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Abstract
Despite combination antiretroviral therapies makingHIVa chronic rather than terminal condition for many people, the prevalence
of HIV-associated neurocognitive disorders (HAND) is increasing. This is especially problematic for children living with HIV.
Children diagnosed HAND rarely display the hallmark pathology of HIV encephalitis in adults, namely infected macrophages
and multinucleated giant cells in the brain. This finding has also been documented in rhesus macaques infected perinatally with
simian immunodeficiency virus (SIV). However, the extent andmechanisms of lack of susceptibility to encephalitis in perinatally
HIV-infected children remain unclear. In the current study, we compared brains of macaques infected with pathogenic strains of
SIV at different ages to determine neuropathology, correlates of neuroinflammation, and potential underlying mechanisms.
Encephalitis was not found in the macaques infected within 24 h of birth despite similar high plasma viral load and high
monocyte turnover. Macaques developed encephalitis only when they were infected after 4 months of age. Lower numbers of
CCR5-positive cells in the brain, combined with a less leaky blood-brain barrier, may be responsible for the decreased virus
infection in the brain and consequently the absence of encephalitis in newborn macaques infected with SIV.

Keywords HIVencephalitis . Pediatric HIV infection . Blood-brain barrier

Introduction

Over 36.7 million persons were living with HIV in 2016, with
children (< 15 years old) accounting for 2.1 million (AVERT
2018). In children infected with HIV surrounding birth (pre-,

peri-, and post-parturition), there is a higher clinical incidence
of neurologic disease and deficits than in adults infected with
HIV; however, there is no pathological correlate in pediatric
patients (Kure et al. 1991; Vazeux et al. 1992; Wilfert et al.
1994; Westmoreland et al. 1999; Mothi et al. 2011). In agree-
ment, SIV-infected neonatal rhesus macaques have decreased
levels of infected macrophages and multinucleated giant cells
(MNGCs), a hallmark of HIVencephalitis (HIVE) and simian
immunodeficiency virus encephalitis (SIVE), and viral RNA
is rarely detected in those cells (Sharer et al. 1988; Lane et al.
1996b; Westmoreland et al. 1999). This decreased pathology
following SIV infection could be attributed to an
Bimmunosuppression of immaturity^ in neonates (Lane et al.
1996b; Bowenkamp 2002).

HIV, and its closely related virus, SIV, enter the central ner-
vous system (CNS) during primary infection utilizing the nor-
mal immune surveillance of monocytes and turnover of
perivascular macrophages (PVMs) (Peluso et al. 1985; Ivey
et al. 2009b). Once in the CNS, reservoirs of latent infection
are formed (Clements et al. 2002; Burdo et al. 2010; Veenstra
et al. 2017), including microglia and questionably astrocytes
(Johnson et al. 1988; Sharer et al. 1988; Tornatore et al. 1994;
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Ivey et al. 2009a). Brain microvascular endothelial cells are also
activated and the blood-brain barrier (BBB) is weakened by loss
of tight junction expression (Ivey et al. 2009a, b). This can be
measured by determining leakage of plasma proteins including
fibrinogen into the brain parenchyma (Renner et al. 2012a).

The main goal of combination antiretroviral therapy (cART)
is to decrease a patient’s viral load. However, despite decreased
plasma viral loads with cART, patients still develop complica-
tions of HIV, including HIV-associated neurocognitive disorders
(HAND), a collective term for HIV-related neurological impair-
ments (Heaton et al. 2010). HAND includes HIVE, a usually
chronic pathology characterized by the presence of infiltrating
leukocytes, perivascular cuffs, and the presence of MNGCs
(Heaton et al. 2010), formed by the fusion of macrophages in
response to chronic inflammation (McNally andAnderson 2011;
Milde et al. 2015; Delery and Maclean 2018). Due to their close
genetic, anatomical, and immunological proximity to humans,
the rhesusmacaque is considered as the premier animal model to
study HIV infection and comorbidities.

Plasma viral load and monocyte turnover are predictive
markers of HAND (Beck et al. 2015). We previously reported
that increased turnover of monocytes was indicative of tissue
macrophage infection and destruction by SIV in infected adult
rhesus macaques. This was also observed in the brain in asso-
ciation with higher SIV tissue viral loads and increased rate of
SIVE (Hasegawa et al. 2009; Burdo et al. 2010; Cai et al.
2015). In addition, those studies reported that the more rapid
disease progression to AIDS in neonatal rhesus macaques cor-
related with earlier and sustained higher monocyte turnover
following SIV infection (Merino et al. 2017; Sugimoto et al.
2017). This study attempts to unravel the paradox of a more
rapid disease course, of high viral loads and yet no significant
lesions in brains.

Materials and methods

Animals A total of 130 Indian rhesus macaques (Macaca
mulatta) including 8 uninfected animals from Tulane National
Primate Research Center (TNPRC) were retrospectively select-
ed for these studies. The 122 SIV-infected animals were divided
into three groups based on their age at infection: neonates (0–
3 months), juveniles (3 months–2 years), and adolescents/adults
(> 2 years), as is standard for rhesus macaque studies (Robillard
et al. 2016). The inclusion/exclusion criteria are as follows:
Indian rhesus macaques, infected with SIV strains mac251,
mac239, ΔB670, or -0302, and deceased with a complete his-
tology report. Route of inoculum administration was not taken
into consideration for this study, although only 2 animals were
infected via the intrarectal route: all other animals were infected
intravenously. We excluded animals that had received antiretro-
viral therapy (ART) for extended periods of time and responded
to treatment (demonstrated by a decrease in plasma viral load).

However, we included animals that had received ART for less
than a week and BART non-responders^: animals with elevated
plasma viral load despite ART treatment. Eight uninfected ani-
mals were included in this study for CCR5 immunohistochem-
istry and analysis. Forty-eight hours prior to necropsy, either 5-
bromo-2′-deoxyuridine (BrdU; Sigma-Aldrich, St. Louis, MO)
or 5-ethynyl-20-deoxyuridine (EdU; Molecular Biology,
Carlsbad, CA) thymidine analogs were intravenously adminis-
tered to some of the animals. BrdUwas intravenously injected at
a concentration of 30 mg/kg for neonatal animals and 60 mg/kg
for adult animals, while EdU was administered at a dose of
50 mg/kg for adult animals (Cai et al. 2015; Sugimoto et al.
2017). Twenty-four hours after BrdU or EdU injection, blood
samples were obtained to determine monocyte turnover.
Animals were housed and treated in accordance with BNIH
Guide for the Care and Use of Laboratory Animals^ (National
Research Council, National Academic Press, Washington, DC,
USA, 1996) and all treatments were pre-approved by the Tulane
University Institution Animal Care and Use Committee
(IACUC).

Necropsy and collection of tissues Animals were humanely
euthanized according to the standards set forth by the Office
of Laboratory Animal Welfare (OLAW). Brain tissue was
flash-frozen in liquid nitrogen or optimal cutting temperature
(OCT) compound for brain tissue viral load, or formalin-fixed
and paraffin-embedded (FFPE) for later immunofluorescent/
immunohistochemical staining. SIVE was defined by the
presence of multinucleated giant cells (MNGCs) on H&E
stained sections of FFPE brain tissues examined by patholo-
gists at TNPRC.

Determination of monocyte turnover Blood was collected at
necropsy and centrifuged to collect plasma. The remaining blood
was then layered over lymphocyte separation medium
(Mediatech) and centrifuged at 2500 rpm for 20 min. Peripheral
blood mononuclear cells (PBMCs) were collected and frozen
using freezing media or stained for flow cytometry. For calcula-
tion of monocyte turnover within 48 h of necropsy, the PBMCs
were stained using previously described methods and analyzed
on an LSR II flow cytometer (BD Biosciences) to detect the
surface markers of monoclonal antibodies and intracellular
BrdU or EdU (Hasegawa et al. 2009; Cai et al. 2015; Sugimoto
et al. 2017). Datawas analyzed using FlowJo software (TreeStar).

Plasma viral load determination Plasma viral load was mea-
sured by the TNPRC Pathogen Detection and Quantification
Core (PDQC) from plasma collected and frozen at necropsy.
The limit of detection of SIV RNAwas 83 copies per milliliter
of plasma (Monjure et al. 2014).

Brain associated viral loadQuantitative real-time PCR (qPCR)
assays were completed on fresh-frozen brain samples snap
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frozen in liquid nitrogen or OCT using previously published
methodologies (Robichaux et al. 2016; Lee et al. 2016).
Duplicates were run for sample reliability. The limit of detec-
tion per 1,000,000 cells was 50 copies for SIV RNA and 10
copies for SIV DNA (Robichaux et al. 2016; Lee et al. 2016).
For statistical comparisons, samples with undetectable levels of
SIVwere reported as 25 for SIV RNA and 5 for SIVDNA, and
all values were log-10 transformed (Hornung and Reed 1990).

Immunofluorescent and immunohistochemical staining For
immunofluorescence (IF), sections were blocked with 5%
normal goat serum for 30 min before the glucose transport-
er 1 (Glut-1) (SMP498, Invitrogen), diluted in phosphate-
buffered saline containing 0.2% fish skin gelatin (PBS/
FSG), was applied at room temperature for 1 h. After a
PBS/FSG bath, secondary antibodies conjugated to Alexa
Fluor 488 were diluted in PBS/FSG and applied for 1 h at
room temperature. Subsequently, fibrinogen (ab58207,
Abcam) primary and Alexa Fluor 594 secondary antibod-
ies were applied as described. After IF staining was com-
plete, sections were washed before being soaked in a
quenching solution of 10 mM CuSO4 for 45 min. The sec-
tions were then washed with distilled water and mounted
using a coverslip and Aqua-Mount aqueous mounting
medium.

For immunohistochemistry, sections were incubated
with 5% goat serum in Tris-buffered saline (TBS) for 1 h
followed immediately by CCR5 (Proteintech) incubation
for 1 h at room temperature. After washing, sections were
incubated with a biotinylated secondary antibody (Vector
Laboratories) for 30 min. Dako Antibody Diluent (Dako,
Carpinteria, CA) was used for both primary and secondary
antibody dilutions. Following another wash, sections were
incubated for 30 min with an avidin-biotin peroxidase
complex (Vectastain ABC Elite kit, Vector Laboratories)
and developed with diaminobenzidine (DAB; Dako) with
Mayer’s Hematoxylin (Dako) used as a nuclear counter-
stain. Sections were dehydrated and mounted using
VectaMount (Vector Laboratories).

Quantification of CCR5 expression Ten gray matter and 10
white matter images were randomly selected from each slide
and imaged at × 20 using a Nikon Coolscope light micro-
scope, with uniform settings across images. CCR5+ cells
within vessels were excluded from analyses. Positive staining
was recorded and entered into GraphPad Prism 7.2 (GraphPad
Software, La Jolla, CA) for graphical representation and sta-
tistical analysis.

Quantification of fibrinogen leakage The percent of vessels
demonstrating fibrinogen extravasation was determined by
running linear plot profiles on the green and red channels of
individual vessels captured at × 40 via ImageJ and graphing

the resulting numerical data in GraphPad as dual overlay his-
tograms. The histograms were then analyzed to determine
whether the fibrinogen was above background levels outside
of the two primary Glut-1 peaks; vessels that displayed this
phenotype were considered to be extravasated. The number of
extravasated vessels was divided by the total number of ves-
sels measured to obtain the % of extravasated vessels. A total
of 25 vessels were examined from each animal via random
imaging, but were required to meet the selection criteria listed
below. The criteria for vessel selection dictate that vessels
must be less than 10μm in luminal diameter and that no single
radius can be more than twice the length of the smallest lumi-
nal radius. This ensures that all vessels being imaged are near-
ly horizontal cross sections; therefore, fibrinogen outside the
luminal area is extravasated not running through the lumen on
a vessel that has been cut at an angle.

Statistics All statistics were performed using GraphPad
Prism 7.2. For length of infection, a Student t test was per-
formed between juveniles with and without encephalitis and
between adults with and without encephalitis. For plasma
viral load and monocyte turnover, a one-way ANOVA
followed by Tukey’s multiple comparison test was utilized.
For brain viral load, the data was log-10 transformed and
analyzed using a one-way ANOVA with Tukey’s multiple
comparison test. CCR5 and fibrinogen data was analyzed
using Welch’s two-tailed t test. Statistical significance was
defined as p < 0.05.

Results

Age-dependent incidence of SIVE Previous studies have noted
the lack of evidence of neonatal encephalitis as defined by the
presence of MNGCs (Sharer et al. 1986; Kure et al. 1991;
Vazeux et al. 1992; Lane et al. 1996a; Westmoreland et al.
1999). We first set out to examine retrospectively the inci-
dence of SIVE in the TNPRC archives. Out of 51 neonates
infected at, or near, birth, none developed encephalitis
(Fig. 1a, b). The first case of encephalitis found in the
TNPRC archives was observed when an animal was infected
at 4 months of age (Fig. 1a). Approximately 23% of adults
(infected > 2 years and < 15 years) and 27% juveniles (infect-
ed > 3 months and < 2 years) developed encephalitis com-
pared to zero neonate (infected < 3 months) (Fig. 1b). A rep-
resentative image of an SIV-infected adult with an MNGC
(Fig. 1c) and an SIV-infected neonate without encephalitis
(Fig. 1d) are included.

Adults were noted to have increased rates of other reported
brain pathologies compared to neonates and juveniles
(Table 1). Overall, almost half of all SIV-infected adults or
juveniles experienced some form of brain pathology, while
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only 10% of SIV-infected neonates developed any kind of
brain pathology, and most were due to secondary infections.

Peripheral indicators of encephalitis Next, we sought to ex-
amine physiological markers that have been previously

published as being correlates of encephalitis. These include
length of infection, plasma viral load, and monocyte turnover.
Rapid disease progression (less than 150 days post infection)
has been associated with encephalitis in adults (Westmoreland
et al. 1999). Compared to adults, infected neonates develop

a

b c d

Fig. 1 Incidence of SIV infection in neonates, juveniles, and adults. The
archive of CNS tissues from macaques infected with SIV was examined.
No macaques developed encephalitis when infected as neonates (a). The
earliest observed case of encephalitis was 4 months post birth. After

1 year of age, approximately 25% of animals developed encephalitis
(b). SIVE was defined by the presence of multinucleated giant cells (c),
which is noticeably absent from neonatally infected macaques (d)

Table 1 Increased rates of reported brain pathologies in adults compared to neonates and juveniles

Neonates (51) Juveniles (11) Adults (60)

Encephalitis 0 3 14

Other brain pathologies 6 2 13

Septicemia Gliosis Meningoencephalitis

Perivascular inflammation Cerebral necrosis Perivascular inflammation

Bacterial meningoencephalitis Perivascular inflammation meninges

Acute inflammation lesions—herpes B Lymphoplasmacytic infiltration and necrosis

Choroid plexus inflammation Neutrophilic meningitis

Gliosis Necrosis and hemorrhage

CMV meningeal infection

Subacute inflammation

J. Neurovirol.



AIDS more rapidly (Li et al. 2007; Wang et al. 2010).
Conversely, it appears that rapid disease progression in peri-
natally infected macaques does not lead to development of
encephalitis. To investigate this inconsistency, we compared
the length of infection between SIV-infected juvenile rhesus
macaques with and without encephalitis (SIVE and SIVnoE,
respectively) and SIV-infected adult rhesus macaques with
and without encephalitis. Length of infection was not signifi-
cantly correlated with development of encephalitis in either of
the age groupings (Fig. 2a, p = 0.3712, p = 0.1566). We note
here that many of the neonatal animals were euthanized earlier
due to the study design and therefore pose a potential con-
founding variable. We were also limited by the number of
juvenile animals available as they are not of a widely studied
age range.

Next, we examined the plasma viral load of SIV-infected
neonates, juveniles, adults without encephalitis (SIVnoE), and
adults with encephalitis (SIVE). There was no significant sta-
tistical difference between the means of the four groups (Fig.
2b, p = 0.6005). The red point indicates the one juvenile ani-
mal with encephalitis.

Increased monocyte turnover is a predictive indicator of
progression to AIDS (Hasegawa et al. 2009; Beck et al.
2015). There was no significant difference between the
BrdU-labeled CD14+ monocytes across the groups examined
(Fig. 2c, p = 0.2440). The red point indicates the one juvenile
macaque that developed encephalitis. Thus, SIV-infected neo-
natal rhesus macaques have a decreased incidence of SIV
encephalitis despite having similar monocyte turnover and
plasma viral loads to SIVnoE and SIVE adults.

Central nervous system-associated virus As there were no
definitive lesions by histology, and none of our peripheral

indicators of encephalitis was positive, we next determined
if virus had entered the CNS. Positive DNA viral load indi-
cates that virus has incorporated into the host DNA, while
detectable viral RNA indicates that there is viral gene expres-
sion. Viral DNAwas found in the brainstem and frontal lobes
in all groups (Fig. 3a, b) and viral RNAwas also found in all
groups (Fig. 3c, d). Viral DNA and RNA levels were consis-
tently higher in the brainstem versus the frontal lobe for all
groups (Fig. 3a–d). As could be anticipated, animals with
encephalitis had significantly higher viral DNA and RNA
levels than every other group (Fig. 3a–d, p < 0.05). It was also
noted that SIV-infected adults without encephalitis had signif-
icantly higher brainstem RNA viral levels compared to juve-
niles (Fig. 3c, p = 0.043). However, juveniles also had the
widest range of viral DNA and RNA levels out of all the
groups indicating a possible developmental difference which
could be examined further.

Quantification of virus-susceptible cells in neonates and
adults CCR5 is a major co-receptor necessary for HIV/SIV
virus binding and fusion on T cells, monocytes, and macro-
phages. Due to this, we sought to examine expression of
CCR5 within neonatal and adult macaque brains. Using im-
munohistochemistry, little to no CCR5 expression was ob-
served within temporal and occipital cortical tissues of unin-
fected neonates (Fig. 4a) with uninfected adults showing more
expression (Fig. 4b), especially around vessels. This indicates
that even in the uninfected brain environment, adults have
more cells that are susceptible to SIV infection than neonates
which could explain the lack of encephalitis seen in this age
group (Fig. 1b). To verify these observations, 10 random im-
ages of white matter and 10 random images of gray matter
were taken of eachmacaque and total CCR5+ cell counts were
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Fig. 2 Peripheral indicators of encephalitis. The interval from day of
infection until necropsy for each animal was determined from the
TNPRC record system. There was no significant difference between the
animal groupings based on length of infection (a, neonates n = 51,
juveniles with no encephalitis n = 8, juveniles with encephalitis n = 3,
SIVnoE adults n = 46, SIVE adults n = 14). The plasma viral load was
determined for animals with available plasma collected at necropsy. There

was no significant difference between the groups (b, neonates n = 39,
juveniles n = 7, SIVnoE adults n = 29, SIVE adults n = 11; p = 0.6005).
There was also no statistical difference between the groups for monocyte
turnover, based on % BrdU-labeled CD14+ cells (c, p = 0.2440). The red
point indicates the one juvenile animal with encephalitis that had both
plasma samples available for testing
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obtained. Adults were found to have significantly more
CCR5+ cells within the brain compared to neonates (Fig. 4c,
p = 0.0148). The observed lack of encephalitis of neonatal
macaques may be in part due to fewer CCR5+ cells being
present within the brain compared to adult macaques, leading
to the chances of SIV being able to take up residence within
the cells of the brain being lower.

Analysis of blood-brain barrier permeability To further evalu-
ate why macaques infected as neonates versus adults do not
develop SIVE, we measured the degree of BBB breakdown
after SIV infection in both groups. To examine this, we

performed double immunofluorescent stains using antibodies
against glucose transporter 1 (Glut-1), an endothelial marker
and fibrinogen, a serum protein. As described in the
BMaterials and methods,^ any fibrinogen that was determined
to be outside of the luminal space was considered to be ex-
travasated. Six adult and six neonatal SIVnoE animals were
examined to determine the average percent of vessels demon-
strating fibrinogen extravasation for each group (Fig. 5a, b).
Interestingly, while perinatally infected pediatric animals
showed less than 2% of vessels with fibrinogen extravasation
on average, adult SIVnoE animals averaged above 12% (Fig.
5c). This significant difference in BBB permeability may
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Fig. 3 Cell-associated viral load. Animals with encephalitis had higher
levels of viral DNA in both the brainstem (a, neonates n = 13, juveniles
n = 5, SIVnoE adults n = 19, SIVE adults n = 9; p < 0.0001) and frontal
lobe (b, neonates n = 12, juveniles n = 5, SIVnoE adults n = 20, SIVE
adults n = 9; p < 0.0013) than any of the other groups of animals. There
was no significant difference between the non-encephalitic groups. To
determine if there was ongoing viral replication, viral RNA was

determined. Encephalitic animals had higher RNA levels than the other
groups in both brainstem (c, neonates n = 12, juveniles n = 5, SIVnoE
adults n = 13, SIVE adults n = 6; p < 0.0001) and frontal lobe (d, neonates
n = 13, juveniles n = 5, SIVnoE n = 14, SIVE adults n = 6; p < 0.0004).
There was also higher viral RNA in adults, even without encephalitis,
than juvenile animals (c)
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indicate an increased risk of viral neuroinvasion in adults that
is not present in pediatric animals suggesting that the more
competent neonatal BBB may play a role in their decreased
brain tissue viral loads.

Discussion

The results presented here elaborate on an interesting phenom-
enon: the lack of pathological encephalitis in rhesus macaques
infected with SIV as neonates. Previous reports had demon-
strated a lack of encephalitis in neonatal rhesus macaques
infected within 24 h of birth, despite having elevated plasma
viral loads and neurological deficits (Westmoreland et al.
1999). This included fewer and harder to detect SIV-infected
cells in the CNS. This phenomenon had been hypothesized to
be due to maturation-dependent host factors or an
Bimmunosuppression of immaturity^ (Westmoreland et al.
1999; Bowenkamp 2002). The current study proposes that
maturation-dependent host factors in the BBB, such as perme-
ability, and levels of virus-susceptible cells in the CNS, could
account for this phenomenon.

We did not observe MNGCs, the defining factor for en-
cephalitis, in the CNS of any of the 51 neonatal Indian rhesus
macaques examined. The first case of encephalitis was not
seen until an animal was infected after 4 months of age, and

juveniles had a similar incidence of encephalitis as adults at
approximately 25% (3 out of 11 juveniles compared with 14
of 60 adults). Neonatal animals infected during the first
3 months of age also had lower levels of other brain patholo-
gies than any other groups, with approximately 10% of neo-
nates noted to have any CNS pathology (6 of 51). This com-
pared to 20% for juveniles (2 out of 11) and 25% for adults (13
out of 60). Once encephalitis is included, this approaches 50%
for juveniles (5 out of 11), and adults (27 out of 60).

Our previous studies have observed distinct differences in
plasma viral load and monocyte turnover in macaques infect-
ed with SIV as neonates compared with adults (Hasegawa
et al. 2009; Merino et al. 2017; Sugimoto et al. 2017). It
should be noted that those studies examined dynamic changes
across the stages of SIV infection: acute, chronic, or AIDS. In
this study, we divided our animals into the age ranges neonate,
juvenile, and adults, regardless of stage of infection. We also
further split our adult groups into adults with and without
encephalitis, a distinction we did not include in the previous
studies. The current study, which did not separate terminal
AIDS from scheduled necropsy, also reports the last plasma
viral load determined, and only the monocyte turnover imme-
diately before necropsy. Our observation of no significant dif-
ference in monocyte turnover in rhesus macaques with or
without encephalitis corroborates a report in pig-tailed ma-
caques (Beck et al. 2015). Finally, our previous studies

Fig. 4 Quantitation of viral-
susceptible cells in the CNS.
Single-label immunohistochemis-
try for CCR5 counterstained with
hematoxylin showed expression
within neonatal (a) and adult (b)
macaque brain. When the total
counts of CCR5+ staining in 20
random images per macaque were
compared between neonatal and
adult groups, adults were found to
express significantly more
CCR5+ cells than neonates in
occipital cortical sections (c, p =
0.0148; two-tailed t test; neonates
n = 3; adults n = 4) and temporal
cortical sections (d, p = 0.0030;
two-tailed t test; neonates n = 3;
adults n = 4)
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included animals that had received ART and whose infection
was controlled on ART. These variances within groups could
potentially be due to the larger sample sizes, representation of
developmental changes, or the result of brain damage and
subsequent responses to viral infection as the animals were
at different stages of disease progression.

Despite the lack of encephalitis, the neonatal brain may still
be a reservoir for SIV (Westmoreland et al. 1999; Clements
et al. 2002; Burdo et al. 2010). Although DNA and RNAviral
loads in neonates and juveniles had a wider range and were
significantly lower than adults with encephalitis, the presence
of viral DNA indicates that virus had successfully incorporat-
ed into cells in the brain. Further, measurable viral RNA indi-
cates an ongoing, albeit low level, productive infection. It has
been postulated that S/HIV can enter the CNS through the
choroid plexus, which is located inside the lateral, third, and
fourth ventricles and is often part of the FFPE brainstem
block. This could be one reason why virus is so often found
in the caudal region of the brain (Falangola et al. 1995), and
why we observed higher levels of viral DNA and RNA levels
in the brainstem than in the frontal lobe (Fig. 3). However, this

does not explain the lack of encephalitis in neonatal SIV
infection.

After the initial peak of virus during acute infection, there is
lower viral load in the CNS (Clements et al. 2002). Thus, the
lower levels seen in our neonates and juveniles could be due to
several of them undergoing scheduled necropsy during the
chronic phase of infection. DNA levels were reported to re-
main the same throughout asymptomatic and acute infection.
The high levels of DNA and RNA in the SIVE adults indicate
that virus had established and was in active viral replication,
which could lead to increases in DNA viral loads as the viral
infection spreads across the brain.

HIV-1 requires the presence of chemokine co-receptors
CCR5 and/or CXCR4 in order to enter T cells and macro-
phages, and increased levels of CCR5 receptors are associated
with an increased risk of transmission (Berger et al. 1999;
Wilen et al. 2012; Shaw and Hunter 2012). As primary infec-
tion most frequently requires CCR5+ cells (Harbison et al.
2014; Joseph et al. 2015), and as the CNS viral reservoir is
established shortly after infection (Clements et al. 2002;
Soulas et al. 2011; Sturdevant et al. 2015; Veenstra et al.
2017), there may be innate differences between neonates and
adults, including levels of susceptible cells, as well as the tight-
ness of the BBB. That uninfected adult macaques have higher
counts of CCR5+ cells in both gray and white matter than
uninfected neonates could potentially explain why SIV-
infected adults have higher incidence of encephalitis than
SIV-infected neonates. Future studies are warranted where the
levels of CCR5+ cells in the CNS are reduced prior to infection.

SIVE development in adult rhesus macaques is correlated
with decreased expression of zonular-occludens-1, a tight
junction protein (Renner et al. 2012a). This is interesting in
the context of our results because we demonstrated low levels
of blood vessel leakage in SIV-infected neonatal macaques,
which would indicate a tighter BBB. It has been posited, but
not conclusively demonstrated, that neonatal rhesus macaques
lack an intact, functional BBB at birth; however, data only
exists for murine and human models. It is therefore hard to
argue whether the virus entered the brains of the neonates
more easily because they lacked the BBB and therefore the
Trojan horse model may not be necessary. While it is widely
accepted that virus enters the brain within 14 days, recent
studies using orally infected neonatal animals have detected
viral RNA in the brain of an animal, 96 h after initial exposure
(Amedee et al. 2018). However, 40% of infants had detectable
viral DNA in at least one tissue 48 h after exposure, and more
at 72 and 96 h respectively, demonstrating the wide variability
of animal and infectious differences in neonatal rhesus ma-
caques. Future studies are needed to examine the development
of BBB and blood-CSF barrier in rhesus macaques.

While this study focuses on infiltrating myeloid cells, we
acknowledge that resident macrophages in the brain are also
important to HIV pathology. Microglia are permissive for

Fig. 5 Permeability of blood-brain barrier. The endothelial cells of the
CNS (green) prevented most of the leakage of fibrinogen (red) into the
parenchyma of pediatric animals infected with SIV (a). In contrast, fibrin-
ogen could be observed in more blood vessels of adults infected with SIV
(b, as overlap of red and green staining). The proportion of vessels with
measurable leakage of fibrinogen was significantly higher in adults than
infants (c)
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infection with HIV (Cenker et al. 2017) and may become viral
reservoirs (Castellano et al. 2017). In late-stage disease, mi-
croglia can express CD163 and upregulate IBA-1, both clas-
sical markers for macrophages (Borda et al. 2008; Bortell et al.
2018). Viral proteins induce microglial activation, including
cytokine secretion (Renner et al. 2012b), and infection has led
to aging-associated dysfunction (Chen et al. 2017). This
Binflamm-aging^ could be mediated through Sirt-1, a
chromatic-modifying protein, which regulates numerous path-
ways including inflammation and aging (Bortell et al. 2018).
The effects of aging in microglial responses are therefore also
of importance. There are distinct morphological changes in
microglia as macaques age (Robillard et al. 2016). There are
increased complexity and altered cytokine responses between
neonatal and adult microglia (Harry and Kraft 2012; Robillard
et al. 2016). There is increased activation of both microglia
and astrocytes as primates age, even in eugeric aging
(Robillard et al. 2016). This is likely linked to priming and
increased activation with age and could underlie a lack of
resolution of inflammation (Norden and Godbout 2013).
Thus, it is likely that microglia are chronically activated fol-
lowing HIV/SIV infection and could represent a source of
inflamm-aging.

This research is significant to the field of HIV/AIDS re-
search, as well as developmental neuroimmunology, as it
highlights differences in neurological disease progression be-
tween neonates and adults. If this effect extends beyond SIV
infections, the implications are significant because it demon-
strates an innate protection to neonatal brains that should be
examined. Once the mechanisms of this protection are eluci-
dated, they could be manipulated in order to protect the brain
from further damage, or in new treatment designs.
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