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Abstract

Small Sample Inference

by

Inna Gerlovina

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Alan E. Hubbard, Chair

Multiple comparisons and small sample size, common characteristics of many types of
“Big Data” including those that are produced by genomic studies, present specific challenges
that affect reliability of inference. Use of multiple testing procedures necessitates estimation
of very small tail probabilities and thus approximation of distal tails of a test statistic distri-
bution. Results based on large deviation theory provide a formal condition that is necessary
to guarantee error rate control given practical sample sizes, linking the number of tests and
the sample size; this condition, however, is rarely satisfied. Using methods that are based
on Edgeworth expansions (relying especially on the work of Peter Hall), we explore what it
might translate into in terms of actual error rates. Our investigation illustrates how far the
actual error rates can be from the declared nominal levels, indicating poor error rate control.

Edgeworth expansions, providing higher order approximations to the sampling distribu-
tion, also offer a promising direction for data analysis that could ameliorate the situation.
In Chapter 1, we derive generalized expansions for studentized mean-based statistics that
incorporate ordinary and moderated one- and two-sample t-statistics as well as Welch t-
test. Fifth-order expansions are generated with our developed software that can be used
to produce expansions of an arbitrary order. In Chapter 2, we propose a data analysis
method based on these expansions that includes tail diagnostic procedure and small sam-
ple adjustment. Using the software algorithm developed for generating expansions, we also
obtain results for unbiased moment estimation of a general order. Chapter 3 introduces a
general linear combination (GLC) bootstrap, which is specifically tailored for small sample
size. A stabilized variance version of GLC bootstrap, based on empirical Bayes approach, is
developed for high-dimensional data. Applying these methods to clustering, we propose an
inferential procedure that produces pairwise clustering probabilities.
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Introduction

Explosive proliferation of recordable information that keeps Big Data at the top of the
buzzword list not only calls for continuing development of analytical methodology but also
ignites heated debates in statistical and scientific literature as well as in the media. Follow-
ing March 14, 2014 article in Science magazine [46] (also [45]) disecting Google Flu Trends
failure, commentaries and opinion pieces on the subject appeared in such publications as
New York Times [49], Financial Times [35], and Harvard Business Reveiw [27]. Discussions
on misuse of statistical inference as well as reliability of conclusions have a very long history,
their current and highest wave starting back in 2005 when the paper titled “Why Most Pub-
lished Research Findings Are False” by John Ioannidis [38] came out and quickly became
a famous catalyst on the topic - “an instant cult classic” [62]. This wave culminated with
American Statistical Association issuing a statement on March 7, 2016 that calls forth a
new era of statistical literacy and reliability/reproducibility of scientific findings [70]. With
an advent of Big Data, the enthusiasm that accompanied it and the limitless possibilities it
opened were counter-balanced by the growing distrust in published findings. Concerns out-
lined in Ioannidis’ article did not disappear with technogolical advances and restructuring
of social networking that brought about massive amounts of generated (produced and col-
lected) data. Just the opposite - the number of discoveries in many fields were rising, and so
was the skepticism about how trustworthy those results might be, reflected in opinion pieces
and papers such as an eloquently titled “A vast graveyard of undead theories: Publication
bias and psychological science’s aversion to the null” [25].

In describing data, adjectives big and small take on special meanings and are not neces-
sarily mutually exclusive anymore - Big Data and small sample size can be the characteristics
of the same dataset. Complexity of Big data often involves multiple comparisons and thus
necessitates testing a great number of hypotheses simultaneously, which only exacerbates
problems posed by the small sample size, making inference yet more challenging. Much
quoted words from David Speigelhalter, professor at the Statistical Laboratory of the Uni-
versity of Cambridge, summarize the problem with blunt simplicity: “There are a lot of small
data problems that occur in big data. They don’t disappear because you’ve got lots of the
stuff. They get worse.” [35]

Keeping a traditional assumption of the gravity of type I errors compared to type II errors,
one of the main points of rigorous statistical inference is to protect against the proliferation
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of distracting and potentially misleading false positive results. This is partly addressed by
a variety of multiple testing procedures; still, many other factors contribute to reliability
of the conclusions. Given these factors, reliability can itself be explored, quantified, and
possibly improved by the choice of an analysis method. This notion relates to the “inference
on inference” issue, which has also received attention in the literature recently; for example
exploring the fact that summaries such as p-values and confidence intervals are themselves
statistics and carry a certain amount of noise [28]. When “big data” means that the number
of tests gets progressively larger and information available for testing each of the hypotheses
gets yet more limited, finite sample departures from asymptotic distributions become crit-
ical, possibly leading to biased inference and inflated false positive error rates that extend
far beyond nominal level.

As an example of small sample high-dimensional data, consider a genomic study where
the number of replicates, n, is very limited. Each replicate consists of many features, such
as genes, RNA-seq, miRNA, etc.; analysis of such a study includes testing one or more hy-
potheses for each of the features bringing the number of tests, m, to hundreds of thousands
or even millions. Accounting for multiple comparisons is commonly done by some multiple
testing procedure aimed at controlling an error rate, either familywise error rate (FWER) or
false discovery rate (FDR). All of these procedures move the critical value (rejection cut-off)
further from the center of distribution, requiring estimation of distal tail probabilities of the
test statistic distribution under the null; the greater the number of tests, the smaller the
probabilities that need to be estimated for the null hypothesis to be rejected, and the more
extreme tails of the distribution need to be approximated.

For a small sample size, true sampling distribution of asymptotically linear (and thus
asymptotically normal) estimators might be quite far from normal. For large deviations -
quantiles far away from the mean - it can potentially present an even bigger problem and
adversely affect reliability of inference; even apparently small departures from normality
might have a significantly amplified effect on the far tails resulting in poor approximation
and, consequently, poor error rate control and ultimately faulty inferences.

How can we know the inference is to be trusted - what is needed to ensure a declared
level of certainty? The most accurate inference is achieved using approaches with rigorous
theoretical underpinnings, which in this case are provided by large deviation theory. The
theory is used to determine the sample size that is large enough so that multivariate sam-
pling distribution of a test statistic (such as sample average) is closely approximated by
multivariate normal distribution at the appropriate quantiles (based on m) for proper error
rate control. Some of the conditions that ensure the convergence of Cramer’s large devia-
tion expansion establish formal relationship between a sample size n and a quantile x of the
distribution of an estimator: x = o

(
n

1
6

)
[20, 52]. As noted above, in high-dimensional data

the critical value (cut-off quantile) xc is directly related to the number of tests m through a
multiple testing procedure, and that leads to the condition that is necessary and sufficient
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to guarantee error rate control: For a Normal or Student’s t approximation of the distribu-
tion of the test statistic, error rate control (either FWER or FDR) can be achieved if and
only if log(m) = o(n

1
3 ) [69]. If this condition is satisfied, the actual error rates are close to

the nominal ones and the null hypothesis is indeed rejected at the declared significance level
α; failure to achieve it puts reported results into the territory of hope rather than probability.

How often is this condition satisfied in high-dimensional data we encounter in practice?
To illustrate, we gauge the sample size that would make error rate control possible for a
given number of tests. Suppose m = 10, 000, which is relatively modest; then, if we want
log(m) = 1

10
n

1
3 , n should be 800, 000. As a comparison, sample sizes of recently uploaded

datasets on GEO provide a striking reality check: sample sizes of the great majority of the
studies are below 20 and very few reach above 80 as can be seen in Figure 0.1. Many of
these studies are genome-wide and therefore the number of tests is usually high (starting at
tens of thousands), which means error rate control is not guaranteed for such studies though
it is still not clear how far off claimed results might be from the truth.

Figure 0.1: Sample size histogram - GEO datasets.

sample size

20 40 60 80

One way to avoid making assumptions on sampling distribution is to use permutation
when it is relevant (testing for independence) - a nonparametric exact method. That, how-
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ever, will present a problem of a different kind: the limited number of permutations available
for a small sample will provide too coarse a grid to estimate very small probabilities. Then
the smallest possible unadjusted p-value, which would be a result of a situation when ob-
served data provides an extreme point of a permutation distribution, is 1

# of permutations . After
multiple testing correction with large number of comparisons, the minimal adjusted p-value
will be too large to pass the significance threshold in most cases and thus will never allow
any signal detection.

Methods based on finite sample inequalities and bounds (such as Chebychev’s inequality,
Hoefding bound, and Berry-Esseen bound) provide ways to obtain reliable inference in finite
samples - see, for example, exact confidence intervals for the mean, based on Bernstein and
Bennett’s inequalities [60], which guarantee coverage probability to be greater than or equal
to the nominal level for all sample sizes and all possible data generating distributions that
satisfy method’s assumptions. These methods are generally conservative; in small samples,
where power is already an issue, their ability to detect signal can be very limited. However,
they might be preferable in situations where false positives are highly undesirable and error
rate control is crucial.

Faced with the problems described above, we would like to be able to achieve more re-
liable inference while not giving up on gaining knowlegde in the reality of a small sample
size. Since the data is so limited, the goal would be to extract maximum information from it
and use the data in the most efficient way. Some natural ways to do that include resampling
(where each data point is used repeatedly), calculating higher sample moments in addition to
the first two and incorporating them into analysis, and, for high-dimensional data, borrowing
information from the whole dataset for use in each individual test/feature. We employ these
three approaches in proposed methods.

Higher moments are used in Edgeworth expansions to better approximate finite sampling
distributions; these expansions are the focus of Chapters 1 and 2. To achieve our goal, it
would be desirable to obtain a closer approximation to the distribution of interest (such as
a true distribution of a test statistic or a null distribution for the hypothesis testing), and
Edgeworth series provides the means to obtain higher-order approximations for such distiru-
bution. Edgeworth series is an asymptotic expansion that originally extended the idea of a
Central Limit Theorem providing an expansion for the distribution of a standardized sample
mean, as well as a general framework for obtaining expansions of the same type for other
sample statistics such as a studentized mean or a variance. It is a series of functions where
the first function (which is usually denoted as a zero term) is a standard normal c.d.f. Φ(·).
Since it is a power series in n−

1
2 , truncation after j’th term provides an approximation to

the distribution of interest as the remainder is of the order of n−
j+1
2 . This truncated series

is usually called a j-term expansion or a (j + 1)’th order approximation.
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In Chapter 1, we derive expansions for a generalized version of mean-based statistics that
incorporates various standardized and studentized means, including statistics for two-sample
and Welch t-tests. Our developed software generates expansions of an arbitrary order that
can be used in data analysis. Increasingly higher order approximations offer an illuminating
tool for assessing possible discrepancies between actual and nominal error rates and give us
hope for the approximation refinement and achieving more stabilized inference. These are
the topics of Chapter 2, where empirical Edgeworth expansions are explored and adapted to
small sample size and data analysis method is developed; this method includes tail diagnostic
and small sample adjustment.

Resampling is the subject of Chapter 3 where we propose a generalization of non-
parametric bootstrap - general linear combination (GLC) bootstrap. Two important versions
of that generalization are specifically designed for small sample size: unbiased variance GLC
and stabilized variance (for high-dimensional data) GLC bootstrap. They correct the vari-
ance of the bootstrap generating distirubtion and break the discreteness of the small sample
size non-parametric resampling by introducing a controlled amount of noise to bootstrap
distribution.

For both Edgeworth expansions and GLC bootstrap, we use moderated t-statistic [66],
which is based on empirical Bayes methods that borrow information for individual tests
from other features in a high-dimensional dataset, and is therefore very useful for small
sample inference. It uses a hierarchical model that results in shrinkage of residual sample
variances toward a common value (producing posterior variances) and therefore stabilizes
feature-specific variances, addressing one of the main challenges of small sample inference.
Thus, Edgeworth expansion for moderated t-statistic, which utilizes “external information”
and reduces variability of the scaling factor, might be an especially attractive tool for small
sample high-dimensional data analysis. In GLC bootstrap, we turn to posterior variance
to implement a stabilized-variance version. When the number of tests is large, this method
often results in increased power and reduced error rates.
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Chapter 1

General order Edgeworth expansions for
ordinary and moderated t-statistics

Higher-order approach, and especially developments based on Edgeworth expansions (EE),
played an important role in statistical inference for over a century - in particular as a means
to obtain more accurate approximation to the distribution of interest, to gain understanding
and establish properties of methods like bootstrap (and develop inferential procedures in
combination with these methods), and to compare different statistical procedures. While
interest to asymptotic expansions has been sustained throughout much of this time, some
advances in statistical theory and methodology brought renewed attention to EE - such as
fundamental theoretical results of Bhattacharya and Ghosh [6], [7] and introduction of boot-
strap [22]. More recently, proliferation of massive amounts of data, often with complicated
structure, introduced specific challenges where higher-order inference procedures could be
very beneficial - for example, multiple comparisons, small sample size, and high-dimensional
data analysis that requires probability estimation in far tail regions as a consequence of
some multiple testing procedure. For these challenges, Edgeworth expansions might offer a
promising direction and become the basis for new tools with better error rate control.

Tremendous amount of research has been conducted on validity and derivation of EE for
many tests, classes of estimators, and test statistics. Among them, to name just a few, are
Hotelling T 2 test [42], [26], linear and non-linear regression models ([58], [44], Cox regression
model [30], linear rank statistics [1], [10], [64], [41], M-estimators [44], U-statistics [9], [14],
[36]. Expansions have been developed for various dependent data structures: Markov chains
[5], martingales [50], autoregression and ARMA processes [67], [40]; they have also been used
for sampling procedures (e.g. [72]). Some papers focus specifically on multivariate analysis
[64], [26], [44], [2], [55].

Research establishing validity and theoretical properties of asymptotic expansions, start-
ing with Cramer [20], has been the basis for developing EE. Classical Edgeworth expansion
theory regarded a sum of independent identically distributed variables - a sample mean,
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where the mean is standardized, or scaled by a known standard deviation. This was followed
by work of Petrov [52] that proved the results for sums of independent but not necessarily
identically distributed random variables; later research extended EE to sums of independent
and somewhat dependent random variables [64]. However, in order to use EE as an inferen-
tial tool, expansions for studentized, not standardized, statistics are needed as the variance
is not normally known in practice and needs to be estimated - with t-statistic being the most
important and commonly used one. First expansions for a studentized mean were derived
by Chung [18] and included fourth order (3-term) expansion. Groundbreaking research by
Bhattacharya and Ghosh [6] proved the validity of EE for any multivariate asymptotically
linear estimator in general case. Their moment conditions for studentized mean required
finite 2(k + 2) moments for a k-term expansion (an expansion with a remainder o

(
n−k/2

)
,

also called (k + 1)’th order EE). Next important development for t-statistic happened in
1987 when P. Hall introduced a special streamlined way of deriving EE specifically for an
ordinary t-statistic, obtaining an explicit 2-term expansion [31], [33]. He proved the validity
of a k-term EE for minimal moment conditions: k + 2 finite moments, which is exactly the
number of moments needed for the expansion, with a non-singularity condition on an orig-
inal distribution. Work that followed was concerned with less resrictive and later optimal
smoothness conditions in various cases (as well as results on Cramer condition) [12], [4], [3]
and different dependence conditions for many different cases (most generally in [43]).

For many statistics and naturally for more general classes/groups of estimators, EE are
presented in a general form, often in terms of cumulants of the distribution of the estimator
or some intermediate statistics. As such, they are not immediately adaptable for practical
implementation and would require additional steps for that. These steps can be further ana-
lytical processing, numerical methods such as numerical differentiation, or estimation of the
cumulants of sampling distribution with the help of resampling methods such as jackknife
[57] and Monte Carlo simulation [34]. Expansions for t-statistic presented by P. Hall [31]
are expressed in terms of cumulants of the original distribution (equaled to scaled cumulants
since unit variance is assumed), which is the classical form of EE for the sum/mean, and
standard normal p.d.f. - exact algebraic expressions. We follow Hall’s method [33], general-
ize it to various commonly used variants of t-statistic, including one- and two-sample t-tests
as well as the Welch test, and present these results in an explicit ready-to-use form.

When sample size n is small or moderate, the difference between unbiased s2
unb =

1
n−1

∑n
i=1

(
Xi − X̄

)2 and biased s2
b = 1

n

∑n
i=1

(
Xi − X̄

)2 variance estimates is not negligi-
ble, so it would be useful to obtain EE for a sample mean scaled by an inbiased standard
error estimate. Historically, most expansions for t-statistic are developed for a biased es-
timate; Chung [18] mentions the unbiased version before switching to the biased one “for
brevity”, Hendriks at al [37] consider s2

unb and suggest an approximated correction for it
based on Taylor expansion. With our generalized t-statistic framework we are able to pro-
vide an exact correction resulting in EE for the unbiased version, as well as for the pooled
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variance in a two-sample t-test. Another useful and widely used in high-dimensional data
analysis variant is a so-called moderated t-statistic (part of a more general moderated con-
trast estimators approach that also includes moderated F-statistic) based on empirical Bayes
method [65], which also fits into our framework and for which results are presented (both
one- and two-sample). In moderated t-statistic, the sample mean is scaled by a posterior
variance; this approach uses a hierarchical model that leads to a shrinkage of feature-wise
(e.g. gene-wise) residual sample variances towards a common value, thus producing far more
stable inference when sample size is small. To accommodate these statistics and be able to
incorporate them into a more general case, we introduce an adjustment to the traditional
unit variance of the estimator, getting a form of characteristic function and therefore an
expansion that is similar to the general non-unit variance expansion (see, for example [6],
[43]). Using computer algebra, we get an exact expression for this adjustment in both one-
and two-sample tests.

Throughout the paper, we adopt the terminology of (k + 1)’th order or k-term expan-
sion, where normal approximation is a zero term. In most of the literature, expansions are
derived up to the second or third order (Chung presents 3-term or fourth order expansion).
With small samples and distributions that are far enough from Gaussian, especially highly
skewed distributions, closer approximations and terms beyond second or third order might
be desirable. Other advantages of having subsequent terms include providing insights into
the error of lower-order approximations, or comparing different procedures based on these
lower-order approximations [8]. However, obtaining these higher-order terms might be hard
due to long expressions and tedious algebra. Blinnikov et al [11] propose an algorithm that
helps obtain the terms for the classical standardized mean (sum of independent random vari-
ables); they calculate 12 terms using Fortran. Current technological capabilities allow us to
develop a software that generates expansions for general case t-statistic of a desired order;
our algorithm covers a standardized case as well, calculations for which are considerably
faster than those for studentized statistics. Serving as a link between well developed theory
and practical use, our results are directly available for practical application and the method
is developed with the goal of producing user-friendly analysis tools. In the paper, some of
the cases (with shorter expressions for Edgeworth expansions) are presented up to the fifth
order; the terms for the other ones that are too long are not included here but are available
as well and will be a part of a software package. Also, the general results can be used for
any statistic if the moments of the sampling distribution are available (as functions of n).

This paper is organized as follows: section 1.1 outlines a roadmap that we follow to derive
the expansions, where our main contribution comes in step 1 - finding moments of the distri-
bution of the test statistic expressed in moments of the original distribution; the other steps
are calculated with Symbolic Python. In section 1.2 we revisit standardized sample mean and
two-sample difference in means. While expansion for a mean is well known, we demonstrate
the use of the roadmap to get the results and describe the algorithm for finding moments
of the mean, which will later be expanded for a more complicated studentized case. We
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also find scaled cumulants of the distribution of the two-sample difference in means, which
will be helpful in reducing long expressions for the studentized version. Section 1.3 deals
with general case: it details the steps, mainly step 1, including setup and derivation of the
moments - generalizing Hall’s method; it also includes an overview of the Fourier transform
step that incorporates the variance adjustments and provides expressions for them; finally,
that section provides general results that can be used for any estimator. Section 1.4 presents
the results for the following statistics: a) ordinary t-statistic - one-sample: biased (results
for two terms obtained by P. Hall) and unbiased variance estimates; two-sample: unequal
variance, biased and unbiased variance estmates (Welch test), equal variance, unbiased vari-
ance estmate (pooled variance); b) moderated t-statistic - one-sample: posterior variance,
unbiased variance estimate; two-sample: posterior variance, equal variance, unbiased vari-
ance estimate. We conclude with a simple illustration for higher-order approximations based
on Edgeworth expansions of different orders (section 1.5).

1.1 Roadmap for deriving Edgeworth expansions
Let X1, . . . , Xn be a sample of n i.i.d. random variables with mean µ1 and variance σ2 and
let θ̂ be some normalized test statistic with c.d.f. Fθ̂(·). One of the common representations
of Edgeworth expansion for Fθ̂ is

Fθ̂(x) = P
(
θ̂ 6 x

)
= Φ(x) + n−

1
2p1(x)φ(x) + n−1p2(x)φ(x) + . . . , (1.1)

where polynomials pi(x) are expressed in terms of moments µj of distribution of X or stan-
dardized cumulants λj =

κj
σj , where κj is a j’th cumulant of a data generating distribution.

Φ(·) and φ(·) denote standard normal c.d.f. and p.d.f. respectively.

For a two-sample or multiple-sample test statistic, this expression should either be modi-
fied to incorporate sample sizes n1, n2, . . . , or some summary measure n can be used to keep
the same form. In his book [33], Hall uses qi(x) instead of pi(x) for EE for a studentized
mean to distinguish it from that for a standardized mean. We will use qi(x) for a general
case, also incorporating variance adjustment r2 (section 1.3) to get the form:

Fθ̂(x) = Φ
(x
r

)
+

K∑
i=1

n−
i
2 qi(x)φ

(x
r

)
+ o

(
n−

K
2

)
. (1.2)

For an arbitrary test statistic θ̂, to obtain an Edgeworth expansion of its distribution,
the following roadmap can be used:

1. Find cumulants κm,θ̂’s of the distribution of θ̂ by deriving non-central moments E(θ̂m),
m = 1, 2, . . . .
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2. Characteristic function ϕθ̂ of θ̂ is

ϕθ̂(t) = exp

[
κ1,θ̂it+ κ2,θ̂

(it)2

2
+ κ3,θ̂

(it)3

3!
+ · · ·+ κj,θ̂

(it)j

j!
+ · · ·

]
(1.3)

3. Taylor expansion of ϕθ̂ about 0:

ϕθ̂(t) = 1 +

(
κ1,θ̂it+ κ2,θ̂

(it)2

2
+ κ3,θ̂

(it)3

3!
+ · · ·

)
+

1

2

(
κ1,θ̂it+ κ2,θ̂

(it)2

2
+ κ3,θ̂

(it)3

3!
+ · · ·

)2

+ · · · (1.4)

4. Collect the terms of ϕθ̂ according to the powers of n−
1
2 ; truncate the series to the

desired order. Note: for two- or multiple-sample statistics, some kind of summary,
such as an average of n1, n2, . . . can be used for that purpose.

5. Use Hermite polynomials (in place of (it)j) to obtain Edgeworth expansion through
Fourier transform.

6. Optional: to get the expansion in terms of scaled cumulants, substitute the moments
of the original distribution with standardized cumulants λj.

Depending on the statistic and an order of approximation, calculations can be computa-
tionally intensive, so it might be helpful to start truncations at earlier steps. We will also
address some calculation efficiency issues in later sections.

For a K-term (or, in other words, (K+1)’th-order) Edgeworth expansion for mean-based
statistics, one needs E(θ̂m), m = 1, . . . ,M , where M = K + 2 - since j-th cumulant κj is
of order n−

j−2
2 ([33] p.46) and k term will have a n−

k
2 factor (e.g. for a 4-term expansion

we need to consider m = 1, . . . , 6). For other statistics, expansions of the same order might
involve a different number of moments of the original distribution: for example, K-term
expansion for a sample variance will require 2(K + 2) moments/cumulants.

Therefore steps 2 and 3 can be rewritten as

2.

ϕθ̂(t) = exp

[
κ1,θ̂it+ κ2,θ̂

(it)2

2
+ κ3,θ̂

(it)3

3!
+ · · ·+ κK+2,θ̂

(it)K+2

(K + 2)!

]
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3.

ϕθ̂(t) = 1 +

(
κ1,θ̂it+ κ2,θ̂

(it)2

2
+ · · ·+ κK+2,θ̂

(it)K+2

(K + 2)!

)
+

1

2

(
κ1,θ̂it+ κ2,θ̂

(it)2

2
+ · · ·+ κK+2,θ̂

(it)K+2

(K + 2)!

)2

...

+
1

K!

(
κ1,θ̂it+ κ2,θ̂

(it)2

2
+ · · ·+ κK+2,θ̂

(it)K+2

(K + 2)!

)K
(1.5)

1.2 Standardized statistics - known variance
In this section we go over a sample mean and a two-sample difference in means scaled by
their standard deviations. These statistics can be viewed as sums of random variables, and
Petrov [52] proved validity of EE and derived the expansion for the sum of independent
random variables for an arbitrary order. Blinnikov and Moessner [11] suggest a simplified
algorithm for obtaining this expansion, calculating a twelfth-order expansion for a standard-
ized mean with their Fortran program. Petrov’s generalization allows us to easily modify
the series for a sample mean to the two-sample (or possibly multiple-sample) case. With
current software capabilities, we can calculate these expansions straightforwardly using the
roadmap above within a short computational time. To generate expressions for moments of
the distribution of the mean and calculate involved coefficients, we use a simple algorithm
that will be extended in later sections for studentized statistics.

For generality, rewrite the Edgeworth series for such sum of random variables in a slightly
different way:

Fθ̂(x) = Φ(x) + r1(x)φ(x) + r2(x)φ(x) + r3(x)φ(x) + · · · , (1.6)

where ri’s have n−
i
2 factors embedded in them. This form makes it convenient to generalize

to a two-sample difference in means where sample sizes nx and ny might be different. This
can be expanded further using known explicit expansion for the sum and scaled cumulants
λj,θ̂ of the distribution of the test statistic θ̂:

Fθ̂(x) = Φ(x)− 1

6
λ3,θ̂(x

2 − 1)φ(x)

−
[

1

24
λ4,θ̂(x

3 − 3x) +
1

72
λ2

3,θ̂
(x5 − 10x3 + 15x)

]
φ(x) + · · · (1.7)
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Sample mean

Consider a random variable X with the mean µ and variance σ2.
X1, . . . , Xn is a random sample and the test statistic is

θ̂ =
√
n
X̄ − µ
σ

∼ Fθ̂ (1.8)

If we refer to the classical form of Edgeworth series (1.1), the polynomials pi(x) are:

p1(x) = −1

6
λ3(x2 − 1) (1.9)

p2(x) =
1

24
λ4(x3 − 3x) +

1

72
λ2

3(x5 − 10x3 + 15x), (1.10)

p3(x) =−
[

1

120
λ5(x4 − 6x2 + 3) +

1

144
λ3λ4(x6 − 15x4 + 45x2 − 15)

+
1

1296
λ3

3(x8 − 28x6 + 210x4 − 420x2 + 105)

]
(1.11)

p4(x) =−
[

1

720
λ6(x5 − 10x3 + 15x)

+
1

1152
λ2

4(x7 − 21x5 + 105x3 − 105x)

+
1

720
λ3λ5(x7 − 21x5 + 105x3 − 105x)

+
1

1728
λ4λ

2
3(x9 − 36x7 + 378x5 + 1260x3 + 945x)

+
1

31104
λ4

3(x11 − 55x9 + 990x7 − 6930x5 + 17325x3 − 10395x)

]
. (1.12)

As mentioned earlier, λj =
κj
σj

and κj’s are the cumulants of the distribution of X. In
particular:

κ3 = E(X − µ)3; λ3 is the skewness of the data generating distribution;
κ4 = E(X − µ)4 − 3σ4; λ4 is the kurtosis.

For a simple standardized sample mean, λj,θ̂ = n−
j−2
2 λj - to be used with EE represen-

tation in (1.7).
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Expansion form presented in (1.7) also makes it explicit that each term of the expansion,
having a factor of respective power of n embedded in λj,θ̂, should have only those combi-
nations of λ’s that yield that particular order - e.g. term 2 has only λ2

3,θ̂
=
(
n−

1
2λ3

)2 and
λ4,θ̂ = n−1λ4. Going back to the notation with scaled cumulants λj of the original distri-
bution, it translates into an observation that each pj (as in (1.9) - (1.12)) is comprised of
the terms that have only λ’s associated with the correct order - thus, for example, p3 has
terms with factors λ5, λ3λ4, and λ3

3. This correspondence holds for standardized statistics
but breaks down when we turn to statistics that incorporate estimated variance.

Following the roadmap, we get the same results. Step 1 calculations:

E
(
θ̂m
)

= n
m
2 σ−mE

[(
X̄ − µ

)m]
; (1.13)

E(X − µ) = 0 and µj = E [(X − µ)j], j = 2, . . . are central moments of the distribution of
X. For simplicity, we can set µ = 0 without any loss of generality. Then

E
[(
X̄ − µ

)m]
= E

[(
X̄
)m]

=
1

nm

n∑
i1=1

n∑
i2=2

· · ·
n∑
im

E (Xi1Xi2 · · ·Xim) (1.14)

To find (1.14), we need to consider all the different combinations of ordered indices
i1, i2, . . . , im; ij = 1, . . . , n for each j. There are nm such combinations but many com-
binations yield the same E(Xi1 · · ·Xim) - for example, E(X2X2X2X2X2X5X5X1X1) =
E(X4X3X4X6X6X3X6X6X6) = µ2

2 µ5. Combinations that produce the same expectation
form a set that we will call a grouping, and the problem therefore reduces to considering
all the groupings (each producing a distinct expectation) and calculating their coefficients,
which are the number of combinations in each set. Each product Xi1 · · ·Xim can be bro-
ken into smaller products, or groups, of X’s with the same indices such as {Xij : ij = c},
c = 1, . . . , n. The number of groups ranges between 1 (when all the indices are the same:
i1 = i2 = · · · = im) and m (when all the indices are different: i1 6= i2 6= · · · 6= im); sizes
of these groups determine E(Xi1 · · ·Xim). Thus each grouping is fully characterized by the
number of groups and the group sizes.

Let d denote the number of groups in one grouping G and a1, . . . , ad - the numbers of X’s
in each group,

∑d
u=1 au = m; set of group sizes is unordered, so assigning indices to a’s is

arbitrary (e.g. decreasing). In the example above: m = 9, d = 3, a1 = 5, a2 = 2, and a3 = 2.
If
∑d

u=1 I(au = 1) > 0 (at least one group is of size 1), E(Xi1 · · ·Xim) = 0 since E(X) = 0
and there is no need to calculate a coefficient for this grouping, which is important in terms
of computational efficiency; otherwise E(Xi1 · · ·Xim) =

∏d
u=1 µau . Adding a subscript g to

indicate a grouping G, we get

E
[(
X̄
)m]

=
∑
all g

Cg

dg∏
u=1

µag,u , (1.15)
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where Cg is the coefficient for G, i.e. the number of combinations that yield {ag,u}.

Cg = (n)d

(
m

ag,1

)(
m− ag,1
ag,2

)(
m− ag,1 − ag,2

ag,3

)
· · ·
(
ag,d−1 + ag,d

ag,d−1

)
sg,1! sg,2! · · ·

, (1.16)

where (n)d = n (n − 1) · · · (n − d + 1) and sg’s are the numbers of the same sized groups if
there are any - e.g. for group sizes a1 = a2 = 5, a3 = a4 = 4, and a5 = a6 = a7 = 2, we
will get s1 = 2, s2 = 2, and s3 = 3 (from these we can gather that m = 24, d = 7, and
E(X1 · · ·Xm) = µ2

5 µ
2
4 µ

3
2). Going back to our original example (group sizes {5, 2, 2}) - there

is only one sg: sg,1 = 2; the coefficient for that example is Cg = n (n− 1) (n− 2)
1

2!

(
9

5

)(
4

2

)
.

One way of arriving at the expression for Cg could be the following: There are
(n)d

sg,1! sg,2! · · ·
ways to pick (unordered) indices that satisfy given group sizes (set {ag,u}) and(

m

ag,1

)(
m− ag,1
ag,2

)(
m− ag,1 − ag,2

ag,3

)
· · ·
(
ag,d−1 + ag,d

ag,d−1

)
ways to place these indices on m

positions.

Our software generates expressions for E
[(
X̄
)m] for a given m using the method de-

scribed above. To find all the possible groupings, we impose an ordering on them and use it
to generate each consecutive grouping when the previous one is given, thus moving through
a complete set of groupings from {a1 = m} to {a1 = a2 = · · · = am = 1}. For example, in an
agglomerative order, a grouping {5, 2, 2} is preceded by {5, 2, 1, 1} and followed by {5, 3, 1}.

The smallest number of groups is d = 1, which produces an order of
n

nm
=

1

nm−1
(the

highest order in the range); the largest d with a non-zero contribution to E
(
X̄m
)
is
⌊
m
2

⌋
(when the indices of X appear in pairs and there are no unpaired indices; when m is odd,

one of the groups is of size 3), and the order it produces is
1

nd
m
2 e

.

Thus we have obtained non-central moments of the distribution of θ̂, from which the
cumulants are calculated (the rest of Step 1). Subsequent steps are calculated with SymPy,
a Python library [39].

Two-Sample Difference in Means

As mentioned before, two-sample difference in means can be approached as a sum of inde-
pendent random variables (unlike a similar case with studentized statistics) and therefore the
general form (1.7) can be used. Then the only remaining task is to find λj,θ̂ for a two-sample
case; a simple way to do it would be by considering the characteristic function of θ̂. For this
case, we assume minimal restrictions and allow variances and other cumulants to be different
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for the two random variables that comrise the sample.

Let X, Y be independent random variables with means µx, µy, variances σ2
x, σ2

y, cumu-
lants κj,x, κj,y, and scaled cumulants λj,x, λj,y. The sample is X1, . . . , Xnx , Y1, . . . , Yny . We
wish to find an expansion for Fθ̂, with

θ̂ =
X̄ − Ȳ − (µx − µy)√

σ2
x

nx
+

σ2
y

ny

.

Proceeding in the same way as the derivation of the original expansion does, we start with
characteristic function of the distribution of X̄ − Ȳ expressed in terms of its cumulants:

ϕX̄−Ȳ (t) =

[
ϕX

(
t

nx

)]nx
[
ϕY

(
− t

ny

)]ny

= exp

[
nx

(
κ1,x

it

nx
+ κ2,x

(it)2

2n2
x

+ · · ·+ κj,x
(it)j

j!njx
+ · · ·

)

+ ny

(
κ1,y

(−it)
ny

+ κ2,y
(−it)2

2n2
y

+ · · ·+ κj,y
(−it)j

j!njy
+ · · ·

)]

= exp

[
(κ1,x − κ1,y)it+

(
κ2,x

nx
+
κ2,y

ny

)
(it)2

2
+ · · ·+

(
κj,x

nj−1
x

+ (−1)j
κj,y

nj−1
y

)
(it)j

j!
+ · · ·

]

= exp

[
κ1,X̄−Ȳ it+ κ2,X̄−Ȳ

(it)2

2
+ · · ·+ κj,X̄−Ȳ

(it)j

j!
+ · · ·

]
, where

κ1,X̄−Ȳ = µx − µy

κ2,X̄−Ȳ =
σ2
x

nx
+
σ2
y

ny

κ3,X̄−Ȳ =
κ3,x

n2
x

− κ3,y

n2
y

, and so on.

Terms for Edgeworth expansions are gathered according to their order - powers of n−
1
2

- so it would be helpful (in fact, necessary if we want to keep the same general form (1.1))
to have a single summary measure for representing sample size. We assume that nx and ny
are comparable; to eliminate nx and ny and have a quantity n representing sample size, we
introduce

n =
nx + ny

2
, bx =

n

nx
, and by =

n

ny
. (1.17)
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Then κ2,X̄−Ȳ = 1
n

(
bxσ

2
x + byσ

2
y

)
, κ3,X̄−Ȳ = 1

n2

(
b2
xκ3,x − b2

yκ3,y

)
, etc. Or, in terms of scaled

cumulants λj,X̄−Ȳ ,

λ3,X̄−Ȳ =
κ3,X̄−Ȳ

κ
3/2

2,X̄−Ȳ

=
1

n
1
2

λ3,x b
2
xσ

3
x − λ3,y b

2
yσ

3
y(

bxσ2
x + byσ2

y

) 3
2

λ4,X̄−Ȳ =
κ4,X̄−Ȳ

κ2
2,X̄−Ȳ

=
1

n

λ4,x b
3
xσ

4
x + λ4,y b

3
yσ

4
y(

bxσ2
x + byσ2

y

)2 and in general

λj,X̄−Ȳ =
1

n
j−2
2

λj,x b
j−1
x σjx + (−1)j λj,y b

j−1
y σjy(

bxσ2
x + byσ2

y

) j
2

(1.18)

Since θ̂ =
(X̄ − Ȳ )− E(X̄ − Ȳ )[

V ar(X̄ − Ȳ )
]1/2 =

(X̄ − Ȳ )− E(X̄ − Ȳ )

κ
1/2

2,X̄−Ȳ

,

κj,θ̂ =
κj,X̄−Ȳ

κ
j/2

2,X̄−Ȳ

, and λj,θ̂ =
κj,θ̂

κ
j/2

2,θ̂

= λj,X̄−Ȳ for all j. (1.19)

This shows that to get polynomials pi(x) for Edgeworth expansion in a standard form,

one only needs to substitute
λj,x b

j−1
x σjx + (−1)j λj,y b

j−1
y σjy(

bxσ2
x + byσ2

y

) j
2

for λj, j = 3, . . . in (1.9), (1.10),

etc. in a one-sample expansion.

1.3 t-statistic - General Case
With the possible goal of applying higher order approximations to inference in data analysis,
the need arises to consider Edgeworth expansions for the estimators that incorporate random
sample variance. By design, Edgeworth expansions, having standard normal c.d.f. as a base,
are derived for the normalized - unit variance - statistics. However, as the true variance is
usually unknown, the standardized mean-based estimators are not useful for data analysis;
instead, their studentized versions, such as one or two-sample t-statistics, are commonly used
in practice, and expansions for these statistics could have practical applications leading to
potential data analysis methods that aim at closer approximations of distributions of interest.

In this section, we elaborate some of the steps of the roadmap and present the general
results. Most attention is paid to step 1 in application to one- and two-sample t-statistics,
where we propose a general framework that would incorporate different versions of these
statistics, including the setup and obtaining the moments of sampling distributions in this
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generalized case. We introduce a variance adjustment and review step 5 that incorporates
this adjustment. Then general results are presented; these results, as well as described step
5 (Fourier transform) apply to any estimator or test statistic (not just t-statistic), for which
higher moments expressions are available or can be found.

Moments - General Case (Step 1)

We present Edgeworth expansions for a variety of one- and two-sample t-statistics. The
difference between these statistics comes from the estimate of variance, which results in
different expansions. The two main types of t-statistics that we consider are ordinary (section
1.4) and moderated (section 1.4). We start with an ordinary t-statistic with sample variance
s2 = 1

n

∑n
i=1(Xi − X̄)2. This is the most basic version of a sample variance and is the one

for which a two-term expansion has been derived [31]. While this estimate of the variance is
biased, it provides a good starting point; building on Peter Hall’s derivation, we next turn
to the unbiased estimate s2 = 1

n−1

∑n
i=1(Xi − X̄)2, which is especially important for small

n. For two-sample t-test we always assume different sample sizes and consider the cases
with equal and unequal variances for the two samples; equal variance with pooled (residual)
sample variance as its estimate yields a distribution of a t-statistic with smaller variance
compared to the case with unequal variances and thus more power, so it is beneficial to
provide expansions for this particular case as well. Moderated t-statistic is only considered
with this pooled (residual) variance as it is the one that is typically used in practice ([65]).
We start by looking at the scaling variance-related factor since this is the component that
needs to be generalized.

One-sample setup

X is a random variable with cdf FX .
E(X) = µ = 0, V ar(X) = σ2 = O(1) (as mentioned previously, we can consider a mean-zero
random variable without any loss of generality).
Xi, . . . , Xn is a random sample.
One-sample mean-based test statistic can be most generally written as

θ̂ =
X̄

sX̄
=

√
n X̄

s
, (1.20)

where s is different for different statistics - e.g. sample variance for ordinary t-statistics or
posterior variance for empirical Bayes methods.

Let

X̄s =
1

n

n∑
i=1

(
X2
i − σ2

)
=

1

n

n∑
i=1

X2
i − σ2 = X2 − σ2 = O

(
n−

1
2

)
(1.21)
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We use notation X2 to denote the mean of X2.

The general form that we introduce and that is useful for deriving Edgeworth expansions:

θ̂ = n
1
2A−

1
2 X̄ (1 + γ1 − γ2)−

1
2 , (1.22)

where

γ1 =
B

A
X̄s = O

(
n−

1
2

)
, and (1.23)

γ2 =
B

A
X̄2 = O

(
n−1
)
. (1.24)

A = O(1) and B = O(1) are constants that reflect the difference in the estimators. They
do not depend on the sample and therefore will not be involved in expectations, so the way
the moments of the test statistic are calculated is not dependent of their specific form. A
is a quantity related to the variance of the original distribution and B is a supplementary
adjustment in some way related to the sample size.

The expression (1.22) arises from the general case for s2 that also makes it convenient to
extract A and B for each specific case:

s2 = A+B
(
X̄s − X̄2

)
= A

(
1 +

B

A
X̄s −

B

A
X̄2

)
. (1.25)

Two-sample setup

X, Y - centered random variables with cdf FX and FY .

V ar(X) = σ2
x = O(1), V ar(Y ) = σ2

y = O(1). (1.26)

The sample is X1, . . . , Xnx , Y1, . . . , Yny . As in section 1.2, define a single summary measure

for sample size: n =
nx + ny

2
.

θ̂ =
X̄ − Ȳ
sX̄−Ȳ

=

√
n
(
X̄ − Ȳ

)
s

(1.27)

Note that for this case there is no straightforward interpretation for s2; however, it is a useful
construct that is analogous to the one-sample case.

Let

X̄s =
1

nx

nx∑
i=1

(
X2
i − σ2

x

)
= O

(
n
− 1

2
x

)
(1.28)

Ȳs =
1

ny

ny∑
i=1

(
X2
i − σ2

y

)
= O

(
n
− 1

2
y

)
. (1.29)
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The test statistic is

θ̂ = n
1
2A−

1
2

(
X̄ − Ȳ

)
(1 + γ1 − γ2)−

1
2 , (1.30)

where

γ1 =
Bx

A
X̄s +

By

A
Ȳs = O

(
n−

1
2

)
, and (1.31)

γ2 =
Bx

A
X̄2 +

By

A
Ȳ 2 = O

(
n−1
)
. (1.32)

Two-sample analog for a general case s2 is

s2 =A+Bx

(
X̄s − X̄2

)
+By

(
Ȳs − Ȳ 2

)
(1.33)

=A

[
1 +

(
Bx

A
X̄x +

By

A
Ȳs

)
−
(
Bx

A
X̄2 +

By

A
Ȳ 2

)]
. (1.34)

Note that with this general form, the only difference between one- and two-sample cases
is in X̄ vs X̄ − Ȳ , which will allow us to make the same arguments for both cases and make
the analytical calculations for E

(
θ̂m
)
very similar.

Find E
(
θ̂m
)
- one-sample case

θ̂m = n
m
2 A−

m
2 X̄m (1 + γ1 − γ2)−

m
2 = n

m
2 A−

m
2 X̄m

[
1 +

∞∑
k=1

am,k(γ1 − γ2)k

]
, (1.35)

where

am,k =
1

k!

k−1∏
j=0

(
−m

2
− j
)

=
1

k! 2k
(−1)k

k−1∏
j=0

(m+ 2j) (1.36)

From Taylor expansion of (1 + γ1 − γ2)−
m
2 and, subsequently, from (γ1 − γ2)k (1.35) we

only need the terms with factors up to n−
M−2

2 . Knowing the orders of γ1 and γ2 does not
only allow us to use Taylor expansion in the first place, it also provides a tool to keep only
the relevant terms of the expansion. One way would be to just substitute K for∞ in (1.35);
this will produce some extra terms that will be truncated at the later steps of the roadmap.
However, these particular terms are longer than the rest and their calculations will be es-
pecially computationally expensive (more on it later), so it would be efficient to omit them
from the beginning.

Start with grouping the terms by orders (powers of n−
1
2 ):
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(1 + γ1 − γ2)−
m
2 = 1 +

∞∑
k=1

am,k

k∑
i=0

(
k

i

)
(−1)i γk−i1 γi2

= 1 + am,1

(
1

0

)
γ1

1 γ
0
2

+

[
am,2

(
2

2

)
γ2

1 γ
0
2 − am,1

(
1

1

)
γ0

1 γ
1
2

] (
O(n−1)

)
+

[
am,3

(
3

0

)
γ3

1 γ
0
2 − am,2

(
2

1

)
γ1

1 γ
1
2

] (
O
(
n− 3

2

))
+

[
am,4

(
4

0

)
γ4

1 γ
0
2 − am,3

(
3

1

)
γ2

1 γ
1
2 + am,2

(
2

2

)
γ0

1 γ
2
2

] (
O(n−2)

)
+

[
am,5

(
5

0

)
γ5

1 γ
0
2 − am,4

(
4

1

)
γ3

1 γ
1
2 + am,3

(
3

2

)
γ1

1 γ
2
2

] (
O
(
n− 5

2

))
...

=

(
1 +

∞∑
k=1

[
am,k

(
k

0

)
γk1 γ

0
2 − am,k−1

(
k − 1

1

)
γk−2

1 γ1
2 + am,k−2

(
k − 2

2

)
γk−4

1 γ2
2

− · · ·+


am, k

2
(−1)

k
2

(k
2
k
2

)
γ0

1 γ
k
2
2

])
- for even k

am, k+1
2

(−1)
k−1
2

(k+1
2

k−1
2

)
γ1

1 γ
k−1
2

2

])
- for odd k

= 1 +
∞∑
k=1

b k2c∑
i=0

am,k−i(−1)i
(
k − i
i

)
γk−2i

1 γi2 (1.37)

From this, we can easily pick the orders that are needed for K terms of Edgeworth
expansion and get

θ̂m = n
m
2 A−

m
2 X̄m

 1 +
K∑
k=1

b k2c∑
i=0

am,k−i(−1)i
(
k − i
i

)
γk−2i

1 γi2

 (1.38)
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E
(
θ̂m
)

= n
m
2 A−

m
2

[
E
(
X̄m
)

+
K∑
k=1

b k2c∑
i=0

am,k−i(−1)i
(
k − i
i

)
E
(
X̄mγk−2i

1 γi2
) ]

= n
m
2 A−

m
2

[
E
(
X̄m
)

+
K∑
k=1

b k2c∑
i=0

am,k−i(−1)i
(
k − i
i

)
Bk−i

Ak−i
E
(
X̄m+2i X̄k−2i

s

) ]

= n
m
2 A−

m
2

[
ρm,0 +

K∑
k=1

b k2c∑
i=0

am,k−i(−1)i
(
k − i
i

)
Bk−i

Ak−i
ρm+2i,k−2i

]
, (1.39)

where ρi,j = E
(
X̄ i X̄j

s

)
.

Let

νk,l = E

[
X̄k
(
X2
)l]

= E

[(
1

n

n∑
i1=1

Xi1

1

n

n∑
i2=1

Xi2 · · ·
1

n

n∑
ik=1

Xik

)(
1

n

n∑
j1=1

X2
j1
· · · 1

n

n∑
jl=1

X2
jl

)]

=
1

nk+l

n∑
i1=1

· · ·
n∑

ik=1

n∑
j1=1

· · ·
n∑

jl=1

E(Xi1 · · ·XikX
2
j1
· · ·X2

jl
), (1.40)

then

ρi,j = E
(
X̄ iX̄j

s

)
= E

[
X̄ i
(
X2 − σ2

)j]
= E

[
j∑

k=0

(−1)k
(
j

k

)
X̄ iX2

j−k
σ2k

]

=

j∑
k=0

(−1)k
(
j

k

)
σ2kνi,j−k. (1.41)

To generate expressions for (1.40) (νk,l), we extend the algorithm described in sec-
tion 1.2 for equation (1.14). Now groups consist of X’s and X2’s with the same indices:
{Xis , X

2
jt : is = jt = c}, c = 1, . . . , n, and are thus described not by a single num-

ber (group size) but by a pair (a, b), where a is the number of i’s and b is the number
of j’s in the group. Consequently, a grouping in this version is characterized by a set
of pairs {(au, bu)}, u = 1, . . . , d;

∑d
u=1 au = k,

∑d
u=1 bu = l, and its definition is dif-

ferent from the one in 1.2 since for given k and l there can be different groupings that
yield the same expectation, e.g. groupings {(2, 3), (3, 0), (1, 1)}, {(4, 2), (1, 1), (1, 1)}, and
{(0, 4), (3, 0), (3, 0)} will all produce E(Xi1 · · ·Xi6X

2
j1
· · ·X2

j4
) = µ2

3 µ8. Analogously to the
original version, if

∑d
u=1 I(a = 1, b = 0) > 0 (at least one pair in the grouping is (1, 0) ),
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E(Xi1 · · ·XikX
2
j1
. . . X2

jl
) = 0; otherwise E(Xi1 · · ·XikX

2
j1
. . . X2

jl
) =

∏d
u=1 µau+2bu .

Coefficient Cg for a grouping G is calculated in a similar way to 1.2 (equation (1.16) )
with a few adjustments:

Cg = (n)d

(
k

ag,1

)(
k − ag,1
ag,2

)
· · ·
(
ag,d−1 + ag,d

ag,d−1

)(
l

bg,1

)(
l − bg,1
bg,2

)
· · ·
(
bg,d−1 + bg,d

bg,d−1

)
sg,1! sg,2! · · ·

, (1.42)

where sg,1, sg,2, . . . are the numbers of the groups with same values for (a, b) (for a and b).

In this case the order ranges from
1

nk+l−1
, when i1 = . . . = ik = j1 = . . . = jk (d = 1), to

1

nd
k
2e

, when all indices is appear in pairs if k is even (“extra” index joining one of the groups

if k is odd), and all the jt’s are different from is’s and each other (d =
⌊
k
2

⌋
+ l).

Figure 1.1 shows which νk,l are needed for different orders of Edgeworth expression. By
grouping the terms by their orders and leaving out irrelevant terms in (1.38), we have cut
out the area in the bottom right corner; even though the number of expressions is not com-
paratively large in that triangle, these are the longest expressions. To get an idea of how
much computational time it saves, consider K = 4. Generating ν expressions for a grid
(the rectangle, that would be the terms needed if we just substituted K for ∞ in the sum
limits) instead of the shaded area increases computational time by a factor of more than 100.

Note that ρ’s are sums that can be looked at as truncated power series in n−
1
2 and

they contain terms that are of higher orders than needed for our goal terms of Edgeworth
expansions, so they would need to be truncated. For computational efficiency, that can be
done before proceeding to the next step as suggested by the roadmap.

Find E
(
θ̂m
)
- two-sample case

θ̂m = n
m
2 A−

m
2 (X̄ − Ȳ )m (1 + γ1 − γ2)−

m
2 (1.43)

Using the same argument for truncation and leaving only terms of relevant orders as in
the one-sample case, we get a similar expression:
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Figure 1.1: The grid showing which
νk,l need to be caculated for various
terms of Edgeworth expansion for a t-
statistic, with terms indicated as pow-
ers of n. Combinations of k (rows)
and l (columns) needed for a partic-
ular term also include all the combi-
nations needed for previous terms as
well.

θ̂m = n
m
2 A−

m
2 (X̄ − Ȳ )m

1 +
K∑
k=1

b k2c∑
i=0

(−1)iam,k−i

(
k − i
i

)
γk−2i

1 γi2


= n

m
2 A−

m
2

m∑
j=0

(−1)j
(
m

j

)
X̄m−jȲ j

1 +
K∑
k=1

b k2c∑
i=0

(−1)iam,k−i

(
k − i
i

)
γk−2i

1 γi2

 , (1.44)

where am,k is the same as in (1.36).

E
(
θ̂m
)

=n
m
2 A−

m
2

m∑
j=0

(−1)j
(
m

j

)[
E
(
X̄m−j)E (Ȳ j

)
(1.45)

+
K∑
k=1

b k2c∑
i=0

(−1)iam,k−i

(
k − i
i

)
E
(
X̄m−j Ȳ j γk−2i

1 γi2
)]

(1.46)

To get the expectation, we need to expand γk1 γl2:

γk1 γ
l
2 =

1

Ak
(BxX̄s +ByȲs)

k 1

Al
(BxX̄

2 +ByȲ
2)l

=
1

Ak+l

k∑
i=0

l∑
j=0

(
k

i

)(
l

j

)
B(k+l)−(i+j)
x Bi+j

y X̄2(l−j)X̄k−i
s Ȳ 2j Ȳ i

s . (1.47)
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E
(
θ̂m
)

=n
m
2 A−

m
2

m∑
j=0

(−1)j
(
m

j

)[
E
(
X̄m−j)E (Ȳ j

)

+
K∑
k=1

b k2c∑
i=0

(−1)iam,k−i

(
k − i
i

)
Ai−k

k−2i∑
u=0

i∑
v=0

(
k − 2i

u

)(
i

v

)
B(k−i)−(u+v)
x Bu+v

y

× E
(
X̄m−j+2(i−v)X̄k−2i−u

s

)
E
(
Ȳ j+2vȲ u

s

)]
(1.48)

Let

ρi,j = E(X̄ iX̄j
s ),

τi,j = E(Ȳ iȲ j
s ) (1.49)

and rewrite the previous equation as

E
(
θ̂m
)

=n
m
2 A−

m
2

m∑
j=0

(−1)j
(
m

j

)[
ρm−j,0 τj,0

+
K∑
k=1

b k2c∑
i=0

(−1)iam,k−i

(
k − i
i

)
Ai−k

k−2i∑
u=0

i∑
v=0

(
k − 2i

u

)(
i

v

)
B(k−i)−(u+v)
x Bu+v

y

× ρm−j+2(i−v),k−2i−u τj+2v,u

]
(1.50)

Let

νx,k,l = E

[
X̄k
(
X2
)l]

=
1

nk+l
x

nx∑
i1=1

· · ·
nx∑
ik=1

nx∑
j1=1

· · ·
nx∑
jl=1

E(Xi1 · · ·XikX
2
j1
· · ·X2

jl
), and

νy,k,l = E

[
Ȳ k
(
Y 2
)l]

=
1

nk+l
y

ny∑
i1=1

· · ·
ny∑
ik=1

ny∑
j1=1

· · ·
ny∑
jl=1

E(Yi1 · · ·YikY 2
j1
· · ·Y 2

jl
). (1.51)

then

ρi,j =

j∑
k=0

(−1)k
(
j

k

)
σ2k
x νx,i,j−k, and

τi,j =

j∑
k=0

(−1)k
(
j

k

)
σ2k
y νy,i,j−k (1.52)
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For truncation of ρ’s and τ ’s and the range of their orders, refer to section 1.3. νx’s and
and νy’s are generated in exactly the same way as their analog for a one-sample t-statistic.

To distinguish terms of Edgeworth expansions for Studentized statistics from those with
known variance, P. Hall used qj(x) in place of pj(x)’s in (1.1). We take this lead but also use
qj(x) to denote polynomials for the general case as well as for the statistics that incorporate
unknown variance.

Fourier Transform - General Case (Step 5)

In classic Edgeworth expansions, standard normal zero term Φ(x) relies on the fact that in
the log of characteristic function of θ̂ (1.3) the term associated with n0 is 1

2
(it)2 (carried over

from κθ̂,2 having a term consisting of 1). This holds for standardized means as well as for
some versions of ordinary t-statistic. However, for a general case that we are considering, it

is not necessarily true. For a one-sample statistic it is
σ2

2A
(it)2 and for a two-sample statistic

bxσ
2
x + byσ

2
y

2A
(it)2. A is different for different statistics; and the term reduces to 1

2
(it)2 only

for ordinary one- and two-sample t-statistics using biased variance estimates. There could
be various ways to address the issue; for example, if we look at the one-sample ordinary
t-statistic with unbiased variance estimate, σ2

A
= n−1

n
= 1− 1

n
(details in section 1.4), which

means that part of this term actually belongs to the n−1 term, not the n0; it is possible to
transfer it to the “correct” term of the Edgeworth expansion. To do it in general case might
not be straightforward and is not necessarily a correct way to approach the issue. Instead,
we suggest using a variance adjustment that will accommodate any version of t-statistic.

The extra factor discussed above in the n0 term of log of characteristic function suggests
that we should consider a distribution of a still normalized test statistic with possible depar-
tures from unit variance in finite samples. Let r2 denote this adjustment; note that r2 → 1
as n→∞. This is in fact a special case for a general non-unit variance EE (see, for example
[6] and [43]). Starting with characteristic function, which is a special case of inverse Fourier
transform, and following the usual steps for obtaining Edgeworth expansions for this general
case through original Fourier transform, we get

ϕ(t) =

∫ ∞
−∞

eitx
1√

2πr2
e−

x2

2r2 = e−
1
2
t2r2 (1.53)
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e−
1
2
t2r2 = − 1

itr

∫ ∞
−∞

eitxφ(1)
(x
r

)
dx

= − 1

(itr)2

∫ ∞
−∞

eitxφ(2)
(x
r

)
dx

...

= − 1

(itr)k

∫ ∞
−∞

eitxφ(k)
(x
r

)
dx, (1.54)

where φ(k)
(
x
r

)
= dk

dyk
φ(y)

∣∣∣
y=x

r

. Then

(−it)ke−
1
2
t2r2 =

1

rk

∫ ∞
−∞

eitxφ(k)
(x
r

)
dx

= (−1)k
1

rk

∫ ∞
−∞

eitxHek

(x
r

)
φ
(x
r

)
dx, (1.55)

where Hek(x) = (−1)k e
x2

2
dk

dxk
e−

x2

2 are Hermite polynomials.

Therefore in Fourier transform r−kHek−1

(
x
r

)
will be substituted for (it)k. This is how

we get the general Edgeworth expansion form for any normalized statistic (1.2).

The difference in expansions for different statistics are coming from qi(x) polynomials;
most general results are provided in the next section and expressions for specific statistics
are presented in sections 1.4 and 1.4.

Since ϕ(t) = e−
1
2
t2r2 , we can get explicit expressions for r2 from κθ̂,2 for one- and two-

sample t-statistics:

r2 =
σ2

A
for one-sample and (1.56)

r2 =
bxσ

2
x + byσ

2
y

A
for two-sample. (1.57)

The terms in (1.2) still represent orders of approximation but we need to keep in mind
that there is a distinction and it would not be appropriate to directly compare these to
the terms of the original EE representation as in (1.1) - the reason being that expression
for A might include sample size n in some form, which means that some part of the term
would belong to higher terms in the traditional form. Having said that, this general rep-
resentation makes it convenient to compare approximations for different test statistics or
different versions of statistics. Take the example discussed above and compare first order
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approximation (zero term, normal approximation) for a one-sample ordinary t-statistic with
biased and unbiased variance estimate. For the same sample, biased estimate of the variance
s2
b = 1

n

∑n
i=0 (Xi − X̄)

2 is smaller than unbiased s2
unb (s2

b < s2
unb) and therefore |tb| > |tunb|,

meaning that V ar(tb) > V ar(tunb). Zero terms of the expansions already reflect that:
min (Φ(x), 1− Φ(x)) > min

(
Φ
(√

n
n−1

x
)
, 1− Φ

(√
n
n−1

x
))

. Also, φ(x) > φ
(√

n
n−1

x
)
,

which are the part of all the higher order terms.

A general remark about Edgeworth expansions for studentized statistics is in order. If we
look at the first order approximation to the distribution of a test statistic, we can see that
the variance of this approximation is less than or equal to 1 (can be less than 1 in the general
formulation). This does not reflect the fact that in reality, for these statistics, V ar

(
θ̂
)
> 1

(as an example consider X ∼ N(0, σ2), for which V ar
(
X̄

sunb

)
=
n− 1

n− 3
). However, higher

terms of the expansion do address this problem and thicken the tails as will be shown in
section 1.4.

Results - General Case

The expressions for higher order terms get progressively longer, so in order to be able to
calculate truncated Fθ̂(x) more efficiently, we break the cumulants of the distribution of θ̂
into smaller terms according to their order (power of n−

1
2 ), calculate them first, then use the

values to find qi(x). As seen in, for example, [33], [8]:

κθ̂,j = n−
j−2
2

(
kj,1 + n−1kj,2 + n−2kj,3 + · · ·

)
j > 1. (1.58)

As mentioned previously, this method can be used for any test statistic, not just mean-
based.

After splitting cumulants κθ̂,j into these terms (kj,i), we proceed with the roadmap to get

q1(x) = − 1

6 r3
k3,1He2

(x
r

)
− 1

r
k1,2 (1.59)

q2(x) =− 1

72 r6
k2

3,1He5

(x
r

)
− 1

24 r4
(4 k1,2k3,1 + k4,1)He3

(x
r

)
− 1

2 r2

(
k2

1,2 + k2,2

)
He1

(x
r

)
(1.60)
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q3(x) =− 1

1296 r9
k3

3,1He8

(x
r

)
− 1

144 r7

(
2 k1,2k

2
3,1 + k3,1k4,1

)
He6

(x
r

)
− 1

120 r5

(
10 k2

1,2k3,1 + 10 k2,2k3,1 + 5 k1,2k4,1 + k5,1

)
He4

(x
r

)
− 1

6 r3

(
k3

1,2 + 3 k1,2k2,2 + k3,2

)
He2

(x
r

)
− 1

r
k1,3 (1.61)

q4(x) =− 1

31104 r12
k4

3,1He11

(x
r

)
− 1

5184 r10

(
4 k1,2k

3
3,1 + 3 k2

3,1k4,1

)
He9

(x
r

)
− 1

5760 r8

(
40 k2

1,2k
2
3,1 + 40 k2,2k

2
3,1 + 40 k1,2k3,1k4,1 + 5 k2

4,1 + 8 k3,1k5,1

)
He7

(x
r

)
− 1

720 r6

(
20 k3

1,2k3,1 + 60 k1,2k2,2k3,1 + 15 k2
1,2k4,1 + 20 k3,1k3,2

+ 15 k2,2k4,1 + 6 k1,2k5,1 + k6,1)He5

(x
r

)
− 1

24 r4

(
k4

1,2 + 6 k2
1,2k2,2 + 3 k2

2,2 + 4 k1,3k3,1 + 4 k1,2k3,2 + k4,2

)
He3

(x
r

)
− 1

2 r2
(2 k1,2k1,3 + k2,3)He1

(x
r

)
, (1.62)

where Hej(x) are Hermite polynomials, for example:

He1(x) = x
He2(x) = x2 − 1
He3(x) = x3 − 3x
He4(x) = x4 − 6x2 + 3
He5(x) = x5 − 10x3 + 15x and so on.

Since kj,i’s do not depend on x, it is especially useful if F (x) needs to be calculated for
many values of x.

1.4 Results - Ordinary and Moderated t-statistics

Ordinary t-statistic

One-sample, biased variance estimate

s2 =
1

n

n∑
i=1

(
Xi − X̄

)2
=

1

n

n∑
i=1

X2
i − X̄2 = σ2 +

1

n

n∑
i=1

(
X2
i − σ2

)
− X̄2

= σ2 + X̄s − X̄2 (1.63)
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Comparing this expression with (1.25), it is easy to see that

A = σ2, B = 1, r2 = 1 (1.64)

In this particular case, r2 = 1. Since this statistic is a pivotal quantity, σ2 can be set to 1
as previously; this does not affect the results as the variance cancels out once we substitute σ2

for A anyway. General results simplify to the following expressions for Edgeworth expression
terms:

q1(x) =
1

6
λ3

(
2x2 + 1

)
(1.65)

q2(x) =
1

12
λ4

(
x3 − 3x

)
− 1

18
λ2

3

(
x5 + 2x3 − 3x

)
− 1

4

(
x3 + 3x

)
(1.66)

q3(x) = − 1

40
λ5

(
2x4 + 8x2 + 1

)
− 1

144
λ3λ4

(
4x6 − 30x4 − 90x2 − 15

)
+

1

1296
λ3

3

(
8x8 + 28x6 − 210x4 − 525x2 − 105

)
+

1

24
λ3

(
2x6 − 3x4 − 6x2

)
(1.67)

q4(x) = − 1

90
λ6

(
2x5 − 5x3 − 15x

)
+

1

60
λ3λ5

(
x7 + 8x5 − 5x3 − 30x

)
− 1

288
λ2

4

(
x7 − 21x5 + 33x3 + 111x

)
+

1

216
λ2

3λ4

(
x9 − 12x7 − 90x5 + 36x3 + 261x

)
− 1

1944
λ4

3

(
x11 + 5x9 − 90x7 − 450x5 + 45x3 + 945x

)
+

1

48
λ4

(
x7 − 7x5 + 9x3 + 21x

)
− 1

72
λ2

3

(
x9 − 6x7 − 12x5 − 18x3 − 9x

)
− 1

96

(
3x7 + 5x5 + 7x3 + 21x

)
(1.68)

These expansions are considerably different from the ones in section 1.2 as they capture
some of the key differences between studentized and standardized estimators. To get some
insight into these differences, we can turn to the Student’s t-distribution with n−1 degrees of
freedom, which was derived as a distribution of a t-statistic for a sample of n i.i.d. normally



CHAPTER 1. GENERAL ORDER EDGEWORTH EXPANSIONS FOR ORDINARY
AND MODERATED t-STATISTICS 30

distributed random variables. Its derivation relies on a specific property unique to Gaussian
distribution: independence of a sample mean and a sample standard error. Without nor-
mality, this is no longer the case, which can be easily seen with asymmetric distributions; in
fact, dependence of the sample average and standard error is the cause for some important
features of the sampling distribution of a studentized mean (which can present an additional
challenge in trying to approximate that distribution). Consider a distribution of X that is
skewed to the right, with the thin left and thick right tails. While the distribution of the
standardized mean (scaled by a constant) is also skewed to the right, the distribution of the
studentized mean (scaled by a random variable) is, in contrast, skewed to the left (Fig 1.2a).
The reason for the “flip” stems from the fact that observations that contribute to a greater
sample average, coming from the thicker tail, have greater dispersion as well, thus resulting
in a smaller value for the t-statistic. Moreover, as can be seen in Fig 1.2b, the difference
between thicker and thinner tails appears to be even more pronounced than that of a ratio
with assumed independence (obtained with permutation/random pairings of averages and
standard errors from different samples).

−6 −4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Standardized vs Studentized Mean 
Gamma(shape = 3), n = 10

x

D
en

si
ty

standardized
mean

studentized
mean

(a) Standardized vs studentized mean
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Figure 1.2

Edgeworth expansion for the studentized mean does not assume independence of sample
mean and sample variance; as can be seen in Figure 1.3, with each added term, Edgeworth
approximations get progressively closer to the true sampling distribution targeting the right
shape and tail thickness.
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Another important feature of this expansion in contrast with the ones for standardized
statistics is the cumulant order inconsistency inside the expansion terms q2(x), q3(x), . . . : as
can be seen in a two-sample difference in means expansion, λ3 is associated with n−

1
2 , λ4 with

n−1, λ5 with n−
3
2 , and so on. While all the terms that comprise polynomials p1(x), p2(x), . . .

respect that order, some of the terms comprising qj do not. Again, reference to normal
distribution might provide some intuition for the reason and effect of this difference. Consider

X ∼ N(0, 1).

θ̂ =
√
n
X̄

s
∼ tn−1 and λ3 = λ4 = . . . = 0.

Then the third order expansion Fθ̂,2 reduces to

Fθ̂,2(x) = Φ(x)− n−1 1

4

(
x3 + 3x

)
φ(x).

True distribution of this test statistic (Student’s t) has thicker tails than a normal distribution
(zero term in expansion) and the one term that does not have a λ factor in Edgeworth
expansion (part of q2(x)) makes for thicker tails as well, distinguishing it from the expansion
for a sample average and reflecting the fact that the varince is unknown and estimated.
Irregular terms in subsequent orders are likely to contribute to the thickness of the tails as
well, though this is harder to assess when some λ factor is present but is not of “regular”
order. We will return to this issue again when we examine the results for the two-sample
case.

One-sample, unbiased variance estimate

For a small sample size the difference between s2 =
1

n

∑n
i=1(Xi − X̄)2 and s2

unb =

1

n− 1

∑n
i=1(Xi − X̄)2 might be important, so it is useful to get Edgeworth expansion for a

sample mean scaled by the unbiased estimate of the variance.

s2 =
1

n− 1

n∑
i=1

(
Xi − X̄

)2
=

n

n− 1

(
σ2 + X̄s − X̄2

)
= Cσ2 + C

(
X̄s − X̄2

)
, (1.69)

where C =
n

n− 1
.

A = Cσ2, B = C, r2 =
1

C
. (1.70)

Plugging in these expressions into general results yields
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q1(x) =
1

6
λ3

(
2Cx2 + 1

)
(1.71)

q2(x) =
1

12
λ4

(
C

3
2x3 − 3C

1
2x
)
− 1

18
λ2

3

(
C

5
2x5 + 2C

3
2x3 − 3C

1
2x
)

− 1

4

(
C

3
2x3 + 3C

1
2x
)

(1.72)

If we define x1 =
√
Cx, then qj(x) for this statistic will match the previous ones (from

section 1.4) with x1 in place of x for all the terms, for example:

q1(x) =
1

6
λ3

(
2x2

1 + 1
)
. (1.73)

Two-sample results - general notes

Expressions for two-sample t-statistics are fairly long and it is recommended to use a general
form for calculating F (x) (section 1.3). Still, it might be interesting to look at some of
the results in a traditional form that we have used before - in terms of cumulants. This will
allow comparison with one-sample statistics as well as between different two-sample statistics.

Taking a lead from section 1.2, we construct two-sample analogs of the cumulants that
combine λxj, λyj, variances, and sample sizes into one summary measure. They are similar
to λj’s in section 1.2 but do not necessarily have a clear interpretation and are used as a
convenient notation.

Let

λ3a =
Bxbx λx3 σ

3
x −Byby λy3 σ

3
y

A
3
2

(1.74)

λ3b =
b2
x λx3 σ

3
x − b2

y λy3 σ
3
y

A
3
2

(1.75)

Then

q1(x) =
3
(
bxσ

2
x + byσ

2
y

)
λ3a − Aλ3b

6Ar5

(
x2 − r2

)
+
λ3a

2 r
(1.76)

Note that the powers of constants are the same in both λ3a and λ3b and match those of
λX̄−Ȳ ; if Bx = bx and By = by, λ3a = λ3b. For consecutive terms the number of possible
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combinations of various constants increases (while keeping the same corresponding power),
so to produce a similar expression for q2(x) and higher terms we would have to enumerate
all of them.

Below are some of the kj,i’s for lower values of j and i for a general two-sample case; the
expressions get progressively longer for subsequent terms.

k1,2 = −Bxbxµx3 −Bybyµy3

2A
3
2

(1.77)

k2,1 = r2 =
bxµx2 + byµy2

A
(1.78)

k3,1 = −3 (Bxbxµx3 −Bybyµy3)(bxµx2 + byµy2)

A
5
2

+
b2
xµx3 − b2

yµy3

A
3
2

, (1.79)

where µxj and µyj are j’th moments of the distributions of X and Y respectively (µx2 = σ2
x,

µy2 = σ2
y).

Two-sample, unequal variances, biased variance estimates

θ̂ =
X̄ − Ȳ√
s2x
nx

+
s2y
ny

, (1.80)

where

s2
x =

1

nx

nx∑
i=1

(
Xi − X̄

)2 (1.81)

s2
y =

1

ny

ny∑
i=1

(
Yi − Ȳ

)2 (1.82)

Set n =
nx + ny

2
, bx =

n

nx
, and by =

n

ny
as in (1.17).

s2 = bxs
2
x + bys

2
y = bx

(
σ2
x + X̄s − X̄2

)
+ by

(
σ2
y + Ȳs − Ȳ 2

)
= bxσ

2
x + byσ

2
y + bx

(
X̄s − X̄2

)
+ by

(
Ȳs − Ȳ 2

)
(1.83)

Using two-sample variance template (1.33), we get

A = bxσ
2
x + byσ

2
y

Bx = bx

By = by

r2 = 1. (1.84)
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In this case, λ3a = λ3b = λ3,X̄−Ȳ (from section 1.2) and the results are mirroring the ones
for a one-sample t-statistic with biased variance estimate, with some important distinctions.
As mentioned in section 1.4, Edgeworth expansions for studentized statistics have “regular”
and “irregular” terms in regard to the cumulant order. For this particular test statistic, if
we use λj,X̄−Ȳ (section 1.2) to combine cumulants of the distributions of X and Y as well
as bx and by, then the regular terms will match the one-sample analog (ordinary t-statistic,
biased variance estimate, section 1.4) exactly. The irregular terms, where the power of n−

1
2

does not match the cumulant order, cannot therefore be collapsed into a simple expression
that is analogous to a one-sample case.

q1(x) =
1

6
λ3,X̄−Ȳ

(
2x2 + 1

)
, no irregular terms; (1.85)

q2(x) =
1

12
λ4,X̄−Ȳ

(
x3 − 3x

)
− 1

18
λ2

3,X̄−Ȳ
(
x5 + 2x3 − 3x

)
−
(
b3
xσ

4
x + b3

yσ
4
y

)
(x3 + 3x) + 2bxbyσ

2
x σ

2
y (bx + by)x

4(bxσ2
x + byσ2

y)
2

(1.86)

If nx = ny, the last term reduces to −
(
σ4
x + σ4

y

)
(x3 + 3x) + 4 σ2

xσ
2
yx

4
(
σ2
x + σ2

y

)2 . If σ2
y = 0, it be-

comes −1

4
(x3 + 3x), which is an exact match of the one-sample counterpart of this statistic;

naturally, in that case all the irregular terms match the corresponding one-sample case.

Two-sample, unequal variances, unbiased variance estimates

s2
x =

1

nx − 1

nx∑
i=1

(
Xi − X̄

)2 (1.87)

s2
y =

1

ny − 1

ny∑
i=1

(
Yi − Ȳ

)2 (1.88)

By analogy with one-sample case, let Cx =
nx

nx − 1
and Cy =

ny
ny − 1

. Then

s2 = Cxbx
(
σ2
x + X̄s − X̄2

)
+ Cyby

(
σ2
y + Ȳs − Ȳ 2

)
= Cxbxσ

2
x + Cybyσ

2
y + Cxbx

(
X̄s − X̄2

)
+ Cyby

(
Ȳs − Ȳ 2

)
(1.89)
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A = Cxbxσ
2
x + Cybyσ

2
y (1.90)

Bx = Cxbx

By = Cyby

r2 =
bxσ

2
x + byσ

2
y

Cxbxσ2
x + Cybyσ2

y

. (1.91)

Recall that for a one-sample t-statistic with unbiased variance estimate we were able to
match the expression for a simplest case (biased variance estimate) by setting x1 =

√
C x.

In this case, we could define x1 =
√
Cx x and x2 =

√
Cy x but this still would not produce

the same result because of different combinations of x1, x2, and their coefficients. The match
occurs if nx = ny and therefore x1 = x2.

Two-sample, equal variances, unbiased variance estimates

An assumption of equal variances allows for a more efficient estimator, so there is an advan-
tage to use pooled (or residual) variance if that assumption is warranted. As an example of
increased efficiency consider normally distributed X and Y : the distribution of a t-statistic
with equal variances is Student’s t-distribution with nx + ny − 2 degrees of freedom, while

the distribution of t-statistic with unequal variances is approximately t with (s2x/nx+s2y/ny)
2

(s2x/nx)2

nx−1
+

(s2y/ny)2

ny−1

degrees of freedom, which is only equal nx + ny − 2 when sx = sy (which can never happen)
and nx = ny - and is less than that otherwise.

V ar(X) = V ar(Y ) = σ2 = O(1).

θ̂ =
X̄ − Ȳ√(

1
nx

+ 1
ny

)
(nx−1)s2x+(ny−1)s2y

nx+ny−2

(1.92)

s2 = (bx + by)
(nx − 1)s2

x + (ny − 1)s2
y

nx + ny − 2
= (bx + by)

∑nx

i=1

(
Xi − X̄

)2
+
∑ny

i=1

(
Yi − Ȳ

)2

nx + ny − 2

=
bx + by

nx + ny − 2

[
nx
(
σ2 + X̄s − X̄2

)
+ ny

(
σ2 + Ȳs − Ȳ 2

) ]

=
(bx + by)(nx + ny)

nx + ny − 2
σ2 +

(bx + by)nx
nx + ny − 2

(
X̄s − X̄2

)
+

(bx + by)ny
nx + ny − 2

(
Ȳs − Ȳ 2

)
(1.93)
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Let Cxy =
nx + ny

nx + ny − 2
=

n

n− 1
- a two-sample adjustment analogous to C for one

sample. Then

A = Cxy (bx + by)σ
2

Bx = Cxy by

By = Cxy bx

r2 =
1

Cxy
. (1.94)

Note the similarities and the differences between this pooled variance statisitc and the previ-
ous two-sample case - now the two samples are meshed together and Bx includes by (instead
of bx as previously) and vice versa.

Setting σ2
x = σ2

y = σ2 and expanding A, Bx, and By in the general case, we get

q1(x) =
3λ3a − Cxyλ3b

6Cxy r5

(
x2 − r2

)
+
λ3a

2 r
(1.95)

In this case, λ3a = 2 (λx3 − λy3).

High-dimensional data: Moderated t-statistic

Moderated t-statistic, which uses empirical Bayes approach, became a great practical tool
widely used in high-dimensional data analysis. In this case, a normalizing factor is a posterior
variance that incorporates prior information consisting of s2

0 and degrees of freedom d0 - and
a sample (residual) variance. For a feature (i.e. gene) g, the following prior distribution is
assumed for its variance σ2

g :
1

σ2
g

∼ 1

d0s2
0

χ2
d0
. (1.96)

The method uses a hierachical model, in which only two hyperparameters are estimated
from the data. Estimators for these parameters have a closed form and are sufficiently stable
due to the fact that high dimensionality provides extensive information from which only two
parameters are estimated - even when the number of replicates (sample size) is small. This
allows us to treat s0 and d0 as constants in our approach to deriving the expansion.

Posterior variance s̃2
g is a linear combination of s2

0 and a sample/residual variance s2
g:

s̃2
g =

d0s
2
0 + dgs

2
g

d0 + dg
, (1.97)

where dg is residual degrees of freedom. Because of that, moderated t-statistic can also
be viewed as a generalization for any scaled mean-based statistic as it can be reduced to
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either standardized (dg = 0) or studentized (d0 = 0) version. If data is distributed normally,
moderated t-statistic follows a t-distribution with augmented (dg + d0) degrees of freedom.

One-sample moderated t-statistic

Following our general case convention (1.20),

θ̂ =

√
n X̄g

s
=

√
n X̄g

s̃g
, (1.98)

with s̃2
g as in (1.97) and s2

g =
1

n− 1

∑n
i=1

(
Xi − X̄

)2. The model does not assume E(Xg) = 0

for all g but, as previously, we set the mean to zero for convenience (variable substitution
can be used, for example). Then

s2 =
d0s

2
0 + dgs

2
g

d0 + dg
=

d0s
2
0

d0 + dg
+

dg
d0 + dg

(
Cσ2

g + C
(
X̄s − X̄2

))
=
d0s

2
0 + Cdgσ

2
g

d0 + dg
+

Cdg
d0 + dg

(
X̄s − X̄2

)
(1.99)

A =
d0s

2
0 + Cdgσ

2
g

d0 + dg
=
d0s

2
0 + nσ2

g

d0 + n− 1
(1.100)

B =
Cdg

d0 + dg
=

n

d0 + n− 1
(1.101)

since dg = n− 1 for a one-sample test.

With moderated t-statistic, σ2 cannot be simply set to 1 since it is a part of a weighted
average in A and the relation of σ2 to s2

0 is not fixed (it is also not known in practice and
will have to be estimated). However, we can still cancel σ2

g out by rewriting A = Dσ2
g and

presenting the results in terms of D =
d0

s20
σ2
g

+ Cdg

d0 + dg
. Then r2 =

1

D
.

In this case, using a general form of expansion (section 1.3) is preferred from a computa-
tional standpoint but to give an idea of the inner structure of the expansions for moderated
t-statistics we provide a few terms here:

q1(x) =
1

6

(
3Bx2 −Dx2 + 1

)
λ3 (1.102)
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q2(x) =− 1

24
λ4

[(
3B2D−

1
2 − 6BD

1
2 +D

3
2

)
x3 + 3

(
B2D−

3
2 + 2BD−

1
2 −D

1
2

)
x

]
− 1

72
λ2

3

[(
9B2D

1
2 − 6BD

3
2 +D

5
2

)
x5 − 2

(
9B2D−

1
2 − 18BD

1
2 + 5D

3
2

)
x3

− 3
(

3B2D−
3
2 + 6BD−

1
2 − 5D

1
2

)
x

]
− 1

4

[
B2D−

1
2 x3 +

(
B2D−

3
2 + 2BD−

1
2

)
x

]
(1.103)

Note that combined orders of B and D are consistent with the power of x and match the
order of C in the ordinary t-statistics with unbiased variance estimate case. That t-statistic
can be considered a special case of the moderated t, where d0 = 0, so there is no prior
information, and B = D = C.

Two-sample moderated t-statistic

For this estimator, we only consider equal variance for X and Y since it has been developed
for the residual (pooled) variance only:

θ̂ =
X̄ − Ȳ√(
1
nx

+ 1
ny

)
s̃g

, (1.104)

where s̃2
g is as in (1.97) and s2

g =

∑nx

i=1(Xi − X̄)2 +
∑ny

i=1(Yi − Ȳ )2

nx + ny − 2
.

Following our two-sample general convention (1.27) and using (1.93), we get

s2 = (bx + by) s̃
2
g = (bx + by)

d0s
2
0 + dgs

2
g

d0 + dg

=
(bx + by) d0s

2
0

d0 + dg
+

dg
d0 + dg

[
Cxy(bx + by)σ

2
g + Cxy by

(
X̄s − X̄2

)
+ Cxy bx

(
Ȳs − Ȳ 2

) ]

=
(bx + by)

(
d0s

2
0 + Cxy dgσ

2
g

)
d0 + dg

+
Cxy dgby
d0 + dg

(
X̄s − X̄2

)
+
Cxydgbx
d0 + dg

(
Ȳs − Ȳ 2

)
. (1.105)

Note that dg = nx + ny − 2 in this case.
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A =
(bx + by)

(
d0s

2
0 + Cxy dgσ

2
g

)
d0 + dg

= Dσ2
g , where D =

(bx + by)
(
d0

s20
σ2
g

+ Cxy dg

)
d0 + dg

Bx =
Cxy dgby
d0 + dg

By =
Cxy dgbx
d0 + dg

r2 =
bx + by
D

. (1.106)

Using the general results and the fact that σ2
x = σ2

y = σ2, we get

q1(x) =
3 (bx + by)λ3a −Dλ3b

6D r5

(
x2 − r2

)
+
λ3a

2 r
(1.107)

Here λ3a =
Cxy dgbxby (λx3 − λy3)

D (d0 + dg)
and λ3b =

b2
x λ3x − b2

y λ3y

D
.

1.5 Illustration of Higher-Order Approximations
To provide an illustration for higher-order approximations to the distribution of a t-statistic,
we return to the simple example from section 1.4 with a skewed original distribution (Gamma
with shape 3) and small sample size (n = 10). Fig 1.3 displays approximations of orders
1 through 5, and we look at ordinary t-statistics with biased and unbiased variance estimates.

Distributions of these versions of t-statistic are skewed to the left, and this is the side
that we will focus on. Edgeworth expansions are not probability functions and do not have
their properties - they are not necessarily monotonic everywhere and might not be bounded
but 0 and 1. This behavior is usually localized in the thinner tail of the distribution and
therefore EE are not very helpful there; it is clearly seen in the second order approximation
(term 1) in the graph. We can also see that distribution of a biased version is more spread
out in both true distributions and their Edgeworth expansion approximations - as discussed
in section 1.3.

The difference between the normal approximation (term 0) and the true distribution is
quite striking; subsequent orders improve approximation considerably. It appears that the
third order is already fairly close to the truth; however, as we move further into the tail, we
can see that approximation gets further from the distribution and higher order terms come
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Figure 1.3: Ordinary t-statistic with biased and unbiased variance estimate, Edgeworth expansions
approximation. Γ(k = 3), n = 10.

into play proving the value of Edgeworth expansion of the orders beyond the second and
even third.



41

Chapter 2

Edgeworth expansions approach to data
analysis

In this chapter, we use Edgeworth expansions to assess error rates and their connection to
sample size and number of tests, and to develop a data analysis method based on higher
sample moments and cumulants. It would be illuminating to see what the difference between
theory and practice in terms of sample size n translates into for actual error rate control:
to explore the effect that some departures from normality might have on type I error rates
and show the extent of the resulting discrepancies between actual and nominal error rates.
We are specifically interested in how increasing the number of tests m affects the accuracy
of the analyses involving multiple testing procedures, with special focus on situations when
m� n. Edgeworth expansions provide a way of comparing cut-offs obtained with different
orders of approximations for the same dataset and evaluating them under the true sampling
distribution of a chosen parameter. In the reality of a finite sample, Edgeworth series allow
us to get closer to the critical value that would be calculated had the true distribution been
known by obtaining higher-order approximations of that distribution. As such, they also
suggest a promising direction for data analysis where empirical moments could be substi-
tuted for the true moments in the higher-order terms.

It is important to keep in mind that Edgeworth expansion is not a probability function
and is not guaranteed to have its properties. It does not necessarily converge as an infinite
series: for a continuous random variable X, the condition needed for convergence is E

(
e

1
4
θ̂2
)

([20], [33] p. 45), which does not hold true even for a standardized mean of the exponential
distribution (X ∼ Exp(λ), θ̂ = X−µ

σ
). Truncated series might not be a monotonic function,

its values might occasionally reach beyond [0, 1] bound, and it does not necessarily integrate
to 1. While the function in the regions where this happens cannot be used for assessment or
inference, we will show that this usually happens in the “thin” tail of the distribution, and
that the behavior of the function can itself be used as a diagnostic tool that might help infer
the shape of the distribution we are trying to approximate. For the proposed method of
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using the substitution expansion for inference, these regions of non-monotonicity are easily
detected and first order approximation is used in place of a higher-order one, ensuring that
the inference will stay on the conservative side.

Sampling distribution of t-statistics in small samples and especially behavior of large de-
viations from the mean are explored in this Chapter, along with the performance of normal-
based EE in the far tail regions. As a result, to reach extreme tails of the true distribution
and get a closer approximation in those regions, we introduce a small sample adjustment
that uses Student’s t-distribution as a base for the expansions instead of standard normal.
Small sample size is also the setting for investigation of moment estimates that are used in
empirical Edgeworth expansions, where sample moments are substituted for the true ones.
We use our software to produce unbiased estimates of moments and their products and pow-
ers of arbitrary order, and discuss the use of these estimates in Edgeworth expansions.

For explorations and simulations we choose some known distributions that yield ana-
lytical expressions for central moments/scaled cumulants that are the main “ingredients”
of Edgeworth expansions, possibly with closed form distributions of sample means, which is
helpful for calculation of very small probabilities that are involved in extreme tail estimation.
Of particular interest to us are asymmetric/skewed distributions, especially their thicker tails
as the thick tail of a sampling distribution is the region where a first order approximation
can potentially fail to deliver error rate control producing faulty inference. As examples of
such skewed distributions with parameters that allow straightforward manipulation of the
the shape of the tails, we concentrate on gamma (which has a closed form for sample av-
erage) and log-normal distributions. For a skewed distribution with infinite support, which
is useful to explore in regard to extreme tails, we pick a mixture-normal distribution that
provides many parameters to choose from and has an analytical expression for FX̄(x).

The chapter begins with Edgeworth expansions for standardized sample mean as a tool
to explore how error rates change as n gets smaller and m grows; after that we move to the
expansions for distributions of studentized test statistics. Performance of these expansions
is first evaluated with known true moments and cumulants; then empirical expansions with
plug-in estimates are introduced. Tail diagnostic exploration leads to the proposed data anal-
ysis procedure. Finally, we look at various types of simulations that include high-dimensional
data and EE for moderated t-statistic, among others.

2.1 Dependence of error rates on sample size and
number of tests

Using standardized sample mean - the most basic test statistic - as an example, we compare
actual and nominal error rates for various distributions, choosing different sample sizes n
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(starting with very small) and looking at the progressively smaller probabilities in the far
tails that correspond to the number of tests m through some multiple testing procedure.
These error rates will be compared across various orders of approximation, including first
order (standard normal) with nominal significance level α.

To obtain an actual error rate for such a test given the order k, sample size n, number
of tests m, significance level α, distribution of X, and multiple testing procedure:

1. calculate the unadjusted probability cut-off corresponding to α: e.g. for Bonferroni

multiple testing correction p =
α

m
for the left tail and p =

1− α
m

for the right;

2. find the corresponding critical value (quantile) q = F−1
k,n(p), where Fk,n is a k’th order

Edgeworth expansion;

3. find p-value for this quantile that is based on the true sampling distribution F0 of the
estimator: ptrue = F0(q) for the left tail and ptrue = 1− F0(q) for the right;

4. express it in terms of the actual error rate r: e.g R = max(mptrue, 1) if Bonferroni
MTC is used.

Note that R needs to be bounded by 1 since it’s a probability; a value of R that is greater
than 1 has no statistical interpretation; however, in some cases it might be helpful to look at
that unsubstituted value to gauge the “magnitude of a disaster” and compare it with other
unsubstituted values.

For this case study we use α = 0.05 and Bonferroni MTC. The choice of multiple testing
procedure is not a subject of evaluation in our studies - it is just a basis for comparison;
this particular choice is dictated by convenience since it is not a step-down procedure and
therefore does not require sorting of p-values and can be easily reversed for step 4. It is also
equivalent to FDR in case of the global null. Still, the results demonstrated with this MTP
are probably more stark compared to other procedures since it reaches the largest deviations
from the mean in critical values.

Moments, cumulants, and distribution of a standardized mean

As in the previous chapter, let X be a random variable with mean µ and variance σ2,

X1, X2, . . . , Xn - random sample, and θ̂ =

√
n(X̄ − µ)

σ
- a test statistic.

Convenient distributions of X for this case study would be gamma and mixture-normal
since the distributions of θ̂ in these cases have closed form.



CHAPTER 2. EDGEWORTH EXPANSIONS APPROACH TO DATA ANALYSIS 44

Gamma distribution - sample average is also gamma distributed:

X ∼ Γ(α, β)− α

β

θ̂ ∼ Γ(nα,
√
nα)−

√
nα,

where α is a shape parameter and β is a rate parameter.

Non-central moments of the distirubtion of X:

µ′j =
α + j − 1

β
µ′j−1, j = 2, 3, . . .

Scaled cumulants:

λj =
(j − 1)!

α
j−2
2

, j = 3, 4, . . .

Mixture-normal (we will use bi-normal) distribution:

X ∼ pN(µ̃1, σ
2
1) + (1− p)N(µ̃2, σ

2
2)

fX(x) = p

[
1√

2πσ1

exp

(
−(x− µ̃1)2

2σ2
1

)]
+ (1− p)

[
1√

2πσ2

exp

(
−(x− µ̃2)2

2σ2
2

)]
By varying the distance between µ̃1 and µ̃2 and σ2

1/σ
2
2, we can produce sampling distribu-

tions with different tail thickness. For convenience, we can set E(X) = 0 and specify the
difference in means instead of specifying both means of the normal distributions in our mix-
ture distribution: µd = µ̃2 − µ̃1. Then µ̃1 = −(1− p)µd and µ̃2 = p µd.

Let a =

√
n

σ
, where σ2 = V ar(X). Then θ̂ = aX̄ and

fθ̂(x) =
n∑
k=0

(
n

k

)
pk(1− p)n−k 1√

2πσk
exp

(
−(x− µk)2

2σ2
k

)
(2.1)

Fθ̂(x) =
n∑
k=0

(
n

k

)
pk(1− p)n−kΦ

(
x− µk
σk

)
, (2.2)

where µk =
kµ̃1 + (n− k)µ̃2√

nσ
=

(
p− k

n

) √
nµd
σ

and σ2
k =

kσ2
1 + (n− k)σ2

2

nσ2
.
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Moments of the distribution of X:
Assume µ1 = E(X) = 0 and let q = 1− p. Then

µ2 = pσ2
1 + qσ2

2 + µ2
d pq

µ3 = 3µd pq
(
σ2

2 − σ2
1

)
+ µ3

d pq (2 p− 1)

µ4 = 3
(
pσ4

1 + qσ4
2

)
+ 6µ2

d pq
(
qσ2

1 + pσ2
2

)
+ µ4

d pq
(
3 p2 − 3 p+ 1

)
µ5 = 15µd pq

(
σ4

2 − σ4
1

)
+ 10µ3

d pq
(
p2σ2

2 − q2σ2
1

)
+ µ5

d pq
(
4 p3 − 6 p2 + 4 p− 1

)
µ6 = 15

(
pσ6

1 + qσ6
2

)
+ 45µ2

d pq
(
qσ4

1 + pσ4
2

)
+ 15µ4

d pq
(
q3σ2

1 + p3σ2
2

)
+ µ6

d pq
(
5 p4 − 10 p3 + 10 p2 − 5 p+ 1

)
Derivation of (2.1) - density of θ̂ (mixture-normal):

In general, the sampling distribution of the mean of a random variable with a known
theoretical density can be found using characteristic functions. The fact that characteristic
function of the sum of random variables is the product of characteristic functions of these
variables:

ϕa1X1+...+anXn(t) = ϕX1(a1t) · ... · ϕXn(ant)

allows us to find a characteristic function of the sampling distribution of the mean. Using
reverse Fourier transform will recover the density of that distribution, since characteristic
function is a special case of Fourier transform.

Characteristic function for a univariate normal random variable Y ∼ N(µ, σ2) is

ϕY (t) = exp

(
iµt− 1

2
σ2t2

)
, and we use linearity of integration to get a characteristic func-

tion for X:
ϕX(t) = p exp

(
iµ̃1t−

1

2
σ2

1t
2

)
+ (1− p) exp

(
iµ̃2t−

1

2
σ2

2t
2

)
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Characteristic function of a sample mean:

ϕX̄(t) =

[
ϕX

(
t

n

)]n
=

[
p exp

(
iµ̃1t

n
− 1

2

σ2
1t

2

n2

)
+ (1− p)exp

(
iµ̃2t

n
− 1

2

σ2
2t

2

n2

)]n

=
n∑
k=0

(
n

k

)
pkexp

(
ikµ̃1t

n
− kσ2

1t
2

2n2

)
· (1− p)n−kexp

(
i(n− k)µ̃2t

n
− (n− k)σ2

2t
2

2n2

)

=
n∑
k=0

(
n

k

)
pk(1− p)n−kexp

(
i
(
kµ̃1 + (n− k)µ̃2

)
t

n
−
(
kσ2

1 + (n− k)σ2
2

)
t2

2n2

)

=
n∑
k=0

(
n

k

)
pk(1− p)n−kexp

(
itµ̃k −

1

2
σ̃2
kt

2
)
,

where µ̃k =
kµ̃1 + (n− k)µ̃2

n
, and σ̃2

k =
kσ2

1 + (n− k)σ2
2

n2
.

Then

ϕθ̂(t) = ϕX̄(at) =
n∑
k=0

(
n

k

)
pk(1− p)n−kexp

(
itaµ̃k −

1

2
σ̃2
ka

2t2
)

=
n∑
k=0

(
n

k

)
pk(1− p)n−kϕYk(t),

where
Yk ∼ N(µk, σ

2
k), µk =

kµ̃1 + (n− k)µ̃2√
nσ

, and σ2
k =

kσ2
1 + (n− k)σ2

2

nσ2
.

Using linearity of integration once again and the fact that there is a bijection between a
probability distribution function and a characteristic function, we obtain:

fθ̂(x) =
n∑
k=0

(
n

k

)
pk(1− p)n−k 1√

2πσk
exp

(
−(x− µk)2

2σ2
k

)
.

Results

As noted previously, Edgeworth expansions are not distribution functions; they are not nec-
essarily monotonic and bounded by 0 and 1. In case of sample mean for distributions being
considered here, this happens in the left tail, and therefore higher-order approximations
cannot be used for this tail. Since this tail is thinner than that of a Gaussian distribution,
normal approximation will be conservative and control the error rate; it is then interesting
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to look at the right - thicker - tail with a one-side test to get a clear picture of the actual
error rates.
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Figure 2.1: Standardized Mean, mixture normal distribution, α = 0.05

Figure 2.1 illustrates dependence of the discrepancies between actual and nominal error
rates on the sample size n for various number of tests m. Sample sizes range from 5 to 71
and numbers of tests are 10k, k = 1, . . . , 6. Distributions of X here is mixture-normal, with
µd = 3, σ1 = 0.5, and σ2 = 2. Actual error rates are obtained using first through fifth orders
of approximations, first order (zero term EE) being a normal approximation. From these
graphs, we can see that:

– as the number of tests m increases, normal (first order) approximation yields gradually
increasing actual error rates, which means poor error rate control that eventually fails
completely;

– as the sample size n decreases, actual error rates go up with normal approximation.
For large m error rate control stays poor even as sample size grows;

– higher order approximations provide better and more stable error rate control that
holds for most n and m.
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Next, to take a more detailed look, we fix the sample size at n = 10 and plot the error
rates against number of tests m, which reflect progressively more extreme critical values.
For Figures 2.2 and 2.3 we use mixtrue-normal (with the same parameter values as before)
and gamma (α = 10) distributions respectively. Note that the x-axis is on the log scale
and the number of tests ranges from 1 to a little over a million. Dotted line at y = 0.05)
indicates where the error rate would need to be to match the nominal level. Normal approx-
imation eventually fails to provide any error control; second order (term 1) delivers marked
improvement and the third order already comes much closer to the nominal level. By varying
parameters of the distributions, we change the shape of a sampling distribution and therefore
actual error rates resulting from all the orders of approximation, but general conclusions still
hold.
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Figure 2.2: Actual vs nominal error rates: Edgeworth approximations for a standardized mean,
mixture-normal distribution
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Figure 2.3: Error rates: Edgeworth approximations for a standardized mean, gamma distribution

2.2 Performance of EE for t-statistic when n is small
Turning our attention to Edgeworth expansions for studentized statistics is a next step
toward data analysis - these statistics can be calculated entirely from data and are the ones
generally used in practice. For this study, however, we will still use true cumulants and not
their estimates for the expansions. This will serve as an intermediate step to gauge how
close higher-order approximations for test statistics are before we proceed to simulations.
Small sample size is the angle from which we investigate the challenges that studentized
statistics pose in regard to approximations and the differences between large deviations
in distributions of standardized and studentized sample means. This section will also cover
small sample adjustment that we propose to use specifically for the statistics that incorporate
variance estimates.

Null distribution - coarsened simulation

Apart from normal random variables, a closed form for sampling distribution of a t-statistic
might not exist or be easily obtainable (as mentioned Chapter 1, dependence of sample mean
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and sample variance pose a challenge). Obtaining a sampling distribution that would provide
reliable estimates for extremetly small probabilities through simple simulation is unfeasible
as it would necessitate keeping in memory a great number of simulated test statistics (at least
1010 would be needed to reach the critical values in extreme tails corresponding to m = 106).
Therefore we use what we call coarsened simulation that provides sufficient resolution for
the tail quantiles (for instance, estimate F−1

k,n(p) with accuracy up to the 4th decimal place).
It amounts to the following simple procedure that can use manageable amount of computer
memory with coarsening the information obtained from simulations:

1. Divide support range for test statistic into regions and bins that reflect the focus of
our investigation: extreme tail regions where all the observations will be saved, one
large bin in the center of the distribution around zero, and the rest of the tails that
are divided into reasonably fine grid (e.g. into intervals of length 10−4 or progressively
finer division moving away from the mean).

2. With each simulation result, save it if it falls into a designated extreme tail region (a
ray on the number line) - or increment the count in the corresponding bin otherwise.
Then, without saving the great majority of simulations, we will know the amount of
observations that fall into the center region (which can be designed to contain most
of the results), the number of observations that fall into every smaller bin in the tails,
and will have all the important far tail observations - the only ones that are saved, a
very small proportion of the number of simulations.

This simulation scheme allows the calculation of probabilities for given values of test
statistics with desired quantile accuracy - the statistic will be rounded according to the bin
specification. It can also be adjusted depending on available amount of memory and focus
regions.

Exploration: Normal vs Student’s t-distrubution

As with standardized mean, Edgeworth expansions will be used for the thicker tail of a
sampling distribution; note that for the previously considered distributions of X that have
a thicker right tail, it is a left tail of the sampling distribution of t-statistic that is thicker.

As an extension of a central limit theorem, classic Edgeworth series is based on a stan-
dard normal distribution, which provides a zero term (first order approximation) as well as
a factor for all the consecutive terms in the form of density. Standardized mean is scaled
by a constant and therefore falls under statistics directly covered by CLT. For a studentized
mean, while the limiting distribution is still normal, the finite sample situation is more com-
plicated, including the rate of convergence. In contrast to a standardized mean, sampling
distribution of a studentized mean/t-statistic is not necessarily mean-zero and unit-variance.
The variance is greater than 1 and increases as the sample size decreases; sampling distribu-
tion and its variance also depend on the choice of a scaling factor for t-statistic, variety of
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which is outlined in Chapter 1.

Gaussian data generating distribution provides closed form distributions for both stan-
dardized and studentized means in finite sample and is a “best case scenario” - a well behaved
“nice” symmetrical distribution. Therefore, comparing standardized and studentized means
of a sample of normally distributed random variables will be our starting point in under-
standing the behavior of large deviations of a test statistic in a small sample.

Let X ∼ N(µ, σ2). We want to compare the distributions of
√
n(X̄−µ)
σ

, which is N(0, 1),
and

√
n(X̄−µ)
s

, which is tn−1, focusing on large deviations from zero for various sample sizes.

Figure 2.4 shows the difference between quantiles corresponding to tail probabilities of
0.05/m, m = 2j, where j = 0, 1, . . . 10 for standard normal and t-distribution with ν = n− 1
degrees of freedom. For comparison, we add gamma distribution with shape equal to n (that
would also correspond to sum/mean of n exponentially distributed X). We can see that for
n = 10, the difference in quantiles is dramatic; when p = 0.05

210
(210 would be the number of

tests in multiping comparison analysis), the corresponding quantiles range from around 5.4
in standard normal to around 15.5 in t-distribution. The difference in quantiles for various
sample sizes is illustrated by Figure 2.5; it can be seen that only when n gets to 50, quantiles
become somewhat close. For a very small size n = 5, the quantile for p = 0.05

210
approaches 90

(!), nowhere near that of either normal or gamma distribution. In other words, far tails of
Student’s t-distribution with small value for degrees of freedom are very thick and that gives
us a reason to believe that this would be true for any sampling distribution of a t-statistic
when the size is small.

Parameters of Student’s t-distribution are functions of sample size, with degrees of free-
dom ν and V ar(t) = ν

ν−2
> 1 for ν > 2 (asymptotically equal to 1 but quite a bit larger for

small samples). That means that a zero term in Edgeworth expansion for a studentized mean
will underestimate the variance; then the question is will higher-order terms of Edgeworth
expansion based on standard normal distribution be able to get sufficiently close to the true
(in our case Student’s distribution based) quantiles in the far tails? Will they approach the
increased variance of that distribution? Figure 2.6 demonstrates different order expansions
for n = 10. It can be seen that while adding higher order terms does thicken the tails and
gets the resulting quantiles farther into the tails, for a small sample size these quantiles fall
short of approaching the true ones in the target areas.

Now we would like to investigate what happens with asymmetric distributions with vary-
ing tail thickness. It can be seen in Figure 2.7 a) and c) that Edgeworth expansion captures
the shape of the sampling distribution by “reversing” the tails (recall from Chapter 1 that
if the original distribution is skewed to the right, the sampling distribution of a t-statistic
is skewed to the left). It is also clear that, as expected, expansions based on the normal
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Figure 2.4: Comparison of tail quantiles for normal, gamma, and t-distributions as possible ap-
proximations for a sampling distribution of a mean-based statistic

distribution do not approach large deviations from the mean for small samples. Student’s
distribution approximation, on the other hand, while symmetric, is much closer to the true
quantiles, especially in the thicker tails; changing the “base” of EE to t-distribution instead
of standard normal seems to provide better approximation in the tails, especially with higher
orders - 4-term (5th order) expansion performs especially well - Figure 2.7 b) and d). Figure
2.8 displays similar results for Γ(α = 3) distribution; sampling distribution’s left tail is not as
thick as with mixture-normal (which has particularly thick left tail with chosen parameters
in small sample) but the general trend is the same. Finally, we go back to original normal
distribution and look at the normal and t-based expansions to see how close they are to true
sampling distribution. Note that in this case λj = 0, j = 3, . . . and the reason even terms
deviate from first order is the presence of irregular terms inside q2(x), q4(x), etc, that do not
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Figure 2.5: Tail quantiles for different sample sizes: normal and t-distribution approximations and
gamma distribution

have cumulant factors (see Chapter 1). It appears that t-based Edgeworth approximations
somewhat distort the general shape of the distribution close to the center but provide much
better approximation for far tails.
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Figure 2.6: Sampling distribution of a studentized mean for normally distributed random variables:
Student’s t-distribution (truth) vs normal-based Edgeworth approximations

Small sample adjustment

We propose a small sample adjustment that takes the Edgeworth expansion framework but
uses Student’s t-distribution as a base. While there is no rigorous theoretical support for this
procedure, some theoretical arguments can be made to justify the adjustment - for example,
Zholud [73] argues that distribution of t-statistic for large deviations and small sample size
can be approximated byK tn−1, whereK is a constant dependent on the original distribution.
We also provide heuristic justification for t-distribution-based expansions, aiming at the
increased inference reliability in practice when the sample size is small. The adjustment
procedure is as follows (note that asymptotically it converges to a traditional normal-based
expansions):

– Substitute Student’s tn−1 c.d.f. for Φ(·) as a zero term in the expansion.

– Substitute Student’s tdj p.d.f. for φ(·) in subsequent terms. Adjust degrees of freedom
dj in these higher-order terms j in a controlled way to guarantee monotonicity and
convergence to 0 and 1 in the far tails. To do that, set d1 = d0 + 2 and dj = dj−1 + 3,
j = 2, 3, . . . based on the maximal power of quantile x in higher-order terms and the
increase of this power by 3 in each consecutive term (Chapter 1).

This adjustment aims to provide closer approximation to the features of the true distri-
bution that are most relevant for inference in multiple comparison analysis - critical values
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Figure 2.7: Normal and t-based expansions for mixture normal distribution

located in the distal tails. Justification for the adjustment follows considerations presented
in 2.2 and can be summarized in a few points:

– If distribution of X is skewed to the right, then sampling distribution of a studentized
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Figure 2.8: Normal and t-based expansions for Gamma distribution

mean is skewed to the left (unlike distribution of X̄) due to the dependence of X̄ and
s2. Edgeworth expansions go after the right shape of this distribution.

– The difference between standard normal and true sampling distribution of a studentized
mean is great in small samples, especially in the tails - as illustrated by our “best case
scenario” model with original normal distribution, where the sampling distribution is
exactly t. Gaussian-based expansions do not reach targeted quantiles of the sampling
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Figure 2.9: Normal and t-based expansions for normal distribution

distribution. In addition, recall that for unbiased estimates of variance in studentized
mean, the “base” distribution is less spread out than standard normal or tn−1 due to
the adjustment r2 (Chapter 1).

– t-distribution is much closer to the truth; asymptotically it is equivalent to standard
normal and provides the best available tool to get in the ballpark of the desired quantiles
(without being too conservative) thus offering a valid starting point as an analog of
the Gaussian approximation for studentized statistics in finite samples.

– By combining Student’s t-distribution with Edgeworth expansions we are able to get
the correct shape of the distribution (but of course no better than the sample itself)
in the desired regions of the tails. Note that it is specifically targeted for the large



CHAPTER 2. EDGEWORTH EXPANSIONS APPROACH TO DATA ANALYSIS 58

deviations: quantiles around the mean are well approximated by the normal-based
expansions and it is not recommended to use t-based expansions for them.

Results

Similarly to what we have seen in section 2.1, truncated Edgeworth expansions for the region
of a thinner tail are non-monotonic and not bounded by 0 and 1 - and therefore cannot be
used for probability estimation. For studentized statistics, thickness of tails is reversed and
so for our considered distributions the right tail is the thinner one. Demonstrated results
use true moments of distribution of X and small sample adjustment.

Figure 2.10 displays actual error rates for the sample size 10 and the number of tests
m = 1, 2, 4, . . . , 1048576 with Γ(α = 3) data generating distribution. The blue line gives the
rates for Student’s t-distribution approximation that is customarily used in data analysis (at
this sample size, normal approximation will not be anywhere near the truth at the far tails).
It can be seen that for the values of m that are over a thousand, there is virtually no error
rate control; while the rates are truncated at 1, the thickness of that truncation line at the
highest values of m indicates that it is indeed “worse” than no control (thickness of the line
reflects visual projection of the values greater than 1). Starting with second-order approxi-
mations, Edgeworth expansions show markedly improved results, and forth and fifth orders
are well below the nominal line (y = 0.05), which gives hope for a more reliable inference
that could be achieved with incorporating higher empirical moments into data analysis.

Figure 2.11 shows results for log-normal(σ2 = 0.4) distribution and Figure 2.12 - again
for Γ(α = 3) but with moderated t-statistic (for hyperparameters, we use preselected fixed
values for d0 and s2

0). Note that for moderated t-statistic, degrees of freedom for Student’s
t-distribution are augmented and so all the terms have been changed accordingly, with the
value of prior degrees of freedom d0 added to degrees of freedom in first order (td0+n−1 c.d.f.)
and all the consecutive terms.

A few observations relevant to the data analysis procedure going forward:

– for some distributions, higher-order expansions even for the thicker tail are not mono-
tonic, though still inside the bounds - e.g. fifth-order expansion for Γ(α = 3);

– 4th and 5th orders in considered cases are quite conservative.

2.3 Empirical EE and data analysis
Expansions for various studentized statistics in Chapter 1 were developed with the goal of
using them in practice; we can apply them with a small sample adjustment directly to data
analysis. In previous section, we looked at the statistics that assume that the variance is
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Figure 2.10: Error rates for studentized mean, gamma distribution, α = 0.05

not known as they incorporate its estimate; however, in Edgeworth expansions for those
statistics we still used true cumulants. To use these expansions in data analysis, moments
and/or cumulants of the original distribution need to be estimated and substituted for the
true ones. There are various ways to do that and different estimates can be used - for
example, P. Hall [32] suggests replacing standardized moments that can be used to calculate
cumulants with the following estimates:

µ̂j =
1
n

∑n
i=1(Xi − X̄)j

σ̂j
,

calling the result empiric Edgeworth approximations (note that these quantities are also
studentized).

With application to data analysis, there are two issues that need to be considered: smaller
sample size makes for greater variability of the moment estimators; we can also expect higher
moments to be more variable and thus not necessarily very useful for approximation, limit-
ing the number of usable terms in Edgeworth expansions. The second issue is that, as was
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Figure 2.11: Error rates for studentized mean, log-normal distribution, α = 0.05

mentioned earlier, we can use Edgeworth expansions for thicker tails only, leaving normal or
Student’s approximation for the thinner ones. In practice we don’t know the data generating
distribution, and therefore it is unknown if the distribution is symmetric and which tails are
thicker or thinner than that of a Gaussian distribution (our point of reference in regard to
expansions). This characteristic is going to be inferred from the information available - the
sample. Before using Edgeworth expansions, the method performs “tail diagnostic”, which
itself relies on the series, exploring behavior of the tails for each higher-order approximation.
Monotonicity and boundedness between (0, 1) will inform on usability and tail thickness and
that in turn will decide if and where higher-order approximation should be used.

It should be noted that the sample of a very limited size might not be representative of
an original distribution and no method can glean the information beyond the sample. The
proposed method aims to learn more about the underlying distribution but it can only do
as well as the sample itself. By using Edgeworth approximations on supposedly thicker tails
and Student’s t-distribution on the thinner ones, we ensure that there is no loss in error rate
control compared to standard asymptotic methods, while possibly gaining reliability with
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Figure 2.12: Error rates for a moderated t-statistic, gamma data generating distribution

higher-order approximations.

Substitution - moment estimates

Edgeworth expansions use central moments or cumulants of data generating distributions,
which are usally unknown in practice, so they need to be estimated. As discussed earlier,
for a small sample size the difference between simple biased and unbiased estimates should
be considered as it might affect the results. This difference is bigger for higher moments;
however, in asymptotic expansions it is offset by the smaller weight/contribution of higher
order terms where they are used. For moment estimates, we adopt notation Mk for unbiased
central moments, E(Mk) = µk, and mk = 1

n

∑n
i=1(Xi − X̄)k for simple biased estimates.

Expressions for expansion terms include not just “standalone” moments but their pow-
ers and products, as well as ratios of their combinations (denominators mainly consist of
powers of variance); use M(·) to denote an unbiased estimate of an expression inside the
parentheses, e.g. E [M(µ2

3)] = µ2
3. While unbiased estimates of products and integer powers
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of moments are possible to obtain, that is not the case with ratios and roots. Of course,
such biased estimates, like square root of sample variance s2 = 1

n−1

∑n
i=1(Xi − X̄)2, are

widely used in practice and it remains a question of how much “unbiasedness” is reasonable
to use in more complex situations. This question warrants a separate investigation, and
the answers probably depend on many factors - distributions, statistics, sample size, etc.
Adding to the complexity is the fact that since unbiased estimate of the ratio cannot be
obtained, simplifying expressions should also be questioned - consider, for example, scaled
sixth cumulant:

λ6 =
κ6

µ3
2

=
µ6 − 15µ2µ4 − 10µ2

3 + 30µ3
2

µ3
2

=
µ6

µ3
2

− 15
µ4

µ2
2

− 10
µ2

3

µ3
2

+ 30

For a closest estimate, it is natural to consider the ratio of an unbiased cumulant estimate

M(κ6) and an unbiased scaling factorM(µ3
2). Then, is

M(µ2µ4)

M(µ3
2)

preferrable to
M(µ4)

M(µ2
2)

for the

second term? This issue becomes even more complicated when we consider long expressions
for Edgeworth expansions with their various algebraic representations and simplifications.

In addition to these questions, EE for generalized t-statistics (see Chapter 1) are set up
in such a way that even if we get unbiased estimates for kj,i’s, their subsequent algebraic
manipulations include multiplication and powers, so estimates for the whole expressions in
numerators become biased. Trying to get the “maximum” amount of unbiasedness might be
computationally unfeasible; besides, all the simplifications affect the results, so in the end it
is still an arbitrary decision.

Extending the method we used to derive general order Edgeworth expansions for t-
statistics, we can obtain unbiased estimates for arbitrary moments, as well as their products
and integer powers using our software. Unlike the second central moment (variance) and
the third, where biased moment estimates are scaled by constants to obtain unbiased ones,
subsequent moment estimates contain combinations of lower moments. Below are the unbi-
ased estimates of the moments and their combinations up to sixth order (see [19] and [59]
for unbiased estimates up to fourth order).

M3 =
n2

(n− 1)(n− 2)
m3

M4 =− 3n (2n− 3)

(n− 1)(n− 2)(n− 3)
m2

2 +
n (n2 − 2n+ 3)

(n− 1)(n− 2)(n− 3)
m4

M(µ2
2) =

n (n2 − 3n+ 3)

(n− 1)(n− 2)(n− 3)
m2

2 −
n

(n− 2)(n− 3)
m4
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m2m3 +
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m5

M(µ2µ3) =
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3
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m3

2 +
4n (n2 − 5n+ 10)

(n− 1)(n− 3)(n− 4)(n− 5)
m2

3

− n (n2 − 3n+ 8)

(n− 2)(n− 3)(n− 4)(n− 5)
m6 +

n (n4 − 9n3 + 53n2 − 135n+ 120)

(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)
m2m4

An important consideration that should factor into a decision of which estimators to use
should be variability of the denominator in algebraic expressions that come up in Edgeworth
expansions (and as a general rule). An example above for possible estimates for λ6 provides
a simple illustration. The cumulant is scaled by µ3

2; to substitute this unknown quantity, a
variety of estimators can be used: m3

2, [M(µ2)]3, or M(µ3
2), to name a few. While expression

forM(µ2) (and thus its cube) containsm2 only, the expression forM(µ3
2) includesm4 andm6

as well. These higher-order quantities may be highly variable, especially in the small sample
and therefore the whole ratio becomes highly sensitive to the small values of estimates in
the denominator that can inflate λ6 dramatically, increasing variability of the ratio to the
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point of unusability. Our numeric exploration of stability of these complicated algebraic
expressions indicates that for relatively small sample sizes it might be indeed preferable to
use lower-order estimators in place of parameters in denominators (“power of mean” instead
of “mean of power”). In fact, even simple biased moment estimates might perform better
overall (have smaller mean squared errors) because of their relative stability.

Another approach, as mentioned earlier, could be to use estimates for standardized mo-
ments, but as the estimates are themselves studentized, there is no way to make them
unbiased (however unbiased numerators and unbiased denominators can be used in the same
way as described above, which brings up the same challenges).

Tail diagnostic - exploration

Tail behavior of truncated Edgeworth expansions can be informative - not just indicating if a
certain order of approximation can be used, but also helping to infer the degree of asymmetry
and thickness of the tails of a sampling distribution. Given a set of (estimated) moments or
cumulants, we can look at the resulting higher-order approximations and assess departures
from general probability function characteristics, such as monotonicity and containment in-
side [0, 1] bounds. Figure 2.13 gives an example of the thin right tail of a t-statistic (for
Γ(α = 3) distribution) and its t-based approximations. It can be seen that 2-term expansion
(3rd order) is “well-behaved”, 4-term is not monotonic but respects the bounds and 1- and
3-term expansions are both non-monotonic and out of bounds. For the purposes of this
exploration, we assign 1 to the order of expansion if the characteristic, such as monotonicity,
matches that of a probability function and 0 otherwise, separately for each tail - e.g. for
Γ(α = 3) it will be “1 1 1 0 0 1 0 0” (terms 1 - 4).

To look at the tail behavior and its effect on error rates in empirical Edgeworth ex-
pansions, we draw multiple samples from a variety of distributions, look at the patterns
and different combinations of tail diagnostic results, and summarize error rates within each
group. Each simulated sample provides a set of moments and cumulants that yields a di-
agnostic combination for higher orders (like the one above for gamma distribution); to get
the combination, we divide a tail region into small intervals and evaluate monotonicity and
bounds. Actual error rates are calculated using the same steps as before (described in section
2.1), and then for each order of approximation the summary is produced. Since there are
many very small values for probability that are important for our investigation, we calculate
mean and variance of error rates on a log scale, thus preventing this information from being
obscured by large values. In the figures presented, one standard deviation above and one
below the mean are marked by shaded areas.

In Supplementary materials 1, we present the results in interactive graphics, where the
user can choose from different orignal distributions and their parameters, and look at the
figure for each combination while adjusting y-scale to zoom in and out. Distributions covered

https://github.com/innager/edgeplots
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Figure 2.13: Edgeworth expansions: thin tail behavior, gamma distribution

are gamma with shapes α = 3 and α = 50, log-normal with σ2 = 0.4 and σ2 = 0.5, mixture-
normal with p = 0.5, µd = 3, σ2

1 = 0.5, σ2
2 = 2, and standard normal. Here we present some

of these plots as examples; note that the order of values on x-axis for left tail is reversed
to provide a visual analogy to tail quantiles spreading out from the mean. In Figures 2.14
and 2.15 there are several combinations based on Γ(α = 3) distribution, which is skewed
but still fairly nice and unimodal. Combinations a) and b) in figure 2.14 represent the most
common groups, with thick left and thin right tails. In a) the tails are well defined and
error rates resulting from higher-order approximations provide great improvement and are
not spread out, while combination in b) indicates less contrast between the tails with higher
error rates and more variability in them. Tails in combination c) are both well-behaved - and
we see that error rates for 3-term expansion (and to a lesser degree 1-term) vary a lot and
in many cases might even be less conservative than the first order (zero term). Combination
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in Figure 2.15 indicates that the sample is not representative, and 1-term expansion is very
anti-conservative and highly variable.

Figures 2.16 and 2.17 show some of combinations for Γ(α = 50) (near symmetrical) and
normal distributions; they illustrate the point that expansions that are anti-conservative
(“trying” to make the tails thinner) might also produce error rates that vary dramatically.

In a different simulation study, we compare expansions for ordinary and moderated t-
statistics by looking at three characteristics separately for each simulated sample - the char-
acteristics being monotonicity, respecting [0, 1] bounds, and being no less conservative than
first order approximation at every point in the tail region. For these simulations, we use
randomly chosen distributions and group the samples by unique combinations of the three
conditions. Observations and conclusions from these tail diagnostic investigations are sum-
marized in the next section along with the data analysis procedure that was devised based
on those observations.

Proposed procedure

When the function provided by truncated EE is not monotonic and especially not bounded
by 0 and 1, it cannot be used to provide an approximation to the distribution of interest. In
general, non-bounded function is always non-monotonic, but in some cases the function can
be bounded but not monotonic. In these cases, some measures could be taken to smooth
out non-monotonic regions of the function but this would involve arbitrary decisions about
smoothing methods and tuning parameters - and in the end might result in unreliable prob-
ability estimates (in our simulations, this approach did not yield very interesting results).
As it happens, great majority of samples have one well-behaved (monotonic and bounded)
tail and one that is unusable. In a small fraction of cases, both tails are well-behaved; the
situation where both tails are not “nice” has never been observed in our investigation.

It turns out that a well-behaved (monotonic and bounded) function for certain orders
(like 4th order, or 3-term expansion) indicates a thick tail, while the opposite is true for
the thin one. This was determined by evaluating tail behavior of EE for known data gen-
erating distributions, using true moments and comparing EE with the distribution of the
test statistic (obtained through high-volume coarsened simulation described in section 2.2).
Since we are aiming to protect against false positives by providing closer approximation in
situations where first-order approximation is anti-conservative - where a tail of test statis-
tic’s distribution is “thicker” than normal or Student’s t-distribution - the expansion would
deliver better approximations exactly where they are needed. As for the thinner tail, first
order approximation can be used, as usual. To take it a step further, we will use “zero-term”
approximation whenever a higher-order expansion yields a tail that is thinner than normal/t
distribution at any point, thus guaranteeing that our method’s results are never less con-
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servative than those of a traditional first order approximations.

EE “tail behavior” might slightly differ for various test statistics (e.g. for ordinary and
moderated t-statistics) but there are common trends and features that allow us to general-
ize and propose a rule for “tail diagnostic” that would determine if a specific higher order
expansion should be used for each tail. We describe some of these trends below, followed by
the proposed rule/algorithm that is used in our data analysis method.

1. Terms that are indicative of a thin tail are odd terms - like 1 and 3. Second term is
usually “nice” and thus not useful as a diagnostic tool; moreover, even in a “thin” tail
it can be quite conservative, which makes it not reasonable to use in that situation.
Subsequent even terms are not good indicators either, but as the order increases, they
are more likely to have characteristics that distinguish them from distribution-like
functions - non-monotonicity and falling beyond [0, 1] interval, even in the thicker tail
(e.g. 4’th term for ordinary t-statistic’s left tail in Γ(α = 3) distribution).

2. In the majority of cases, term 1 already points at the thin tail; however, in other cases
that term is well-behaved and term 3 is the one that determines that tail. In these
latter cases, 1-term expansion is still less conservative than normal/t approximation.
Therefore, checking behavior of the term 1 only is not always sufficient to determine if
a higher-order approximation should be used.

3. Sometimes (relatively rare), both tails are well-behaved in higher-order expansion func-
tions (apparently when sample points to a symmetric or near-symmetric distribution);
however, in one of the tails, some higher orders (odd ones) are still less conservative
than first-order approximation, so we choose to use regular normal/t approximation for
this tail. And very rarely (in moderated statistics only) both tails are less conservative.
Why should not higher order approximations be used in cases when they are “nice” but
less conservative? Apart from intention to guarantee “never less conservative” results,
our investigation (section 2.3) indicates that these cases are unstable and fairly volatile
- the terms that try to approximate thin tail vary greatly in their approximations and
resulting error rates from sample to sample, undermining the goal of reliability/stability
(also keeping in mind that small samples might not be representative of the true data
generating distribution - as some examples illustrate).

4. For thick tails, not all the terms are necessarily “nice”, as was mentioned above - it
is usually monotonicity that is affected. Once a term strays from distribution-like
behavior, the subsequent terms usually follow the same pattern and cannot be used
either. This rarely applies to terms lower than 4’th (fifth order) but in some cases
3-term expansions are already unusable. In other rare cases, the higher-order function
in a thicker tail is well-behaved but less conservative than first order; it would be
reasonable to assume that this points to a near-normal or at least near-symmetric
distribution.
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5. Comparing expansions for the distributions of ordinary and moderated t-statistics for
the same samples, we observed that general tail diagnostic results are mostly similar,
though occasionally “thick” and “thin” tails switch (another sign of near-symmetric
distribution). Expansions for moderated t are sometimes “nicer” for higher orders than
those for ordinary t-statistic; not surprisingly, there are more less-conservative cases
for moderated t as well - including very rare cases where all but 1-term expansions
are less conservative and even those where comparison with first order indicates that
both tails are “thin” (this last situation has never been observed in ordinary t-statistic
expansions).

Based on described investigation, our tail diagnostic procedure follows these simple rules:
each tail is checked for monotonicity, boundedness by 0 and 1, and being less conservative
than first order approximation. If at least one of these conditions is not satisfied, this order
expansion is not used; none of the subsequent orders for this tail are used either. Here are
the steps in which this procedure is implemented:

1. Preliminary steps:

– non-sample specific: each tail is divided into intervals by points at which EE
functions will be evaluated; first-order approximation at these points is calculated;

– sample specific: calculation of sample moments and quantities that do not depend
on a quantile x, such as λj and kj,i (see Chapter 1).

2. For each tail separately: starting from center-most quantiles and going outward, check
quantiles for three conditions using increasingly higher order expansions. If conditions
are not satisfied for a specific order, mark this order and all the higher ones as unusable
(see possible representation below):

/* left tail */
nice[ ] = True; // (for all orders being considered)
for each point x going outward:

for each increasing order k = 2, ... (term 1 and higher):
if nice[k]:

calculate F_k(x);
if non-monotonic or non-bounded or less conservative:

nice[k and higher] = False;
if k = 2:

stop; // (break from the outer loop)
/* right tail */
repeat the process;

If all the higher-order approximations are marked as unusable, only a first order (normal
or t-distribution) approximation is used for data analysis. For a thicker tail, how higher-
order results are presented can be up to the user - for example, if some higher orders are
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not available, the result of the last available order can be repeated in their place. A more
detailed option might be to use the last available order if the function is not well-behaved
and the first order approximation if it is nice but less conservative.

While the described procedure goes through a lot of steps, the actual computational
time is reasonable: “irregularities” in the functions are usually close to the center and are
discovered early in the process; for a thin tail, second order (term 1) always detects it and
stops the process; and once an order is determined to be unusable, there is no need to
calculate function values for higher orders.

2.4 Simulation
Using the data analysis procedure described above, we run several types of simulations to
assess the performance of Edgeworth expansion based inference.

Error rates from empirical EE and known true distribution

In this simulation scheme, we repeat the process of calculating actual error rates used
throughout this chapter. It requires knowing the true sampling distribution of a test statistic,
and the critical values are obtained with Edgeworth expansions that use empirical moments
and/or cumulants from the sample. Decisions of which higher-order approximations should
be used are based on a tail diagnostic procedure (section 2.3).

First, we look at the results obtained from batches of samples drawn from the same dis-
tribution - this will allow us to see the extent of variability in resulting error rates, as we
did in tail diagnostic exploration. Interactive graphics in Supplementary materials 2 contain
results for the distributions used previously: gamma with α = 3 and α = 50, log-normal
with σ2 = 0.4 and σ2 = 0.5, mixture-normal and standard normal. Figures 2.18 and 2.19
give an example for Γ(α = 3) one sized tests - left and right sides of the plots represent
left- and right-sided tests with significance level 0.05; adjusted values for the rates are not
truncated in this particular example.

“Zoomed-in” picture is presented in Figures 2.20 and 2.21 - to see the rates for the right-
side test. It shows increased variability for higher-order terms. Since mean and variance are
calculated on a log scale, one standard deviation above the log-based mean appears to rise
above first-order rates; in reality, the rates never go above first-order approximation since
the procedure is designed to prevent it.

Disclaimer: For an ordinary t-statistic with unbiased variance estimate (as well as with
moderated t-statistic in high-dimensional simulation below), we are using generalized Edge-
worth expansions from Chapter 1; therefore the first-order approximation (zero-term expan-

https://github.com/innager/edgeplots
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sion) is not exactly t-distribution (recall the zero term being tn−1(x/r), where r2 = n−1
n

for an ordinary t-statistic with unbiased estimate of σ2). This estimate is less conservative
than tn−1(x), a straightforward t-distribution approximation, which makes sense because t
that incorporates sunbiased is less spread out than t scaled by sbiased (see Chapter 1). To be
consistent in our comparison, we compare higher-order approximations with zero-term of the
same expansion, not with tn−1(x).

Next step for the same simulation procedure is to draw from a kind of generalized skewed
distribution; for that we employ a “grid simulation”, using gamma and log-normal distribu-
tions with wide range of parameters: from 1 to 50 for shape parameter in gamma and from
0.001 to 1 for log-variance in log-normal distribution. For each of those distributions we first
obtained a t-statistic sampling distribution through coarsened simulation. Results are then
combined and summarized as means across the distributions for each order separately; they
can be seen in Figure 2.23, where they are compared with a different simulation scheme.

Hypothesis testing

Instead of using EE-based critical values and known distiribution of a test statistic, this sim-
ulation mimics a real data analysis situation with hypothesis testing, where all we have is a
sample and a null hypothesis, and the analysis is expected to produce a binary result - either
reject or not reject the null hypothesis. To reach extremely small probabilities, we run 1010

simulations (the same as when obtaining sampling distributions with coarsened simulation).

The steps for this simulation procedure are:

1. draw a sample from a null distribution;

2. calculate a t-statistic and empirical moments/cumulants;

3. using empirical moments, perform tail diagnostic;

4. based on this diagnostic, calculate p − values for each number of tests m using first-
order and higher-order approximations;

5. for each order’s adjusted p− value (Bonferroni MTP), make a decision to either reject
or not reject the null hypothesis for a given significance level.

The actual error rate for each order of approximation and each number of tests is the pro-
portion p of rejected hypotheses multiplied by the number of tests: R = min(pm, 1), which
can be then compared with the nominal significance level.

Figure 2.22 shows the results for this simulation and compares them with the previous
section’s simulation for a two-sided test with Γ(α = 3) original distribution. For the hypoth-
esis testing simulation, there is no measure of spread - each combination of number of testsm
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and order k provides only one number without showing variation between the samples. The
results are surprising and differ from the previous simulation quite a bit. While first-order
approximation matches the previous result (as it should), higher-order approximations do
not decrease error rates nearly as much as the previous simulation shows.

Next we run a bigger model simulation with drawing from a random distribution, which
would be somewhat analogous to a grid simulation in previous chapter. For that, first we
randomly select a distribution family (from gamma and log-normal with probability 0.5
each), then draw a value of a parameter for that distribution from continuous uniform with
min and max that match the ranges specified for the grid earlier. Figure 2.23 compares
results for these two simulations. The plot for grid simulation does not display the spread
because for such a wide range of distributions and parameters it would be very wide and
non-informative. The comparison confirms previous observation - the first-order results are
similar in two simulation schemes, and while higher-order approximations do reduce error
rates, this improvement is not as striking as would be expected from the critical value sim-
ulation.

The important conceptual difference between the two simulation schemes is that in the
first one we run separate simulations to a) obtain sampling distribution of the test statistic
(only t-statistic is of interest in each simulated sample) and b) produce empirical Edgeworth
expansions (only moments/cumulants from each sample are used). In a hypothesis testing
scheme, each sample provides both test statistic and a set of moments/cumulants that are
used in EE. This brings us to the issue of dependence of a t-statistic and sample moments,
which can offer an interesting insight into the nature of extreme values for t-statistic in small
samples and might point to a promising new direction for methods to protect against false
positives.

Dependence of t-statistic and empirical moments

Under the null, t-statistic and empirical moments (as well as scaled cumulants, λ’s) are not
independent: the subset of samples that produce extreme t-statistics will on average have
cumulants that differ from those of the whole set of samples. In hypothesis testing we are
mostly interested in that particular subset as it produces false positives and drives error
rates. When the sample size is small, the main reasons pushing the value of t-statistic away
from the center to the extremes are: 1) null hypothesis is false (true positive), 2) most of
the observations are from the far tail of the distribution by chance (false positive), and 3)
most of the observations are clustered together, so even if the mean is reasonably close to
the center, it is amplified by a small sample variance (false positive). The second scenario is
highly unlikely and the large number of false positives indeed come from the third one.

In fact, in a group of samples producing false positive results, sample variance will be
smaller in general and λ’s will be less representative of the data generating distribution than
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those in the set of all the samples. For a two-sample t-test, the treatment group might be
distinguished by a smaller variance than the control group under the null. This suggests that
if we had some idea of a likely range for the variance, an unusually small value of sample
variance in conjunction with the large absolute value of t-statistic might raise a flag for a
potential false positive. High-dimensional data might offer an opportunity to do that (which
could explain good performance of empirical Bayes methods even when the assumptions are
not true); taking this idea further, it might be helpful to extend the comparison to higher
moments and cumulants. Two-sample t-tests might be another situation where t-statistics
that are inflated due to uncharacteristically small variance can be detected and investigated
further.

High-dimensional simulation

For high-dimensional simulations, we use several approaches:

1. all the features (genes) are simulated from the same known distribution, a proportion
of them is shifted to a random distance to introduce “signal”;

2. the features in the same simulated dataset come from different randomly selected dis-
tributions and parameters, with similar shifts for signal;

3. data is generated from a real dataset using a convex pseudo-data generating technique.

We compare performances of ordinary and moderated t-statistics across higher-order
approximations. Empirical EE for moderated t-statistic require one extra substitution in
expressions for “constants” A and D (Chapter 1) - they include unknown feature-specific
variance σ2

g , for which we plug in a value of a sample variance s2
g. These constants are part

of the terms of expansions and, most importantly, of a variance adjustment r2 that we use
for generalized EE. This variance adjustment is part of the quantile argument to zero-term’s
c.d.f. tn−1(x

r
) as well as to all the p.d.f. factors in subsequent terms. In our simulations and

application of the EE-based analysis method, it appears, surprisingly, that this adjustment
seriously weakens the performance of all the orders in moderated t-statistic. Compare the
results in Figure 2.24 that applies expansions with and without the adjustment to the data
simulated from Γ(α = 3). There is a very slight increase in power from using an adjustment;
in terms of error rates (FDR), the results for ordinary t-statistics are almost the same but
for moderated t they are increased dramatically, making its performance poor compared to
that of an ordinary t. To find the root of this problem, a separate investigation would need
to be conducted; the issue might stem from σ2

g substitution or from using r2 in general, but
in any case this adjustment is not arbitrary and is a result of analytical derivation.

We look at the few simulations with “no-adjustment” expansions as they provide inter-
esting results (Figure 2.25). Moderated t-statistics perform very well compared to ordinary
t, both in terms of error rate control and power. They seem to be especially helpful when
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all the features come from the same distribution as the empirical prior information is par-
ticularly valuable and is a strong stabilizing factor for individual features. As expected,
higher-order approximations improve error rate control, though not much for moderated t in
plot a) where it is already in a good range for the first order, but also lose in power somewhat.

Figures 2.26 and 2.27 show expansions with the variance adjustment r2 for FWER and
FDR. As pointed out above, results for moderated t, while increasing the power, present
higher error rates. Higher-order expansions help with error rate control quite a bit - Figure
2.26 b) is especially interesting in that regard as the improvement in FWER comes with
almost not loss in power. For FDR in convex pseudo-data (Figure 2.27) fourth and fifth
orders do not help much with error rate control.

2.5 Discussion/future research
Edgeworth expansions offer many interesting possibilities for data analysis - and the more
these possibilities are researched, the more questions, challenges, and insights leading to new
promising directions appear. We address some of these challenges and issues to be figured
out and outline a few intriguing new paths and opportunities for continuing research.

When using empirical higher orders, it is important to be mindful of the relationship
between sample size n and order k. While rigorous summation of conditions and guidelines
would require more research, we offer a few thoughts on this relationship. Some formalism
is on the surface: moment estimates require n > k − 1 condition for a k’th order estimate;
this can go beyond k − 1 if a more complex generalized form of expansion is used. Another
partially formal consideration is finite moments condition and relation of t-statistic’s sam-
pling distribution to Student’s t-distribution with ν degrees of freedom, where µk <∞ if and
only if k < ν. Finally, as our preliminary study of unbiased moment estimates suggested,
small sample estimates of higher-order moments and moment-containing expressions can be
quite unstable resulting in empirical quantities such as scaled cumulants that are far from
the truth. That brings us to the question of how helpful high-order approximations are to
the inference in very small samples. There are indications that EE might actually be more
useful for inference in moderate to large sample sizes, where they can reliably refine inferen-
tial procedures.

Investigation of estimate instability brings up another possibility. Scaling, or “studen-
tization” is a source of great variability in small samples (this will be also expanded on in
Chapter 3) - in test statistics and analysis methods. By setting up a generalized version
of Edgeworth expansions, we open up an opportunity for developing the idea further and
research expansions for non-normalized (non-scaled) statistics, which might eliminate divi-
sion from algebraic expressions for the terms thus stabilizing them significantly. Variability
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might still come into play in this scenario but it seems to be a direction worth exploring.

Researching the issue of dependence of t-statistic and empirical moments suggested an-
other promising venue for inference that can use sample moments to detect/flag potential
false positives. High-dimensional data such as produced by genomic experiments has the
advantage of additional information that can be borrowed for individual feature inference;
empirical Bayes methods shrink variance estimates for different features toward a common
value, which is especially helpful for small sample inference - not only stabilizing the vari-
ance but also enlarging the variance precisely for the group of samples that are in danger
of producing false positives: samples with extreme t-statistics where the null hypothesis is
true. If empirical Bayes methods are extended to higher moments, that can be used to fur-
ther identify potential false positives, leading to even more fine-tuned methods that improve
error-rate controls without sacrificing the power. These methods can combine both empirical
Bayes approach and Edgeworth expansions. They might potentially be even more helpful in
two-sample t-tests (even without equal variances assumption), where detecting specific dif-
ferences between control and treatment groups’ statistics would assist in identifying potential
false positives and result in better error rate control.
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Figure 2.14: Tail diagnostic groups: selected combinations
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Figure 2.16: Tail diagnostic - near symmetric distribution
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Figure 2.17: Tail diagnostic - normal distribution
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Figure 2.18: Edgeworth expansions of orders 2 - 4: data analysis with tail diagnostic
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Figure 2.19: Edgeworth expansions of order 5 and all orders combined: data analysis with tail
diagnostic
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Figure 2.20: Edgeworth expansions of orders 2 - 4 zoomed in
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Figure 2.21: Edgeworth expansions of order 5 and all orders combined zoomed in



CHAPTER 2. EDGEWORTH EXPANSIONS APPROACH TO DATA ANALYSIS 81
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Edgeworth 1 − 5 orders with tail diagnostic 
Gamma (shape = 3) ,  n = 10

number of tests

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220

Edgeworth 1st order
Edgeworth 2nd order
Edgeworth 3rd order
Edgeworth 4th order
Edgeworth 5th order

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Hypothesis testing with higher−order approximations

Gamma (shape = 3) ,  n = 10

number of tests

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220

Edgeworth 1st order
Edgeworth 2nd order
Edgeworth 3rd order
Edgeworth 4th order
Edgeworth 5th order
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Figure 2.24: High-dimensional simulation, same distribution for all features: with and without
adjustment
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Figure 2.25: High-dimensional simulation: no variance adjustment r2
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Figure 2.26: High-dimensional simulation, family-wise error rate (with variance adjustment r2)
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Figure 2.27: High-dimensional simulation, false discovery rate (with variance adjustment r2)
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Chapter 3

GLC Bootstrap

Ever since bootstrap was proposed in 1979 by B. Efron [22], it has remained one of the most
widely used techniques for deriving inference in statistical analysis. Its introduction, followed
by extensive research, lead to the development of great number of statistical methods based
on it, including extensions, modifications, and improvements of the original technique. Tech-
nological advances allowed these computer-intensive methods virtually limitless applications
to many fields of research. Justifying its name, bootstrapping became a truly “go to” family
of methods and a natural solution for non-parametric inference. Among many advantages
that ensure widespread popularity of this resampling technique are simplicity of the concept,
versatility, and a broad range of possible applications. With the use of Edgeworth expan-
sions, some important properties of bootstrap have been explored and established, such as
the rate of convergence - showing that bootstrap improves on traditional first-order asymp-
totic approaches, providing higher-order approximations to the distribution of a test statistic
[33].

These qualities make bootstrapping an attractive approach for small sample inference;
at the same time, sample size poses unique challenges to resampling in general and non-
parametric bootstrap in particular. Two main problems are discreteness and biased variance
of the bootstrap generating distribution. Since an empirical distribution of a small sample is
very discrete and the number of data points to draw from is very limited, resulting bootstrap
samples will have even fewer distinct values (occasionally consisting of one repeated value
only) and the method will break down. As for the bias, we will show that the variance of
bootstrap samples is consistently underestimated (more so for very small samples as the bias
is a function of sample size), which might affect the inference considerably, further reducing
reliability of the results. Developing a bootstrap method specifically designed for small sam-
ple size that would ameliorate these problem is the goal of this Chapter.

We propose a generalization of the non-parametric bootstrap principal that smoothes
empirical distribution by adding a controlled amount of noise and eliminates systematic
variance bias for finite samples: General Linear Combination (GLC) bootstrap. It is an
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extension of the convex bootstrap [16] and pseudo-data generation idea [13]; by introducing
a tuning parameter, it makes it possible to regulate the variance of bootstrap generating
distribution. First, this tuning parameter is used to match bootstrap variance to the sample
variance (which is the esimated variance of the data-generating distribution); later, for stabi-
lized variance bootstrap, we provide a solution to “prescribe” posterior variance to bootstrap
generating distributions of individual features in high-dimensional data analysis - using em-
pirical Bayes method and moderated t-statistic [65], [66]. We show that GLC bootstrap can
be used with correlated data, mostly preserving correlation structure. We apply the method
to clustering and devise a way to assess reliability of clustering results by calculating prob-
ability that two given features/elements end up in the same cluster. In the last section,
these methods are applied to yeast genomic data, in the study that involves mutant deletion
strains - parallel deletion analysis (PDA).

3.1 General set up
The following set up includes non-parametric bootstrap as a special case, as well as other
modifications, such as a convex bootstrap. Note that it is defined [designed] for continuous
data.

Let X ′ ∼ P0, where P0 is a true unknown data generating distribution. The data, original
sample, is x1, . . . , xn.

We introduce intermediate random variables and a tuning parameter d:

X ∼ Pn, where P (X = xi) = 1
n
, i = 1, 2, . . . , n

Z ∼ U(0, d), Z ⊥ X, d ∈ R.

Consider drawing a pair (X1, X2) with replacement and define a new “bootstrap” random
variable X∗ ∼ P ∗0 :

X∗ = ZX1 + (1− Z)X2, (3.1)

and thus X∗ is a linear combination of the pair.

The tuning parameter d is a constant and the key component of the set up. Its different
values determine the version of the bootstrap. At this point, d can be restricted to the
interval −1 6 d 6 1, but later (for stabilized variance version), we will relax this restriction
and change it to −∞ < d 6 3/4. Since in the general case d can be negative, to respect
the order of the Uniform distribution bounds, the distribution of Z can be writen as Z ∼
U(min(0, d),max(0, d)). Important special cases of this generalized set up include:

– Non-parametric bootstrap: d = 0.
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– Convex bootstrap: d = 1 [16];
other versions: 0 < d < 1 [13].

– GLC bootstrap: d =
3

4
− 3

4

√
3n+ 5

3n− 3
.

Being the function of the sample size n in the last case only, parameter d corrects the
bias in variance of the bootstrap variable X∗.

Bias in Variance of X∗

First, we wish to find V ar(X∗) and compare it to V ar(X ′).
Define first two moments of random variable X:

µ ≡ E (X) =
1

n

n∑
i=1

xi

ν ≡ E
(
X2
)

=
1

n

n∑
i=1

x2
i

First two moments of Z are E (Z) =
d

2
and E (Z2) =

d2

3
.

Keeping in mind that X1 and X2 are independent, we get:

V ar(X∗) = V ar(ZX1 + (1− Z)X2)

= E

[(
ZX1 + (1− Z)X2

)2
]
−
[
E
(
ZX1 + (1− Z)X2

)]2

E
(
ZX1 + (1− Z)X2

)
= E(ZX1) + E(X2)− E(ZX2) = E(X) = µ

E
[(
ZX1 + (1− Z)X2

)2
]

= E
[
Z2X2

1 + 2X1X2Z (1− Z) + (1− Z)2X2
2

]
= νE

(
Z2
)

+ 2µ2E
(
Z − Z2

)
+ νE

(
1− 2Z + Z2

)
= ν

d2

3
+ µ2d− 2µ2d

2

3
+ ν − νd+ ν

d2

3

= ν

(
2

3
d2 + 1− d

)
+ µ2

(
d− 2

3
d2

)

V ar(X∗) = ν

(
2

3
d2 − d+ 1

)
+ µ2

(
d− 2

3
d2

)
− µ2 = (ν − µ2)

[
2

3
d2 − d+ 1

]
(3.2)
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Let x̄, a sample mean, and s2, a sample variance, be unbiased estimates of E(X ′) and
V ar(X ′) = σ2 respectively:

x̄ =
1

n

n∑
i=1

xi = µ (by definition of µ).

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 =
n

n− 1
(ν − µ2)

Now we compare these unbiased esimates of mean and variance of data-generating dis-
tribution P0 with those of bootstrap-generating distribution P ∗0 . As established above:

EX∗ = µ. (3.3)

Thus, the mean of bootstrap sample is unbiased. Compare the variance:

V ar(X∗) =
n− 1

n
s2
(

2

3
d2 − d+ 1

)
. (3.4)

As the sample size grows,

lim
n→∞

V ar(X∗) = s2

(
2

3
d2 − d+ 1

)
.

Therefore, asymptotically for V ar(X∗) to be unbiased, we need

2

3
d2 − d+ 1 = 1,

which holds when d =

{
0,

3

2

}
.

If 0 < d <
3

2
, then

2

3
d2 − d+ 1 < 1 and V ar(X∗) < σ2.

Non-parametric Boostrap

Since d = 0, it is asymptotically unbiased. For finite samples, however,

V ar(X∗) =
n− 1

n
s2

So, bootstrap generating distribution has a variance that is smaller than original sample
variance by a factor of n−1

n
. In other words, resulting bootstrap samples on average will have

smaller variance than the original sample. In relatively small samples that can noticably
affect results of the bootstrap procedure. It also means that we are “sampling” from a
distribution that is somewhat different from our estimate P̂ of the true distribution P0.
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Convex Boostrap

This version of bootstrap is asymptotically biased since
2

3
d2 − d+ 1 < 1. The biggest bias

occurs when d =
3

4
; in this case s2 is scaled by the factor of

5

8
. Scaling factors for d = 1

and d = 0.5, which are the most frequently used values, both equal
2

3
. This is a very serious

departure from the sample variance, and it holds for any sample size.

This asymptotic bias factor is compounded by the finite sample bias that is present as
well, further decreasing V ar(X∗).

Modified Convex Boostrap

Since the convex bootstrap has significant bias even asymptotically, a modified version of
it has later been developed by the same authors [17]. Asymptotically it converges to non-
parametric bootstrap: as n → ∞, the contribution of the second variable of the (X1, X2)
pair disappears.

The set up for modified convex bootstrap is a little different from the general set up we
introduced previously:
Data (original sample): x1, . . . , xn,

X ∼ Pn, where P (X = xi) = 1
n
, i = 1, 2, ..., n

Z ∼ U(0, d), Z ⊥ X, 0 6 d 6 1

Draw a pair (X1, X2) and define a new bootstrap random variable X∗:

X∗ = Z1/nX1 + (1− Z1/n)X2

Going through the same steps as before, we find V ar(X∗):

E(X∗) = µ

E(X∗2) = E

[
Z

2
nX2

1 + 2Z
1
n

(
1− Z

1
n

)
X1X2 +

(
1− Z

1
n

)2

X2
2

]

E
(
Z

1
n

)
=

∫ d

0

z
1
n

1

d
dz =

1

d

z
1
n

+1

1
n

+ 1

∣∣∣∣d
0

=
d

1
n

1
n

+ 1

E
(
Z

2
n

)
=

∫ d

0

z
2
n

1

d
dz =

1

d

z
2
n

+1

2
n

+ 1

∣∣∣∣d
0

=
d

2
n

2
n

+ 1
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V ar(X∗) = νE
(
Z

2
n

)
+ 2µ2

[
E
(
Z

1
n

)
− E

(
Z

2
n

)]
+ ν
[
1− 2E

(
Z

1
n

)
+ E

(
Z

2
n

)]
− µ2

= ν
[
2E
(
Z

2
n

)
− 2E

(
Z

1
n

)
+ 1
]
− µ2

[
2E
(
Z

2
n

)
− 2E

(
Z

1
n

)
+ 1
]

=
(
ν − µ2

)
· C, (3.5)

where C =
2 d

2
n

2
n

+ 1
− 2 d

1
n

1
n

+ 1
+ 1.

As n→∞, C → 1 as does n−1
n

, so asymptotically bootstrap variance is unbiased. How-
ever, for finite samples the bias might be relatively large - for example, if n = 10 and d = 1,
original sample variance will be scaled by a factor of 0.76. The worst case (smallest value of
C) occurs when d = 0.5 - then for n = 10 the variance of bootstrap generating distribution
will be decreased by the factor of 0.68 compared to the data sample variance. Due to this,
Chernick [15] notes that modified convex bootstrap does not perform well in practice.

GLC Boostrap

To remove both asymptotic and finite sample bias, we need to make

n− 1

n

(
2

3
d2 − d+ 1

)
= 1 (3.6)

For d, we pick one of the roots of the quadratic equation (3.6):

d =
3

4
− 3

4

√
3n+ 5

3n− 3
(3.7)

d can be viewed as a tuning parameter that targets bootstrap variance of a random
variable. Variance can be the crucial component of the inference; however, there might be
reasons to target other characteristic of the distribution (e.g. skewness). In that case, the
approach would be similar but the process/result might be more complicated, depending on
the characteristic.

Features of GLC bootstrap

It follows from (3.7) that d is always negative and lim
n→∞

d = 0. Moreover,

d =
3

4

(
1−

√
3n+ 5

3n− 3

)
= −

(
1

n
+

1

3n2
+

5

9n3
+ . . .

)
= − 1

n

(
1 +

1

3n
+

5

9n2
+ . . .

)
= −n−1 −O(n−2) (3.8)
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This shows that d is approximated by − 1

n
, and the approximation is good for larger n

(it makes sense intuitively as we are trying to “stretch” the range by 1/n). These are cru-
cial features of GLC bootstrap; in contrast, the other root of (3.6) is greater than 3/2 and
lim
n→∞

d = 3/2.

The linear combination of X1 and X2 is no longer convex; in fact, the new generated
bootstrap value is always going to be outside of the segment formed by the pair of sampled
observations. Expression (3.7) for d also means that variable Z will take small negative
values, and therefore X∗ will be close to one of the original observations. This is illustrated
by Figure 3.1: values for Z are plotted on x-axis, and values of (X1, X2) - on y-axis. In this
example, X∗ > X2 > X1.

Figure 3.1: GLC bootstrap: non-convex linear combination

It naturally follows that the bounds of a bootstrap sample are beyond the actual range
of the original data sample, though by a small amount:

inf{X∗} = (1− d)X(1) + dX(n) = X(1) + d(X(n) −X(1))

sup{X∗} = dX(1) + (1− d)X(n) = X(n) − d(X(n) −X(1)),

where X(1) and X(n) are the minimum and maximum of the sample.

We can view GLC unbiased sampling as essentially a non-parametric bootstrap with some
added random noise (or slight data perturbation). Asymptotically GLC bootstrap converges
to non-parametric bootstrap since d→ 0 as n→∞, which means that Z = 0 is a constant
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and X∗ = X2. This is specific to the negative root of (3.6); the other root would not have
yielded these properties. Another important feature is that the smaller the sample size n is,
the more randomness is involved in generating a bootstrap sample, which helps to smooth a
parameter distribution and make up for sparsity of the original data (pseudo-data generating
feature). As the sample size increases, added noise decreases and bootstrap values get closer
and closer to original data values.

Density of GLC bootstrap generating distribution

For GLC bootstrap, the density is not fully continuous - there is still point mass of 1/n2 at
each data point, compared with 1/n for non-parametric bootstrap, which makes repeated
points in GLC bootstrap sample considerably less likely.

The density of the bootstrap generating distirubtion:

f(x) =
1

n2

n∑
i=1

n∑
j=1

A(x, xi, xj), (3.9)

where

A(x, xi, xj) =


δ(x− xi) for i = j

1

|d (xj − xi)|
I
(
x ∈

[
xi, xi + d (xj − xi)

])
for i 6= j

xi’s denote observations in the original sample and δ(·) is Dirac delta function.

Figure 3.2 shows the graphs of the density for two different sample sizes: n = 5 and
n = 15 with one sample for each n simulated from U(−1, 1) distribution. Vertical dotted
lines indicate data points xi that have point mass (f(xi) =∞). Note higher density values
concentrated around these data points. The density for larger n is smoother but the peaks
around xi’s are more pronounced because of the smaller value of |d|.

Alternative set up - drawing without replacement

When we defined a bootstrap variable in the general set up, the pair (X1, X2) was drawn
with replacement. Alternatively, the pair can be drawn without replacement; in that case,
unless d = 0, there is zero probability that a bootstrap sample will contain any original data
values. For GLC bootstrap with this set up, the expression for d is different and the density
is continuous, without non-zero point mass at any point.

Compared to with-replacement set up, absolute value of d in this case is greater for the
same sample size and, consequently, the bounds are wider. If we represent d as a function of
n: dw(·) for a with-replacement set up and dwo(·) for without-replacement, we get the tuning
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Figure 3.2: Density of GLC bootstrap

parameter for this alternative set up in the following way:

dwo(n) = dw(n+ 1) (3.10)

Conditions

In general, for any bootstrap to work, two basic conditions have to be satisfied: continuity of
an estimator T (P ) in the neighborgood of P0 and convergence of its sampling distribution.
We claim that GLC bootstrap works - its distribution converges to the true distribution as
n→∞ - under the same conditions as non-parametric bootstrap.
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To justify this claim, we turn to one of the more general formal results: Consistency of
Bootstrap theorem by Enno Mammen [48] (adapting the notation for P fixed for every n,
i.i.d. case):

1 Consider a sequence X1, . . . , Xn of i.i.d. random variables with distribution P0. For a

function g consider T̂n = T (P̂n) =
1

n

n∑
i=1

g(Xi). Consider a bootstrap sample X∗1 , . . . , X∗n

with empirical distribution P̂ ∗n . Denote T̂ ∗n = T (P̂ ∗n). Then for t0 = T (P0) the following
assertions are equivalent:

1. T̂n is asymptotically normal: There exist σn with

d∞(L(T̂n − t0), N(0, σ2
n))→ 0.

2. The normal approximation with estimated variance works:

d∞(L(T̂n − t0), N(0, Ŝ2
n))

p→ 0,

where Ŝ2
n =

1

n2

n∑
i=1

(g(Xi)− T̂n)2.

3. Bootstrap works:
d∞(L(T̂n − t0),L∗(T̂ ∗n − T̂n))

p→ 0.

Here d∞ denotes the Kolmogorov distance and L∗(. . . ) is the conditional law
L(. . . |X1, . . . , Xn).

The reasoning for this justification is that GLC bootstrap asymptotically converges to
non-parametric bootstrap; the rate of convergence is faster than the rate of convergence of
non-parametric bootstrap to normality.

Let P̂ ∗∗n be a glc bootstrap generating distribution and T̂ ∗∗n = T (P̂ ∗∗n ).
From the proof of the theorem [48] we have:

d∞
(
L(T̂n − t0),L∗(T̂ ∗n − T̂n)

)
= O

( 1√
n

)
Recall from GLC bootstrap definition (3.8): d = − 1

n
−O

( 1

n2

)
.

If it can be shown that this feature implies that d∞
(
L∗(T̂ ∗n − T̂n),L∗∗(T̂ ∗∗n − T̂n)

)
= O

( 1

n

)
or at least O

( 1√
n

)
, then

d∞
(
L(T̂n − t0),L∗∗(T̂ ∗∗n − T̂n)

)
= O

( 1√
n

)
.
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Even more generalized conditions are formulated in Davison et al [21]:

2 Let F be a true cumulative distribution function surrounded by a neighborhood N in a
suitable space of distributions, and that as n→∞, F̂ eventually falls into N with probability
one. GF,n is the distribution function we wish to estimate. Then in order for a bootstrap
c.d.f. GF̂ ,n to approach GF,n as n→∞, three conditions must hold:

1. For any A ∈ N , GA,n must converge weakly to a limit GA,∞ ;

2. This convergence must be uniform on N ;

3. The function mapping A to GA,∞ must be continuous.

Note that here the estimator is not required to be asymptotically normal but needs to
have some limiting distribution in the neighborhood of F . There is no proof provided for
these conditions, so it might be hard to prove that they would also hold for GLC bootstrap;
however the same argument about convergence of GLC to regular non-parametric bootstrap
might be applied in this case as well.

Simulations

First, we check if GLC bootstrap indeed achieved the intended goal of removing the
bias in variance from bootstrap samples. For each simulation, a two-variable sample
X1, . . . , Xnx , Y1, . . . , Yny is drawn; based on that sample, three bootstrap procedures are
performed: non-parametric bootstrap, convex, and GLC. Each procedure yields a variance
for the bootstrap esimator ψ̂∗ - we will look at these variances across all the simulations.

X ∼ 0.5N(2, 1) + 0.5 U(2, 3),
Y ∼ 0.7 Exp(1) + 0.3N(0.5, 0.5), X ⊥ Y ,
nx = 13, ny = 9,
ψ0 = E(X − 0.8Y + 0.3X2 − 0.2XY ).

In Figure 3.3, historgrams of scaled variances for three procedures are displayed. There
is no difference in their shapes (green line overlay follows χ2 distribution), but the means
for non-parametric and convex bootstrap show bias - the variance is underestimated, while
there is no bias in GLC. Since these quantities are normalized for convenience of comparison,
the means are the same while the true variance appears as shifting (it is scaled by a different
factor in each case). The fourth graph in Figure 3.3 provides examples of bootstrap densities
of ψ̂∗ for some of the simulations with solid line for the true sampling distribution of the
estimator.

Next, we look at the shape of bootstrapped distribution of an estimator and assess how
well it approximates the true sampling distribution. An example:
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Figure 3.3: Estimated variances of sampling distribution: variance bias in non-parametric, convex,
and GLC bootstrap

X ∼ 2

3
U(0, 1) +

1

3
U(0, 10);

X1, . . . , Xn - random sample, n = 6;
ψ̂ = X̄ − E(X); ψ̂∗ = X̄∗ − ψ̂.

Figure 3.4a compares the densites of ψ̂∗ obtained with GLC (top) and non-parametric
(bottom) bootstrap from the same sample. The density of ψ̂ (true sampling distribution) is
plotted in red and the density of ψ̂∗ (bootstrap) in blue. The graphs also show 0.025 and
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0.975 quantiles of these distributions. We can see that GLC bootstrap produces a much
smoother distribution than non-parametric for this sample size - the result of extreme dis-
creteness of non-parametric bootstrap for such small samples. There is also an improvement
in terms of the tail quantiles for GLC bootstrap. Figure 3.4b displays an informal summary
across many simulations, each simulation producing its own density of ψ̂∗. Examples of some
of these densities are included (dotted lines). As before, the true sampling distribution is in
red; it is quite different from its normal approximation (in blue). Green line represents the
summary of all the bootstrapped densities and seems to be close to the true one.
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Figure 3.4: Sampling distribution of the mean of mixture-uniform random variables - bootstrap
vs true

Similarly, in Figure 3.5 we compare true sampling distribution with normal approxima-
tion and bootstrap summary - but for a highly skewed sampling distribution:
X ∼ 0.5N(3, 1) + 0.5N(−3, 32), n = 6;

ψ̂ =
n∑
i=1

X3
i .

As previously, dotted lines represent c.d.f.’s for bootstrap sampling distributions; their sum-
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maries are in solid lines: light green for non-parametric bootstrap, light blue for convex,
and dark green for GLC bootstrap. In the bottom left graph we can see that none of the
bootstrap versions approximate the center and the thin tail of this distribution well; how-
ever, GLC bootstrap gets close to the true distribution in the left, thicker, tail. Here we
also start exploring the performance of studentized bootstrap; it has been established that
in certain cases, studentized non-parametric bootstrap has faster convergence rate than non-
studentized one [33]. It does seem to be closer to the truth in the central region of the
distribution but is extremely conservative in the right tail (bottom right graph).
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Figure 3.5: Highly skewed sampling distribution (3rd moment of mixture-normal random vari-
ables) - examples of bootstrap sampling distributions and their summaries across simulations

In Figure 3.6, we look at the tails more closely, comparing non-parametric, convex, and
GLC bootstrap and zooming-in mid-tail regions. In addition to normal, we also include t-
distribution approximation since for small samples the distinction is important (as explored
in Chapter 2).
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Figure 3.6: Bootstrap approximations: mid-tails of the distribution

In the next example, we explore the bias for several estimators - four central moments
and tail quantiles (Table 3.1). X ∼ Exp(1), n = 6. The table includes results for studen-
tized versions of the three bootstrap methods. For second, third, and fourth moments, the
values for studentized bootstrap are wild, indicating great volatility of these estimators. The
reason for that is the fact that for small sample size, bootstrap sample variance might get
very small, driving up the values for studentized estimators. This continues the discussion in
Chapter 2 about studentization in small samples. Table 3.2 presents “p-values” correspond-
ing to 2.5% two-sided quantiles of the “true” sampling distribution across these bootstrap
methods and t-distribution approximation (we want the numbers to be close to 0.025 but
on the larger side to be conservative). GLC shows good results for both sides, as well as the
regular t-distribution approximation (which seems to be quite conservative).

0.025 0.975 mean variance 3rd mom 4th mom
t-distribution -0.2858 -0.0243 0 0.1052 -0.0555 1.4397
glc bootstrap 0.0139 -0.1986 0 -0.0034 -0.0174 0.0830
non-parametric 0.0712 -0.2643 0 -0.0304 -0.0256 0.0259
convex bootstrap 0.1619 -0.3889 0 -0.0759 -0.0407 -0.0507
glc Studentized -1.6370 -0.1912 0 1.8209 -76.2534 18150.8135
np Studentized -1.8539 -0.1947 0 36.1117 1334.9312 5.4 e9

convex Studentized -1.2439 -0.1758 0 1.1071 -77.2361 55222.0647
true values -0.6320 0.9426 0 0.1664 0.0559 0.1113

Table 3.1: Quantile and central moments estimation (Exponential distribution)
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lower upper
t-distribution 0.0719 0.0323
glc bootstrap 0.0476 0.0207
non-parametric 0.0369 0.0160
convex bootstrap 0.0191 0.0080
glc Studentized 0.1333 0.0194
np Studentized 0.1346 0.0195
convex Studentized 0.1165 0.0197
true 0.0250 0.0250

Table 3.2: Probabilities for 95% confidence interval endpoints

Another look at the lower and upper 95% bootstrapped quantiles for different meth-
ods and confidence intervals produced by these methods is presented in Figure 3.7. X ∼
Exp(0.01), n = 6, ψ̂ = X̄. The true sampling distribution is skewed and we would like to see
if bootstrap methods reflect that. In Figure 3.7a we can see that bootstrap averaged centered
quantiles (0.025 and 0.975) indeed capture the asymmetry but fall short of reaching the true
quantiles, with GLC bootstrap coming closer than the other ones. Studentized versions reach
far beyond the true quantile for the thin tail while matching the results of non-studentized
GLC for the thicker one. We also include the results for exact confidence intervals that
use Bennett’s inequality [60]. In Figure 3.7b we examine the Confidence Intervals [l, u] for
significance level α = 0.05:

1− 2α = P (l 6 ψ̂ − ψ0 6 u) = P (ψ̂ − u 6 ψ0 6 ψ̂ − l)

approximated by bootstrap CI:[
ψ̂ −

(
ψ̂∗[1−α] − ψ̂

)
, ψ̂ −

(
ψ̂∗[α] − ψ̂

)]
, or

[
2ψ̂ − ψ̂∗[1−α], 2ψ̂ − ψ̂∗[α]

]
(3.11)

Note that the confidence intervals are flipped compared to the quantiles as follows from
(3.11), which does not matter when methods that produce symmetric confidence intervals
are used, but which is important for bootstrap and other higher-order approaches. None of
the methods quite reach the nominal level of 95% except the inequality-based CI that has
100% coverage but is much wider than the other CI’s.

Finally, Figure 3.8 shows coverage for different sample sizes across considered methods.
Sample size significantly affects coverage probability both in normal (t-distribution) approx-
imations and even more so in bootstrap. GLC fares slightly better than other kinds of
bootstrap. Occasional fluctuations in all the lines (except inequality-based CI) are due to
the randomness of simulation; they do not obscure the general trend and still provide com-
parison between the methods since all of them are applied to the same simulated samples.
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Figure 3.7: Quantiles and confidence intervals for different methods

3.2 Stabilized variance GLC bootstrap
In the previous section, we have described a mechanism that allows us to “prescribe” a vari-
ance to bootstrap samples through the tuning parameter d. So far, we have used it to get the
variance of bootstrap generating distribution to match a sample variance s2. However, when
n is small, s2 varies considerably from sample to sample. Suppose we have some “external”
information about the true variance that would allow us to get closer to the true value and
reduce variability of the variance estimate. A more stable robust estimate that would utilize
this external information could be then “prescribed” to the bootstrap generating distribution
using the same tuning parameter. In high-dimensional data, where features (such as genes)
are analyzed in parallel, this information comes from the full dataset and can then be used
for analysis of each individual feature.

The idea of taking advantage of the parallel structure of this kind of analysis and bor-
rowing information from the whole collection of features (genes) for a more stable/robust
inference took shape in application of the empirical Bayes methods to microarray data. Var-
ious approaches have been proposed, such as non-parametric empirical Bayes [24], [23] and
parametric empirical Bayes [47] methods. Stabilized variance GLC bootstrap is based on
moderated t- and F -statistics developed by G. Smyth [65] and implemented in R package
limma [66].
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Figure 3.8: Coverage vs sample size

“Prescribed” Variance

The set up for moderated t-statistic is a hierarchical model that assumes different variances
for different features and specifies the underlying distribution for these unknown variances
σ2
g (subscript indicating a feature, e.g. a gene). Parameters of that distribution, or hyper-

parameters, constitute prior information and, in contrast with fully Bayesian methods, are
estimated from data - not specified upfront by the user. Only two hyperparameters df0 and
s2

0 are estimated from the whole dataset, which makes them very stable when the number of
features is large. Coefficient estimate β̂g for a feature g is scaled by the posterior variance σ̃2

g ,
which is a linear combination of the prior variance s2

0 and residual feature-specific variance
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s2
g:

σ̃2
g =

df0 s
2
0 + dfg s

2
g

df0 + dfg
,

where df0 and dfg are prior and residual degrees of freedom respectively (we change notation
for degrees of freedom from previous chapters to df to avoid confusion with GLC bootstrap
tuning parameter d). Prior estimated variance s2

0 is usually smaller than 1
G

∑G
g=1 s

2
g.

We “assign” the posterior variance σ̃2
g to a bootstrap random variable: V ar(X∗g ) = σ̃2

g .
Let dg be a tuning parameter for a feature g. Then

V ar
(
X∗g
)

=
(
νg − µ2

g

)(2

3
d2
g − dg + 1

)
= σ̃g

2. (3.12)

Solving (3.12) for dg and taking the first root, we get

dg =
3

4
−

√
9

16
− 3

2

(
1− nσ̃g

2

(n− 1) s2
g

)
(3.13)

Now −∞ < dg 6 3/4. The upper bound 3/4 is introduced for situations when
σ̃g

2

s2
g

>
5 (n− 1)

8n
(sample variance is much larger than posterior variance) and the expression

under the square root is negative. In these situations we simply set dg = 3/4. This rarely
happens (and, as discussed in Chapter 2, is unlikely to happen for potential false positives),
so the hope is that it does not introduce much bias into this working model.

In this variant of GLC bootstrap, the tuning parameter is not just a function of n
- it is also a function of hyperparameters and, more importantly, of feature-specific s2

g,
which means that for each gene/feature g the value of dg is different. While regular non-
parametric bootstrap preserves correlation (the proof is below), this set-up would not. What
if features are correlated and we need to preserve that correlation for further analysis - for
example, clustering? Note that in this case there is an apparent contradiction with the model
assumptions [65]; however, even though these assumptions are not always correct or even
realistic, the method is shown to perform well in practice (see also Chapter 2 for discussion
on this topic).

Correlation structure

To try to preserve most of the important characteristics of the correlation structure we use
the following procedure (assume each row is a feature and each column is an observation):

1. Calculate dg for all G features;
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2. Draw a pair of vectors X1 and X2 (columns);

3. Draw Z from U(0, 1);

4. For each feature g, the bootstrap variable is

X∗g = dgZ X1g + (1− dgZ)X2g. (3.14)

Compare sample correlation of vectors x and y (two features - rows in the dataset) with
the correlation of corresponding bootstrap random variables X∗ and Y ∗:

X ∼ Px,n, P (X = xi) = 1
n
, i = 1, 2, . . . , n

Y ∼ Py,n, P (Y = yi) = 1
n
, i = 1, 2, . . . , n

Z ∼ U(0, 1), Z ⊥ {X, Y }

X∗ = dxZX1 + (1− dxZ)X2

Y ∗ = dyZY1 + (1− dyZ)Y2.

Similarly to variance calculation in the general set up, we introduce some notation:

µx ≡
1

n

n∑
i=1

xi, µy ≡
1

n

n∑
i=1

yi, νx ≡
1

n

n∑
i=1

x2
i , νy ≡

1

n

n∑
i=1

y2
i , νxy ≡

1

n

n∑
i=1

xiyi.

Sample correlation:

rxy =
1

n−1

∑n
i=1 (xi − x̄)(yi − ȳ)

sxsy
=

νxy − µxµy√
(νx − µ2

x)(νy − µ2
y)

Bootstrap random variable correlation:

corr(X∗, Y ∗) =
Cov(X∗, Y ∗)√
V ar(X∗)V ar(Y ∗)

=
E(X∗Y ∗)− EX∗EY ∗√

V ar(X∗)V ar(Y ∗)

E(X∗Y ∗) = E
[(
dxZX1 + (1− dxZ)X2

)(
dyZY1 + (1− dyZ)Y2

)]
= E

[
dxdyZ

2X1Y1 + Z(1− dxZ)dyX2Y1

+ dxZ(1− dyZ)X1Y2 + (1− dxZ)(1− dyZ)X2Y2

]
=

1

3
dxdyνxyE

(
Z2
)

+ dyµxµy

(
1

2
− 1

3
dx

)
+ dxµxµy

(
1

2
− 1

3
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Cov(X∗, Y ∗) = E(X∗Y ∗)− µxµy = (νxy − µxµy)
[

2

3
dxdy −

1

2
dx −

1

2
dy + 1

]
(3.15)

corr(X∗, Y ∗) =
(νxy − µxµy)

[
2
3
dxdy − 1

2
dx − 1

2
dy + 1

]√
(νx − µ2

x)
[

2
3
d2
x − dx + 1

]
(νy − µ2

y)
[

2
3
d2
y − dy + 1

]
=

νxy − µxµy√
(νx − µ2

x)(νy − µ2
y)︸ ︷︷ ︸

rxy

2
3
dxdy − 1

2
dx − 1

2
dy + 1√[

2
3
d2
x − dx + 1

] [
2
3
d2
y − dy + 1

]︸ ︷︷ ︸
d-factor

= rxy · d-factor (3.16)

To see how much of the correlation structure is preserved, we would need to examine
“d-factor” and assess how close its value is to 1 in various scenarios. It is a function of
dx and dy and its values are plotted against these tuning parameters in Figure 3.9, which
shows that “d-factor” is above 0.75 for the most probable ranges of dx and dy, and for many
combinations it is in fact above 0.95. Expression (3.16) also shows that for non-parametric
bootstrap (d = 0) and for cases when dx = dy, d-factor = 1 and so the correlation structure
is completely preserved. Then we would also like to know how d-factor varies depending on
the true and sample correlation - in other words, will highly correlated features retain their
relationship better than uncorrelated ones in the bootstrap sample? This issue is explored in
Figure 3.10. In this example, for each value of correlation ρX,Y , a number of simulations are
performed. In each simulation, a pair of samples (n = 6) is drawn from multivariate normal
distribution with this given correlation, and then d-factor and their sample correlation rxy
are calculated. It apprears that for correlated features, d-factor is reasonably close to 1
(red and purple lines indicate its mean and median across the simulations) and thus their
correlation structure is mainly preserved. These pairs of features are usually the ones of
interest. For highly correlated samples, dx and dy are also correlated, which drives d-factor
up (green line). Light blue line reflects how variable sample correlation is depending on the
original “true” correlation; it predictably shows that the less the absolute value of this true
correlation is, the more variability there is in the sample correlation.

Simulations for high-dimensional data

Coverage and performance measures

In high-dimensional setting, we look at the coverage probability using three different ap-
proaches (Figure 3.11): quantiles yielded by bootsrapped sampling distribution (green-
colored boxplots), normal approximation with bootstrap-estimated variance (blue-colored
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Figure 3.9: Values for correlation “d-factor” as a function of tuning parameters dx and dy for two
correlated features x and y

boxplots), and t-distribution approximation with bootstrap-estimated variance (yellow box-
plots). For comparison, we also include inequalities-based methods, and regular and moder-
ated t-statistic approximations (with augmented degrees of freedom, df0 +dfg, for moderated
t-statistic). Bootstrap methods include regular GLC, stabilized variance GLC (marked as
GLC limma), non-parametric, and convex. For this and the next two figures, simulated data
are generated with a convex pseudo-data algorithm applied to the real age data (similar to
the procedure used for some simulations in Chapter 2). Interestingly, the mean coverage for
moderated t-statistic is about the same (even a little higher) than for regular t, though the
probabilities are more spread out. This provides a clue for the performance of GLC-limma
method: the results are more spread out as well and the graph shows improved coverage
compared to the regular GLC. As with one-dimensional case, other bootstrap methods’ cov-
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Figure 3.10: D-factor vs correlation between two features

erages are lower and there is almost 100% coverage with inequality-based methods.

Next, we want to compare type I and type II error rates across the methods described
above; Figure 3.12 displays power and False Discovery Rate for each one. In general, the
points for best performance would be located in the upper left region of the graph. Stabilized
GLC outperforms other bootstrap methods; results for permutation and regular t are almost
the same, and moderated t (empirical Bayesian) outperforms them in both power and FDR.
While these non-bootstrap methods’ error rate control is better than that of bootstrap
analysis, the power is significantly lower. The issue of power is important for small sample
sizes; for some cases a reversal of the traditional approach - “at a given type I error rate
control, choose the method with the highest power” - might be considered. Instead we could
formulate the task as “at a given power level choose the method that provides the smallest
False Discovery Rate”.

To summarize performance assessment in a single measure, we turn to Matthews Corre-
lation Coefficient (MCC), Accuracy, and F-score:
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Figure 3.11: Coverage for sample mean: high-dimensional convex pseudo-data simulation

MCC =
tp · tn− fp · fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)
,

Acc =
tp+ tn

tp+ tn+ fp+ fn
,

where tp, fp, tn, and fn are the number of true positives, false positives, true negatives,
and false negatives respectively.

F = 2 · Precision ·Recall
Precision+Recall

where Precision = tp
tp+fp

and Recall = tp
tp+fn

.
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Figure 3.12: Power and FDR for log-ratio estimates: convex pseudo-data

These measures are presented in Figure 3.13 (the values are plotted along y-axis). With each
assessment statistic, stabilized GLC bootstrap appears to score the highest.

Correlation Structure and Clustering

Having established theoretically that bootstrap preserves the correlation structure of data,
we now explore the use of bootstrap in clustering methods, applied to datasets where fea-
tures are correlated. Bootstrap is essential to obtaining inference for parameters, for which
no measure of accuracy can be calculated analytically - such as cluster parameter. Resam-
pling can provide a “degree of uncertainty” and indicate how reliable the clustering results
are [56]. We implement the following measure of reliability: for each bootstrap-generated
dataset X∗b, b = 1, . . . , B, the clustering procedure is performed and for each pair (u, v)

of elements/features, the event A(b)
uv = I (u and v are in the same cluster) is recorded [68].

Bootstrap probability Puv = 1
B

∑B
b=1 A

(b)
uv of these elements being in the same cluster indi-

cates reliability of the clustering result for the pair. This method will be used later for data
analysis (section 3.3).
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Figure 3.13: Performance measures for different methods

For the example in Figure 3.14, we simulate 30 elements from a multivariate normal dis-
tribution with provided covariance matrix (top left). This covariance matrix is the unknown
“truth” that the analysis is trying to uncover from the sample. The other three graphs are
based on one sample: distance matrix, adjacency matrix of original PAM clustering (1 for
each pair of elements if they are in the same cluster and 0 otherwise), and GLC bootstrap-
based probability. While neither distance matrix, nor adjacency matrix resemble covariance
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matrix very closely, the bootstrap seems to recover more of the underlying correlation struc-
ture and get closer to the truth.
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Figure 3.14: Clustering and bootstrap: multivariate normal simulation. The truth is represented
by the covariance matrix, which is estimated by the matrix of bootstrap pairwise probabilities.

Figure 3.15 illustrates another clustering scenario: data is simulated using mixed effects
model. There are 40 elements, n = 7, and in this setting there are true cluster memberships
for each element with the number of clusters K = 5. GLC, non-parametric, and convex
bootstrap results are included. Again, bootstrap methods seem to get closer to the true
clusters; all three methods produce similar results with GLC bootstrap yielding slightly
lower probabilities for some pairs and thus, perhaps, separating true clusters marginally
better.
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Figure 3.15: Clustering and bootstrap: mixed effects model simulation. Bootstrap pairwise prob-
ability matrices (GLC, non-parametric, and convex) recover some of the information about true
clusters.

3.3 Data analysis
In this section, we present the experimental data from the study conducted by Chris Vulpe’s
Toxico-Genomic laboratory at UC Berkeley. The study became a motivating example for
this work; it produced small sample high-dimensional data and presented complex questions
about functional genomics that posed specific challenges for statistical analysis, requiring
multi-step analysis procedure and novel inference approaches [51]. The experiments involve
tagged mutant deletion strains of Saccharomyces cerevisiae that are grown together in se-
lected toxic conditions and assayed with custom-designed molecular barcode array Tag4 [54].



CHAPTER 3. GLC BOOTSTRAP 112

Yeast PDA - functional genomics

Gene disruption is an important tool for inferring gene’s function: viability of a deletion
strain in various conditions (fitness profile) provides information about biological function of
the corresponding gene. Each deletion strain has a precisely generated null mutation (a dele-
tion of one gene from start to stop codon). That gene is replaced with a kanamycin-resistance
gene (KanMX4) and unique molecular barcodes, or “tags”, that label the strain. The de-
velopment of a mutant collection that would allow the strains to be pooled and analyzed
in parallel in competitive growth conditions was a significant break-through that opened
new possibilities for experiments and analysis. This collection became a basis for numerous
experiments aimed at uncovering new functional relationships between genes and deepening
understanding about their biological functions.

A first pilot study involving 11 mutant strains was published in 1996 [63], just a few
months after yeast genome sequence has been made public. It described a “molecular bar-
coding” approach, in which each deletion strain was labeled with a unique molecular tag - a
20 base-pair sequence. These tagged strains were grown together in selective conditions and
their rate of growth (surviving ability), or “fitness”, was then assessed through hybridizing the
tags to high-density oligonucleotide arrays, which would show a relative abundance of each
strain in the pool. This barcoding approach made a whole-genome parallel analysis possible,
and an organized international effort had been mounted with the goal of creating a collection
of deletion strains for all annotated yeast genes. Within a matter of a few years, large-scale
collections have been constructed [71], [29], which eventually included deletion-mutants of
nearly all annotated genes of Saccharomyces cerviciae (96% of open reading frames). In
these collections, each strain has been labeled with two molecular barcodes (UPTAG and
DOWNTAG) instead of one; both are unique for this strain and provide a measure of strain’s
abundance (see great graphical illustrations in [61], [53], and [54]). Since the development of
these collections, they have been very extensively used in experimental practice [61] and rich
experimental data libraries based on Parallel Deletion Analysis are growing all the time.

Research questions and analysis procedure

Questions posed by the study can be translated into two analysis goals:

1. Determine strains that are characterized by diminished growth in the presence of a
toxicant (differential strain sensitivity analysis or DSSA). The set of sensitive strains
will be different for each chemical.

2. Recognize sets of genes that are functionally related (genes that act together) - find
strains that display similar survival pattern, phenotype, when interrogated under vari-
ous toxic conditions. This question will be approached through a clustering procedure.

The diagram in Figure 3.16 illustrates the structure of the data and steps of the statistical
analysis procedure. Control group contains 12 experiments; each of the chemical compounds
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has 3 treatment doses with 3 experiments per dose. DSSA is performed separately for
each compound with control group (the same control group is used for all the chemicals
but normalized results are different each time because control and treatment groups are
normalized together). DSSA for each toxicant produces a set of significant (sensitive) genes;
these genes are eventually combined in a union set that contains all the strains that were
determined to be sensitive in at least one growth condition. A special distance metric is
devised to compare the strains across the chemical compouns, which is then used to cluster
the strains (genes). Hierarchical Ordered Partitioning and Collapsing Hybrid (HOPACH)
clustering algorithm [68] is used for clustering procedure.

Controls Chemical compounds

12 3|3|3 3|3|3 3|3|33|3|3 3|3|3 3|3|3

DSSA

Similarity/Distance

Clustering

Experiments

Figure 3.16: Yeast PDA data: steps of statistical analysis

It would be desirable to get some measure of accuracy for the final results, such as re-
liability of the clusters (as discussed in section 3.2): to find out how often two genes are
clustered together, which also answers the second scientific question about functional rela-
tionships between the genes; this approach can be applied more generally to categorization
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problems and methods including trees (recursive partitioning) and networks. GLC boot-
strap addresses the challenges of the statistical analysis of this study - small sample size and
obtaining inference for parameter that does not have an analytical expression for variability
- while also incorporating multi-step analysis procedure. To perform bootstrap in this case,
we need to start from the original data and repeat all the steps of the analysis with each
bootstrap sample (to be precise, this means a set of bootstrapped datasets of each group
of controls and one chemical compound). Thus, bootstrap assesses reliability of not just
clustering procedure, but all the intermediate steps, including estimated distances between
the genes. Note that for each set of bootstrapped samples, there will be a variation in the
resulting set of sensitive genes that participate in the clustering.

Final results

Figure 3.17 presents final bootstrap clustering results: original clusters and distances between
the genes (top) and estimated accuracy of the clusters and strength of relationship between
each pair of genes (bottom). The results are displayed only for the genes that ended up
in a final set that was clustered in the processing of the original data. These results are
quite interesting: while some of the clusters show high reliability and strong persistent pair
relationships, others seem to be much weaker and a few do not show any signal at all,
including a big cluster in the upper left region of the graph, indicating that these clusters
are not reliable. There was no way of deducing these conclusions from the original results
without bootstrapping all the steps of the analysis.

3.4 Conclusion
The set up for general linear combination bootstrap is convenient and flexible enough to
allow various implementations suited for different scenarios through the use of a tuning
parameter. GLC bootstrap provides a way to use resampling-based inference when the sam-
ple size is small, breaking the discreteness of the non-parametric bootstrap and eliminating
bias in bootstrap variance. With added challenge of high-dimensionality, where empirical
Bayes methods can increase power and improve error rate control, the GLC set up allows
these methods to be integrated with the bootstrap, combining the advantages of both ap-
proaches. We have demonstrated that GLC bootstrap methods, including the stabilized
variance version, produce better approximations to the sampling distribution, increase cov-
erage for confidence intervals, and score well compared to other methods according to various
performance measures in terms of power and error rate control. However, these advantages
apply to estimators that are not studentized; when the sample size is small, studentized
bootstrap appears to be unstable for all the considered methods and therefore is not rec-
ommended. Our results also show that high-dimensional data analysis benefits considerably
from the use of stabilized variance bootstrap (GLC-limma version).
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With the proposed algorithm for preserving correlation structure of the bootstrap sam-
ple, stabilized variance GLC bootstrap can be used to assess reliability of clustering results.
Moreover, bootstrapping can be applied to multi-step analysis thus accommodating a wide
range of procedures; removing bias in bootstrap variance might be crucial for some of the
steps in that analysis. While pseudo-data generation such as convex bootstrap can be used
for analysis of stand-alone categorization problems, it might not perform adequately when
categorization/clustering is a part of a larger multi-step procedure (the data analysis section
presents one such example). Previous steps, such as DSSA or gene differential expression
analysis would suffer from variance bias; in these cases, GLC bootstrap allows estimation of
all the steps of the process to be conducted without distortion of the results.

Adding to the long list of bootstrap methods, GLC bootstrap addresses a specific chal-
lenge of non-parametric resampling-based inference in small samples. It can be applied to
continuous data only; this approach, however, might be generalized to other types of data
if an appropriate data transformation is performed (for example, influence curves are calcu-
lated for all the observations). The method can also be used for exploration and simulation
purposes when predetermined variance is desired for the samples. To assure accessibility of
GLC bootstrap for wide variety of uses, its user-friendly implementation will be available as
a part of a software package.
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Figure 3.17: Data analysis results
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