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A deconvolution framework that uses single-cell
sequencing plus a small benchmark data set for
accurate analysis of cell type ratios in complex
tissue samples
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Texas 77030, USA; 12VA Western New York Healthcare System, Buffalo, New York 14215, USA

Bulk deconvolution with single-cell/nucleus RNA-seq data is critical for understanding heterogeneity in complex biological

samples, yet the technological discrepancy across sequencing platforms limits deconvolution accuracy. To address this, we

utilize an experimental design to match inter-platform biological signals, hence revealing the technological discrepancy, and

then develop a deconvolution framework called DeMixSC using this well-matched, that is, benchmark, data. Built upon a

novel weighted nonnegative least-squares framework, DeMixSC identifies and adjusts genes with high technological discrep-

ancy and aligns the benchmark data with large patient cohorts of matched-tissue-type for large-scale deconvolution. Our

results using two benchmark data sets of healthy retinas and ovarian cancer tissues suggest much-improved deconvolution

accuracy. Leveraging tissue-specific benchmark data sets, we applied DeMixSC to a large cohort of 453 age-related macular

degeneration patients and a cohort of 30 ovarian cancer patients with various responses to neoadjuvant chemotherapy.

Only DeMixSC successfully unveiled biologically meaningful differences across patient groups, demonstrating its broad ap-

plicability in diverse real-world clinical scenarios. Our findings reveal the impact of technological discrepancy on deconvo-

lution performance and underscore the importance of a well-matched data set to resolve this challenge. The developed

DeMixSC framework is generally applicable for accurately deconvolving large cohorts of disease tissues, including cancers,

when a well-matched benchmark data set is available.

[Supplemental material is available for this article.]

Although recent advances in single-cell/nucleus RNA sequencing
(sc/snRNA-seq) offer valuable insights into cell types and states
in healthy (Haniffa et al. 2021) and diseased tissues (Gohil et al.

2021; Zeng et al. 2023), highly expensive and complex sample
preparation procedures have restricted its widespread adoption
in clinical settings (Li andWang 2021). Bulk RNA-seq, on the other
hand, retains its essential role, especially in large disease-based co-
hort studies, for which its cost-efficiency, streamlined sample pro-
cessing, and high-throughput analytic capabilities establish it as
themethod of choice for both preliminary screenings and exhaus-
tive population-level analyses (Ratnapriya et al. 2019; Stark et al.
2019; Cao et al. 2022). Nevertheless, bulk RNA-seq comes with a

13These authors contributed equally to this work.
14These authors contributed equally to this work.
Present addresses: 15Department of Statistics, University of
California at Riverside, Riverside, CA 92521, USA; 16Division of
Ophthalmology, Department of Surgery, Cincinnati Children’s
Hospital Medical Center, Cincinnati, OH 45229, USA
Corresponding author: wwang7@mdanderson.org
Article published online before print. Article, supplemental material, and publi-
cation date are at https://www.genome.org/cgi/doi/10.1101/gr.278822.123.
Freely available online through the Genome Research Open Access option.

© 2025Guo et al. This article, published inGenome Research, is available under
a Creative Commons License (Attribution-NonCommercial 4.0 International),
as described at http://creativecommons.org/licenses/by-nc/4.0/.

Method

35:147–161 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/25; www.genome.org Genome Research 147
www.genome.org

mailto:wwang7@mdanderson.org
https://www.genome.org/cgi/doi/10.1101/gr.278822.123
https://www.genome.org/cgi/doi/10.1101/gr.278822.123
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


significant drawback: It captures averaged gene expression across
heterogeneous cell types, thus confounding downstream analysis
(Li and Wang 2021). To mitigate this drawback, deconvolution
methods have been developed to delineate the cell type–specific
signals frombulk RNA-seq data. Traditional bulk-based deconvolu-
tion methods (Anghel et al. 2015; Wang et al. 2018) employ bulk
RNA-seq data from normal tissues or cell lines as the reference.
Theywere typically constrained by low-resolution estimates, limit-
ed to identifying only two or three cellular components within the
bulk samples. The progress of sc/snRNA-seq techniques opens the
door to the emergence of single-cell-based deconvolution meth-
ods (Newman et al. 2019; Tsoucas et al. 2019; Wang et al. 2019;
Aliee and Theis 2021; Dong et al. 2021; Erdmann-Pham et al.
2021; Chu et al. 2022; Fan et al. 2022; Cobos et al. 2023), which
tap into the granularity of even a modest set of single-cell data to
provide far superior resolution in estimating cell type proportions
in complex tissues, thereby offering a cost-effective alternative.

Single-cell-based deconvolution methods are not without
their disadvantages, however. Though affording remarkable reso-
lution, they encounter a substantial challenge in achieving preci-
sion and accuracy. The limitations arise from inconsistencies in
gene expression profiles between bulk and sc/snRNA-seq data.
Those inconsistencies are attributable to technique variations
in sample acquisition, preparation, and sequencing (Aird et al.
2011; Wery et al. 2013; Denisenko et al. 2020; Stoler and
Nekrutenko 2021; Hippen et al. 2023). Such inconsistencies,
which we refer to as “technological discrepancies,” have caused
prior deconvolution studies to produce suboptimal estimates of
cell type proportions, particularly when unpaired sc/snRNA-seq
data serve as the reference for deconvolving publicly available large
bulk cohorts (Sturm et al. 2019; Jin and Liu 2021; Fan et al. 2022).
Most existing benchmarking designs (Sturm et al. 2019; Cobos
et al. 2020; Jin and Liu 2021) often employ data sets such as simu-
lated pseudobulk data, cell line mixtures, or publicly available
data, none of which are tailored to reveal the negative effect of
technological discrepancy. Researchers have become aware of
these discrepancies (Dietrich et al. 2022; Sutton et al. 2022;
Cobos et al. 2023; Hippen et al. 2023). A recent study (Hippen
et al. 2023) generated matched bulk and scRNA-seq data from sev-
en high-grade serous ovarian cancer (HGSC) samples as a bench-
mark and discussed the impact of technological discrepancy on
deconvolution analysis. However, current attempts to address
these issues have achieved only limited success (Newman et al.
2019; Dong et al. 2021; Cobos et al. 2023). CIBERSORTx
(Newman et al. 2019) implements a batch effect correction step
but offers limited improvements in deconvolving complex bulk
tissues. The ensemble approach of SCDC (Dong et al. 2021) uses
matched bulk and scRNA-seq data from two normal tissue samples
(e.g., mouse breast) but lacks generalizability to patient cohorts.
The most recent SQUID (Cobos et al. 2023) builds on top of
DWLS (Tsoucas et al. 2019) with a Bisque-based linear transforma-
tion step (Jew et al. 2020) to align matched bulk and scRNA-seq
data; it can distort gene expression profiles, risking overcorrection.
Therefore, there is still need for methods to effectively mitigate
such discrepancy by taking full advantage of the well-matched
benchmark data set.

In this paper, we offer a new solution to improve deconvolu-
tion performance. To accomplish this, we generate a specialized
benchmark data set of 24 healthy retinal samples, ensuring tech-
nological discrepancy as the main confounding factor. Using
this data set, we demonstrate that technological discrepancy sig-
nificantly affects the expression profiles of bulk and single-nucleus

data and thus reduces the accuracy of existing single-cell-based
deconvolution methods. Against this backdrop, we introduce a
novel deconvolution method called DeMixSC, which employs a
benchmark data set and an improved weighted nonnegative
least-squares (wNNLS) framework (Ruppert and Wand 1994) to
identify and adjust for genes consistently affected by technological
discrepancy. DeMixSC is generalizable to any tissue type, given a
small representative benchmark data set, to effectively deconvolve
a large tissue-type-matched bulk cohort. We validated the im-
proved deconvolution performance of DeMixSC by comparing it
on our benchmark data set with eight existing deconvolution
methods.When applied to 453 peripheral retinal samples frompa-
tients with age-related macular degeneration (AMD) (Ratnapriya
et al. 2019), DeMixSC achieved more realistic cell type estimates
that reflect subtle changes in cell type proportions among AMD
grades, suggesting its reliability and generalizability in real-world
settings. DeMixSC further exhibited superior deconvolution
performance on an HGSC cohort (Lee et al. 2020) by employing
the available HGSC benchmark data set (Hippen et al. 2023). We
expect DeMixSC to fill the gap in resolving the technological dis-
crepancy in bulk deconvolution and serves as an accurate and
adaptable tool for estimating cell type proportions.

Results

Using benchmark data to assess technological discrepancy

We designed and generated a specialized benchmark data set to as-
sess the technological discrepancy between bulk and sc/sn se-
quencing platforms (Fig. 1A; Supplemental Fig. S1). This data set
comprises 24 healthy retinal samples from donors’ eyes collected
within 6-h postmortem (ages of death between 53 and 91)
(Supplemental Table S1), for two batches of sequencing experi-
ments. Both bulk and snRNA-seq profiling was performed on
each sample from the same single-nucleus suspension aliquot
using a template-switching method to generate full-length cDNA
libraries (see Methods). Because single-cell protocols can be biased
toward retaining certain cell types (Mereu et al. 2020), hence
changing the cell type proportions, this special approach maxi-
mizes our chance that the matched sequencing data share
approximately the same cell type proportions. We performed cell
type annotation for snRNA-seq data with known markers (see
Methods) (Supplemental Table S2). The resulting snRNA-seq data
were summed to create matched pseudobulk RNA-seq data (see
Methods). We hypothesized that major differences in gene expres-
sion profiles between thematched pseudobulk and real-bulk RNA-
seqwould be owing to technological factors, rather than biological
signals.

We observedmuch larger batch differences between real-bulk
and pseudobulk data than the small differences in cell type distri-
butions across samples in snRNA-seq or differences between the
two experimental batches (Supplemental Fig. S2A–E). Total read
counts from bulk RNA-seq data were significantly lower than total
UMI counts from matched pseudobulk data (Supplemental Fig.
S2F). Assuming that the difference in read depth does not impact
the relative expression of each gene, we expected gene expression
correlation to be a better metric for identifying technological dis-
crepancy. We observed a low-to-moderate correlation of gene ex-
pression, consistent across samples, between the paired bulk data
sets (mean Spearman’s correlation coefficient = 0.31 for batch-1
and 0.41 for batch-2) (Fig. 1B). Further differential expression
(DE) analysis between the paired bulk and pseudobulk samples
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identified more than 5000 DE genes in each experimental batch
(adjusted P-values < 0.05) (Fig. 1C), with >60% of those genes over-
lapping across the experiments (Fig. 1D; Supplemental Fig. S3).We
next converted the retina bulk data to transcripts per million
(TPM) to account for gene length effects, considering the incom-
plete gene coverage from the 10x Genomics single-cell platforms,
and observed even lower correlations with paired pseudobulk data
(mean Spearman’s correlation coefficient = 0.18 for batch-1 and
0.25 for batch-2), indicating that TPM normalization did not ame-
liorate these discrepancies. We further analyzed a benchmark data
set from seven primary HGSC samples (Hippen et al. 2023) with
matched single-cell and three types of bulk data: dissociation
with poly(A) enrichment (Disso&poly(A)+), dissociation with
rRNA depletion (Disso&rRNA−), and tissue chunk with rRNA
depletion (Chunk&rRNA−; see Methods) (Supplemental Fig.

S4A). The HGSC benchmark data set exhibited significant techno-
logical discrepancy (more than 5000 DE genes) between bulk and
pseudobulk RNA-seq data, with consistent DE patterns across sev-
en samples (Supplemental Fig. S4B,C).

Our observations suggest a consistent technological effect
across experiments. In broader contexts, factors such as library
preparation, RNA capture efficiency, reverse transcription proto-
col, and sequencing depth could serve as potential sources of tech-
nological discrepancy (Tung et al. 2017; Denisenko et al. 2020;
Stoler and Nekrutenko 2021). We, therefore, expect that the refer-
ence matrices derived from sc/snRNA-seq data will not fully repre-
sent cell type–specific expression profiles in bulk samples (Cobos
et al. 2023; Hippen et al. 2023). Given such discrepancies, the per-
formance of existing deconvolution methods is compromised, as
their key assumption about the representative reference is violated.

A

C D

B

Figure 1. Assessing technological discrepancy between bulk and single-cell sequencing platforms using matched single-nucleus aliquots. (A) Workflow
for generating a benchmark data set. We collect 24 healthy human retinal samples within 6 h postmortem. An illustration shows the layer and cell com-
positions of the human retina. Seven major cell types include photoreceptors (rod and cone cells), bipolar cells (BCs), retinal ganglion cells (RGCs), hor-
izontal cells (HCs), amacrine cells (ACs), andMüller glia cells (MGs). Threeminor cell types are not depicted in the illustration: astrocytes,microglia cells, and
retinal pigment epithelial cells (RPEs). Samples are isolated into single-nucleus suspensions. The same aliquot of single nucleus is used for both bulk and
snRNA-seq profiling. The matched pseudobulk mixtures are generated as conventionally done by summing UMI counts across cells from all cell types
in each sample. This data generation pipeline guarantees the matched bulk and snRNA-seq data share the same cell type proportions, which enables
us to evaluate the impact of technological discrepancy (i.e., the shot-gun sequencing procedure) on the bulk and snRNA-seq expression profiles. (B,C)
The influence of technological discrepancy at the sample and gene level, respectively. (B) Spearman’s correlation coefficient across genes between the
matched real-bulk and pseudobulk RNA-seq data for one sample at a time for both batches. The correlations were calculated using quantile-normalized
expression data (relative abundances). (C) MA-plots displaying the mean expression levels of all genes between matched real-bulk and pseudobulk data.
Differentially expressed (DE) genes are identified using the paired t-test with Benjamini–Hochberg (BH) adjustment. Red represents genes expressed higher
in the real bulk, and blue represents genes expressed higher in the pseudobulk. The horizontal dotted lines denote a twofold change betweenmatched real-
bulk and pseudobulk data. (adj.p) Adjusted P-values. (D) Venn diagrams showing genes consistently expressed higher in the bulk (top, overlap of red dots in
panel C) or the snRNA-seq generated pseudobulk (bottom, overlap of blue dots in panel C) between the two batches, which were generated using different
tissue samples and a different time.
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Overview of DeMixSC

Here, we present our novel deconvolution framework, DeMixSC,
and illustrate how it addresses the observed consistent technolog-
ical discrepancy in order to enhance the estimation accuracy of cell
type proportions. The DeMixSC framework, as depicted in Figure
2, is built upon the commonly used wNNLS approach (Ruppert
andWand 1994; Tsoucas et al. 2019;Wang et al. 2019)with several
essential improvements (see Methods) (Supplemental Note).
Concretely, for a subject j, DeMixSC estimates its cell type propor-
tions, denoted by p̂j, by minimizing a composite of two weighted
squared error terms,

p̂ j = argmin
pj≥0

∑
g[G1

wjg y jg − nj

∑
k[K

pkj r̂
k
jg

( )2
⎛
⎝

+
∑
g[G2

wjg
y jg

a
− nj

∑
k[K

pkj
r̂kjg
a

( )2
⎞
⎠.

Here, yjg is the observed expression value of gene g from sub-
ject j in the bulk RNA-seq data, nj is the number of all cells, r̂kjg is the
estimated cell type–specific expression value of cell type k in the
reference matrix derived from sc/snRNA-seq data, and wjg is an
associated weight. The gene sets G1 and G2 comprise genes with
minimal and substantial impact by technological discrepancy, re-
spectively. The first innovation of DeMixSC is a gene partitioning
approach that identifies and adjusts the expression levels of genes
that exhibit consistently high technological discrepancy (G2). We
do so with a small representative benchmark data set such as our
special matched RNA-seq data from 24 retinal samples (Fig. 2A).
DeMixSC uses a DE analysis between bulk and matched pseudo-
bulk RNA-seq data to segregate genes with low inter-platform dis-
crepancy (G1) from those highly affected by technological
discrepancy (G2; see Methods). It then employs a partitioned loss

function and adjusts genes from G2 by rescaling their expressions
by a positive constant adjustment factor a tomitigate the influence
of technological discrepancy (see Methods) (Supplemental Note).

The second innovation of DeMixSC comes from our pro-
posed weight function w∗

jg , which is given by

w∗−1
jg = (ŷ jg )

2 + (y jg − ŷ jg)
2 + c,

where ŷ jg denotes the fitted expression value of gene g in subject j.
This weight function comprises three terms: the squared fitted ex-
pression, the squared residual, and a baseline constant, which is
distinct from previously proposed weights (Tsoucas et al. 2019;
Wang et al. 2019; Dong et al. 2021; Fan et al. 2022; Cobos et al.
2023). The fitted term addresses genes with high expression levels;
the squared residual accounts for the remaining variance after
fitting; and the baseline constant c adds a reasonable upper bound
on the weight (see Methods) (Supplemental Note). These two in-
novations enable DeMixSC tomore effectively address the techno-
logical discrepancy compared with nondifferential weighting
approaches, for example, test statistics (see Methods).

DeMixSC runs as a three-tier model in application. First,
DeMixSC uses a specifically designed benchmark data set to iden-
tify and adjust genes with high inter-platform discrepancy (Fig.
2A). Second, to deconvolve a large unmatched bulk RNA-seq
data set, DeMixSC aligns the large bulk cohort with the bulk
RNA-seq data in the small benchmark data set (Fig. 2B; Zhang
et al. 2020) to generalize the technological discrepancy detected.
Last, DeMixSC runs the refined wNNLS framework iteratively
for deconvolution (Fig. 2C), allowing for dynamic updates as
the model fit improves and progressively enhancing estimation
accuracy. A diagram (Supplemental Fig. S5) complementary to
Figure 2 visualizes the complete workflow of DeMixSC with
more technical details. Our main prerequisite is a matched tissue

A

B

C

Figure 2. Overview of DeMixSC. The DeMixSC framework for deconvolution analysis of bulk RNA-seq data using sc/sn RNA-seq data as a reference. (A)
The framework starts with a benchmark data set of matched bulk and sc/snRNA-seq data with the same cell type proportions. Pseudobulk mixtures are
generated from the sc/sn data. DeMixSC identifies genes in G1 and G2 with the matched real-bulk and pseudobulk data. The non-DE genes are considered
stably captured by both sequencing platforms (blue), whereas the DE genes are more impacted by the technological discrepancy (orange). (B) DeMixSC
then employs a normalization procedure to perform the alignment between two bulk RNA-seq data sets (e.g., with ComBat). (C ) DeMixSC estimates cell
type proportions under a weighted nonnegative least square (wNNLS) framework with two improvements: (1) partitioning and adjusting genes with high
technological discrepancy and (2) a newweight function. The final estimates are obtained when the algorithm either converges or reaches the prespecified
maximum number of iterations. Here, G1 is genes with low technological discrepancy,G2 is genes with high technological discrepancy, a is a user-defined
positive constant that serves as an adjustment factor, r̂ is the referencematrix derived from the sc/snRNA-seq data, y is the observed expression in bulk RNA-
seq data, p̂ is the vector of estimated cell type proportions, and ŵ is the estimated gene weights.
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type between the small benchmark data set and the large, targeted
cohort.

DeMixSC includes a quantile normalization step and a batch
effect correction step, both of which operate under specific as-
sumptions. Quantile normalization assumes symmetric DE be-
tween the conditions and similar gene expression distributions
across the samples. Batch effect correction requires the bulk bench-
mark data to share a similar tissue microenvironment with the
large cohort. We note that DeMixSC is compatible with most
batch effect correction methods.

Comparing the estimation accuracy of DeMixSC with that of other

existing deconvolution methods

Using our retina benchmark data, we compared the performance
of DeMixSC with that of eight existing deconvolution methods
(Newman et al. 2019; Tsoucas et al. 2019; Wang et al. 2019;
Aliee and Theis 2021; Dong et al. 2021; Erdmann-Pham et
al. 2021; Chu et al. 2022; Cobos et al. 2023): AutoGeneS,
BayesPrism, CIBERSORTx, DWLS, MuSiC, RNAseive, SCDC, and
SQUID (see Methods) (Fig. 3A). The retinal tissue samples in our
benchmark data set comprised 10 distinct cell types. We focused
our evaluation of different deconvolution methods on seven ma-
jor cell types (amacrine cells [ACs], bipolar cells [BCs], cone cells,
horizontal cells [HCs], Müller glial cells [MGs], retina ganglion
cells [RGCs], rod cells) (Fig. 1A), which on average accounted for
98% of the total cell population (Liang et al. 2023).

Overall, DeMixSC achieved the lowest root mean squared
error (RMSE) and the highest Spearman’s correlation coefficient
in deconvolving bulk RNA-seq data, with mean values of 0.03
and 0.86 (Fig. 3B,C). Moreover, DeMixSC produced comparable
RMSEs and Spearman’s correlation coefficients for deconvolv-
ing bulk and pseudobulk RNA-seq data (mean RMSE: bulk 0.03,
pseudobulk 0.03; mean Spearman’s correlation: bulk 0.86, pseu-
dobulk 0.92). These results suggest that DeMixSC adjusts well
to undesired technological discrepancies. In contrast, existing
methods performed reasonably well for pseudobulk but much
worse for bulk data. In that sense, technological discrepancies
that compromise deconvolution accuracy remained unaddressed
by other existing approaches. Specifically, AutoGeneS showed a
higher RMSE for pseudobulk data, likely owing to its inability
to distinguish between rod and cone cells, which share largely
similar expression profiles (Fig. 3D). DWLS excelled in decon-
volving pseudobulk samples but fell short for bulk RNA-seq
data, possibly because of overfitting. Using the tree-based decon-
volution in MuSiC or the ensemble option in SCDC did not
improve their accuracy (Supplemental Fig. S6). CIBERSORTx pre-
sented slightly better performances than others in both bulk
and pseudobulk data, likely because of its batch effect correction
step. Looking further at the cell type level, we observed system-
atic biases across other methods. Most methods underestimate
the proportions of ACs, BCs, and cones while overestimating
HCs and rods (Fig. 3D; Supplemental Fig. S7). DeMixSC accurate-
ly estimated the proportions of all seven major cell types and
improved the deconvolution results for ACs, BCs, cones, HCs,
and MGs (mean RMSE: 0.01, 0.04, 0.03, 0.02, 0.03, respectively)
(Fig. 3D,E). DeMixSC also performed better in correlations of the
estimated versus the true cell proportions, particularly for the
top three prevalent cell types (rods, MGs, and BCs, Spearman’s
correlation coefficients of 0.78, 0.73, and 0.58, respectively)
(Fig. 3F).

In addition, we tested the robustness of these methods
under varied data formats (Dillies et al. 2013), including reads
per million mapped reads (RPM); reads per kilobase of transcript,
per million mapped reads (RPKM); and TPM (see Methods) and
found DeMixSC to be robust to data normalization procedures
(Supplemental Fig. S8). In line with previous benchmarking stud-
ies (Cobos et al. 2020), we found using raw counts as input is suf-
ficient to obtain good results. Finally, SQUID delivered the least
desirable results in this benchmarking study (mean RMSE and
Spearman’s correlation in bulk data: 0.25 and 0.31). The issue
with SQUID possibly lies in its data transformation step (Jew
et al. 2020), which has the potential to misrepresent gene expres-
sion profiles. In summary, our DeMixSC framework has achieved
the most accurate deconvolution among the compared methods
by successfully addressing the key issues with the technolog-
ical discrepancy between sequencing platforms. Regarding the
required sample size for the benchmark data set, we found
that DeMixSC exhibited satisfying deconvolution performance
with a sample size of four, and its performance becomes stable
when the sample size is more than seven in the retina data
(Supplemental Fig. S9).

Applying DeMixSC to human peripheral retina

bulk RNA-seq data

AMD is characterized by deterioration of retina and choroid
that leads to substantial decreased visual acuity, with loss of cone
and rod cells as a major manifestation. It is the leading cause of
blindness among the elderly population globally (Fleckenstein
et al. 2021). However, themolecular and cellular events that under-
lie AMD remain poorly understood, impeding the development of
effective treatments (Khanani et al. 2022). Understanding the mo-
lecular and cellular dynamics is essential for targeting the progres-
sion of AMD. We aim to examine cell type proportion changes
during AMDprogressionusing bulk RNA-seq data from453human
peripheral retina samples (see Methods) (Ratnapriya et al. 2019).
Among these, 105 have been scored in the Minnesota grading sys-
tem as grade 1 (MGS1), 175 as MGS2, 112 as MGS3, and 61 as
MGS4. An MGS1 rating indicates a non-AMD healthy retina, and
an MGS4 rating indicates AMD. MGS2 and MGS3 represent inter-
mediate stages (Olsen and Feng 2004).

We ran DeMixSC to first align the AMD cohort with the bulk
data fromour specialized benchmark data set of retina samples and
then to estimate cell type proportions in the AMD cohort (see
Methods) (Fig. 4A). For the reference matrix in wNNLS, we con-
structed a consensus reference by integrating expression profiles
from seven single-nucleus samples (see Methods) to achieve reli-
able deconvolution. DeMixSC produced overall robust deconvolu-
tion estimates among the consensus and each individual single-
nucleus references at both the cell type and sample levels, only
with low-to-moderate correlations observed in some conditions
owing to variations in the ranking of low-abundance cell types
across samples (Fig. 4B,C; see Methods). DeMixSC achieved cell
type proportions that are closer to experimental measures for
non-AMD samples (Liang et al. 2019), with mean RMSE of 0.04
and mean Spearman’s correlation coefficient of 0.75 (see
Methods; Supplemental Table S3). DeMixSC revealed changes in
cell type proportions between non-AMD and AMD samples (Fig.
4D). We observed statistically significant decreases in photorecep-
tors, including rod cells (P-value =0.047) and cone cells (P-value =
0.035), and HCs (P-value =0.005). Besides, DeMixSC identified in-
creases in glial cells, specifically astrocytes (P-value=0.006) and
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MGs (P-value =0.002). The increase of BCs is of marginal signifi-
cance (P-value=0.068). These changes in cell type proportions
showed consistent patterns across the progression of AMD severity
from MGS1 to MGS4 (Supplemental Fig. S10), reflecting the pro-
gressive nature of the disease. For comparison, we deconvolved
the same cohort with MuSiC2 (Fan et al. 2022), CIBERSORTx
(Newman et al. 2019), and SQUID (Cobos et al. 2023), in which

MuSiC2 was chosen for its added ability to leverage conditionally
stable genes from healthy references in analyzing diseased tissue.
Among the four methods compared, DeMixSC exhibited the least
bias for three out of sevenmajor cell types (ACs, BCs, and rod cells)
(Supplemental Table S3; Supplemental Fig. S11). CIBERSORTx is
the least biased for cones and MGs; MuSiC2 showed the least
bias for HCs and RGCs; and SQUID demonstrated the most biased

B C

D

E

F

A

Figure 3. Comparing the estimation accuracy of DeMixSC to existing deconvolution methods. (A) Workflow for the deconvolution benchmarking de-
sign. We use benchmark data from retinal samples. The cell count proportions for each cell type are used as ground truth for the corresponding tissue
samples. We assess the deconvolution performance of DeMixSC and seven existing methods for both bulk and pseudobulk mixtures. In addition to the
raw counts, we also test RPM, RPKM, and TPM. The deconvolution performance is assessed by RMSE and Spearman’s correlation coefficient. Note the
results by SQUID are discussed in the text only. (B,C ) Boxplots showing the deconvolution performance of eight deconvolution methods for the bulk
and pseudobulk data. RMSE and Spearman’s correlation coefficient values are calculated across sevenmajor cell types for each sample, with gray denoting
pseudobulk and red denoting real bulk. Smaller RMSEs or larger Spearman’s correlations indicate a higher accuracy in proportion estimation. (D) Boxplots
showing the distributions of deconvolution estimates at the cell type level for all 24 retinal samples. Each color corresponds to a given deconvolution meth-
od, with black denoting the ground truth, and each panel corresponds to a given cell type. (E,F ), An overview of deconvolution performance at the cell type
level across the eight methods using RMSE and Spearman’s correlation coefficient, respectively. Lighter colors correspond to lower RMSE or Spearman’s
correlation coefficient values. Gray indicates NA.
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estimates across all cell types. Additionally, although DeMixSC,
CIBERSORTx, and MuSiC2 all detected a decrease in rod cells in
AMD, only DeMixSC identified a statistically significant reduction
in cone cells, consistent with AMD pathology affecting both pho-
toreceptors (Curcio et al. 1996). We further evaluated DeMixSC
framework on the AMD cohort under different benchmark
alignment conditions (see Methods) (Supplemental Table S3;
Supplemental Fig. S12). Limma (Ritchie et al. 2015) also effectively
corrected batch effects and yielded comparable deconvolution per-
formance (mean RMSE: 0.05; mean Spearman’s correlation: 0.68),
whereas both no batch correction and VSN (Huber et al. 2002)
showed worse results (mean RMSE: 0.12 and 0.20; mean
Spearman’s correlation: 0.57 and −0.61), highlighting the impor-
tance of effective batch correction.

Currently it is believed that adult retinal photoreceptors
(cone and rod cells) cannot regenerate after injury (Menon et al.
2019; Fleckenstein et al. 2021; Khanani et al. 2022). We hypothe-
size that photoreceptor loss reduced the total cell count, hence in-
flating the rest of the cell proportions in AMD. Indeed, we found
that losing 12.53%of total photoreceptors resulted in the observed
subtle drop for rod cells (2.72%) and cone cells (0.61%; see
Methods). The increased proportion of BCs primarily resulted
from photoreceptor loss, whereas MGs and Astrocytes showed ac-
tual increases beyond this effect (see Methods). These results align
well with the current understanding that photoreceptor degenera-
tion is accompanied by reactive gliosis (Pfeiffer et al. 2020; Tomita
et al. 2021), characterized by glial cell activation and proliferation.
In summary, our findings demonstrated DeMixSC’s ability to

A

D

B C

Figure 4. Using DeMixSC to deconvolve a large cohort of human peripheral retinal samples. (A) PCA plots of both the retina cohort data and the bench-
mark data. Red denotes the bulk data to be deconvolved; blue denotes the benchmark bulk data; and green denotes the benchmark pseudobulk data. (B,C)
Panels demonstrating the robustness of DeMixSC to different reference matrices at both the cell type and sample levels. Higher correlation coefficients
indicate better performance. (D) Distributions of DeMixSC estimated cell type proportions of Ratnapriya et al. (2019) data using consensus references.
Each panel corresponds to a given cell type. The P-values for Student’s t-tests comparing the estimated cell type proportions between non-AMD (healthy)
and AMD groups are denoted as follows: (ns) not significant, P-value > 0.05; (∗) P-value≤0.05; (∗∗) P-value≤0.01; and (∗∗∗) P-value≤0.001.
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capture subtle yet biologically relevant changes in retinal cell com-
position in AMD.

Applying DeMixSC to HGSC

HGSC is themost commonand lethal subtype of epithelial ovarian
cancer, yet it remains poorly understood (Veneziani et al. 2023). A
major challenge in comprehending and treating HGSC lies in its
extensive tumor heterogeneity, characterized by the presence of
diverse cell populations. This heterogeneity contributes to differ-
ential responses to therapy and various clinical outcomes.
Accurate deconvolution analysis of HGSC bulk cohorts with well-
documented clinical follow-ups is crucial for dissecting cellular in-
teractions underlying disease progression and treatment response.

We compared the deconvolution performance of DeMixSC to
seven existing methods using a HGSC benchmark data set (see
Methods) (Supplemental Fig. S4A; Hippen et al. 2023). DeMixSC
notably outperformed other methods when deconvolving
Disso&poly(A)+ samples, achieving the lowest RMSE (mean:
0.09) and the highest Spearman’s correlation coefficient (mean:
0.72) (Fig. 5A). At the cell type level, DeMixSC accurately estimated
the proportions of all 13 cell types in the Disso&poly(A)+ samples,
with marked improvements in the deconvolution of epithelial
cells, endothelial cells, and T cells (Supplemental Fig. S13A). In
comparison, the next best-performing method, CIBERSORTx,
had a mean RMSE of 0.13 and a mean Spearman’s correlation

of 0.49 for the Disso&poly(A)+ data type. Additionally, we evaluat-
ed DeMixSC on two other data types (Disso&rRNA− and
Chunk&rRNA−) from the HGSC data set, which were made with
a lower level of technical matchness with the scRNA-seq data.
DeMixSC did not outperform other methods on these two data
types (mean RMSE: 0.14 and 0.14; mean Spearman’s correlation:
0.27 and 0.30; forDisso&rRNA− andChunk&rRNA−, respectively)
(Fig. 5A; Supplemental Fig. S13B,C), suggesting that the bench-
mark data set needs to be specifically designed for optimal
performance.

To demonstrate the generalizability of DeMixSC, we utilized
the Disso&poly(A)+ data as the benchmark data set to deconvolve
an unmatched HGSC cohort (Lee et al. 2020) with detailed clinical
annotations (see Methods). This cohort contains 30 primary treat-
ment-naïve tumor samples, categorized into three groups based on
their responses to treatment: thosewho underwent complete gross
resection (R0, n=10), those who received neoadjuvant chemo-
therapy with an excellent response (ER; n=10), and those with a
poor response (PR; n= 10). As in the AMD deconvolution analysis,
we appliedDeMixSC,MuSiC, CIBERSORTx, and SQUID for decon-
volution (see Methods). DeMixSC achieved the most biologically
realistic estimations of cell type proportions among all compared
methods (Fig. 5B; Supplemental Fig. S14). DeMixSC was the
only method that successfully captured proportion differences in
epithelial cells (R0 vs. ER, P-value=0.013; R0 vs. PR, P-value=
0.007) and macrophages (R0 vs. ER, P-value=0.085; R0 vs. PR,

A

B C

Figure 5. Using DeMixSC to deconvolve HGSC samples. (A) Boxplots showing the deconvolution performance of eight deconvolution methods for the
pseudobulk and three types of bulk data in the HGSC benchmark data set. RMSE values and Spearman’s correlation coefficients are calculated across 13 cell
types for each sample. Smaller RMSEs or larger Spearman’s correlations indicate higher accuracy in proportion estimation. (B) Distributions of DeMixSC
estimated cell type proportions of Lee et al. (2020) data using consensus references. Each panel corresponds to a given cell type. (NK cells) natural killer
cells, (ILC) innate lymphoid cells, (DC) dendritic cells macrophages, and (pDC) plasmacytoid dendritic cells. The P-values for Student’s t-tests comparing
the estimated cell type proportions across R0, ER, and PR groups are denoted as follows: (ns) not significant, P-value > 0.05; (∗) P-value≤0.05; (∗∗) P-value≤
0.01; and (∗∗∗) P-value≤0.001. (C) Scatter plot comparing DeMixSC estimates of macrophages with immunofluorescent measures (CD68/CD163) in 21
HGSC samples. The black dashed line represents the diagonal, and the gray solid line indicates the linear fit across the data points.

Guo et al.

154 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278822.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278822.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278822.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278822.123/-/DC1


P-value =0.044) across three distinct response groups. Notably,
DeMixSC revealed a decrease in epithelial cells from patients
with no need for chemotherapy (R0) to only showing partial re-
sponse to chemo-treatment (PR) (Supplemental Fig. S14), aligning
with previous clinical observations (Caudle et al. 2010). Addition-
ally, DeMixSC identified a consistent trend of increased propor-
tion of macrophages from R0 to PR groups, suggesting that
higher pretreatment macrophage infiltrations may be associated
with decreased treatment response. The deconvolution-based esti-
mates were further validated by immunofluorescence staining
(Spearman’s correlation coefficient = 0.82, see Methods) (Fig. 5C;
Lee et al. 2020). In contrast, the other three methods produced
lower Spearman’s correlations with the staining results (MuSiC:
0.60; SQUID: 0; and CIBERSORTx: 0.56) and failed to discern bio-
logical differences across response groups, although the CIBER-
SORTx results showed similar trends (Supplemental Fig. S14).

Discussion

This study addresses the technological discrepancy between bulk
and sc/sn RNA-seq data in order to improve the deconvolution ac-
curacy of bulk RNA-seq data. We constructed a specialized bench-
mark data set of healthy retina samples and demonstrated the
impact of technological discrepancy on existing single-cell-based
deconvolution methods (Newman et al. 2019; Tsoucas et al.
2019; Wang et al. 2019; Aliee and Theis 2021; Dong et al. 2021;
Erdmann-Pham et al. 2021; Chu et al. 2022; Fan et al. 2022;
Cobos et al. 2023). Using this benchmark data set, we introduce
the DeMixSC deconvolution method that makes innovative im-
provements to the wNNLS framework to address the consistently
observed technological discrepancy at the gene level. The distinct
advantage of DeMixSC lies in its superior deconvolution accuracy
and broad generalizability. As demonstrated in the benchmarking
study, DeMixSC achieves more accurate estimates of cell type pro-
portions than other existing deconvolutionmethods. In our appli-
cation to complex retina samples from patients with AMD,
DeMixSC was able to accurately delineate seven to 10 cell types
and identify subtle yet critical changes in cell type proportions.
Furthermore, DeMixSC succeeded in deconvolving ovarian cancer
data by utilizing a publicly available HGSC benchmark data set, in
which it achieved considerably more accurate deconvolution per-
formance and discovered proportional differences associated with
different treatment responses. Our studies support the capability
and generalizability of DeMixSC in deconvolving large heteroge-
neous bulk cohorts, only requiring a small set of tissue-type-
matched benchmark data. DeMixSC is computationally efficient,
completing the analysis of 453 AMD samples within 5 min, and
exhibits robust convergence against different starting values (see
Methods) (Supplemental Fig. S15).

Generation of the benchmark data set in DeMixSC is crucial
for accurate and reliable estimation of cell type proportions. Our
study employed a specifically tailored cDNA library preparation
procedure to generate the benchmark data set of retinal samples.
A critical step in the data generation process is to ensure the
“matchness” of paired bulk and snRNA-seq data. In our procedure,
the cDNA library for bulk RNA-seq was generated using the Smart-
seq v4 ultralow input RNA kit procedure, a protocol similar to that
used in snRNA-seq. The improved performance of DeMixSC in
large cohort bulk data demonstrates the benchmark data genera-
tion is a worthwhile one-time investment. One available bench-
mark data set can be utilized for unlimited times to deconvolve
any large cohort of the same tissue type. Second, the required sam-

ple size for the benchmark data set is small. Eight samples were suf-
ficient to ensure accurate deconvolution in the retina benchmark
data set. Single-cell data for the tissue of interest are already being
generated and are needed to apply existing single-cell-based
deconvolution methods. Saving the remainder-dissociated cell/
nucleus suspension for a minimum of eight bulk RNA-seq experi-
ments, an additional step that typically costs less than $2000, can
provide valuable benchmark data for enhanced deconvolution
accuracy. In addition, given its importance to the success of
DeMixSC, we expect that the specialized benchmark data can im-
prove other deconvolution methods, such as the deep learning-
based Scaden (Menden et al. 2020) and the guided topic model-
ing-based GTM-decon (Swapna et al. 2023), by providing insights
into cross-platform technical discrepancies.

The advance represented by DeMixSC is noteworthy, but
there is potential room for improvements in future work. The key
to DeMixSC rests on effectively identifying and down-weighting
genes with high technological discrepancy. A potential challenge
arises in gene identification when applying DeMixSC to tissue
types (e.g., tumors) with high cellular plasticity. In that scenario,
a stratified categorization of genes into three distinct groups can
bebeneficial: technologically stable genes, biologically stable genes
(e.g., global tumor signature genes) (Cao et al. 2022), and the re-
maining unstable genes. Moreover, DeMixSC can be expected to
gain from machine learning models to simultaneously identify
and adjust genes. Additionally, alternative methods to ComBat
(Zhang et al. 2020) for aligning the large cohort with the bench-
mark data set can be consideredwhendealingwith tumor samples,
which often are highly heterogeneous with complex batch struc-
tures. DeMixSC also holds the potential to address the challenge
of missing cell types in single-cell reference samples by analyzing
the residual information from the deconvolution process (Ivich
et al. 2024).

Considering such potential adaptations, we anticipate that
DeMixSC will prove useful in cancer research. By using a concise
benchmark data set derived from matched tissue specimens,
DeMixSC can be leveraged to accurately deconvolve large bulk
cohorts acquired through either surgical or biopsy samples.
DeMixSC’s enhanced deconvolution accuracy can improve the re-
liability of downstream cell type–specific DE analysis with any
methods that rely on estimated cell type proportions (Luca et al.
2021;Wang et al. 2021). This capability can be expected to acceler-
ate the discovery of cell subtypes and cell type–specific markers
among diverse patient groups with a variety of different types of
cancer.

Methods

Ethics approval and consent to participate

Institutional approval for patient consent to donate their eyes was
obtained from theUniversity ofUtah, and the study adhered to the
principles of the Declaration of Helsinki. All retinal tissues were
deidentified in accordance with HIPAA privacy rules.

Human retina sample collection

These samples were obtained from 24 individuals between age of
73 to 91 who had passed away because of respiratory or heart fail-
ure or from a myocardial infarction (Supplemental Table S1).
Human donor eyes were obtained through the Utah Lions Eye
Bank. For this study, we included samples collected within
6 h postmortem. Dissections of donor eyes were performed
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immediately following a published protocol (Owen et al. 2019).
Macular retinal tissue was collected using a 6 mm disposable biop-
sy punch (Integra 33–37), flash-frozen, and stored at −80°C. Only
one eyewas used per donor, and donors with any history of retinal
degeneration, diabetes, macular degeneration, or drusen were ex-
cluded from the study. Additionally, each donor underwent an
ophthalmology check to ensure that the eye was in a healthy
condition.

Generation of benchmark data from 24 human retinal samples

Single-nucleus mRNA sequencing

Nuclei were isolated with prechilled fresh-made RNase-free lysis
buffer (10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2, 0.02% NP-
40). The frozen tissue was resuspended and triturated to break
the tissue structure in lysis buffer and homogenized with a
Wheaton dounce tissue grinder. Isolated nuclei were filtered
with 40 µm flow cell strainer and stained with 4′,6-diamidino-2-
phenylindole (DAPI; 10 µg/mL) before fluorescence-activated
cell sorting (FACS) on an FACSAria III cell sorter (BD Biosciences)
in the Cytometry and Cell Sorting Core at Baylor College of
Medicine (BCM). All snRNA-seq was performed at the Single Cell
Genomics Core (SCGC) at BCM. Single-nucleus cDNA library prep-
aration and sequencing were performed following the manufac-
turer’s protocols (https://www.10xgenomics.com). A single-
nucleus suspension was loaded on a chromium controller to ob-
tain a single-cell GEMS (gel beads-in-emulsions) for the reaction.
The snRNA-seq library was prepared with chromium single-cell
3′ reagent kit v3 (10xGenomics). The product was then sequenced
on an Illumina NovaSeq 6000 (https://www.illumina.com).

Bulk mRNA sequencing of retina single-nucleus suspension

To ensure the “matchness” of paired bulk and snRNA-seq data, the
mRNA library for bulk RNA-seq followed the same pipeline as for
snRNA-seq. Specifically, matched samples with snRNA-seq were
used for RNA isolation by applying TRIzol (Invitrogen) to the
separated single-nucleus resuspension. cDNA was prepared from
∼1 ng of total RNA by using the SMART-Seq v4 ultralow input
RNA kit according to the manufacturer’s directions (Takara). The
libraries were made using Nextera XT library prep (Illumina).
Full-length RNA-seq was performed on NovaSeq 6000 sequencers
according to the manufacturer’s directions (Illumina).

Benchmark design for matched single-cell/nucleus and bulk RNA-seq data

The workflow for the benchmark design was summarized in
Supplemental Figure S1. Two steps were essential for the “match-
ness” of the paired bulk and sc/snRNA-seq in the benchmark
data set. First, tissue chunks needed to be dissociated into cell or
nucleus suspensions, and the paired bulk and sc/snRNA-seq profil-
ing was carried out using the same aliquot (Supplemental Fig.
S1A). This process guaranteed the two sequencing data sets share
approximately equal cell type proportions. Second, it was neces-
sary to employ the same cDNA library preparation protocol for
both sequencing data (Supplemental Fig. S1B). In our study,
both bulk and single-nucleus cDNA libraries were generated using
the poly(A) enrichment method. These two critical steps together
ensured that any technological discrepancies stem solely from the
sequencing platforms.

Preprocessing of snRNA-seq and bulk RNA-seq data

Retina snRNA-seq unique molecular identifier (UMI) count matri-
ces were obtained using CellRanger (version 3.1.0) (Zheng et al.
2017) following the official guide to estimate absolute counts
and were then processed using the Seurat package (version 3.6.0)

(Hao et al. 2021). Specifically, for each snRNA-seq data set, we first
removed genes expressed in <5% of cells and then filtered out cells
with either fewer than 500 total UMIs or 200 expressed genes, or
>50% total UMI counts derived frommitochondrial genes. The to-
tal numbers of transcripts of each cell were then normalized to
10,000, followed by a natural log transformation. Highly variable
genes were detected and used for principal component analysis
(PCA). Cells were then clustered using the Seurat package at a res-
olution of 0.5.

For bulk RNA-seq data, the quality of raw sequencing data
was first evaluated by FastQC (version 0.11.9) (https://www
.bioinformatics.babraham.ac.uk/projects/fastqc/), and low-quali-
ty reads and adapters were then trimmed by Trimmomatic (ver-
sion 0.4.0) (Bolger et al. 2014). Next, reads that passed quality
control were aligned to GRCh38 using the two-pass mode of
STAR (version 2.7.7b) (Dobin et al. 2013), and read counts were
obtained by the featureCounts (Liao et al. 2014) function from
the Subread package (version 1.22.2) following the standard
pipeline.

Cell type annotation for snRNA-seq data

Seven major cell types, including cone cells, rod cells, HCs, BCs,
ACs, RGCs, and MGs, were annotated using known marker genes
(Supplemental Fig. S2A,B; Supplemental Table S2; Liang et al.
2019; Menon et al. 2019). For the deconvolution analysis of bulk
AMD retinal samples (Ratnapriya et al. 2019), we included addi-
tional three minor cell types, including astrocytes, microglia cells,
and retina pigmental epithelium (RPE).

Generation of ground-truth proportion and pseudobulk mixtures

With each annotated snRNA-seq data, the true proportion of each
cell typewas calculated as the number of cells in the cell type divid-
ed by the total number of cells. Pseudobulk mixtures correspond-
ing to each bulk were calculated by adding up the UMI counts
from all the annotated cells per gene from the matched snRNA-
seq data.

Statistical analysis

We used paired Student’s t-tests to identify the differentially ex-
pressed (DE) genes between matched bulk and pseudobulk RNA-
seq data. The P-values for DE analysis were adjusted for multiple
testing by the Benjamini–Hochberg (BH) method (Benjamini
and Hochberg 1995). We used Student’s t-tests to compare the es-
timated cell type proportions between non-AMD and AMD condi-
tions from different deconvolution methods. We used Wilcoxon
rank-sum tests to compare the sequencing read depth between
bulk and pseudobulk data.

DeMixSC deconvolution framework

DeMixSC is a reference-basedmodel built upon thewNNLS decon-
volution framework with several improvements. Our model ex-
plicitly requires a benchmark data set for training. To begin with,
we revisit the core equation of existing deconvolution methods
(Ruppert and Wand 1994; Tsoucas et al. 2019; Wang et al. 2019;
Aliee and Theis 2021; Dong et al. 2021; Fan et al. 2022; Cobos
et al. 2023), which is

p̂j = argmin
pj≥0

∑
g[G

wjg y jg − nj

∑
k[K

pkj r̂
k
jg

( )2

, (1)

where yjg is the observed expression (relative abundance) of gene g
from subject j in the bulk RNA-seq data, r̂kg is the estimated
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expression value of gene g in cell type k in the reference matrix de-
rived from sc/snRNA-seq data, wjg is the weight of each gene g for
subject j, nj is the total number of cells in subject j, and p̂j is the es-
timated vector of cell type proportions. The main drawback of
Model 1 is that it does not address technological discrepancies ob-
served in our benchmark data. To explain this, we split the squared
term in Equation 1 into two components, and rewrite themodel as

p̂j = argmin
pj≥0

∑
g[G

wjg ỹ jg − nj

∑
k[K

pkj r
k
jg

( )
+ (e jg − g jg )

( )2

,
(2)

where ỹ jg is the true expression value of gene g in the bulk data
with ỹ jg + e jg = y jg , ejg is the measurement noise for gene g in sub-
ject j at the bulk level, γjg is the accumulated measurement
noise at the single-cell level, and rkjg is the true cell type–specific
reference matrix (see Supplemental Note). The component
ỹ jg − nj

∑
k[K pkj r

k
jg

( )
consists of the true bulk-level expression ỹ jg

and the true expression value derived based on the true cell
type–specific mean expression n

∑
k[K pkj r

k
jg . This component re-

flects the true estimation error that we aim to minimize. The com-
ponent (e jg − g jg ) defines the difference in noises introduced by
the bulk (e jg ) and the sc/snRNA-seq (γjg) data, which represents
the measurable technological discrepancy between sequencing
platforms. Genes with highly inconsistent expressions, or equiva-
lently inconsistent noises, across different platforms suffer from
high technological discrepancy (see Supplemental Note). Thus,
when the technological discrepancy overtakes the true signal, in-
stead of minimizing estimation errors, this model is geared toward
minimizing the technological discrepancy and is no longer fitting
the expression profiles of individual bulk samples.

To address the issue with the technological discrepancy in
Model 1, we introduceDeMixSC,which estimates cell type propor-
tions by minimizing a partitioned loss function, as shown below:

p̂j=argmin
pj≥0

∑
g[G1

wjg yjg−nj

∑
k[K

pkj r
k
jg

( )2

+
∑
g[G2

wjg
yjg
a
−nj

∑
k[K

pkj
rkjg
a

( )2
⎛
⎝

⎞
⎠,

(3)

where G1 is a set of genes hardly affected by technological discrep-
ancy, and G2 contains genes highly affected by technological dis-
crepancy. DeMixSC employs a DE analysis to identify genes
affected by technological discrepancy (G2). This process begins
with a paired t-test on matched bulk and pseudobulk data. Genes
with BH-adjusted P-values less than 0.05 are selected and ranked
fromhigh to lowbased onmean expression across both data types.
The top-ranking genes are most impacted by technological dis-
crepancy and are designated to G2. To mitigate this technological
discrepancy, DeMixSC introduces a positive adjustment factor
(a) to rescale the gene expression and thereby reduce the contribu-
tion of squared residuals from genes in G2. Rather than excluding
them, DeMixSC preserves the high discrepancy genes in G2 in the
wNNLS model, acknowledging their potential biological signifi-
cance and contribution to mixed expression levels. The size of
G2 and the value of a are user-definable parameters in DeMixSC,
allowing for flexibility in different analytical contexts. We have
tested the model’s performance with various G2 gene selections
and values of a (Supplemental Fig. S16), and we set the size of G2

to be 5000 and a to be 1000 by default.
In addition, we introduce a new weight function (w∗

jg ) to re-
duce the influence of highly expressed genes and assign lower
rankings for genes with large variances:

w∗−1
jg = (ŷ jg)

2 + (y jg − ŷ jg )
2 + c. (4)

The current literature uses either the squared fitted value (ŷ jg )
2

(Tsoucas et al. 2019; Cobos et al. 2023) or the variance (y jg −
ŷ jg)

2 (Wang et al. 2019; Dong et al. 2021; Fan et al. 2022) in the
weight, but never both. The constant term c is introduced for con-
trolling the range of the weight. A range of positive values can be
appropriate for the constant c (Supplemental Fig. S17). We treat c
as a tuning parameter in the DeMixSC software and set it to 2
by default for users’ convenience. Using the summation of these
three terms in Equation 4 as our new weight function improves
model fit, accounts for variability, and enhances the numerical
stability of the DeMixSC framework. Detailed mathematical deri-
vation is provided in the Supplemental Note. Implementation of
the DeMixSC framework is available as an R package (R Core
Team 2023) at GitHub (https://github.com/wwylab/DeMixSC).

Evaluation of gene partitioning and weight function

To validate the efficacy of our proposed gene partitioning and
weight function, we tested an alternative method with the retina
bulk benchmark data. We used the technological discrepancy
(i.e., the test statistics from the paired t-test) as inverse weights
and did not rescale the gene expressions using adjustment factor
(i.e., no gene partition). The tested inverse weights were calculated

as the t-statistics: w′−1
g =

�dg
sdg /

��
n

√ , where �dg is mean of the differ-

ences between paired bulk and pseudobulk samples (i.e.,
�dg = ybulkjg − y pseudobulk

jg ) of gene g, sdg is the standard deviation of
the differences, and n is the number of sample pairs. This approach
yielded decreased deconvolution accuracy, with mean RMSE in-
creasing from 0.03 to 0.13 and mean Spearman’s correlation de-
creasing from 0.86 to 0.73.

Evaluation of batch correction methods

We tested DeMixSC framework on the AMD retina cohort with
four batch correction approaches: no correction, ComBat (imple-
mented in DeMixSC) (Zhang et al. 2020), Limma (Ritchie et al.
2015), and VSN (Huber et al. 2002). Each method was applied fol-
lowing its standard procedure.

Data normalization of bulk mixtures

We applied the following data normalizations to the bulk raw
count matrices (Dillies et al. 2013): (1) RPM, (2) RPKM, and (3)
TPM. Both RPKM and TPM include an additional step that uses
the gene length to obtain normalized counts per million.

Convergence property of the DeMixSC algorithm

To evaluate how robust DeMixSC is against different initial values,
we randomly selected a sample from the AMD retina cohort as a
case study. To create different initial values, we set three different
scale factors n = {100, 380, 1000}. For each scale factor, we chose
10 extreme starting values for the proportions p̂, with the propor-
tion of one out of 10 cell types being one and the rest being zero.
Finally, we used the 30 pairs of n× p̂ to initialize the wNNLS
framework and then compared the estimates of DeMixSC.

Computational deconvolution with existing methods

Eight deconvolution methods that use the same scRNA-seq data as
the reference were tested in our benchmarking study (Newman
et al. 2019; Tsoucas et al. 2019; Wang et al. 2019; Aliee and Theis
2021; Dong et al. 2021; Erdmann-Pham et al. 2021; Chu et al.
2022; Cobos et al. 2023). We first used the default settings of each
method as described in the GitHub repository or the websites
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(AutoGeneS: https://github.com/theislab/AutoGeneS; BayesPrism:
https://github.com/Danko-Lab/BayesPrism; CIBERSORTx: https://
cibersortx.stanford.edu/; DWLS: https://github.com/dtsoucas/
DWLS; MuSiC: https://github.com/xuranw/MuSiC; RNAseive:
https://github.com/songlab-cal/rna-sieve; SCDC: https://github
.com/meichendong/SCDC; and SQUID: https://github.com/
favilaco/deconv_matching_bulk_scnRNA). For CIBERSORTx, we
followed the recommended built-in batch correction method for
the deconvolution analysis of bulk samples (batch mode=S).
Additionally, we evaluated the performance of the tree-guided
deconvolution of MuSiC (Wang et al. 2019) and the ensemble op-
tion of SCDC (Dong et al. 2021). For tree-guidedMuSiC, we first per-
formed hierarchical clustering on the single-cell reference data set;
based on the hierarchical clustering results, we grouped cone and
rod cells to form a mega cell cluster (Supplemental Fig. 6A), and
each of the remaining cell types also formed a cluster. Cell type–spe-
cific marker genes of cones and rods were obtained using
FindAllMarkers function from Seurat (Hao et al. 2021) package un-
der the bimod likelihood ratio test. We ran MuSiC deconvolution
first at the cell cluster level and then again within the rod and
cone clusters. For the SCDCensemble option,we randeconvolution
on SCDC with three different sc references; then, we ran the
SCDC_ENSEMBLE function to obtain the ensemble deconvolution
results. For deconvolving the AMD cohort, we used MuSiC2 (Fan
et al. 2022) following the tutorial provided with default settings
(https://github.com/Jiaxin-Fan/MuSiC2).

Evaluation metrics for the deconvolution performance

1. We evaluated the performance of each method using (1) RMSE

at both sample (RMSEj) and cell type (RMSEk) levels: RMSEj =�������������������∑K
k=1 (p̂

k
j − pkj )

2

K

√
and RMSEk =

�������������������∑J
j=1 (p̂

k
j − pkj )

2

J

√√√√
, where p̂kj de-

notes the estimated cell proportion by the investigated method
for cell type k and sample j, and pkj is the corresponding ground
truth. We use J to denote the total number of samples and K to
denote the total number of cell types. A smaller RMSE value in-
dicates a better deconvolution performance.

2. We evaluated the Spearman’s correlation coefficient (ρ) at
both sample (ρj) and cell type (ρk) levels. A higher Spearman’s
correlation coefficient indicates a better deconvolution
performance.

Deconvolution analysis on the human healthy retina benchmark

data set

The retina benchmark data set comprised two batches, batch-1 (n=
4) and batch-2 (n=20). To account for potential batch effects and
ensure optimal deconvolution performance for each method, the
analysis was performed separately for each batch. All deconvolu-
tionmethods were performed using the same single-nucleus refer-
ence derived from the retinal benchmark data set.

Deconvolution analysis on the human diseased retina cohort

(AMD)

Data acquisition and quality control

The expression matrix of the AMD cohort comprised 523 samples
and was obtained from Ratnapriya et al. (2019)’s study under the
NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm
.nih.gov/geo/) accession numberGSE115828.We conducted qual-
ity control following the pipeline described in their original study.

Samples were filtered out owing to ambiguous clinical features (n=
26), poor sequencing results (n =24), inconsistent genotyping re-
sults (n =14), and divergent ancestry (n=6). A total of 70 samples
were removed, with a total of 453 samples remaining to be used
to perform the deconvolution analysis. We further evaluated
DeMixSC’s performance on genetically diverse populations by in-
cluding six samples with ancestry diverging from European-
American, which were previously excluded based on QC criteria
(Ratnapriya et al. 2019; Fan et al. 2022). DeMixSC achieved compa-
rable results (mean RMSE: 0.04; mean Spearman’s correlation:
0.75) to our original analysis, demonstrating DeMixSC’s potential
applicability across diverse genetic backgrounds.

Computational deconvolution with consensus reference

We performed deconvolution using four methods: DeMixSC,
MuSiC2, CIBERSORTx, and SQUID. The three existing methods
were selected for the following reasons: (1) MuSiC2 leveraged con-
ditionally stable genes from healthy references to analyze diseased
tissue; (2) CIBERSORTx was ranked second in our benchmarking
study; and (3) SQUID also deconvolved unmatched large bulk co-
horts using benchmark data. To run each method, we generated a
consensus reference by integrating seven samples from batch-2
(samples 5, 10, 12, 18, 19, 21, and 23) (Supplemental Table S1).
We selected these samples as they adequately represented these
three minor cell types: astrocytes, microglia cells, and RPE. For
each sample, we randomly selected up to 500 cells per cell type, us-
ing all available cells for types with fewer than 500 cells. Relative
abundance ukjg and cell size skj for each cell type k were calculated
for each sample j. A consensus referencematrix rwas subsequently
derived by multiplying the averaged relative abundance and the
averaged cell size across the selected samples. Mathematically,

the consensus reference is defined as rkg = �u
k
g �s

k, where �u
k
g =

∑
j u

k
jg

7

and �sk =
∑

j s
k
j

7
are the averaged abundance and averaged cell size

over the seven samples, respectively.

Validating deconvolution performance using reference proportions from
healthy human peripheral retina

To validate methods performance in deconvolving the AMD co-
hort, we compared the estimated cell type proportions of non-
AMD samples (n=105) with the previously reported proportions
in healthy human peripheral retina tissues (Liang et al. 2019).
The non-AMD samples were peripheral retina tissues from donors
aged between 55 and 94, with a mean age of 80 ±9.95 years.
Reference proportions were calculated based on snRNA-seq profil-
ing of the peripheral retina from three humandonors aged 60 to 80
years, matching the non-AMD samples by age. Seven major cell
types were identified with the following proportions: ACs,
7.74%; BCs, 15.6%; cones, 4.61%; HCs, 3.61%; MGs, 14.08%;
RGCs, 1.07%; and rods, 53.29% (Supplemental Table S3). To ac-
count for the additional three minor cell types (RPE, astrocyte,
and microglia) estimated in the non-AMD samples but not mea-
sured in the reference, we rescaled the proportions of the seven
major cell types so that they sum to one by dividing their total.

Accounting for the total cell loss in the AMD cohort

The decrease in overall cell count induced by photoreceptor (cone
and rod cells) loss likely amplifies the cell type proportions in the
AMD samples (Ambati et al. 2013; Menon et al. 2019; Fleckenstein
et al. 2021). The mean estimated fraction of photoreceptors is
55.21% (3.43% cone+51.78% rod) in non-AMD and 51.88%
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(2.82% cone+49.06% rod) in AMD (Fig. 4D). We use “x” to repre-
sent the mean percentage of lost photoreceptors in the AMD
condition and derive the relation: 0.5521(1−x)/(1−0.5521x) =
0.5188. Solving for x shows a 12.53% reduction in photoreceptors
in the peripheral AMD retina, which aligns well with biological ev-
idence that the peripheral retina experiences a more modest pho-
toreceptors loss (10%–20%) compared with the macular region
(>30%) (Curcio et al. 1996). Next, we investigated whether the ob-
served increases in BCs, MGs, and astrocytes were driven by the
death of photoreceptors or cell proliferation. Using our photore-
ceptor loss metric, we estimated the expected cell fractions in
AMD: (estimated non-AMD proportion)/(1−0.5521×0.1253).
The expected fractions were 19.00% for BCs (from 17.69% in
non-AMD), 8.31% forMGs (from7.74%), and 4.69% for astrocytes
(from 4.37%). The expected fraction of BCs closely matches
DeMixSC’s estimate (18.73%), suggesting the increase of BCs was
because of photoreceptor loss. For glial cells, DeMixSC’s estimates
(9.19% for MGs and 5.52% for astrocytes) exceeded the expected
fractions, suggesting an increase of these cells in the AMD
condition.

Deconvolution analysis on the human primary HGSC

benchmark data set

The HGSC benchmark data set, obtained from GEO under acces-
sion number GSE217517 (Hippen et al. 2023), comprised seven
primary HGSC samples. For each of these samples, three types of
bulk RNA-seq data were generated, with three technical replicates
for each data type: (1) dissociation with poly(A) enrichment
(Disso&poly(A)+, n =21), (2) dissociation with rRNA depletion
(Disso&rRNA−, n = 21), and (3) tissue chunk with rRNA depletion
(Chunk&rRNA−, n = 21). For the matched single-cell data, we fol-
lowed the cell type annotation as described in the original paper.
Thirteen cell types were identified: epithelial cells, endothelial
cells, fibroblasts, B cells, plasma cells, natural killer (NK) cells, in-
nate lymphoid cells (ILCs), monocytes, macrophages, mast cells,
dendritic cells (DCs), plasmacytoid dendritic cells (pDCs), and T
cells. All deconvolution methods were performed using the same
single-nucleus reference derived from the HGSC benchmark data
set.

Deconvolution analysis on the unmatched human primary

HGSC cohort

Data acquisition and quality control

The unmatched human primary HGSC cohort was obtained
from the study of Lee et al. (2020) from the European Genome-
phenome Archive (EGA; https://ega-archive.org) under accession
number EGAD00001005238. This cohort contains 30 primary
HGSC samples categorized into three treatment response groups:
complete gross resection (R0) and received neoadjuvant chemo-
therapy with an excellent (ER) or a poor (PR) response.

Computational deconvolution with consensus reference

We performed deconvolution with four methods, including
DeMixSC, MuSiC, CIBERSORTx, and SQUID. Unlike the AMD
study, we used MuSiC rather than MuSiC2 because MuSiC and
MuSiC2 shared the same computational framework, but MuSiC2
was specifically designed to use normal references for deconvolv-
ing disease samples, which was not applicable in the HGSC study.
To run each method, we generated a consensus reference by inte-
grating all seven scRNA-seq samples from the HGSC benchmark
data set. For each sample, we randomly selected up to 1000 cells
per cell type or selected all available cells if fewer than 1000 were

present. The methodology for generating the consensus reference
matrix followed the same approach described in the section
Deconvolution Analysis on the Human Diseased Retina Cohort
(AMD).

Comparing with the immunostaining results

Out of the 30 primary HGSC samples, 21 had both RNA-seq and
immunostaining data for macrophage, as measured using CD68
and CD163 antibodies. The detailed data description and immu-
nostaining results were obtained from the original study (Lee
et al. 2020).

Software availability

DeMixSC is freely available as an R package and can be download-
ed from our GitHub repository (https://github.com/wwylab/
DeMixSC). A tutorial for DeMixSC is available at GitHub (https://
wwylab.github.io/DeMixSC/). The DeMixSC source code is also
available as Supplemental Code.

Data access

All raw andprocessed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE175937. The human retina tissue snRNA-seq data in this study
have been submitted to the Human Cell Atlas Data Portal (https://
explore.data.humancellatlas.org/projects/9c20a245-f2c0-43ae-82c9-
2232ec6b594f).
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