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Genetics and Complex Disease Epidemiology in Diverse Populations 

Katherine Anne Drake 

 

Abstract 

Asthma, like other common diseases, has both genetic and environmental causes. 

Understanding the heterogeneity in asthma, the genetics of associated traits, and how we 

introduce error by using certain methods are critical to determining the causes of asthma 

and other complex diseases. 

 

We examined two ways to define asthma heterogeneity: using statistical clustering 

methods and using principal components analysis. We compared the fit of these 

variables and how well they predicted asthma exacerbations in data from 1,085 Latino 

and African American children with asthma. We found that principal components both 

fit the data better and predicted exacerbations better than cluster groups. These variables 

need to be compared to other known predictors of exacerbations. 

 

In addition, we conducted a genome-wide association study and admixture mapping 

study of bronchodilator response (BDR) in 1,782 Latino children with asthma. Four of 

the genome-wide significant SNPs were promising rare variants. All four had good dose-

response relationships with BDR and two were in promising candidate genes. Our 

admixture mapping found five regions where a specific ancestry was significantly 

associated with BDR. Since rare variants are often present on specific ancestral 

backgrounds, this result supports the hypothesis that rare variants are important for 
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BDR. Unfortunately, replication of individual rare variants is difficult. Future efforts 

should focus on sequencing the regions we identified to find other rare variants and 

better understand their function. 

 

Finally, we compared the accuracy of haplotype inference error between four 

populations from HapMap Phase 3. We found that haplotype inference error was highest 

in the African populations, intermediate in the Mexican population, and lowest in the 

European population. In addition, some regions had higher haplotype inference error 

than others and this was not explained by several measured features of the regions. 

Comparisons between haplotype association studies across populations should account 

for possible differences in haplotype inference error between populations. 
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CHAPTER 1 

INTRODUCTION TO ASTHMA AND THE GENETICS OF COMPLEX HUMAN 

DISEASE 

 

1.1. Asthma and Bronchodilator Response 

Asthma is a common but complex respiratory disease with heterogeneous clinical 

expression. Asthma is defined as recurrent, reversible airway obstruction. However, the 

expression of this airway obstruction varies drastically between individuals. Between 

2006 and 2008, asthma affected 7.8% of the US population1. Although the death rate 

from asthma is not high overall, both prevalence and mortality are higher in certain ethnic 

and racial groups2-4. Puerto Ricans have the highest prevalence of asthma in the US, 

followed by African Americans. Mexicans have the lowest prevalence, followed by 

Dominicans. Trends in mortality between populations follow the same pattern as trends 

in prevalence. The cause of these differences in prevalence and mortality between racial 

and ethnic groups is unknown but is likely related to differences in environmental and 

genetic factors that contribute to asthma susceptibility and the interaction between these 

factors.  

Asthma is caused by both genetic and environmental factors. The way in which 

these causal factors work together to cause asthma and asthma disparities is not well 

understood. One theory is that a specific combination of genetic and environmental 

factors is required to produce asthma5. These gene-environment interactions may 

contribute to asthma disparities, as the frequency of both genetic factors and 

environmental exposures vary between racial and ethnic groups6. Thus, if a particular 
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group has a high prevalence of exposures and genetic variants that interact to cause 

asthma, the prevalence of asthma will be higher in this group.  

Several gene-environment interactions that may cause asthma have been 

discovered in the last decade. Many of these interactions involve innate immunity genes 

that have biological interactions with environmental stimuli5. For example, the interaction 

of the CD14 C-159T allele and levels of endotoxin exposure has been described in 

several studies7,8. In most studies, the T allele is associated with protection from asthma if 

endotoxin exposure is low. In contrast, the C allele is associated with protection from 

asthma if endotoxin exposure is high. The CD14-endotoxin exposure interaction is not 

yet fully understood, but is a promising example that has supporting evidence from 

several studies.  

Unfortunately, gene-environment interactions are not easy to identify, partly 

because their genetic and environmental components are not always significant alone. 

Testing the association of these components in a subset of asthmatics may help identify 

them. In particular, if there are known environmental risk factors for a subset of 

asthmatics we might identify candidates for gene-environment interactions by looking for 

genetic risk factors in that subset. This was recently demonstrated in a meta-analysis of 

CD149. In this meta-analysis, CD14 was associated with asthma only in the subset of 

atopic asthmatics with other allergic disease. Thus, using a subset of atopic asthma 

patients may have helped to more clearly identify CD14 as a risk factor in earlier studies. 

Then, researchers could have looked for gene-environment interactions with known 

environmental risk factors for atopy. One difficulty in using this type of approach is how 

to choose the subset of asthmatics to study. In order to use subsets of asthma patients to 
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identify gene-environment interactions and their components, we must better understand 

the heterogeneity of asthma itself. 

 Atopic and non-atopic asthma is probably the most common way that asthma 

heterogeneity has been described. Triggers, response to certain therapies, onset and 

severity are just a few of the other variables that vary widely among individuals with 

asthma10. Many overlapping subsets of asthma, or so-called asthma phenotypes, have 

been defined using each of these variables. As demonstrated in the CD14 meta-analysis 

described above, the causes of asthma may vary depending on the asthma phenotype9.  

Many studies of asthma restrict their analysis to specific asthma phenotypes, but 

the range of phenotypes used in these studies varies substantially11-13. Asthma phenotypes 

have been defined both based on expert opinion and more recently using statistical 

clustering methods. Statistical clustering methods split the individuals into a researcher-

defined number of groups based on any number of input variables. Defining asthma 

phenotypes called ‘cluster groups’ using statistical clustering methods is appealing 

because it is more objective than expert opinion. It is still unclear which phenotypes 

should be used to search for risk factors. One suggestion is that asthma phenotypes might 

be defined based on their relevance to clinically meaningful outcomes like exacerbations 

and response to therapy10. However, no studies of cluster groups have examined their 

ability to predict these clinically meaningful outcomes as compared with other asthma 

phenotypes.  

The ability to predict clinically meaningful outcomes should be an important 

factor in defining useful asthma phenotypes. Well-defined asthma phenotypes will let 

researchers identify genetic and environmental causes of each asthma phenotype without 
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having the results ‘washed out’ by noise from the other phenotypes. Understanding these 

causes, in turn, will lead to a better understanding of asthma physiology and an ability to 

develop treatments specific to each phenotype. Thus, researchers need a better 

understanding of these asthma phenotypes in order to fully understand the genetic and 

environmental causes of asthma.  

Understanding asthma-related traits like bronchodilator response (BDR) to !2-

adrenergic receptor (!2AR) agonists may also help us understand asthma and its causes. 

Although other bronchodilators have been used historically, !2AR agonists are now the 

primary rescue medication for individuals having an asthma attack14. However, 

bronchodilator response, like asthma, varies between individuals and populations. 

Generally, individuals with lower baseline lung function have higher BDR because they 

have more room to improve than individuals with higher baseline lung function. 

However, in one study, Puerto Ricans had lower BDR than African Americans or 

Mexicans, despite having lower baseline lung function15,16. In another study, African 

Americans had lower BDR than white patients17. Since bronchodilators are the primary 

rescue medication for asthma, low BDR may lead to increased asthma severity and 

mortality. Thus, understanding the genetic and environmental contributions to secondary 

phenotypes like BDR is crucial to understanding and treating asthma. 

 Recently, technology for assaying genetic variation has improved drastically. In 

addition, recent studies on the genetics of asthma are collecting more environmental data.  

These facts will allow researchers to uncover more about the genetic and environmental 

causes of asthma and lead to a better understanding of asthma etiology. 
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1.2. Genetics of Complex Human Diseases 

1.2.1. Introduction to Genetics of Complex Human Disease 

In the past decade, there has been an explosion in genome-wide association 

studies (GWAS) that agnostically scan the genome for variation associated with complex 

diseases18,19. GWAS address the ‘common disease-common variant’ hypothesis, which 

suggests that a combination of several common genetic variants causes disease20. Most of 

these variants are expected to have modest effects. In contrast, linkage studies, which 

were available before GWAS and also agnostically scanned the genome, have low power 

to identify these types of associations21. Linkage studies successfully identified several 

variants associated with Mendelian disorders but have had limited success in identifying 

important variants for common disease20. Agnostic scans of the genome like GWAS and 

linkage studies are important because our understanding of the biological function of the 

human genome is still very limited. GWAS have very quickly identified hundreds of 

common variants associated with many common diseases22,23. 

GWAS have become possible because of massive technological and scientific 

advances that allowed for the development of commercial arrays that ‘tag’ most of the 

common variation in the human genome. These arrays genotype ‘tag SNPs’ that are in 

linkage disequilibrium (LD) with many other SNPs in the genome24. SNPs in LD with 

each other are frequently transmitted from one generation to another together. Thus, a tag 

SNP can be used as a proxy for other SNPs in association tests. Consortia like the 

International HapMap Consortium and 1000 Genomes Consortium have identified 

patterns in genetic variation and linkage disequilibrium across populations25,26. These 
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consortia, along with advances in genotyping technology, were required for GWAS and 

related studies of haplotypes and imputed SNPs to become possible. 

Although GWAS have successfully identified many previously unknown genes 

and regions associated with disease, it has become clear that these associations do not 

explain all of the heritability of complex diseases27. Recently, researchers have 

hypothesized that rare variation may play an important causal role in complex 

disease20,22. In fact, significant associations with common variants identified in GWAS 

might be driven by causal rare variants28. Thus, research to identify heritable factors 

associated with disease continues.  

Much of the recent research has focused on epigenetics, structural variation like 

copy number variants, and rare variation. Sequencing-based approaches can identify 

these types of genetic variation. However, whole-genome sequencing is still cost-

prohibitive in many large studies. To allow the study of rare variation without 

sequencing, some SNP arrays now include coverage of more rare variation than in the 

past29. In addition, admixture mapping can identify regions where variation that is likely 

to be rare is associated with disease. 

Admixture mapping is a technique for identifying regions of the genome 

containing risk alleles that differ in frequency between the ancestral populations of a 

population with recent mixed ancestrye.g. 30. It can identify all types of variation specific 

to an ancestral background that are tagged by being in LD with a specific ancestry. Since 

rare variants are likely to be specific to an ancestral background31, admixture mapping is 

likely to pick up signals from rare variants on these backgrounds. Although admixture 
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mapping doesn’t identify specific causal variants, sequencing candidate regions 

discovered by admixture mapping can be used to identify the causal variants.  

Most researchers agree that like the common variants identified in GWAS, rare 

variants alone are unlikely to explain all of the heritability of a complex disease. 

Techniques like GWAS and admixture mapping should be used as tools to identify 

regions that contain clues to the heritability of a disease. Since these approaches identify 

different types of ‘clues,’ they are complimentary. Researchers should combine data from 

all approaches in order to understand the way that each disease is inherited and the likely 

sources of genetic variation that contribute to each disease.  

Researchers should also continue to use innovative approaches to gather more 

information on the genetics of complex diseases. One limitation of genome-wide 

association studies is that they generally do not identify causal genetic variants22. 

Sequencing and experiments that help us understand the biological function of genes, 

regions, and the variants within them will be necessary to understand which variants are 

causal. Another limitation of many previous genome-wide association studies is that they 

do not take into account environmental exposures and their interaction with genetic 

factors20. Most complex diseases have genetic and environmental components, and 

understanding the way these factors work together is also necessary to understand the 

causes of complex disease. However, given the scope of variation in the human genome 

and our lack of understanding of its function, identifying causal variants and their 

interactions with the environment would be impossible without first identifying regions 

of importance through GWAS, admixture mapping and similar studies. Methodologically 

sound, genome-wide studies of well-characterized samples continue to be important 
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sources of information about the regions in the genome that may be associated with 

disease.  

 

1.2.2. Methodological Considerations 

Before the GWAS era, published genetic studies of complex disease often 

produced inconsistent or irreproducible results23. There was a general lack of consistency 

in methods across these studies. The availability of genome-wide data has brought with it 

many new methods that are now used much more consistently across studiese.g. 32-35. In 

addition, good reviews of methodological considerations necessary for genetic studies are 

available24,36. However, as technology and datasets improve, methods will need to 

continue to improve and researchers will need to remain aware of the potential pitfalls of 

each method. Methodological considerations related to subject recruitment and phenotype 

measurement, statistical estimation of secondary genetic data like haploytpes or ancestry, 

and methods for multiple testing correction are particularly relevant to this thesis. Here, I 

will briefly review these considerations, the ways error can be introduced and relevant 

ongoing research into these areas. 

 

1.2.2.1. Subject Recruitment and Phenotype Measurement 

Selection bias is unlikely to be as important in genetic studies as in traditional 

epidemiology. In traditional epidemiology, selection bias is an important consideration in 

subject recruitment because it can lead to spurious associations between the exposure and 

the disease. These spurious associations happen because a factor important for 

recruitment causes both the exposure and the disease37. In genetic studies, the exposure is 
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the genetic variant. Since genetic variation is present at birth, it is impossible for a 

requirement for recruitment that happens after birth to cause the genetic variation. Thus, 

selection bias in the traditional sense is unlikely to be important for genetic studies. 

However, careful subject recruitment and phenotype measurement will improve an 

investigator’s ability to pick up a signal in genetic studies20. Lack of careful phenotype 

measurement or recruitment of a non-specific population can create so much noise in the 

signal that a genetic study is unable to identify true associations. The meta-analysis of 

CD14 mentioned above is an example where the signal was only present in atopic 

asthmatics and was washed out when all asthmatics were included9. Research into 

appropriate phenotype measurement for many diseases and related traits is ongoing10,38,39. 

This research will continue to improve our ability to recruit subjects for genetic studies so 

that we can identify regions where genetic variation is associated with disease. 

 

1.2.2.2. Statistical Inference Methods for Genetic Data 

GWAS often use several statistical inference methods leading up to the final 

analysis. These include methods for phasing haplotypes, imputing SNPs, and identifying 

population structure or estimating genetic ancestry. These methods have improved 

drastically since population genetics models were included in the inference process and 

large-scale genome-wide data became available40. Research on these methods is ongoing, 

and the current versions can be applied to genome-wide data in a relatively time-efficient 

manner. Furthermore, these methods are frequently evaluated in comparison with each 

other and the expected levels of error have been published as part of these evaluationse.g. 

35, 41,42. However, published GWAS rarely discuss error introduced as a result of using 
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these methods and how this might explain differences between their results and others’ 

results.  

There are several ways that error introduced by these methods might cause 

differing results across studies. One example is in global ancestry estimation. The number 

of ancestry informative markers (AIMs) and the specific AIMs used for global ancestry 

estimation are chosen on a study-by-study basis. Several panels of AIMs have been 

proposed for various populations. However, systematic evaluations comparing estimates 

of global ancestry from these AIMs panels to estimates from genome-wide data have 

only been performed recently43,44. Many previous AIMs panels contained fewer than 200 

markers45,46. The recent systematic evaluations have found that close to 500 markers are 

necessary to have a high degree of accuracy in global ancestry estimation. Since global 

ancestry estimates are used to correct for population stratification, error in these estimates 

may result in a lack of appropriate correction for population stratification and spurious 

false positive associations47. Alternatively, error in global ancestry estimates may simply 

add noise and cause investigators to miss true associations.  

A second and less understood way that statistical inference methods might cause 

differing results across studies is if the error from these methods varies by population. In 

particular, to our knowledge there are no published studies detailing how haplotype 

inference error varies across populations. The assumptions of statistical inference 

methods may not hold equally across all populations and may therefore create more error 

in some populations that in others. For example, many of these methods assume random 

mating. However, people mate non-randomly and the level of this non-random mating 

may vary across populations. In fact, two studies have demonstrated that people mate 

10



 

non-randomly based on genetic ancestry48,49. Variation in the validity of assumptions like 

non-random mating across populations may result in varying error across populations. 

This, in turn, would result in more bias of results in some populations than in others, 

making it difficult to compare results across populations. As statistical inference methods 

continually improve, researchers need to keep investigating and discussing how error in 

these methods affects results of genetic studies and the comparability of these results 

across studies. The increasing quantity and quality of publically available genetic data in 

diverse populations should aid this effort. 

 

1.2.2.3. Burden of Proof: Multiple Testing Correction and Replication 

The burden of proof in GWAS has been defined by correcting for multiple testing 

appropriately and replicating the results. However, both of these are complex issues. The 

need to correct for multiple testing in genetic studies to avoid false positives is well 

understood. Despite the fact that Bonferonni correction is notoriously conservative when 

tests are not independent, many genetic studies use Bonferonni to correct for multiple 

testing24. When SNPs are in linkage disequilibrium, the tests of these SNPs will not be 

independent. One alternative strategy to help avoid false negatives is to use random 

permutations to determine an appropriate genome-wide significance level for each study 

and each type of test24. Random permutations are an unbiased way to determine the p-

values that are expected by chance in a given population for a given test.  

Random permutations are especially advantageous for studies like admixture 

mapping. Here, the number of independent tests in an admixture mapping study depends 

on the size of the ancestry blocks in the specific population and the number of loci tested. 
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Therefore, the number of independent tests varies greatly between studies making 

random permutations in each study necessary. Even with a study-appropriate significance 

cutoff determined by random permutations, replication is a commonly accepted way to 

show that results are not false positives. However, replication may be problematic for 

rare variants due to low power for detection and the fact that they are often population-

specific50. Rare variants are not necessarily false positives if they fail to replicate. How to 

deal with assessing false positives and replication of rare variants is still an ongoing area 

of research that will undoubtedly require functional follow-up. Researchers should 

continue to scrutinize their own data and maintain high standards of proof in their own 

research. 

 

1.2.3. Genetics of Asthma and Bronchodilator Response 

Over 100 candidate genes for asthma have been reported51. In addition, 23 GWAS 

have been published for asthma or related traits as of April 6th, 201218. The first region 

identified in a GWAS of asthma covers several genes that are in tight LD, but appears to 

be caused by variation in ORMDL352. This association has been replicated convincingly 

across many diverse populations53. Although this region is well replicated, only a handful 

of other genes and regions have been replicated convincingly and none have been 

replicated across all published studies51,53. Many of the genes that have strong evidence 

for association with asthma are involved in epithelial barrier function, environmental 

sensing and immune detection, TH2-mediated cell response, and tissue response53. Genes 

with these functions are sensible based on the known pathology of asthma. However, 

most of these well-replicated genes were chosen for study based on their function. 
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ORMDL3 is clearly associated with asthma, yet it does not fit into these categories. Thus, 

the complete pathology of asthma is still not understood and GWAS and other agnostic 

scans of the genome will continue to add to our knowledge of asthma. 

Gene-environment interaction studies and genetic studies within specific asthma 

phenotypes will also add to our knowledge of asthma pathology. Gene-environment 

interactions likely play a role in the lack of replication seen previously in asthma 

candidate gene studies5. Recent studies of ORMDL3 provide additional evidence that the 

effects of risk alleles are modified under specific conditions. ORMDL3 was found to be 

associated with asthma only in childhood-onset asthma and in cases where early life 

exposure to tobacco was present54. Researchers are now starting to sequence large 

populations of asthma patients to add to the wealth of information about genetic variants 

linked to asthma. These data will be combined with better asthma phenotype and 

environmental exposure information to help elucidate the causes of asthma.   

 The genetics of BDR have been much less studied than the genetics of asthma. 

Only five candidate genes have been reported for BDR and no GWAS have been 

published to date18,55-57. Most of the candidate gene studies for BDR have focused 

sensibly on the drug target, ADRB2. In addition, ADCY9, CRHR2, ARG1 and THRB have 

been reported as candidate genes for BDR. Results for all of these candidate genes have 

been inconsistent. One reason for this may be inconsistent phenotype definitions across 

studies. BDR is affected by many factors including times of assessment, specific drugs 

used (e.g. long- or short-acting !2AR agonists), and dose58. Genetic variants could be 

affecting BDR only under specific conditions based on these factors, like a high dose of a 

particular bronchodilator. Thus, the genetic risk factors that can be identified for BDR 
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have a lot of potential for variation across studies. Larger genome-wide genetic studies of 

BDR and more careful phenotyping will add to our understanding of the causes of 

variation in BDR. 

 

1.3. Summary of Chapters 

In the study of the genetics of complex disease, it is important to consider 

measurement of the disease phenotype, methods used to conduct the genetic study, and to 

do a thorough job of the analysis itself. This thesis contains three distinct pieces of work 

that contribute to each of these areas involved in studying the genetics of complex 

disease.  

In chapter 2, I examine ways to define subsets of asthma patients and their utility 

in predicting exacerbations in 2,743 Latino and African American children with asthma. 

Asthma has historically been divided into discrete subsets of patients based on many 

characteristics and more recently based on agnostic statistical clustering methods. My 

results show that a continuous definition of asthma predicts exacerbations better than 

subsets of asthma. I suggest that although these subsets are convenient, they may not be 

an appropriate definition of asthma. Therefore, they may not be a relevant phenotype to 

use for genetic studies. 

In chapter 3, I conduct a genome-wide study of bronchodilator response in 1,782 

Latino children with asthma. By examining allelic associations and admixture mapping, I 

identify several rare variants that may play a role in BDR. This study is, to my 

knowledge, the first genome-wide association or admixture mapping study of BDR to 

date. My results suggest that rare variants play an important role in BDR and imply that 
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further work using sequencing and experimental follow-up should be performed to 

identify and validate more rare variation involved with BDR. 

Finally, in chapter 4, I examine how haplotype inference error can lead to bias in 

effect estimates in genetic association studies and how this error varies by population. I 

use publicly available data from four populations in the HapMap project to examine the 

distribution of error in 100 randomly sampled regions from Chromosome 1. I find that 

haplotype inference error indeed varies by population and that error in some regions is 

not explained by factors I hypothesized would be associated with error. My results imply 

that variation in effect estimates from studies of haplotypes or imputed SNPs may be due 

to differences in error rather than true differences in effect estimates. Differences in this 

error will require careful evaluation when comparing results of these studies across 

populations. 
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CHAPTER 2 

A CONTINUOUS ASTHMA PHENOTYPE PREDICTS EXACERBATIONS 

BETTER THAN CLUSTER GROUPS 

 

2.1. Introduction 

Asthma is a clinically heterogeneous disease. Not all patients have the same 

symptoms or respond to therapy in the same way. Since asthma is so heterogeneous, 

clinical subgroups of asthma patients have been defined in many ways1. Recently, these 

clinical subgroups have been labeled ‘asthma phenotypes’1,2. Historically, asthma 

phenotypes have been defined based on expert opinion and using many potentially 

overlapping variables such as atopy, age of onset, severity and response to therapy. 

Recently, several studies have used statistical clustering methods to more objectively 

define asthma phenotypes3-7. In addition, multiple papers have suggested that asthma 

phenotypes should be clinically useful3,8. In other words, they should either predict 

clinical outcomes like exacerbations or response to therapy or they should be directly 

related to asthma pathology. Asthma phenotypes that are clinically useful will also be 

more useful in studies of the genetic and environmental risk factors for asthma because 

they will allow for more accurate identification or risk factors for each asthma phenotype. 

Recent asthma phenotypes studies that used clustering have found that subjects 

were clustered together based on a number of important variables such as lung function, 

response to and use of medication, and age of onset or asthma duration. However, there 

are a number of limitations of clustering methods that have not been thoroughly 

discussed in the asthma phenotypes literature9. Two important limitations are that the 
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researcher must specify a pre-defined number of clusters and that clusters will always be 

generated whether they are meaningful or not. Thus, these methods are not entirely 

unbiased. Indeed, the first asthma phenotypes clustering study suggested that these 

clusters might be hypothesis generating rather than solving3. Although clustering has 

proven useful in identifying some axes of variation in asthma patients, asthma may be 

better described as a continuous spectrum than discrete clinical subgroups. Furthermore, 

a continuous spectrum may be more clinically useful, either in terms of predicting clinical 

outcomes or its relationship to asthma pathology. 

To our knowledge, no published studies have compared the fit and clinical utility 

of asthma phenotypes defined by a continuous variable and defined by clusters. Principal 

components analysis (PCA) provides a set of principal components (PCs) that are 

continuous variables and can measure an asthma spectrum using the same set of input 

variables as clustering. Furthermore, since clustering and PCA are related, PCs can be 

used to evaluate the separation of clusters10. Many other fields use PCA to reduce data 

and to visualize and define discrete groups and continuums of data. One example is in 

human genetics. There, PCA is used to clearly separate individuals from different 

continents based on their genetic markers or to visualize the spread of alleles across a 

continent11-13.  

PCA has two definite advantages over clustering when the data form a continuum 

rather than distinct clusters. First, PCA is more objective than clustering because the 

researcher is not required to define the number of clusters. Second, PCs have higher 

power than clusters to predict outcomes like exacerbations when the data are continuous. 

In this case, the clusters are essentially a categorization of the continuous PC variables 
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and therefore will result in a loss of power14. Thus, exploring the relationship of cluster 

groups and PCs and the clinical utility of both of these are important to understanding 

asthma phenotypes. 

We hypothesized that a continuous measure of asthma from PCA would predict 

exacerbations better than cluster group membership. To test this hypothesis, we assessed 

the ability of PCA and two clustering methods to predict exacerbations in the AGES 

population of Latino and African American children with asthma. We compared the 

ability of PCA and two clustering methods to predict hospitalizations, ER visits, and oral 

steroid use in this population. 

 

2.2. Methods 

2.2.1. AGES Population 

Subjects were recruited from the Asthma, Genes and Environment Studies 

(AGES). AGES is a combination of the Genes-Environments & Admixture in Latino 

Americans (GALA II) Study and the Study of African Americans: Asthma, Genes & 

Environments (SAGE II). Both studies began in 2008 and are parallel, ongoing, clinic-

based case-control studies using similar protocols and questionnaires. Subjects are 

recruited from urban study centers across the mainland U.S. and Puerto Rico (Table 2.2). 

The current study includes 2,007 asthma cases from GALA II and 736 asthma cases from 

SAGE II who were recruited through November 2011. 

All participants who met criteria for enrollment (Table 2.1) completed in-person 

questionnaires related to their medical, asthma, allergic, social, environmental and 

demographic histories. In addition, all participants provided blood for genetic analysis 
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and underwent spirometry and skin allergen testing.  Each participant or parent was also 

required to self-identify as having all four grandparents of Latino (GALA II) or African 

American (SAGE II) ethnicity. Local institutional review boards approved the studies and 

all subjects or legal guardians provided written informed consent. 

 
Table 2.1. Eligibility criteria for participation for AGES asthma cases and healthy 
controls 
Criterion 
Age between 8 and 21 years old 
Self-identified Latino/Hispanic (GALA II) or African American (SAGE II) origin 
History of physician-diagnosed asthma  
Symptoms of coughing, wheezing or shortness of breath in the past 2 years 
No respiratory infections for ! 6 weeks (clinical stability) 
No asthma exacerbations for ! 6 weeks (clinical stability) 
Less than 10 pack year smoking history and no smoking in the last year 
If pregnant, < 3rd trimester 
No history of other lung diseases or other chronic illnesses 
 
 
Table 2.2. Number of cases from participating study centers and institutions in the 
GALA II and SAGE II studies 

Study 
Center 

Institution GALA II SAGE II 
Total Complete 

Data 
Total Complete 

Data 
Chicago Northwestern University  101 23 - - 
 Children’s Memorial Hospital 227 47 - - 
Houston Baylor College of Medicine Ben 

Taub Children’s Center, Texas 
Children’s Hospital 

213 63 - - 

New York 
City 

Jacobi Medical Center 308 131 - - 

Puerto Rico Centro de Neumologia Pediatrica 
(San Juan) 

471 229 - - 

 VA Medical Center (San Juan) 343 110 - - 
San 
Francisco 
Bay Area 

Kaiser Permanente 
Richmond Medical Center 
Oakland Medical Center 

     Vallejo Medical Center 

8 
8 
52 

2 
1 
12 

118 
88 
221 

51 
39 
66 

 Bay Area Pediatrics (Oakland) 3 3 83 50 
 Children’s Hospital (Oakland) 21 7 222 59 
 La Clinica de la Raza (Oakland) 103 76 - - 
 Alta Vista (Oakland) 13 6 - - 
 San Francisco General Hospital 136 108 4 2 
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2.2.2. Variable Selection 

We selected variables to use for Random Forest, PCA and kmeans clustering that 

might be indicative of the type of asthma and the status of the disease process in each 

individual. We selected 52 input variables related to health and family health history, 

symptoms, control, medication use, spirometry, age, gender, height and weight to use as 

input variables (Table 2.3). Then, we eliminated variables with >20% missing 

information. After this elimination, we used 40 input variables. Before implementing any 

of the methods described below, we scaled and centered all input variables. In addition, 

categorical variables were coded as dummy variables so that in total we used 67 input 

variables. For our secondary analysis of imputed data (described below), we included all 

52 originally selected input variables. We attempted prediction of three outcomes related 

to exacerbations. These outcomes were hospitalizations, emergency room (ER) visits, and 

oral steroid use. These outcomes were self-reported retrospectively in the last 12 months.  

 

2.2.3. Primary Analysis 

All statistical analyses were performed using R v2.11.1 and the packages 

mentioned below16. The methods we used required non-missing data, which included 

1,085 cases with data for the final 40 input variables in AGES. For the primary analysis, 

we randomly split these cases into a training set and a validation set. This division 

resulted in 548 and 537 individuals in the training and validation sets, respectively. We 

also conducted a secondary analysis on 2,718 individuals using imputed data for 52 

variables (described below).  
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Table 2.3. Input Variables Used for Principal Components, Kmeans Clusters, and 
Random Forest in AGES 

 

Variable Type Variable Percent Missing 
Exacerbation 
Outcomes 

Hospitalized because of asthma in the last 12 months 3.5 
Visited the ER because of asthma in the last 12 months 2.3 
Used oral steroids for asthma in the last 12 months 3.5 

Demographic / 
Basic 

Sex 0 
Height 1 
Weight 2.4 
BMI category, determined from CDC growth charts and 
percentiles 

5.3 

Current age 0.3 
Medication Use in 
Last 12 months 

Short-acting Beta Agonist 0 
Inhaled Corticosteroid 0 
Over-the-counter allergy medication 2.4 
Acetaminophen 1.1 

Asthma & 
Symptoms 

Asthma duration in years 15.9 
Age of asthma onset 15.9 
Has regular doctor who treats asthma 1.1 
Has had trouble sleeping because of wheezing or coughing in 
last two weeks 

13.9 

How many days has child coughed or wheezed in last two 
weeks 

17.5 

In the last two weeks, has child:  
Wheezed, had shortness of breath, or coughed so much he/she 
couldn’t finish a sentence? 

27.5 

Had trouble keeping up with others while playing a sport or 
exercising because of wheeze / shortness of breath / cough 

24.5 

In the last week:  
• How often did child wake up from asthma during the 

night 
0.9 

• How bad were symptoms in the morning 0.9 
• How limited were activities because of asthma 0.9 
• How much shortness of breath did child have because 

of asthma 
0.9 

• How much of the time did child wheeze 1 
In the last 12 months, have any of these made 
wheezing/coughing worse: 

 

• Weather 15.1 
• Pollen 19.7 
• Cold or flu 15.1 
• Physical activity 16 
• Housedust 18.6 
• Pets or animals 19.5 
• Windy conditions 17.1 
• Perfumes or odors 18.3 
• Pollution 21.3 
• Smoke 20.7 
• Mold 22.7 
• Wood smoke 23.5 
• Street dust 22.2 
• Food 20.9 
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Table 2.3. Continued 

*Second dose depends on age: Patients < 16 received two additional puffs and patients 
>16 received four additional puffs 
**FEV1 and FVC predicted based on equations from Hankinson et al.15 
 
 

In the training set, we built PCs, kmeans clusters, and Random Forest classifiers 

using all of the input variables selected. PCs were used as a continuous measure of 

asthma. Since PCA creates as many PCs as there are input variables, we used only the 

ones that explained the largest proportion of the variance in the sample for prediction. We 

chose to use PCs 1 and 2, which together represent a two-dimensional asthma spectrum, 

after looking for separation of the eigenvalues of each of the PCs on a scree plot. PCs 1, 2 

and 3 explained 7.8%, 6.9%, and 4.9% of the variance in the sample, respectively. 

Variable Type Variable Percent Missing 
Health History & 
Family History 

Ever diagnosed with hayfever 3.6 
Ever had an itchy rash that came and went for at least six 
months 

1.1 

Ever diagnosed with eczema 1.6 
Ever diagnosed with a sinus infection or sinusitis 1.9 
Has problems with sneezing, runny or blocked nose, itchy or 
watery eyes without having a cold or flu 

0.3 

Has had this problem in last 12 months 0.8 
Family history of:  

Asthma 20.5 
Eczema 31.6 
Rhinitis 24.7 
COPD or bronchitis 55.5 

Spirometry** Pre-bronchodilator Forced Expiratory Volume in 1 second 
(FEV1), % of predicted 

1.9 

Pre-bronchodilator Forced Vital Capacity (FVC), % of 
predicted 

1.9 

Post-bronchodilator FEV1, % of predicted after 4 puffs of 
albuterol 

2 

Post-bronchodilator FVC, % of predicted after 4 puffs of 
albuterol 

2 

% change in FEV1 after 4 puffs of albuterol 2 
Maximal FEV1 after either 4 or 6-8* puffs of albuterol, % of 
predicted 

6.3 

Biomarkers Total serum IgE 2.3 
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We used two clustering methods to define clinical subgroups of patients with 

asthma. First, we built kmeans clusters using the R package cclust17. Kmeans clustering 

requires that the number of clusters, k, be pre-specified. To determine the appropriate 

number of clusters, we clustered each training set multiple times with the number of 

clusters ranging from k=2 to k=10. Then, we used clustergrams to visually examine the 

stability of each point within each cluster18. The second clustering method we used was 

the algorithm developed in the Severe Asthma Research Program (SARP) study4. This 

algorithm was developed using Ward’s minimum-variance hierarchical clustering 

followed by a discriminant analysis that identified variables important for assigning 

individuals to cluster groups. We assigned patients with asthma to one of five ‘SARP 

groups’ using this algorithm based on percent of predicted pre-bronchodilator FEV1, 

maximal percent of predicted post-bronchodilator FEV1, and age of onset.  

We also built Random Forest classifiers in the training set using the R package 

randomForest19 to estimate the maximum predictive ability of the set of input variables 

we used. Random Forest classifiers differ from PCs and clusters because they are built 

for the purpose of predicting a particular binary outcome. However, like PCs and clusters, 

Random Forest classifiers can be built in the training sets and assigned in the validation 

set to predict exacerbations. 

In the validation set, we assigned the PCs, kmeans clusters, SARP groups, and 

Random Forest classifications. Then, we predicted each of the three exacerbation 

outcomes from each of these measures. For each prediction, we used a logistic regression 

of the outcome on a predictive measure. For example, we regressed whether or not an 

individual was hospitalized in the last 12 months on each individual’s first and second PC 
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(PC1 and PC2) values. We performed regressions of each outcome on the Random Forest 

classification, PC1 and PC2, kmeans clusters, and SARP groups. We used the fitted 

values and observed outcomes from each logistic regression to make an ROC curve. 

Then, we used the area under an ROC curve (AUC) to compare the predictive ability of 

each predictor for each outcome.  

 

2.2.4. Prediction from Fewer Input Variables 

 Measuring 40 variables in order to define clinical subgroups or predict 

exacerbations in the clinic might be difficult. Therefore, we repeated the analysis 

predicting exacerbations from PCs starting with fewer input variables. We used the 9 

variables that were the union of the top 7 variables loading the original PCs 1 and 2 to 

create ‘reduced PCs’. We used the first two ‘reduced PCs’ to repeat the analysis in the 

training and validation sets described above.    

 

2.2.5. Analysis of Imputed Data 

 To investigate the effect of dropping individuals with missing data from our 

primary analysis, we used multiple chained imputation as implemented in the R package 

mice to fill in missing data in the AGES population20. We started with all 52 variables 

selected for Random Forest, PCA, and clustering. We removed variables from this set 

that were derived from other variables in the set and recalculated them after imputation. 

The variables we removed and recalculated after imputation were BMI category, delta 

FEV1, asthma duration, and maximal FEV1. For each variable we imputed, we used all 

other variables with a minimum proportion of usable cases > 0.25 and a minimum 
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correlation with the variable being predicted > 0.1 as predictors. For most of the 

variables, we used the default imputation methods: predictive mean matching for 

continuous variables, logistic regression for binary variables, and polytomous regression 

for factors with more than two levels. We ran 5 imputations with 20 iterations each. We 

assessed convergence and bias of the imputation chains by plotting the mean and 

standard deviation of each variable versus iteration number for each imputation chain.  

We checked that the imputations were sensible by plotting the distribution of 

observed and imputed values for each variable and checking that they were similar. We 

could not get the distribution of the number of days of wheezing and coughing in the last 

two weeks to be similar in the observed and imputed data with any of the available 

imputation methods. Therefore, we used random sampling to fill in this variable from the 

observed data. Before using the imputed data to replicate our original results, we dropped 

25 individuals who had imputed values that were inconsistent with their actual data. We 

dropped one individual for whom we could not calculate a BMI percentile, nine 

individuals whose delta FEV1 was > 60%, 14 individuals whose age of onset was greater 

than their current age, and one individual whose maximal FEV1 was > 200. We used 

2,718 individuals to repeat the analysis of prediction from Random Forest, PCs 1 & 2, 

kmeans clustering, and SARP groups as described above. 

 

2.3. Results 

2.3.1. Principal Components 1 and 2 Represent a Continuous Asthma Spectrum 

PCs 1 and 2 built in the AGES data capture the most and second-most variance in these 

data, respectively. The loadings on PCs 1 and 2 show which variables are the most 

30



 

important contributors to these PCs (Figure 2.1). The most important variables for each 

PC are those with the largest absolute loadings. PC 1 and 2 values for a new individual 

are predicted by summing over, for each PC, the multiplication of the loading for each 

variable by the value of the individual’s variable.  

The most important variables contributing to PCs 1 and 2 are different, although 

spirometry is very important for both. The spirometry variables pre-bronchodilator FEV1 

and FVC, post-bronchodilator FEV1 and FVC, and maximal FEV1 contributed the most 

information to both PCs 1 and 2, although the direction of their loading and the order of 

importance differ. Trouble sleeping because of asthma symptoms and number of days 

wheezing or coughing in the last 2 weeks were also among the top variables contributing 

to PC1. Wheezing and coughing because of wind and hayfever were also among the top 

variables contributing to PC2. These top variables contribute most to the continuous 

asthma spectrum measured by PCs 1 and 2. 

Since measuring 40 variables to predict exacerbations might be tedious, we used 

only the union of the top 7 variables from each of the original PCs 1 and 2 to create new 

PCs from only 9 variables. PCs 1 and 2 from these ‘reduced PCs’ had similar loading 

patterns to the original PCs 1 and 2 (data not shown). Prediction from these reduced PCs 

1 and 2 is compared to prediction from the original PCs 1 and 2 below. 
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Figure 2.1. PCs 1 & 2 are both heavily loaded by spirometry variables but other 

contributing variables differ. The x-axis shows PC1 loading on the left and PC2 

loading on the right. Bars are colored from darker blue to darker red based on increasing 

positive loading. The y-axis (down the middle) shows the variables names that 

contributed to the PCs. BDR= bronchodilator response; SOB = shortness of breath; OTC 

= over-the-counter; SABA = short-acting beta agonist; ICS = inhaled corticosteroid. 
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2.3.2. Three Kmeans Clusters and SARP Groups Represent Clinical Subgroups of 

Asthma and are Related to Principal Components 

 In kmeans clustering, the number of clusters is determined either arbitrarily or 

based on subject matter knowledge. Since we had no expected number of clusters in this 

case, we used clustergrams to determine the appropriate number of clusters in AGES 

(Figure 2.3). Three kmeans clusters were qualitatively the most stable in two ways. First, 

the points from these clusters stayed together more than the points from other clusters as 

the number of clusters changed (Figure 2.3A). Second, the most points from these 

clusters stayed together over repeated formation of three clusters (Figure 2.3B). 

Therefore, we used three kmeans clusters to predict exacerbations in our study. 

 The SARP study developed an algorithm to assign patients to five SARP groups4. 

However, because AGES includes only individuals 21 and under, there are only four 

SARP groups represented in AGES. In addition, the proportion of individuals in the most 

severe SARP groups is lower in our study than in the original SARP study. Both the 

kmeans clusters and SARP groups are related to PCs 1 and 2 in AGES (Figure 2.2 A and 

B, respectively). The scatterplot of PCs 1 and 2 displays a continuous spectrum of points 

without clear breaks in the points that could be easily distinguished as clusters. Both the 

kmeans clusters and the SARP groups divide this spectrum of points along lines in the 

plane of PCs 1 and 2. This indicates that the cluster groups form a categorical variable 

from the continuous PCs. 
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Figure 2.2. A) Kmeans clusters and B) SARP groups separate PCs 1 and 2 by slicing 

a continuous set of points into groups. For both plots, the y-axis is the PC2 coordinate 

of each individual and the x-axis is the PC1 coordinate of each individual. The colors 

indicate membership in the three kmeans clusters or the four SARP groups present in 

AGES in panels A and B, respectively. 

A) B) 
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2.3.3. Principal Components Predict All Outcomes Better than Clusters 

 We measured the area under the ROC curves (AUC) for Random Forest, PCs 1 

and 2, kmeans clusters, SARP groups, and the reduced PCs 1 and 2 for each outcome 

(Table 2.4). We measured these AUCs both for the original and imputed data. In addition, 

we plotted the ROC curves for hospitalization, ER visits, and oral steroid use in the last 

12 months from the original data (Figure 2.4). Random Forest, our estimate of the 

maximum predictive ability of the input variables, predicts all outcomes better than any 

other predictor. Across all three outcomes, the mean AUC for Random Forest is 71%. 

The mean AUC of 68.7% for PCs 1 and 2 is very close to Random Forest. In contrast, the 

mean AUCs of 61.3% for kmeans clusters and 55.3% for SARP groups are considerably 

lower than Random Forest or PCs 1 and 2. The mean AUC of 63.7% for the reduced PCs 

was between the AUCs for PCs 1 and 2 and kmeans clusters. 

 
Table 2.4. AUCs for all outcomes and predictors with non-missing or imputed data. 
 Hospitalizations* ER Visits* Oral Steroid Use* 
Random Forest 0.67 (0.70) 0.72 (0.72) 0.74 (0.74) 
PCs 1 & 2 0.65 (0.69) 0.70 (0.68) 0.71 (0.69) 
Kmeans, k=3 0.56 (0.67) 0.63 (0.64) 0.65 (0.64) 
SARP groups 0.58 (0.57) 0.53 (0.52) 0.55 (0.53) 
Reduced PCs 1 & 2 0.62 (0.69) 0.66 (0.68) 0.64 (0.69) 
*AUCs from imputed data are shown in parentheses. 
 
 
2.3.4. Analysis of Imputed Data Supports Original Results 

 To investigate the effect of dropping individuals with missing data from our 

primary analysis, we repeated our original analysis using multiple chained imputation to 

fill in missing data. We ran 5 imputations with 20 iterations each. After 20 iterations, we 

assessed the convergence and bias of the imputation chains by plotting the mean and 

standard deviation of each variable versus iteration number for each imputation chain 

36



 

(e.g. Figure 2.5). The similarity and overlap of the lines for each of the 5 imputations 

indicated that there was no bias in any of the 5 imputations. However, since the mean and 

standard deviation did not converge, most of the variables showed no evidence of 

convergence after 20 iterations. Despite the fact that most of the variables did not 

converge, the distribution of imputed values for these variables was similar to the 

distribution of the original values (data not shown). Therefore, we used the data from the 

first imputation chain to repeat our original analysis. 

 Although most of the results from the imputed data were similar to the original 

analysis, the most important variables loading PCs 1 and 2 were somewhat different 

(Figure 2.6). Many of the most important variables for PC 1 in the imputed data had a 

high percent missingness (Table 2.3). Despite the difference in variable importance, 3 

kmeans clusters were the best fit for the imputed data. These clusters were related to PCs 

1 and 2 in the same way as in the original data. 

 Most of the AUCs from the imputed data follow the same trends as in the original 

data. However, in the imputed data the AUCs for hospitalization are higher than the 

original AUCs for hospitalization. This may be due to the fact that hospitalizations are 

the most rare exacerbation and are thus the most difficult to predict in the smaller original 

data set. Thus, the mean AUCs for all of the predictors are higher. The mean AUC for 

Random Forest in the imputed data is 72%. Following the trend in the original data, the 

mean AUC in the imputed data for PCs 1 and 2 is 68.7%. Similarly, the mean AUCs in 

the imputed data for kmeans clusters and SARP groups are 65% and 54%, respectively. 

The mean AUC in the imputed data for the reduced PCs differed from the original data. 

The mean AUC in the imputed data for the reduced PCs 1 and 2 is 66.7%. Although the 
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means are slightly higher because the prediction of hospitalization is slightly better in the 

imputed data than in the original data, the trends are the same for all but the reduced PCs. 

 
Figure 2.4. Principal components predict A) hospitalization, B) ER visits, and C) 

oral steroid use better than kmeans cluster or SARP groups. ROC curves plot 

sensitivity vs. 1-specificity for each outcome.  

 
 
 
 
 

A) B) 

C) 
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Figure 2.5. Most variables mean and standard deviation are not biased but do not 

converge with imputation. Two variables are given as examples: A) trouble sleeping 

because of wheezing/coughing in the last two weeks and B) smoke making 

wheezing/coughing worse. The change in the mean (left) and standard deviation (right) 

over 20 iterations are shown for each of 5 imputation chains (colors). Most variables 

looked similar to A 

where the mixing of the 

strands indicated no bias in 

any imputation chain. 

However, there was no 

convergence of the chains. 

B is an example of a 

variable where the chains 

converged. 

 

2.4. Discussion 

In this study, we compared the predictive ability of PCs, kmeans clusters and SARP 

cluster groups in Latino and African American patients with asthma from AGES. We 

found that PCs predict exacerbations better than kmeans clusters, which predict 

exacerbations better than SARP groups. In our study, the AUC was 7.4% and 13.4% 

higher on average for PCs compared to kmeans clusters and SARP groups, respectively 

(Table 2.5). Furthermore, the AUC was only 2.3% lower on average for PCs compared to 

Random Forest, which we used as an estimate of the maximum predictive ability of our 

A) 
  

B) 
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Figure 2.6. Loadings of PCs 1 & 2 after imputation differ from original PCs 1 & 2. 

The x-axis shows PC1 loading on the left and PC2 loading on the right. Bars are colored 

from darker blue to darker red based on increasing positive loading. The y-axis (down the 

middle) shows the variables names that contributed to the PCs. Abbreviations: BDR= 

bronchodilator response; SOB = shortness of breath; OTC = over-the-counter; SABA = 

short-acting beta agonist; ICS = inhaled corticosteroid. 
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input variables. In addition to demonstrating that PCs predict exacerbations better than 

cluster groups, our results suggest the reason for this observation. We found that both 

kmeans clusters and SARP groups split the 2-dimensional continuum created by PCs 1 

and 2 into categories (Figure 2.3). Since the data appear to be continuous, we would 

expect a categorical representation of these data to have less power than a continuous 

one14. Thus, it is not surprising that clusters that split the continuous PC variables into 

categories have lower predictive ability. Our results show that PCs 1 and 2 are a better 

representation of the data than either kmeans clusters or SARP groups. Given the 

relationship between PCs 1 and 2 and the cluster groups from either method, PCs are 

likely to predict both exacerbations and other clinical outcomes like response to therapy 

better than cluster groups. 

A few researchers have suggested that asthma phenotypes like clusters or PCs 

should be clinically useful by either predicting an outcome like exacerbations or being 

related to asthma pathology3,8. To be useful in predicting exacerbations, asthma 

phenotypes will need to perform better than the current best clinical predictors of 

exacerbations. Previous exacerbations and asthma control are the best clinical predictors 

of exacerbations identified so far, although neither is perfect21. Three recent studies have 

found that previous exacerbations are associated with increased risk of future 

exacerbations22-24. In addition, one study constructed a clinical score for predicting 

exacerbations based on 17 questions25. This study found AUCs of 0.75 in their original 

sample and 0.69 in a second sample, which are in the same range as the AUCs from PCs 

in the current study. Although one clustering study found statistically significant 

differences in exacerbations based on cluster membership3, the present study is, to our 
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knowledge, the first to directly compare prediction of a clinical outcome from asthma 

phenotypes based on clustering methods and a continuous measurement. To determine 

the ultimate utility of asthma phenotypes in predicting exacerbations, a direct comparison 

of clusters, PCs and other predictors of exacerbations in the same study will be necessary. 

In addition, the ability of asthma phenotypes to predict other clinical outcomes and their 

relation to asthma pathology will need to be investigated to determine their clinical 

utility. 

As researchers investigate the clinical utility of asthma phenotypes, they will also 

refine the phenotypes. Given the continuous nature of our data, a continuous measure of 

the asthma spectrum is a promising candidate for the best asthma phenotype. However, 

measuring 40 variables in the clinic might be prohibitive. One the other hand, our results 

suggest that too much reduction in the number of variables results in lower prediction. 

This is true when comparing both the reduced PCs to the original PCs and the SARP 

groups to the kmeans clusters. The reduced PCs and SARP groups were formed based on 

only nine and three variables, respectively. It is possible that an intermediate number of 

variables would provide accurate prediction that was reproducible across studies. In 

addition, prediction may be improved by including more information on other predictors 

of clinical outcomes, like previous exacerbations or asthma control. The appropriate 

number of variables and the optimal set of variables are not clear and should be assessed 

across several clinical populations and in comparison to other predictors of exacerbations. 

The results of our imputed data analysis indicate that it may be possible to 

maintain a high level of prediction with a reduced number of input variables for PCs. 

However, it is not clear how accurate our imputed analysis was. Although our 
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imputations appeared to be unbiased, they never converged (Figure 2.5). Furthermore, the 

top variables in our imputed PCs were slightly different than those in our original 

analysis (Figure 2.6). Many of the top variables in the imputed PCs were those with a 

high percent missingness in the original data. The imputation may have caused the 

variance to be larger in these variables than it actually is. This would cause them to be 

important variables in the imputed PCs when they might not otherwise be important. 

Nonetheless, the level of prediction from the imputed data in general is similar to that in 

the original analysis. Since the AUCs are not lower in the imputed analysis than in the 

original analysis, it is unlikely that the loss of data in the original analysis caused an 

overestimation of the predictive ability of the PCs and clusters. However, evaluation of 

both PCs and clusters should be performed in a dataset with fewer observations with 

missing data. 

 In conclusion, we found that a continuous measure of the asthma spectrum 

predicts exacerbations better than two clustering methods that define clinical subgroups 

of patients with asthma. Our findings suggest that a continuous measure of the asthma 

spectrum is a better description of the data than cluster groups and will likely predict 

many outcomes better than cluster groups.  However, using the number of variables we 

used to create the continuous PC measure may be impractical in the clinic. A more sparse 

but continuous measure of the asthma spectrum that balances the number of variables 

with the desired predictive ability should be developed across several studies and in 

comparison with the current standard for predicting exacerbations and response to 

therapy. 
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CHAPTER 3 

GENOME-WIDE ASSOCIATION STUDY AND ADMIXTURE MAPPING OF 

BRONCHODILATOR RESPONSE IMPLICATES RARE VARIANTS 

 

3.1. Introduction 

Short-acting !2-adrenergic receptor (!2AR) agonists (SABAs) are the primary 

rescue medication for individuals having an asthma attack1,2. SABAs cause rapid 

bronchodilation, or smooth muscle relaxation in the airways, by stimulating !2AR. 

Response to SABAs is measured by bronchodilator response (BDR), the percent change 

in forced expiratory volume in one second (FEV1) after administration of a SABA. There 

is wide inter-individual variability in BDR and not every patient responds2,3. The reason 

for this variability is unknown, but causes likely include both genetic and environmental 

factors2. 

Genetic studies of BDR have reported five candidate genes4,5. The most 

commonly studied gene is ADRB2, which encodes !2AR. Evidence for the association of 

ADRB2 and BDR is inconsistent. This may be in part because studies have generally 

failed to attempt replication across the same single nucleotide polymorphisms (SNPs), 

endpoints, time, comparison, and genetic models6. Four other candidate genes have been 

much less commonly studied: CRHR2, ADCY9, ARG1, and THRB. These genes are good 

candidates because they are functionally similar to !2AR (CRHR2), downstream of !2AR 

in its signaling pathway (ADCY9), implicated in asthma and part of a pathway that 

inhibits smooth muscle relaxation (ARG1), and differentially expressed after exposure to 

a !2-agonist and part of a pathway that stimulates smooth muscle relaxation (THRB) 5,7. 
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Although these genes are good candidates, lack of replication in more than one paper 

makes it unclear how important they are for BDR. Despite many candidate gene studies 

of BDR, no genome-wide association study (GWAS) of BDR has been published to 

date8. 

An alternative to GWAS is to use admixture mapping to identify genomic regions 

containing disease-associated variants that differ in frequency across human populations. 

Differences in disease prevalence across human populations are a good indication that 

disease-associated variants may differ in frequency across these populations. As with 

genetic studies of BDR, there is a paucity of information available on population 

differences in BDR. In one study, Puerto Ricans had lower BDR than either African 

Americans or Mexicans, despite having more severe asthma9,10. However, this study was 

limited by the fact that it recruited subjects from specialized asthma clinics. In another 

study, African Americans had lower BDR than white patients11. These patients were 

recruited from a specialty clinic and newspaper ads. The lack of a population-based study 

of BDR makes it difficult to assess true differences across populations. There have also 

been inconsistencies between populations in candidate gene studies of BDR. For 

example, one paper reported that a variant in ADRB2 was associated with increased BDR 

in Puerto Ricans but not in Mexicans12. It is possible that these inconsistencies are due to 

a lack of understanding of which variants are causal and differing linkage disequilibrium 

patterns across populations. Nevertheless, these findings together with evidence for 

population differences in BDR provide limited evidence that variants specific to certain 

ancestries may play a role in determining an individual’s BDR. However, no admixture 

mapping study of BDR has been published to date. 
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We hypothesized that both common genetic variation and genetic variation more 

frequent on certain ancestral haplotypes contribute to differences in BDR. To test these 

hypotheses, we performed a genome-wide association study of BDR in 1,782 Latino 

patients with asthma from across the US and Puerto Rico. Specifically, we tested for both 

allelic associations and ancestry associations with BDR. 

 

3.2. Methods 

3.2.1. Discovery Population: GALA II 

Table 3.1. Participating study centers and institutions in the GALA II study. 

Study Center Institution 
Number of 
Cases 

Chicago Northwestern University  95 
Children’s Memorial Hospital 206 

Houston Baylor College of Medicine Ben Taub Children’s 
Center, Texas Children’s Hospital 

194 

New York City Jacobi Medical Center 285 
Puerto Rico Centro de Neumologia Pediatrica (San Juan) 408 

VA Medical Center (San Juan) 296 
San Francisco Bay Area Kaiser Permanente 

Richmond Medical Center 
Oakland Medical Center 
Vallejo Medical Center 

 
5 
4 
33 

Bay Area Pediatrics (Oakland) 3 
Children’s Hospital (Oakland) 14 
La Clinica de la Raza (Oakland) 99 
San Francisco General Hospital 130 
Alta Vista (Oakland) 10 

 

Subjects in the discovery population were from the Genes-Environments & 

Admixture in Latino Americans (GALA II) study. Recruitment for the GALA II study 

began in 2006 and is an ongoing, clinic-based study of children ages 8-21 with and 

without asthma. Subjects are recruited from urban study centers across the mainland U.S. 

and Puerto Rico (Table 3.1). A total of 4,045 participants, 1,976 of whom were asthma 

cases, were recruited through June 2011, when genotyping began. 
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All participants who met criteria for enrollment (Table 3.2) completed in-person 

questionnaires related to their medical, asthma, allergic, social, environmental and 

demographic histories. In addition, all participants provided blood for genetic analysis 

and underwent spirometry and skin allergen testing.  Each participant or parent was also 

required to identify all four grandparents as Latino. Local institutional review boards 

approved the studies and all subjects or legal guardians provided written informed 

consent.  

Table 3.2. Eligibility criteria for participation of asthma cases in GALA II and GALA I. 
Criterion GALA II GALA I 
Age between 8 and 21 years old (GALA II) or 8 and 40 years old 
(GALA I) 

Yes Yes 

Child and all four grandparents self-identified as Latino/Hispanic origin Yes No 
Child and all four grandparents self-identified as Mexican or Puerto 
Rican in origin 

No Yes 

History of physician-diagnosed asthma  Yes Yes 
Symptoms of coughing, wheezing or shortness of breath in the past 2 
years 

Yes Yes 

No respiratory infections for ! 6 weeks (clinical stability) Yes Yes 
No asthma exacerbations for ! 6 weeks (clinical stability) Yes Yes 
Less than 10 pack year smoking history and no smoking in the last 
year 

Yes Yes 

If pregnant, < 3rd trimester Yes Yes 
No history of other lung diseases or other chronic illnesses Yes No 

 

The primary outcome for the current study was BDR after two doses of albuterol. 

Each subject’s baseline FEV1 was measured prior to administering four puffs of 

albuterol. After 15 minutes, a post-bronchodilator FEV1 was measured followed by an 

additional two (if <17 years of age) or four (if >16 years of age) puffs of albuterol and a 

second post-bronchodilator FEV1 measurement. BDR was calculated as the percent 

change in FEV1 between the second post-bronchodilator measurement and baseline. 

Since the prevalence of asthma in Puerto Rico is very high and asthma is frequently 

discussed13, patient self-report of a physician diagnosis of asthma may be inaccurate. 
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Therefore, patients from the Centro de Neumologia Pediatrica in Puerto Rico were 

required to have a BDR of at least 8% for inclusion in GALA II. These samples were 

included in our study and enrich the study for the more extreme upper end of the 

distribution of BDR. 

The only clinical covariate we adjusted for was the subject’s self-reported 

ethnicity. Ethnicity was divided into categories of Puerto Rican, Mexican, Mixed Latino, 

and Other Latino. Puerto Rican and Mexican ethnicities were available as selections on 

the questionnaire. Mixed Latinos were defined as any individual who identified with 

more than one Latino ethnic group. Other Latinos were defined as those who chose only 

one Latino ethnic group from among Spanish/Hispanic/Latino, Cuban, Dominican, El 

Salvadorian, Guatemalan, Nicaraguan, Honduran, Colombian, Brazilian, and 

Argentinian. GALA II is a heterogenous population made up of many Latino ethnicities 

and a wide range of ancestry and BDR. To balance the need for power and our ability to 

detect population-specific variants, we performed all analyses in all of GALA II as well 

as separately in the largest two subsets of GALA II: the Puerto Ricans and the Mexicans. 

 

3.2.2. Replication Population: GALA I 

Subjects in the replication population were from the previously described 

Genetics of Asthma in Latino Americans (GALA I) Study9. GALA I is a study of 

children (probands) and their biological parents recruited from schools, clinics, and 

hospitals across four sites: San Francisco Bay Area, New York City, Puerto Rico, and 

Mexico City. All probands who met criteria for enrollment (Table 3.2) completed in-

person questionnaires related to their medical, asthma, allergic, and demographic 
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histories. In addition, all participants provided blood for genetic analysis and underwent 

spirometry. The Institutional Review Board at the University of California San Francisco 

approved the research. 

BDR in GALA I was measured after two (if < 17 years of age) or four (if > 16 

years of age) puffs of albuterol. Each subject’s baseline FEV1 was measured, they were 

given albuterol, and then, after 15 minutes, post-bronchodilator FEV1 was measured. 

BDR was calculated as the percent change in FEV1 between the post-bronchodilator 

measurement and baseline. 

As for GALA II, we adjusted for or stratified on each subject’s self-reported 

ethnicity. Ethnicity was either Mexican or Puerto Rican in the proband and all four 

biological grandparents. 

 

3.2.3. Genotyping and Genetic Ancestry Estimation in GALA II 

Genotyping of GALA II subjects was performed using the Affymetrix Axiom 

LAT array (Affymetrix, Santa Clara, CA) that contained 817,810 SNPs prior to quality 

control (QC). We removed SNPs with >5% missing values, failing platform specific SNP 

quality criteria, or deviating from Hardy-Weinberg equilibrium (p<10-6) within their 

respective populations. The total number of SNPs passing QC was 568,037. Subjects 

were filtered based on 95% call rates and gender discrepancies, IBD and standard 

Affymetrix Axiom metrics. The total number of subjects with asthma passing QC for 

genotyping was 1,879. We also removed individuals with missing BDR or who were 

outliers for BDR (BDR > 80 or < -50). Following QC, a total of 1,782 subjects with 

asthma were included in this study.  
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We used data from three populations to represent the ancestral haplotypes of 

Latinos for estimating genetic ancestry: HapMap European (CEU), HapMap African 

(YRI) and 95 Native American samples. First, the CEU and YRI genotypes were 

combined across Phase II, Illumina Omni, and Affymetrix Axiom platforms for 

maximum coverage. In addition, we genotyped 95 Native American samples kindly 

provided by Cheryl Winkler, Andres Moreno, Karla Sandoval and Carlos Bustamante on 

the Axiom LAT array. Global admixture was estimated using ADMIXTURE14, 

unsupervised and assuming 3 ancestral populations (Figure 3.1). Local ancestry was 

estimated using LAMP-LD under a 3-population model, assuming 20 generations of 

admixture15 and after phasing the ancestral haplotypes using BEAGLE16. 

 
Figure 3.1. Admixture proportions for GALA II cases. Each bar represents one individual. For 

each individual, the proportions of Native American (red), African (blue), and European (tan) 

ancestry are displayed. 

 
 

3.2.4. Genotyping, Genetic Ancestry Estimation and Imputation in GALA I 

 Genotyping and estimates of genetic ancestry for GALA I have been described 

previously17. Briefly, GALA I subjects were genotyped using the Affymetrix 6.0 

GeneChip that contained more than 900,000 SNPs before quality control. Quality control 

filters included call rates, Hardy-Weinberg equilibrium, unambiguous mapping to the 
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human reference genome, consistency between genetic and reported sex, principal 

components analysis, high or low autosomal heterozygosity, and unexpected pairwise 

relatedness or genetic identity. After quality control filtering on markers and subjects, 

genotypes were available for 729,685 markers in 529 children with asthma (253 Mexican 

and 276 Puerto Rican subjects). Global genetic ancestry was estimated using the program 

ADMIXTURE14 assuming 3 ancestral populations. Local ancestry was estimated using 

the program LAMP18 under a 3-population model, assuming 20 generations of admixture. 

 For replication of SNPs that were not among the 729,685 markers that passed 

quality control in GALA I, we either directly genotyped or imputed them in GALA I. We 

used pre-designed TaqMan SNP Genotyping Assays (Applied Biosystems, Carslbad, CA) 

to genotype two SNPs, rs1281748 and rs1281743. For SNPs that failed TaqMan assay 

design we first phased the data using the program SHAPE-IT20 and accounting for 

relationships within trios. Then, we imputed the SNPs using the program IMPUTE219 

separately in the GALA I Mexicans and Puerto Ricans. Reference haplotypes for 

imputation were from Phase I version 3 of the 1000 Genomes Project21. We imputed 

100kb regions around each SNP with a 20kb buffer on each side. Finally, we filtered 

SNPs that had an info score > 0.3 to indicate high quality imputation. For all analyses of 

imputed data, we used the gene dosage output from IMPUTE2 to account for the 

uncertainty in imputation. 

 

3.2.5. Analysis of Allelic Associations 

For each SNP in GALA II, we used a linear regression to test whether the number 

of minor alleles present was associated with BDR after adjusting for ethnicity, local 
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African ancestry, local Native American ancestry, global African ancestry, and global 

Native American ancestry. In addition, we performed the same analysis without adjusting 

for ethnicity separately in the GALA II Puerto Ricans and Mexicans. The p-values for the 

SNPs were examined using Manhattan and QQ plots. Confidence bands on QQ plots 

were determined using a beta(j, n-j+1) distribution for the jth order statistic when n SNPs 

are tested22. Although Bonferonni corrections for genome-wide significance are often 

used in GWAS, they are too conservative if tests are not independent, resulting in Type II 

errors23. To avoid Type II errors, we established a genome-wide significance threshold 

using random permutations. Random permutations provide an empirical distribution of 

genome-wide minimum p-values under the null hypothesis of no association between any 

of the SNPs and BDR. We randomly permuted BDR in all of GALA II 100 times, 

keeping ethnicity paired with BDR. For each of these 100 permutations of BDR, we 

tested the association of the permuted BDR with every SNP as described above and 

tracked the minimum p-value across all SNPs. From the distribution of minimum p-

values, we found the p-value that corresponded to a GWAS-wide α = 0.05 to be 1.6x10-7. 

We used this p-value as our threshold for genome-wide significance in allelic tests of 

association. 

 For each SNP that met our threshold for genome-wide significance, we examined 

the dose-response relationship of the number of alleles and BDR by calculating the mean 

BDR for individuals who had 0, 1, or 2 minor alleles. In addition, we examined this 

relationship after removing individuals with a BDR > 60 who were at the upper end of 

the BDR distribution. SNPs that were genome-wide significant, that had more than three 

heterozygotes with BDR data, and whose dose-response relationship was consistent even 
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after potential outliers were removed were carried forward for replication. We attempted 

replication of allelic associations by imputing genotypes in GALA I as described above. 

We used linear regression to test for the association between the minor allele dosage and 

BDR adjusting for local African ancestry, local Native American ancestry, global African 

ancestry, and global Native American ancestry. We performed these tests separately in 

the GALA I Mexicans and Puerto Ricans. 

 

3.2.6. Analysis of Ancestry Association 

 In addition to testing for allelic associations, we tested for the association of local 

ancestry with BDR separately for African, Native American, and European ancestry 

using linear regression and adjusting for global ancestry. We performed these tests in all 

of GALA2 adjusting for ethnicity and separately in the Mexicans and Puerto Ricans. 

A Bonferonni correction for genome-wide significance is not appropriate for 

admixture mapping since ancestry blocks are relatively large, making tests at adjacent 

SNPs non-independent. Therefore, we used random permutation tests to establish a 

genome-wide significance cutoff for each ancestry. For these permutations, we used the 

same 100 permuted BDR and ethnicity values as for the allelic associations and repeated 

the linear regressions for each ancestry as described above. This resulted in three 

genome-wide significance cutoffs corresponding to α = 0.05: p < 1.6x10-4 for African 

ancestry and p < 1.0x10-4 for European and Native American ancestry. We defined an 

admixture mapping peak as the region on a chromosome bounded by loci with p-values 

less than the appropriate permutation cutoff. For each admixture mapping peak, we 

attempted to replicate the peak in GALA I data by testing for an association of BDR and 
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local ancestry as described above. Furthermore, we investigated each peak to see whether 

there were significant allelic associations using linear regression as described above 

under the peak. We used a Bonferonni correction for the number of SNPs under the peak 

to determine significance. We attempted replication of significant allelic associations 

under the admixture mapping peaks in GALA I. 

 

All statistical analyses described in sections 3.2.5 and 3.2.6 were conducted using R 

(v2.14.1)24. 

 

3.3. Results 

3.3.1. Rare Variants are Associated with BDR in GALA II 

We tested for an association of BDR with each of 568,037 SNPs across the 

genome in 1,782 children with asthma from GALA II. We performed these tests in all of 

GALA II and separately in the subsets of 823 Puerto Rican children and 572 Mexican 

children. For all three subsets of GALA II, there was some inflation in p-values over 

what was expected by chance around p=10-3 (Figure 3.2). If SNPs with a minor allele 

frequency (MAF) <5% were removed, the p-values were around those expected by 

chance, indicating that the signal was driven by less common variants (Figure 3.2). The 

MAF of these less common variants ranged from singletons at 0.03% with only one 

heterozygous individual with BDR data to 5%. The singletons are problematic since they 

may be false positives because of either genotyping error or BDR measurement error. 

However, the other SNPs driving the signal are promising rare variants. 
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Figure 3.2. QQ plots for allelic associations with bronchodilator response (BDR) show that 

signal is driven by rare variants in A) all of GALA II, B) GALA II Puerto Ricans and C) GALA 

II Mexicans. Y-axis: Observed –log10 of the p-value for the number of minor alleles in the linear 

regression of BDR on the number of minor alleles, ethnicity, African local and global ancestry, 

and Native American local and global 

ancestry. X-axis: Expected –log10 p-

values based on a uniform 

distribution. The black QQ plot shows 

all SNPs that passed QC filters (see 

methods). The shaded region is the 

95% concentration band. The 

superimposed blue QQ plot shows 

only SNPs with a minor allele 

frequency > 5%, indicating that the 

signal is driven by rare variants. 

 
 

In all of GALA II, six SNPs had p-values lower than the permutation-based 

genome-wide significance cutoff of p < 1.7x10-7 (Figure 3.3A). All of these six SNPs had 

a MAF < 5% and had no individuals with BDR data who were minor homozygotes 

(Table 3.3). Four of these SNPs were singletons that we did not follow-up because we 

could not validate them without validating both the genotype and the BDR measurement. 

There were two genome-wide significant SNPs, rs8191725 and rs77441273, with more 

than one heterozygous individual with BDR data (genotype clusters in Appendix A). 

Both of these SNPs had a dose-response relationship that supported the hypothesis that 

the minor allele confers greater BDR (Table 3.3). The mean BDR was 9.91% and 10.0% 

in the major homozygotes and 20.4% and 33.6% in the heterozygotes for rs8191725 and 

A) B) 

C) 
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rs77441273, respectively. These relationships remained consistent even after removing 

heterozygotes with a BDR > 60, which indicates that the dose-response relationships are 

not entirely driven by individuals with extremely high BDR. 

In the Puerto Rican and Mexican subsets of GALA II, 7 and 12 SNPs had p-

values lower than the permutation-based genome wide significance cutoff, respectively 

(Figure 3.3 B and C). Three of the 7 SNPs that were genome-wide significant in the 

Puerto Ricans were also significant in all of GALA II. As in all of GALA II, all of the 

significant SNPs in the Puerto Ricans and Mexicans had a MAF < 5%. Again, most of 

these SNPs had very few heterozygotes with BDR data and we did not investigate them 

further because we could not validate them without validating both the genotype and the 

BDR measurement. Only one SNP in each of these subsets of GALA II had more than 

three minor homozygotes (genotype clusters in Appendix A). These SNPs, rs77977790 

and rs71513949 for the Puerto Ricans and Mexicans, respectively, had dose-response 

relationships that supported the hypothesis that the minor allele confers greater BDR 

(Table 3.3). The mean BDR was 11.5% in the major homozygotes and 20.6% in the 

heterozygotes for rs77977790. For rs71513949, the mean BDRs were 7.4%, 14.8% and 

17% in the major homozygotes, heterozygotes, and one minor homozygote, respectively. 

Again, these relationships remained consistent even after removing heterozygotes with a 

BDR > 60. 

 Since all of the significant SNPs in GALA II and its subsets were rare, identifying 

them through genotyping in the smaller GALA I population was unlikely. Indeed, custom 

TaqMan SNP Genotyping Assays for rs8191725, rs77441273, rs77977790 and 

rs71513949 were unable to cluster heterozygotes separately from major homozygotes.  
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Figure 3.3. Genome-wide allelic associations with bronchodilator response in A) all GALA 

II, B) GALA II Puerto Ricans and C) GALA II Mexicans. Y-axis: –log10 of the p-value for the 

number of minor alleles in the linear regression of BDR on the number of minor alleles, ethnicity, 

African local and global ancestry, and Native American local and global ancestry. X-axis: 

Chromosome and position. Colors alternate for clarity. SNPs meeting a genome-wide significance 

cutoff of p < 1.6x10-7 are colored in red. 

 

 

 
 
Therefore, we attempted replication of these four SNPs in silico by imputing them in 

GALA I. We analyzed only the three SNPs that had an information score > 0.3. One of 

these, rs77441273, was significant in the GALA I Mexicans (p = 6.49x10-4, ! = 93.5). 

A) 

B) 

C) 
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However, this imputed SNP was very rare and fairly poorly imputed in the GALA I 

Mexicans, having only a few possible heterozygote individuals and an info score = 0.366. 

 
 
Table 3.3. Genome-wide significant hits from allelic associations with BDR in GALA II. 

!"#$%&'(")* +,!*-./* 012* #34&%$5* 65'&*

05&)*6.7*89*():(4(:$&%;<*

=>* ?>* @>*

1%%*A1B1*--* C;D?E?F@G* !"#$%&' ("()*!+' $!",' +"+'-$.%!/' ,!"0'-,+/' ''

C;FFHH?@FI* !"$1#&' 0"!)*$!' ,("1' $!'-$..1/' (("1'-1/'
'230$($(..,' !"!,#&' ,"#)*$,' 10"(' $!'-$..#/' .("+'-$/'
'230%$!!%(' !"!,#&' 1"0)*$,' 1(",' $!'-$..#/' .%"#'-$/'
'23$1#.+(%%' !"!,#&' ,"+)*$,' 10"(' $!"$'-$.#!/' .%"#'-$/'
'23$$%#%1.$#' !"!,#&' ,"0)*!+' %0"+' $!"$'-$.#$/' 1.".'-$/' ''

A1B1*--*!7* C;FFEFFFE=* ,".+#&' 0"1)*$!' +"%' $$"%'-..1/' ,!"1'-01/' ''

23..$0+#.1' !"$#,&' $"0)*!#' (,"%' $$"+'-#$+/' 00"$'-(/'
''23$$%%!$+!$' !"$#,&' 0",)*!#' ($"%' $$"+'-#$+/' 0("$'-(/'
'230%$!!%(' !"!1$&' $",)*$!' 1(".' $$"+'-#$+/' .%"#'-$/'
'23$1#.+(%%' !"!1$&' +"1)*$$' 10"(' $$"+'-#,,/' .%"#'-$/'
'23.011.0+%' !"!1$&' ("%)*!#' %%"!' $$"+'-#,,/' 1.".'-$/'
'23$$%#%1.$#' !"!1$&' ("%)*!#' %0"+' $$"+'-#,,/' 1.".'-$/' ''

A1B1*--*0J* C;F?G?IEHE* ("1.$&' $"$)*!.' 1"+' ."0'-%($/' $0"#'-0!/' $.'-$/'

23$$1%%$+(1' !",10&' %"+)*!+' ,."!' ."#'-%11/' (1'-(/'
'23.+##+(01' !"$.%&' 1"!)*!#' *(!"#' #'-%1#/' *,$"#'-,/'
'23.0+.(++%' !"$.%&' $"()*!#' (,"1' ."#'-%1+/' (+"+'-,/'
'23$$%.$+!%$' !"$.%&' $"!)*!.' (!"+' ."#'-%.!/' (#"0'-,/'
'23$$%0,#$%0' !"$.%&' $",)*!.' (!"1' ."#'-%.!/' (#"0'-,/'
'23..0,!$!#' !"!#+&' #"+)*!+' 01"+' ."+'-%1(/' %("$'-$/'
'23$$00##,#%' !"!##&' 0"()*!+' 0.".' ."#'-%1#/' %("$'-$/'
'23$$00.%0$%' !"!##&' $"()*!.' *0,"0' #'-%1+/' *(0"('-$/'
'23.#.!#,1.' !"!#.&' $"1)*!#' 0%"1' ."#'-%.$/' %("$'-$/'
'23..,%(%((' !"!#.&' 0"%)*!#' 0%"#' ."#'-%.$/' %("$'-$/'
'23$$.!!0+%.' !"!#.&' $"1)*!.' *0,",' #'-%.$/' *(0"('-$/' ''

*We attempted to replicate SNPs in bold 
+Indicates the number of minor alleles 
 

 

 

60



 
 

 

3.3.2. Admixture Mapping Supports the Association of Rare Variants with BDR in 

GALA II 

 At each of the 568,037 loci, we tested for the association of each of three local 

ancestry components with BDR in 1,782 children with asthma from GALA II (Figure 

3.4). We performed these tests in all of GALA II and separately in the subsets of 823 

Puerto Rican children (Figure 3.5) and 572 Mexican children (Figure 3.6). In total, we 

identified 5 peaks that were significant using permutation-based cutoffs for each ancestry.  

Two of the significant peaks were strongest in the Puerto Ricans but also significant in all 

of GALA II. These two peaks also had signals for both Native American and European 

ancestry in the Puerto Ricans. On Chromosome 1, an increase in Native American 

ancestry was associated with a decrease in BDR in both the Puerto Ricans and all of 

GALA II. At the same locus, an increase in European ancestry was associated with an 

increase in BDR in Puerto Ricans. A similar pattern existed for the peak on Chromosome 

2. On Chromosome 2, an increase in Native American ancestry was associated with an 

increase in BDR in both the Puerto Ricans and all of GALA II. At the same locus, an 

increase in European ancestry was associated with a decrease in BDR in the Puerto 

Ricans. The signal from these two peaks indicates that genetic variation at these loci is 

associated with BDR and differs according to the level of Native American and European 

ancestry at these loci, especially in the Puerto Ricans. 

 The other three peaks we identified were all driven by African ancestry. The 

peaks on Chromosome 1 and 8 were in the Puerto Ricans. For these peaks, an increase in 

African ancestry was associated with a decrease and increase in BDR, respectively. The 

Chromosome 1 peak did not overlap with the previously mentioned Native  
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Figure 3.4. Genome-wide ancestry associations with bronchodilator response in all GALA 

II for A) African ancestry, B) Native American ancestry, and C) European ancestry. Y-axis:  

–log10 of the p-value for the 

specified local ancestry in 

the linear regression of 

BDR on the specified local 

ancestry, corresponding 

global ancestry, and 

ethnicity. X-axis: 

Chromosome and position. 

Colors alternate for clarity. 

Significant loci are 

highlighted in red. 

 
 
 

 
American/European ancestry Chromosome 1 peak. The third African ancestry peak was 

in the Mexicans on Chromosome 14. In this peak, an increase in African ancestry was 

associated with an increase in BDR. These peaks were all unique to the subset of GALA 

II in which they were identified. 

 We further investigated the admixture mapping peaks we found in two ways. 

First, we attempted to replicate all 5 admixture mapping peaks using existing GALA I 

data. None of the peaks replicated in GALA I (p > 0.05). Second, we looked for 

significant allelic associations in GALA II under the peaks. For each peak, we used a 

Bonferonni correction for the number of SNPs tested under that peak. We tested for 

associations in all three subsets of GALA II. Two SNPs under the peak on Chr 1 from 

Native American/European ancestry, rs1281748 and rs1281743, were significantly 

B) 

A) 

C) 
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Figure 3.5. Genome-wide ancestry associations with bronchodilator response in GALA II 

Puerto Ricans for A) African ancestry, B) Native American ancestry, and C) European 

ancestry. Y-axis: –log10 of 

the p-value for the 

specified local ancestry in 

the linear regression of 

BDR on the specified local 

ancestry, corresponding 

global ancestry, and 

ethnicity. X-axis: 

Chromosome and position. 

Colors alternate for clarity. 

Significant loci are 

highlighted in red. 

 
 
 
 
associated with BDR in the Mexicans (p = 8.8x10-5 for both). These two SNPs were in 

LD and had MAFs of 0.26%. Being heterozygous for the minor allele at these SNPs was 

associated with an increase of 18.8% in BDR in the Mexicans. There were three 

heterozygote Mexican individuals for this SNP, all with a BDR between 25% and 28%. 

All three of these individuals were also heterozygous for African ancestry. We attempted 

to replicate these two SNPs by genotyping them in GALA I; neither SNP was significant. 

However, both SNPs were very rare: there were only 1 or 2 heterozygous individuals 

with BDR data in the GALA I Mexicans and 8 or 9 heterozygous individuals with BDR 

data in the GALA I Puerto Ricans for rs1281748 and rs1281743, respectively. 

Furthermore, the trend for both SNPs in the GALA I Puerto Ricans was the same as in 

A) 

B) 

C) 
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the GALA II Mexicans. In the GALA I Puerto Ricans, rs1281748 and rs1281743 had 

coefficients of 5.9 and 7.7, respectively (p=0.28 and p=0.19, respectively). 

 

Figure 3.6. Genome-wide ancestry associations with bronchodilator response in GALA II 

Mexicans for A) African ancestry, B) Native American ancestry, and C) European ancestry. 

Y-axis: –log10 of the p-value 

for the specified local 

ancestry in the linear 

regression of BDR on the 

specified local ancestry, 

corresponding global 

ancestry, and ethnicity. X-

axis: Chromosome and 

position. Colors alternate for 

clarity. Significant loci are 

highlighted in red. 

 
 
 
 
Table 3.4. Significant Admixture Mapping Peaks 

Population Ancestry* Coefficient+ Chr 
Start 
Position 

End 
Position Length (kb) 

Puerto Rican & 
All GALA II NAM / EUR -2.58 / 2.05 1 116204807 117505312 1300.5 
Puerto Rican & 
All GALA II NAM / EUR 2.96 / -2.56 2 235202022 236278203 1076.2 
Puerto Rican AFR -2.83 1 157995576 158687163 691.6 
Puerto Rican AFR 2.69 8 5585682 6024650 439.0 
Mexicans AFR 3.88 14 98812269 98932579 120.3 
*NAM = Native American; EUR = European; AFR = African ancestries 
+Coefficient is for locus with lowest p-value in peak 
 
 
 
 

A) 

B) 

C) 
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3.4. Discussion 

We hypothesized that both common genetic variation and genetic variation more 

frequent on certain ancestral haplotypes contribute to differences in BDR. We tested this 

hypothesis by performing tests for allelic and ancestry associations with BDR in 1,782 

Latino patients with asthma from across the US and Puerto Rico. We found evidence that 

rare variants are involved in BDR from tests for both allelic and ancestry associations. 

We found 22 rare variant alleles that were significantly associated with BDR in either all 

of GALA II, the Puerto Ricans alone, or the Mexicans alone. Four of these associations 

are promising candidates because they did not appear to be driven by a single individual 

with an extreme BDR. We also found 5 significant admixture mapping peaks. Since rare 

variants are often specific to one ancestral background25, these admixture mapping peaks 

may be driven by rare variants associated with BDR. In support of this idea, we found 

two rare SNPs under one of the admixture mapping peaks whose alleles were associated 

with BDR.  

Sixteen of the 24 rare variants identified by either GWAS or admixture mapping 

fell in or near 15 unique genes and one was in an uncharacterized locus (Table 3.5). 

Many of these genes are plausible BDR genes including four ion transporters, two genes 

involved in transcriptional regulation, and several other genes involved in some sort of 

regulation or homeostasis. Two genes, which were identified from the four most 

promising allelic associations, are especially noteworthy. IGF2R has many functions 

including activation of the asthma gene TGFB226. In addition, PAPPA2 cleaves IGF-

binding protein 5 and may be a local regulator of IGF bioavailability in some cases27. IGF 
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is involved in airway inflammation and remodeling28. Taken together, our results suggest 

that rare variants contribute to inter-individual variability in BDR. 

Interest in the association of rare variants and complex diseases has piqued in 

recent years29,30. In fact, it is even possible that some signals identified from common 

variants in GWAS are driven by rare variants31. Although direct sequencing is the best 

approach to identify rare variants, the LAT array was designed to have better coverage of 

rare variants than typical genotyping arrays32. Admixture mapping can also be used to 

identify signals from rare variants, but will generally need to be followed up with 

sequencing to identify the causal ones. Even though studies of rare variants and complex 

diseases have become more common, replication of these rare variants is still very 

difficult for several reasons. First, rare variants are more likely to be population-specific 

than common variants33. Therefore, attempting replication across populations of different 

ancestries is unlikely to be fruitful. Second, studies have less power to detect rare variants 

than common variants. Thus, investigators need very large populations of the same 

ancestry for discovery and replication. These resources do not always exist, particularly 

for minority populations. Sequencing the regions around promising rare variants to 

identify other rare variants with similar effects and test all of these jointly may also 

improve power. However, sequencing large populations is still cost-prohibitive for many 

studies. Finally, rare variants may affect only a specific subset of subjects with a 

heterogeneous phenotype. In this case, this specific subset would need to be well 

represented in the replication population. However, researchers will not always know that 

they identified a rare variant because it acts only in the specific subset of subjects they 

studied. Since phenotypes are often measured in slightly different ways across studies or 
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subjects are recruited from different sources, ensuring that the phenotypes are consistent 

in the discovery and replication populations is difficult. As more data are collected and 

we develop a better understanding of the causes of variation in BDR, we will be able to 

replicate and understand the function of rare variants such as the ones identified in this 

study. 

In this study, it was difficult to replicate the rare variants and ancestry signals that 

were associated with BDR for many of the reasons discussed above. The study of BDR in 

Latino populations is limited by a lack of data. GALA II and GALA I are the only large 

studies of Latinos with asthma that have data on BDR to our knowledge. In fact, only a 

few of the large genetic studies of asthma of any ethnicity have BDR data. Thus, GALA I 

was our best available replication population. GALA I has only 700 subjects with asthma 

and BDR data. This is simply not large enough to replicate most of the rare variants we 

identified in GALA II. In addition, there are differences in recruiting sites and the 

distribution of BDR between GALA I and GALA II. In GALA I, Mexicans were 

recruited from both the San Francisco Bay Area and Mexico City. GALA II Mexicans 

were recruited only from the continental US. The GALA I Mexicans had higher BDR 

than the Puerto Ricans9. In GALA II, BDR was higher in the GALA II Puerto Ricans 

than in the Mexicans because of the recruiting protocol. In addition, the protocols for 

administration of albuterol and measurement of BDR were slightly different between 

GALA I and GALA II (see Methods). These differences between GALA I and GALA II 

mean that variants that are only associated with very low or very high BDR will not 

replicate well between these two populations. Thus, these differences may explain the 

lack of replication of our admixture mapping peaks in GALA I. 
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We were also unable to replicate many of the rare variant allelic associations 

identified in GALA II. The fact that they are rare alone suggests that several of these 

variants may be false positives. This is particularly true for the variants whose 

associations were driven by a single individual with an extreme BDR. However, some of 

the rare variants with more than three heterozygotes seem very promising. For example, 

rs8191725 and rs77977790 both had associations that were consistent after removing 

BDR outliers, are in genes that have known ties to asthma (IGF2R and PAPPA2, 

respectively), and had plausible genotype clusters in GALA II (Appendix A). 

Unfortunately, we were not able to design genotype assays for these SNPs and they did 

not replicate using imputed genotypes. The differences between GALA I and GALA II 

may explain some of the lack of replication. However, the small sample size in GALA I 

also clearly limited our ability to replicate rare variants. The two SNPs in LD identified 

under one of the admixture mapping peaks, rs1281748 and rs1281743, are promising 

candidates with trends in GALA I similar to those in GALA II. However, there were no 

more than 11 heterozygous individuals for either of these SNPs in GALA I. This fact 

alone makes replication of these rare variants extremely unlikely. Replication using 

imputed genotypes is even more unlikely, since imputation of rare variants is more 

difficult than imputation of common variants. Thus, the apparent lack of replication of 

these promising SNPs from GALA II does not indicate that they are not important for 

BDR. 

In conclusion, we identified four promising rare variants associated with BDR in 

GALA II through GWAS and admixture mapping. We also identified several other 

regions in which rare variants may be associated with BDR. Our findings suggest that 
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rare variants play an important role in BDR in Latino populations. Since rare variants are 

difficult to replicate, the variants and signals identified in this study will require follow-

up through sequencing and functional studies in large populations. In addition, their 

relevance will need to be assessed across multiple racial and ethnic populations. 
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CHAPTER 4 

HAPLOTYPE INFERENCE ERROR VARIES ACROSS POPULATIONS 

 

4.1. Introduction 

Haplotype inference methods have some intrinsic error that influences effect 

estimates in studies that rely on these methods1. These methods are used in case-control 

association studies to improve power and as a necessary precursor to population genetics 

studies or genotype imputation2,3. In the past, two approaches for statistical haplotype 

inference were commonly used: maximum likelihood in an expectation-maximization 

algorithm or the parsimony method4,5. In 2001, Stephens et al. introduced a haplotype 

inference method implemented in the program PHASE that incorporated knowledge from 

population genetics and coalescent theory and greatly reduced error compared to 

traditional methods6. Since the introduction of PHASE, several groups have published 

methods that make use of population genetics models and are computationally feasible 

for genome-wide datae.g. 7-9.  

Although these modern haplotype inference methods use different statistical and 

computational techniques, they are all based on population genetics models. These 

models make assumptions about random mating and linkage disequilibrium (LD) patterns 

whose validity almost certainly varies across populations. For example, linkage 

disequilibrium is lower in older populations like those of African ancestry than in 

younger populations like those of European ancestry10. In addition, human populations 

are known to mate assortatively based on many factors, including socioeconomic status, 

religion and attitudes11. Recently, two studies have demonstrated that people mate 
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assortatively by ancestry12,13. If LD patterns and assortative mating vary between 

populations then the validity of the assumptions underlying haplotype inference methods 

also varies. Thus, the error from haplotype inference methods is also likely to vary across 

populations. In turn, bias in effect estimates will also vary across populations making 

effect estimates from studies that rely on haplotype inference incomparable. Haplotype 

inference error has been compared between African and European-ancestry populations2. 

However, to our knowledge, no studies have compared haplotype inference error across 

more than these two populations.  

We hypothesized that haplotype inference error varies across human populations. 

To test this hypothesis and to determine the extent to which this error varies, we 

repeatedly sampled candidate-gene sized regions in trios from different HapMap 

populations and compared haplotype inference error in these populations. Then, we 

characterized this error by determining the extent to which measureable factors such as 

linkage disequilibrium and minor allele frequency contributed to this error.  

 

4.2. Methods 

4.2.1. Data 

To test the hypothesis that haplotype inference error varies across populations, we 

used genome-wide single nucleotide polymorphism (SNP) data from four populations of 

trios from the HapMap Project Phase III14. These four populations included Utah 

residents of Northern and Western European ancestry (30 CEU trios), Yoruba in Ibadan, 

Nigeria (30 YRI trios), Maasai in Kinyawa, Kenya (28 MKK trios) and of Mexicans in 

the Los Angeles area (23 MEX trios). All trios were complete, consisting of a mother, 
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father and child. We sampled repeated candidate-gene sized regions from the 54,495 

SNPs on Chromosome 1 that were genotyped in all four populations. We randomly 

sampled 100 20kb regions across Chromosome 1. For each of these regions in each 

population, we inferred haplotypes using four phasing methods and compared them to a 

gold standard as described below. 

 

4.2.2. Haplotype Inference and Gold Standard 

We inferred haplotypes using four publicly available phasing methods to ensure 

that our results were not an artifact of a specific method. We used PHASE, fastPHASE, 

BEAGLE, and SHAPE-IT6-9. Since all four methods rely on using unrelated individuals 

from the same population, we inferred haplotypes separately in the parents and children 

from each population. All methods were run with default settings.  

We used information from each complete trio to obtain a gold standard haplotype 

for comparison using logic rules. For each SNP in each region, we determined which 

allele came from each parent. This is possible as long as at least one member of the trio is 

not heterozygous. For example, if a mother and child both have an AG genotype and the 

father has a GG genotype, we can determine that the haplotype the child obtained from 

the mother contains the A allele and the haplotype the child obtained from the father 

contains the G allele. Similarly, we know that the mother’s haplotype that she gave to the 

child contains the A allele and the haplotype she did not pass on contains the G allele. 

Our gold standard makes the assumption that there is no recombination in the generation 

between the parents and the child in the specified region. In addition, we cannot identify 

errors in phasing of SNPs that are heterozygous in all three members of a trio. 
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4.2.3. Calculation of Error Proportion 

 We compared our gold standard to the inferred haplotype from each phasing 

method to determine the number of individuals with incorrectly inferred haplotypes. 

Then, we calculated an error proportion within each region for each population and 

haplotype inference method. This error proportion was calculated as the number of 

individuals with incorrectly inferred haplotypes divided by the number of individuals 

with ambiguous haplotypes. Ambiguous haplotypes are haplotypes for which at least two 

of an individual’s SNPs are heterozygous. Since the denominator of error proportion was 

ambiguous haplotypes, only haplotypes where each haplotype inference method could 

have made an error were counted towards the error proportion. 

 

4.2.4. Calculation of Factors Related to Inference Error 

 To determine the extent to which several measurable factors contribute to phasing 

error, we measured each of these factors (Table 4.1). These factors were measured either 

for each region across all populations, for each region within each population, or for each 

individual. We tested whether each of these factors were associated with inference error 

as described below. 

 

4.2.5. Statistical Analysis 

 We used t-tests to make pairwise comparisons between the mean error 

proportions in the populations for each phasing method. Our significance level was 

α=0.0083 based on a Bonferonni correction for 6 tests within each method. 
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Table 4.1. Factors that may be associated with haplotype inference error 
Factor Measurement 

Level 
Definition Hypothesized 

Direction of Effect 
Number of SNPs Across all 

populations 
Number of SNPs in selected 20kb region Increasing with 

increasing error 
Distance between 
SNPs 

Across all 
populations 

Mean number of base pairs between 
every pair of adjacent SNPs in the 
haplotype 

Decreasing with 
increasing error 

Genic/Intergenic Across all 
populations 

Genic if any SNP in the haplotype is 
contained within 2 kb upstream or 
downstream of a gene region according to 
NCBI 

Increasing error in 
intergenic regions 

Linkage 
disequilibrium 

Within each 
population 

Mean pair-wise r2 for all pairs of SNPs in 
haplotype and r2 between the two SNPs at 
each end of the haplotype 

Decreasing with 
increasing error 

SNP minor allele 
frequency 

Within each 
population 

Minimum MAF of all SNPs in haplotype  Decreasing with 
increasing error 

Hardy-Weinberg 
Equilibrium 
(HWE) 

Within each 
population 

Maximum HWE chi-squared statistic of 
all SNPs in haplotype 

Increasing with 
increasing error 

Number of 
heterozygous 
SNPs 

For each 
individual 

Number of SNPs in the haplotype for 
which an individual is heterozygous 
(ambiguous) 

Increasing with 
increasing error 

 
 We used logistic regressions to determine whether each measured factor described 

above was associated with haplotype inference error. In addition, we used logistic 

regressions to test whether each region, individual and population was associated with 

haplotype inference error. Specifically, we regressed a binary error variable (i.e. yes/no 

error for each individual in each region) on each factor, one at a time. For minimum 

minor allele frequency, LD measured by r2 and mean between-SNP distance, we adjusted 

the scale of the factor so that the resulting odds ratios would be more meaningful to 

interpret. We multiplied linkage disequilibrium and minor allele frequency by 100 so that 

the odds ratios would be the change in the odds for an increase of 0.01 in these factors. 

We divided mean between-SNP distance by 100 so that the odds ratio would be the 

change in the odds for an increase of 100 base pairs in mean between-SNP distance. We 

used α=1.2x10-4 to a determine significance level for these factors based on a Bonferonni 

correction for 413 tests.  
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 To test whether the association of significant regions with haplotype inference 

error was driven by the factors we measured, we included principal components (PCs) 

created from the measured factors as covariates in the logistic regressions. We used all of 

the measured factors (Table 4.1) to create PCs. Since several of the measured factors 

were related, adjusting for all of the PCs might have caused regions that would be non-

significant after adjustment for only a few PCs to become significant. Therefore, we 

determined the number of PCs to adjust for by examining the trends in p-values for each 

region after adjusting for varying numbers of PCs. 

 

4.3. Results 

4.3.1. Haplotype Inference Error Varies by Population 

The mean haplotype inference error proportion was highest in the African 

populations and lowest in the European population using all four phasing methods 

(Figure 4.1). Mean error proportions were consistently less than 1% different for PHASE 

and SHAPE-IT. The error proportions for PHASE and SHAPE-IT were the lowest 

overall. For SHAPE-IT, the mean error proportions across all regions were 5.1%, 7.5%, 

8.3% and 9.2% for the European, Mexican, Yoruba and Maasai populations, respectively. 

Since BEAGLE is not designed for use in small sample sizes, it had the highest error 

proportions overall. The mean error proportions for BEAGLE were 13.4%, 15.3%, 

20.6%, and 19.4% for the European, Mexican, Yoruba and Maasai populations, 

respectively. The mean error proportions for fastPHASE followed the same trend as for 

SHAPE-IT and PHASE and were intermediate between these and the BEAGLE error 

proportions. 
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Figure 4.1. Haplotype Inference Error Varies by Population. The distribution of error 

proportion per region is 

displayed by population and 

phasing method. The y-axis 

shows the error proportion that 

is calculated by region as the 

number of individuals with 

incorrectly inferred haplotypes 

divided by the number of 

individuals with ambiguous 

haplotypes. The x-axis 

displays the HapMap Phase 3 

populations. 

 
 
We used t-tests to test for significant differences in the mean error proportion 

between populations for each method (Table 4.2). The difference between the mean error 

proportions in the European population and the African population with the highest error 

proportion was significant for all four methods. For fastPHASE, the difference between 

the European population and both African populations were significant. In addition, the 

difference between the Mexicans and Maasai was significant for fastPHASE. 
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Table 4.2. Significant Differences in Haplotype Inference Error by Population 
Method Population European Mexican Yoruba 
Shape-IT Mexican 0.0798   

Yoruba 0.02104 0.5661  
Maasai 0.00267 0.2347 0.5566 

Phase Mexican 0.07256   
Yoruba 0.01681 0.5394  
Maasai 0.002206 0.2224 0.5591 

fastPhase Mexican 0.4345   
Yoruba 0.001341 0.0097  
Maasai 0.0001361 0.001118 0.4118 

Beagle Mexican 0.3906   
Yoruba 0.002616 0.02428  
Maasai 0.01163 0.07963 0.63 

Bold-face p-values are lower than the Bonferonni alpha level of 0.0083 correcting for 6 
tests within each method.  
 
 
Figure 4.2. Seven measured factors, two populations, and 18 regions are associated 

with error. The y-axis displays odds ratios for each variable from four logistic 

regressions of error on the variable. The four logistic regressions are of error from each of 

the phasing methods. The x-axis displays the 27 variables that were significantly 

associated with error from Phase after a Bonferonni correction for 413 tests (7 measured 

factors, 100 regions, 4 populations, and 302 individuals). The red line is at OR=1. 

Variables with ORs above and below this line are associated with increased and 

decreased odds of error, 

respectively. For linkage 

disequilibrium and 

minimum minor allele 

frequency the ORs are 

the change in odds for an 

increase of 0.2 in these 

variables. 
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4.3.2. Measurable Factors and Certain Regions are Associated with Haplotype 

Inference Error 

We tested the association of seven measured factors, each region, each population 

and each individual with error to further characterize the causes of error. All seven 

measured factors, 18 regions, and the European and Maasai populations were 

significantly associated with error from PHASE after correcting for 413 tests (Figure 

4.2). Although we selected variables based on significant associations with PHASE error, 

the associations and directions of effect were consistent across all phasing methods. The 

direction of effect for the seven measured factors was consistent with what we 

hypothesized for all factors except genic/intergenic region (Table 4.1). For example, for 

every 0.01 increase in mean pairwise linkage disequilibrium r2 the odds of having an 

error from Phase was 0.92 times lower (Figure 4.2). The Maasai population had a 1.37 

times the odds of having an error from Phase compared to the other populations. In 

contrast, the European population had 0.6 times the odds of having an error from Phase 

compared to the other populations. The 18 significantly associated regions all had odds 

ratios (ORs) > 1. These regions all had higher odds of error than the rest of the regions 

combined.  

 

4.3.3. Most Previously Significant Regions are Associated with Error Even After 

Adjustment for Other Factors 

The association of regions with haplotype inference error may be driven by the 

measured factors that were also associated with error. Therefore, we built principal 

components from these factors and controlled for them in the 18 previously significant 
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Figure 4.3. Trends in p-values for significant regions after adjusting for increasing 

numbers of PCs for A) Phase, B) Beagle, C) Shape-IT and D) fastPhase.  

Each plot shows the p-value for each region on the y-axis against the number of PCs that 

were adjusted for on the x-axis. A line connects the points for each of the 18 originally 

significant regions. 

The thick horizontal 

black line is the alpha 

level after a 

Bonferonni correction 

for 18 tests. Adjusting 

for six or more PCs 

causes regions that 

became non-

significant after 

adjusting for only one 

PC to become 

significant again. 

 

logistic regressions of error on region. We determined the appropriate number of PCs to 

adjust for by examining the trends in p-values for each region after adjusting for varying 

numbers of PCs (Figure 4.3). We adjusted for PCs 1 through 5 because two regions that 

became non-significant after adjusting for only PC 1 became significant again when we 

adjusted for PCs 1 through 6 or all seven PCs. These regions may have become 

A) B) 

C) D) 
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significant again because there was collinearity between the PCs because of underlying 

collinearity in some of the input variables.  

 

Figure 4.4. Most Regions Remain Associated with Error After Adjusting for Other 

Measurable Factors. X-axis: Original unadjusted OR from regression of error on region. 

Y-axis: Adjusted OR from regression of error on region, adjusting for PCs 1 and 2. 

Colors and shape indicate phasing method (Shape-IT=red/triangle, Phase=blue/square, 

fastPhase=green/diamond, Beagle=tan/circle). Filled shapes remain significant after 

adjusting for PCs 1 and 2. 

Horizontal and vertical 

lines are for ORs=1. The 

diagonal line is the identity 

line between the original 

and adjusted ORs. Points 

above and below this line 

had ORs that increased 

and decreased, 

respectively, after 

adjusting for PCs 1 and 2.  

 

After controlling for PCs 1 through 5, 15 of the 18 previously significant regions 

were still significantly associated with error from PHASE or SHAPE-IT (Figure 4.4). 

Similarly, 14 of the previously significant regions were still significantly associated with 
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error BEAGLE or fastPHASE. 15 of the ORs decreased after adjusting for PCs 1 through 

5 for all the methods. The mean change in OR was a decrease ranging from 0.76 for 

SHAPE-IT to 0.96 for BEAGLE. PCs 1, 2 and 3 were significantly associated with error 

from Phase for all regions (p < 0.005, data not shown). The largest driving factors of PCs 

1, 2 and 3 were number of SNPs / mean between-SNP distance, LD / MAF / number of 

heterozygous SNPs, and genic region, respectively (Figure 4.5). 

 

Fig 4.5. PCs 1, 2 and 3 are 

driven by number of SNPs / 

between-SNP distance, LD / 

MAF / number of 

heterozygous SNPs and 

genic region, respectively. 

The y-axis shows the loading 

for each variable on the x-

axis. Colors indicate PC 

(blue=PC1, tan=PC2, 

purple=PC3). 

 

4.4. Discussion 

 Overall, our results show that haplotype inference error varies across four 

HapMap Phase III populations. Furthermore, although this error is associated with seven 

of the factors we measured, there are regions whose high error cannot be explained by 
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these factors. We found that haplotype inference error was highest in two African 

populations, intermediate in a Mexican population, and lowest in a European population 

using four different haplotype inference methods. These results are sensible given that 

haplotype inference methods rely on LD, which is generally lower in African populations 

than either European or Mexican populations10. Unsurprisingly, we found that decreasing 

LD was associated with higher haplotype inference error.  

Other factors we found to be associated with error are also sensible, including 

minor allele frequency, the number of SNPs, between-SNP distance, the number of 

heterozygous SNPs per individual, non-random mating, and genic vs. intergenic regions. 

Decreasing minor allele frequency was associated with higher haplotype inference error. 

This is sensible since when there are rare alleles there will be rare haplotypes that are 

more difficult for the phasing methods to infer. Since the size of the regions was fixed at 

20kb, the number of SNPs and between-SNP distance are inversely related. An increasing 

number of SNPs and an increasing between-SNP distance were associated with 

increasing and decreasing error, respectively. Even by chance, the error proportion should 

increase with an increasing number of SNPs because it is harder for phasing methods to 

infer every single SNP correctly. We observed the same trend for the number of 

heterozygous SNPs per individual, since this represents the number of SNPs that need to 

be inferred for this individual. Non-random mating, which is assumed by the haplotype 

inference methods we used, can cause an increase in HWE χ2 15. Sensibly, increasing 

HWE χ2 was associated with increasing error. Finally, we found increasing error in genic 

regions despite our hypothesis that error would be higher in intergenic regions due to 
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lower levels of LD16. This higher error in genic regions may be due to other factors acting 

in these regions, either measured or not.  

Overall, we found that haplotype inference error varies across populations and is 

associated with certain factors in a way that is consistent with previous knowledge. Even 

though we identified seven factors that were associated with haplotype inference error, 

these factors did not explain the high inference error in 14 regions. Our results suggest 

that there are other factors that we have not measured that contribute to high haplotype 

inference error in certain regions of the genome. 

 The differences we found in haplotype inference error across populations have 

important implications for genetic association studies of haplotypes and imputed SNPs. 

Many modern genotype imputation methods depend on inferring haplotypes before 

imputing SNPs3. Therefore, error in haplotype inference will cause misclassification in 

both haplotypes and imputed genotypes. This misclassification will cause bias in the 

effect estimates from these haplotypes or imputed genotypes17. Since the level of 

haplotype inference error varies across populations, the resulting levels of 

misclassification and bias in effect estimates will also vary across populations. Therefore, 

our results imply that differences in effect estimates across populations from haplotypes 

or imputed SNPs may be caused by haplotype inference error rather than true differences 

in effect estimates. Investigators should use caution when interpreting differences in these 

effect estimates. 

 Most published studies of haplotype inference error are methods comparisons that 

use simulated data or data from European populations. Although we used four different 

haplotype inference methods, we did so to make sure our results were not an artifact of 
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one phasing method. To our knowledge, this study is the first to examine differences in 

haplotype inference error across more than two populations. The fact that we used trios 

creates a biased sampling scheme because we can’t evaluate error at SNPs that are 

heterozygous in all three individuals and we have more information to determine the 

child’s haplotype than the parents’. However, using real populations similar to those used 

in association studies was critical to determining whether differences in error exist across 

populations and what the magnitude of these differences is.  

 In conclusion, the results of this study show that haplotype inference error varies 

across four HapMap Phase III populations. Furthermore, this error is associated with but 

not fully explained by factors we expected to cause error. Our study suggests that 

variation in haplotype inference error across populations may cause differences in effect 

estimates from haplotype association studies and imputed SNPs across populations. 

Furthermore, investigators cannot rely on the factors we expected to be associated with 

haplotype inference error to predict the regions that will have high error. 
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