBP5, and (C) AR 
in VCaP human prostate cancer cells. Cells were cotreated with 625 pM testosterone and 

PFASs or 50 nM OHF (positive control) for 24 h under hormone deprived conditions (10% 

CD FBS). Values are expressed as the mean fold change ± S.E.M. from three independent 

experiments. Statistical analysis was performed using one-way ANOVA followed by a 

multiple comparison analysis with Dunnett’s test to compare the difference in fold change 

between exposed groups and the corresponding control (625 pM testosterone). Significance 

levels are represented with asterisk as following: *p < 0.05, **p < 0.01, ***p < 0.001, and 

****p < 0.0001. The Ptrend is determined based on linear regression analysis.
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Fig. 5. 
Antiandrogenic effect of PFASs on the AR protein levels in prostate cancer cells (VCaP). 

(A and B) cells were cotreated with 625 pM testosterone (T) and PFASs or 50 nM OHF 

(positive control) for 24 h under hormone deprived conditions (10% CD FBS). (C and 

D) cells were treated with PFASs or 1 μM enzalutamide (Enz, positive control) for 48 h 

under normal conditions (containing 10% intact, non-CD stripped FBS). AR proteins were 

detected using AR-specific antibody and α-tubulin was used as a loading control. Values are 

expressed as the mean fold change ± S.E.M. from three independent experiments. Statistical 

analysis was performed using one-way ANOVA followed by a multiple comparison analysis 

with Dunnett’s test to compare the difference in fold change between exposed groups and 

the corresponding control (625 pM testosterone for panel B) and (0.1% v/v DMSO for panel 

D). Significance levels are represented with asterisk as following: *p < 0.05 and * **p < 

0.001.
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Table 1

Androgenic and antiandrogenic effects of PFASs in the AR mediated luciferase reporter gene assay.

Chemicals Activation Inhibition

REC20
(M)

RLAa

(%)
REC20
(M)

RLAb

(%)

Testosterone 2.2 × 10−10 100 – 100

9-(Nonafluorobutyl)– 2,3,6,7-tetrahydro-1 H,5 H,11 H-pyrano [2,3-f]pyrido[3,2,1-
ij]quinolin-11-one (NON)

NE – 1.05 × 10−5 65.06

2-(Heptafluoropropyl)–3-phenylquinoxaline (HEP) NE – 3.08 × 10−6 56.61

3-Fluoro-4-((E)-[4’-(heptafluoropropyl) [1,1’-biphenyl]– 4-yl]diazinyl)phenol (FLO) NE – NE –

Octafluoronaphthalene (OCT) NE – NE –

2,2,3,3,4,4,5,5,5-Nonafluoro-N-(4 nitrophenyl)pentanamide (NNN) NE – 2.78 × 10−6 62.52

NE: no effect.

REC20: 20% relative effective concentration. The concentration of the test chemicals showing 20% of the agonistic activity of 1 × 10−8 M 

testosterone via AR.

RIC20: 20% relative inhibitory concentration. The concentration of the test chemicals showing 20% of the antagonistic activity of 6.25 × 10−10 M 

testosterone via AR.

RLAa: relative luciferase activity. Percentage of maximum activity of the test chemicals with 100% activity defined as the activity obtained from 

testosterone at 1 × 10−8 M.

RLAb: relative luciferase activity. Percentage of maximum inhibition of the test chemicals with 100% activity defined as the activity obtained from 

testosterone at 6.25 × 10−10 M.
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