
UC San Diego
UC San Diego Previously Published Works

Title
GenomeDecoder: Inferring Segmental Duplica-tions in Highly-Repetitive Genomic Regions.

Permalink
https://escholarship.org/uc/item/4mf4x4j0

Authors
Zhang, Zhenmiao
Gupta, Ishaan
Pevzner, Pavel

Publication Date
2025-02-05

DOI
10.1093/bioinformatics/btaf058

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4mf4x4j0
https://escholarship.org
http://www.cdlib.org/

Genome analysis

GenomeDecoder: inferring segmental duplications in
highly repetitive genomic regions
Zhenmiao Zhang1,2,� , Ishaan Gupta1, Pavel A. Pevzner1

1Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, United States
2Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR, China
�Corresponding author. Department of Computer Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093,
United States. E-mail: zhz142@ucsd.edu.
Associate Editor: Janet Kelso

Abstract
Motivation: The emergence of the ‘telomere-to-telomere’ genomics brought the challenge of identifying segmental duplications (SDs) in complete
genomes. It further opened a possibility for identifying the differences in SDs across individual human genomes and studying the SD evolution.
These newly emerged challenges require algorithms for reconstructing SDs in the most complex genomic regions that evaded all previous attempts
to analyze their architecture, such as rapidly evolving immunoglobulin loci.
Results: We describe the GenomeDecoder algorithm for inferring SDs and apply it to analyzing genomic architectures of various loci in primate
genomes. Our analysis revealed that multiple duplications/deletions led to a rapid birth/death of immunoglobulin genes within the human popu-
lation and large changes in genomic architecture of immunoglobulin loci across primate genomes. Comparison of immunoglobulin loci across
primate genomes suggests that they are subjected to diversifying selection.
Availability and implementation: GenomeDecoder is available at https://github.com/ZhangZhenmiao/GenomeDecoder. The software version
and test data used in this paper are uploaded to https://doi.org/10.5281/zenodo.14753844.

1 Introduction
Since each genome has undergone duplications, deletions,
and rearrangements, decoding genome architectures (infer-
ence of synteny blocks (SBs), segmental duplications (SDs),
and tandem duplications (TDs)) is a challenging problem.
For example, mammalian immunoglobulin (IG) loci, shaped
by SDs and TDs, have widely variable architectures even
within the human population (Rodriguez et al. 2023), let
alone between different primate genomes. As a result, decom-
posing them into duplication subunits (Jiang et al. 2007) is a
prerequisite for both biomedical studies of IG loci across the
human population and their comparative genomics studies
across mammals. Understanding how structural variations
(SVs) in IG loci affect variations in the antibody repertoires is
critical for personalized immunogenomics and vaccine design
(Watson et al. 2017). However, decomposing the human IG
architecture into duplication subunits remained an open
problem until recently. We illustrate the complex architecture
of human immunoglobulin heavy chain (IGH) locus by
decomposing it into duplication subunits (Fig. 1). For brevity,
since the problems of inferring SBs, SDs, and TDs are similar
to each other, below we refer to both SBs and units of SDs/
TDs simply as blocks.

Shortly after the first mammalian genomes had been se-
quenced, Pevzner and Tesler (2003) developed the GRIMM-
Synteny algorithm for generating non-overlapping blocks and

Kent et al. (2003) described the ‘chains-and nets’ algorithm
for generating potentially overlapping blocks. The key advan-
tage of the non-overlapping representation is that it enables
compact representation of genomic architectures in the al-
phabet of all blocks (Fig. 1), a prerequisite for downstream
comparative genomics and evolutionary studies such as
analysis of genome rearrangements (Bourque et al. 2004,
Peng et al. 2006).

We emphasize that different papers often use different and
informal concepts of the block and do not explicitly define
the objective function of the block generation. This may lead
to ill-defined blocks and incorrect biological conclusions as il-
lustrated by a controversy discussed by Peng et al. (2006) and
Sankoff (2006).

Even though it is difficult to compare various approaches
to block generation, most of them use the concept of a block
that is similar to the one defined in the GRIMM-Synteny al-
gorithm (Pevzner and Tesler 2003). However, GRIMM-
Synteny and other early block inference algorithms (Darling
et al. 2004, Haas et al. 2004, Ma et al. 2006, Grabherr et al.
2010, Drillon et al. 2014) did not properly address inference
of blocks in the case of extensive duplications and deletions,
e.g. they were not able to infer the structure of SDs in a mam-
malian genome, infer blocks in highly repetitive regions
(HRRs) such as IG loci, or infer blocks in genomes that have
undergone whole-genome duplications (WGDs). Liu et al.
(2018) benchmarked various block generation algorithms

Received: 26 July 2024; Revised: 2 December 2024; Editorial Decision: 22 January 2025; Accepted: 3 February 2025
© The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2025, 41(2), btaf058
https://doi.org/10.1093/bioinformatics/btaf058
Advance Access Publication Date: 5 February 2025
Original Paper

https://orcid.org/0000-0003-3748-1664
https://github.com/ZhangZhenmiao/GenomeDecoder
https://doi.org/10.5281/zenodo.14753844

and commented that they agree on long megabase-size blocks
but face challenges in analyzing ‘local shuffles.’

The problem of decomposing the genome into the alphabet
of non-overlapping blocks was first addressed by Jiang et al.
(2007) who revealed the mosaic structure of SDs in the hu-
man genome. Paten et al. (2008) and Pham and Pevzner
(2010) further described Enredo and DRIMM-Synteny algo-
rithms for inferring blocks in highly duplicated genomes.
Minkin et al. (2013) improved on DRIMM-Synteny by devel-
oping the Sibelia algorithm, while Krasheninnikova et al.
(2020) improved on Enredo by developing the halSynteny al-
gorithm. Recently, Pu et al. (2018) and Iseric et al. (2022) de-
veloped SDquest and BISER algorithms for identifying
ancient SDs.

The problem of inferring blocks is similar to the problem of
de novo repeat classification that was addressed using the con-
cept of the A-Bruijn graph (Pevzner et al. 2004). Pham and
Pevzner (2010) modified the A-Bruijn graph approach for block
generation in highly duplicated genomes such as yeast genomes
subjected to WGD. The key ingredient of their approach is the
graph simplification algorithm that collapses bubbles in the
A-Bruijn graph of a genome. However, the human genome con-
tains many HRRs (even more complex than the entire yeast
genomes that have undergone the WGDs) that are not ade-
quately represented by simple bubbles in the A-Bruijn graph.
Moreover, DRIMM-Synteny first represents a genome in the al-
phabet of genes (with similar genes represented by the same ID)
and transforms this representation into blocks. This approach
has limitations since many genomic regions contain few genes
and since establishing similarity between some genes (e.g. short
and rapidly evolving D genes in the IG loci) is challenging. Of
course, one can substitute ‘similar genes’ by ‘shared k-mers’ and
apply a block reconstruction algorithm to genomes represented
in the alphabet of shared k-mers instead of similar genes.
However, any fixed choice of the k-mer size would either lead
to spurious similarities (when k is small) or to undetected simi-
larities (when k is large). The Sibelia algorithm (Minkin et al.
2013) addressed this limitation of DRIMM-Synteny by incorpo-
rating its graph simplification algorithm into the iterative de
Bruijn graph framework that performs graph simplifications
across the de Bruijn graphs (DBGs) with progressively increas-
ing k-mer sizes.

We applied halSynteny (Krasheninnikova et al. 2020),
Sibelia (Minkin et al. 2013), and SDquest (Pu et al. 2018) to
analyze some of the most complex regions in primate genomes,
revealed some limitations of these tools, and developed the
GenomeDecoder algorithm to address these limitations.
GenomeDecoder borrows the graph simplification idea from
DRIMM-Synteny and the iterative DBG idea from Sibelia.

If blocks represented exact repeats, the block decomposi-
tion problem would be easy since the DBG on k-mers pro-
vides a comprehensive representation of all exact repeats of
length at least k in a genome (each edge represents a block).
In practice, analysis of blocks faces the challenge of com-
pactly representing the mosaic structure of all inexact repeats
in a genome. Similar to Sibelia, GenomeDecoder iteratively
modifies (disembroils) the genome by transforming its inex-
act repeats into the exact ones using a series of the DBG sim-
plification operations (that both DRIMM-Synteny and
Sibelia use) with iteratively increasing k-mer sizes. The DBG
of the disembroiled genome enables block inference because
it is greatly simplified as compared to the DBG of the original
genome. Figure 2 presents the DBG of the disembroiled hu-
man IGH locus that enabled inference of blocks shown in
Fig. 1. An important contribution of GenomeDecoder (as
compared to DRIMM-Synteny, Sibelia, and the algorithm by
Jiang et al. 2007) is a more extensive set of graph simplifica-
tions that allows it to infer the blocks even in the most com-
plex genomic regions.

Even though block inference is a prerequisite for downstream
comparative genomics analysis, the previously published papers
on block inference stopped short of the downstream applica-
tions. Here, we illustrate how block decompositions generated
by GenomeDecoder shed light on important questions in com-
parative genomics. For example, predicting genes and revealing
orthologous/paralogous mammalian genes in the rapidly evolv-
ing IG loci is a challenging task, particularly in the case of short
D genes (Sirupurapu et al. 2022). Difficulties in establishing
orthologous/paralogous relationships between genes make it
difficult to analyze the mutation rates and the extent of selective
pressures in these loci. We illustrate how block decompositions
lead to predicting novel D genes and analysis of the selective
pressure on these genes.

2 Materials and methods
2.1 Outline of the GenomeDecoder algorithm
We first describe how GenomeDecoder works for a single ge-
nome represented as a set of strings (each string encodes a
chromosome) and later generalize this algorithm for multiple
genomes. GenomeDecoder (i) transforms the original genome
into the disembroiled genome where imperfect repeats are
transformed into identical repeats, (ii) constructs the DBG of
the disembroiled genome and infers blocks from this DBG,
and (iii) generates blocks in the original genome by aligning
them against blocks in the disembroiled genome.

To decompose a string-set Genome into blocks.
GenomeDecoder selects an initial (small) k-mer size and uses

Figure 1. The block decomposition of the human IGH locus. The IGH locus in the reference human genome hg38 (denoted as IGHhum) is formed by
37 block-instances representing 14 distinct repeated blocks (duplication subunits) of multiplicity varying from 2 to 5 (denoted by letters from A to N).
The 37 block-instances are separated by 36 non-repetitive segments that are not shown (some of these segments have length 0). The row above the
block decomposition shows the percent identity between each block-instance in IGHhum against the consensus sequence of the block. The three rows
below the block decomposition provide information about the distances between consecutive block-instances, the length of each block-instance, and the
number of immunoglobulin (V, D, or J) genes in each block-instance. The number of genes is defined based on the annotated hg38 human genome
reference. In total, 18 out of 48 annotated V genes, 23 out 27 annotated D genes, and 0 out 6 annotated J genes occur in duplication subunits
(the remaining genes occur in non-repetitive regions). All 23 D genes in the duplication subunits occur in the four-unit tandem repeat AAAA.

2 Zhang et al.

the LJA assembler (Bankevich et al. 2022) to construct the con-
densed de Bruijn graph DBk(Genome) on the set of all k-mers in
Genome (edge-weights in this graph represent multiplicities of
k-mers in Genome). The condensed DBG is a compact represen-
tation of the DBG where each non-branching path is substituted
by a single edge. For brevity, we will refer to the condensed
DBG simply as the DBG.

A genome formed by n strings (chromosomes) represents a
traversal of its DBG by n paths that visit each edge of the
graph at least once. GenomeDecoder starts from a small
k-mer-size and uses DBk(Genome) and its traversal to per-
form disembroiling transformations (on both the graph and
the genome) that substitute some pairs of similar regions in

Genome by pairs of identical regions. Figure 3 illustrates a
simplified case when GenomeDecoder, similarly to DRIMM-
Synteny and Sibelia, uses bubbles in the de Bruijn graph to
identify similar regions. This operation increases the number
of shared k-mers in Genome and transforms it into a new dis-
embroiled genome that is similar to Genome but has a more
discernable block structure.

Figure 3 illustrates how GenomeDecoder collapses simple
bubbles formed by pairs of parallel edges. In the case of HRRs,
it is important to define complex bubbles and classify them into
similar bubbles (that should be collapsed) and dissimilar bub-
bles (that should not be collapsed). GenomeDecoder extends
the set of collapsible bubbles as compared to the graph

Figure 2. The de Bruijn graph of the disembroiled human IGH locus. The de Bruijn graph of the disembroiled IGH locus IGHhum for the k-mer size 2000.
Each vertex is represented as a circle labeled by the vertex IDs. The edge label consists of the block ID in Fig. 1 (if any), the length of the edge and its
multiplicity (in the parenthesis). The labels of the duplicated blocks are boldfaced. The figure is generated by the GraphViz tool (version 2.43.0).

GenomeDecoder 3

simplification procedure in DRIMM-Synteny, Sibelia, and algo-
rithm from Jiang et al. (2007). It also changes the way of
extracting blocks from the de Bruijn graph (as compared to sim-
ply outputting the edge labels of the de Bruijn graph) to mini-
mize the number of distinct letters in the ‘blocks alphabet’ and
thus simplifying the downstream analysis. GenomeDecoder iter-
atively performs graph transformations by increasing the k-mer
size at each iteration until it reaches a large value K, the user-
specified lower bound for the minimum block size. For exam-
ple, K is often set as 1–2 kb in SD analysis (Jiang et al. 2007, Pu
et al. 2018) and as 0.5 Mb in genome rearrangement analysis
(Pevzner and Tesler 2003, Bourque et al. 2004).

Although the original Genome and the disembroiled
Genome-DIS are similar (Fig. 4A and B), the blocks in the
disembroiled genome (in difference from the initial genome)
represent perfect matches and thus are easily discernible using
the graph DBK(Genome-DIS). GenomeDecoder also con-
structs the block graph DB�K(Genome-DIS) obtained by de-
leting all edges of multiplicity 1 from DBK(Genome-DIS).
The block graph compactly represents all repeated blocks in
Genome-DIS. After generating blocks in Genome-DIS,
GenomeDecoder uses edlib (Sosic and Sikic 2017) to align
the original genome against the disembroiled genome and
thus ‘lift’ the blocks from the disembroiled genome to the
original genome (alternatively, a user has an option of using
UniAligner (Bzikadze and Pevzner 2023) for alignment).

The subsections below describe how GenomeDecoder
transforms inexact genomic repeats into exact ones by using
more complex graph transformations than the ones used in
DRIMM-Synteny and Sibelia.

2.2 Collapsible bubbles
Given a path P in the DB graph, we denote the sequence
spelled by this path as seq(P). Given an edge-weighted graph

and its traversal, we say that two subpaths of this traversal
form a bubble if they (i) start at the same vertex, (ii) end at
the same vertex, (iii) share no other vertices. Two sequences
are classified as similar if the percent identity between them
exceeds a threshold simstrong (default value 90%) and as
weakly similar if the percent identity between them exceeds a
threshold simweak (default value 65%).

We classify a bubble formed by two paths with N and M
edges as an N-M-bubble and define its complexity as maxfN,
Mg. A 1–1-bubble is referred to as a simple bubble and all
other bubbles are referred to as complex bubbles. We classify
a complex N-M-bubble as short if its complexity does not ex-
ceed a threshold bubblemax (default value 4). We define the
multiplicity of a path as the smallest multiplicity of its edges.

A simple bubble in a graph DBk(Genome) is classified as col-
lapsible if its two edges e1 and e2 spell similar sequences. Given
a collapsible simple bubble, we define a bubble collapsing op-
eration that substitutes each substring of Genome spelled by e1

by the substring spelled by e2 (without loss of generality, we
assume ties are resolved arbitrarily and that jseq(e1)j ≤ jseq
(e2)). The bubble collapsing operation transforms a string-set
Genome into another string-set Genome’ and transforms the
graph DBk(Genome) into the graph DBk(Genome’) by remov-
ing the ‘shorter’ edge of the bubble and adding its multiplicity
to the multiplicity of its longer edge.

A complex bubble in a weighted graph is classified as col-
lapsible if its two paths are weakly similar. Given a collaps-
ible complex bubble in DBk(Genome) formed by paths P1

and P2, we define a bubble collapsing operation as substitut-
ing each substring of Genome spelled by P1 by the substring
spelled by P2 (without loss of generality, we assume that jseq
(P1)j ≤ jseq(P2)). In the vast majority of cases, this operation
subtracts multiplicity(P1) from multiplicities of all edges in P1

and adds multiplicity(P1) to all edges in P2.

Figure 3. Outline of a single iteration of the GenomeDecoder algorithm. The input is a ‘genome’ with three instances of the repeat CTC‘X’GTAT and two
instances of the TGGT‘X’TGA repeat, where ‘X’ denotes substitutions. The graph DB3(Genome) reveals three bubbles that are used to identify similar
(the leftmost and the rightmost bubbles with a single substitution) and dissimilar (the middle bubble with two substitutions) regions. GenomeDecoder
transforms the initial DBG into a disembroiled graph by collapsing bubbles formed by similar regions. The traversal of the initial graph translates into a
traversal of the transformed graph that reveals a disembroiled genome’. Edges of the transformed DBG correspond to blocks. There are two repetitive
blocks in the transformed genome (CTCAGTAT (R) and TGGTATGA (O) blocks) that were ‘hidden’ in the initial DBG. The traversal of this graph reveals the
decomposition RACOCGRTGRGTO of the disembroiled genome into blocks (AC, CG, TG, and GT represent non-repetitive regions). After generating blocks in
the disembroiled genome, GenomeDecoder aligns it against the original genome to generate the blocks in the original genome (this step is not shown).
Although this example only shows simple bubbles, GenomeDecoder analyzes complex bubbles as well.

4 Zhang et al.

2.3 Disembroiled graphs
GenomeDecoder transforms inexact genomic repeats into ex-
act ones by iteratively increasing the k-mer-size used for con-
structing the de Bruijn graph and disembroiling the resulting
graphs. The pseudocode of the disembroiling algorithm is
given in Supplementary Note S1.

2.4 Generating blocks in the disembroiled genome
and representing a genome in the block alphabet
The disembroiled graph DBK(Genome-DIS) simplifies infer-
ence of blocks since each edge in this graph gives rise to a
block. However, the resulting block-set includes overlap-
ping blocks since edges that start/end at the same vertex

A B

C

D E

Figure 4. Dot-plot of IGHhum against itself (A), dot-plot of the disembroiled IGHhum against itself (B), the block decomposition of IGHhum (C), the block-plot
depicting each pair of block-instances in IGHhum as a rectangle (D), and the scaled block-plot of IGHhum (E). (A) The dot-plot of IGHhum against itself.
(B) The dot-plot of the disembroiled IGHhum against itself. The imperfect repeats with mismatches and indels in IGHhum are transformed into identical
repeats in the disembroiled sequence. Although the two dot-plots look similar, the blocks in the disembroiled sequence are easier to infer. (C) Sequence
IGHhum in the block alphabet (reproduced from Fig. 1 for convenience). (D) Block-plot of IGHhum against itself. The block-plot superimposes block-
rectangles with the standard dot-plot for an improved visualization. Each block-rectangle depicts a pair of block-instances: an instance of a block in the
decomposition on the bottom x-axis (with corresponding number of IGH genes on the top x-axis) and an instance of the same block in the decomposition
on the left y-axis (with corresponding number of IGH genes on the right y-axis). The colors of the block-rectangles match their colors in (C). The
boundaries of the block-rectangles are adjusted as described below so that both sides become similar in length. (E) Scaled block-plot of IGHhum against
itself is derived from the block-plot in (D) by removing all non-repetitive regions. It provides a better visualization since it shrinks the regions lying outside
the repetitive blocks. All dot-plots are generated with the window size equal to 30 bp.

GenomeDecoder 5

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf058#supplementary-data

result in blocks that overlap by K nucleotides. Even though
one can ignore such overlaps when the K-mer size is much
smaller than the block size, ignoring overlaps between
blocks leads to complications in analyzing HRRs. Our goal
is to partition the disembroiled genome into non-
overlapping blocks.

Supplementary Note S2 describes the block generation algo-
rithm in GenomeDecoder. Supplementary Note S3 describes
how GenomeDecoder represents a genome in the block alpha-
bet. In contrast to approaches in DRIMM-Synteny, Sibelia,
SDquest, BISER, and the algorithm by Jiang et al. (2007) (that
generate blocks in such a way that all instances of the same
block have similar lengths), different instances of the same block
generated by GenomeDecoder may have widely different
lengths. This feature is important since it reduces the number of
blocks in the block decomposition. We note that this representa-
tion maintains all information about the genomic architecture
since it provides starting and ending positions of the partial
instances of each block.

2.5 Visualizing the block decomposition as a
block-plot
The block-plot visualizes the constructed blocks by superim-
posing the standard dot-plot with block-rectangles that repre-
sent each pair of instances of the same block (Fig. 4D). For
every two instances of the same block starting at positions i1

and i2 in the genome (of length l1 and l2, respectively), we de-
fine their block-rectangle in the dot-plot as the rectangle with
its bottom left corner located at the coordinate (i1, i2) and its
upper right corner located at the coordinate (i1þl1, i2þl2).
The color of the block-rectangle is defined as the assigned
color of the corresponding block in the block decomposition.
It turned out that the blocks generated by GenomeDecoder
capture nearly all sufficiently long similar regions (hardly any
similar regions are located outside block-rectangles) and
transform them into exact repeats in the disembroiled graph
(diagonals within block-rectangles).

2.6 Visualizing block decompositions using scaled
block-plots
To improve visualization of duplicated regions, we generate
the scaled block-plot obtained from the block-plot by remov-
ing non-repetitive regions and modifying the block bound-
aries (Fig. 4E). Since block-instances of the same block may
have vastly different lengths, the similarity between some
block-instances may be more adequately represented by fit-
ting (or even overlapping) alignment rather than their global
alignment. Supplementary Note S4 describes how we trans-
form each block-rectangle into a block-square to capture
only the aligned regions between the block-instances. The
scaled block-plot is formed by substituting each block-
rectangle by its block-square.

2.7 Generating block decomposition for
multiple genomes
Generating block decomposition for multiple genomes.
Supplementary Note S5 describes how GenomeDecoder con-
structs the blocks for multiple genomes using the same
‘disembroiled genome’ approach but applies it to the com-
bined string-set of all these genomes.

3 Results
3.1 Datasets
We analyzed the following DNA sequences:

3.1.1 Primate heavy chain immunoglobulin loci
Heavy chain immunoglobulin (IGH) loci in mammalian
genomes represent complex HRRs with poorly understood
history of duplications. We analyzed haplotypes of human,
Bornean orangutan, Sumatran orangutan, bonobo, and go-
rilla IGH loci assembled by the Primate T2T consortium
(Yoo et al. 2024):

� IGHhum—human IGH locus of length 1017 kb from the
reference human genome hg38

� IGHhumT2T—human IGH locus of length 1161 kb assem-
bled by the T2T consortium (Nurk et al. 2022)

� IGHB.orang—Bornean orangutan IGH locus of length
1416 kb (haplotype 1)

� IGHS.orang—Sumatran orangutan IGH locus of length
1342 kb (haplotype 1)

� IGHbonobo—bonobo IGH locus of length 1183 kb (haplo-
type 2)

� IGHgorilla—gorilla IGH locus of length 977 kb (haplo-
type 1)

The non-human primate IGH loci were assembled by the
Primate T2T consortium. IGH (V, D, and J) genes in IGHhum

and IGHhumT2T were inferred based on the NCBI genes anno-
tation for GRCh38 and T2T-CHM13v2.0 human genomes,
respectively (Supplementary File S1). All IGH genes in ape
genomes were predicted by the Primate T2T consortium us-
ing IGDetective (Sirupurapu et al. 2022) and Digger (Lees
et al. 2024) tools.

3.1.2 Primate MHC loci
The major histocompatibility complex (MHC) locus is a
highly repetitive region that encodes cell surface proteins es-
sential for the vertebrate immune system. We analyzed the
following primate MHC loci:

� MHChumT2Th—human MHC locus of length 3936 kb as-
sembled by the T2T consortium (Nurk et al. 2022).

� MHCB.orang—Bornean orangutan MHC locus of length
4400 kb (haplotype 1) assembled by the Primate T2T con-
sortium (Yoo et al. 2024).

3.1.3 Human chromosomes
We analyzed chromosome 20 and X from two hu-
man genomes.

� HUM20—chromosome 20 of lengths 64.4 Mbp from the
reference human genome hg38

� HUMT2T20—chromosome 20 of lengths 66.2 Mbp as-
sembled by the T2T consortium (cell line CHM13)

� HUMX—chromosome X of lengths 156.0 Mbp from the
reference human genome hg38

� HUMT2TX—chromosome 20 of lengths 154.3 Mbp
assembled by the T2T consortium (cell line CHM13)

Below we analyze primate IGH loci and human chromo-
somes. Supplementary Note S6 analyzes primate MHC loci.

6 Zhang et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf058#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf058#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf058#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf058#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf058#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf058#supplementary-data

3.2 Comparing block generation tools
Benchmarking block generation tools is a challenging task since
they use different parameters and optimize different implicitly
defined (or undefined) objective functions (Liu et al. 2018). We
illustrate this challenge by benchmarking halSynteny, SDquest,
and Sibelia. We did not benchmark other SD detection tools, e.
g. MashMap2 (Jain et al. 2018) and ASGART (Delehelle et al.
2018) because they focus on accurate SD detection rather than
decomposing a genome into blocks and, according to Iseric
et al. (2022), underperform compared to SDquest (Pu et al.
2018) and SEDEF (Numanagi�c et al. 2018) that are able to de-
tect ancient SDs. Since the large fraction of GenomeDecoder’s
runtime is spent generating alignments, Supplementary Note S7
describes benchmarking various alignment tools in comparing
long strings.

Supplementary Note S8 illustrates that halSynteny fails to
generate non-overlapping blocks. We compared Sibelia and
GenomeDecoder by analyzing their block decomposition of
IGHhum. Figure 5 compares 7 blocks generated by Sibelia (A, B,
F, E, K, L, and N) with 14 blocks generated by
GenomeDecoder that are shown in Fig. 1. Supplementary Note
S9 compares these two block decompositions and illustrates
some deficiencies in block decompositions generated by Sibelia.

SDquest and BISER generate excellent yet over-fragmented
block decompositions (Supplementary Note S10). We note
that GenomeDecoder has a slightly different focus than
SDquest/BISER as it aims to generate compact rather than
over-fragmented block decompositions (even at the expense
of coarsening block decompositions generated by SDquest/
BISER) to simplify the downstream analysis of the genomic
architectures.

Supplementary Note S10 illustrates that SDquest decom-
posed IGHhum into 567 block-instances of 104 blocks, including
78 block-instances of 32 large blocks that are longer than 2 kb
(compared with only 37 block-instances of 14 blocks by
GenomeDecoder). This over-fragmentation may be explained
by the fact that SDquest, in difference from GenomeDecoder
and Sibelia, uses a single k-mer size instead of iteratively increas-
ing the k-mer size. In a sense, SDquest blocks decompositions
may be similar to the GenomeDecoder/Sibelia block decomposi-
tions generated for a single k-mers size with an additional
benefit of capturing ancient highly diverged blocks that
GenomeDecoder and Sibelia may miss (Pu et al. 2018).

The SDquest developers noticed this over-fragmentation and
described an approach for enlarging their blocks by combining
them into larger SD-units. Although this procedure decomposed
IGHhum into a smaller number of SD-units (60), it did not
completely address over-fragmentation. Since SDquest generates
accurate yet over-fragmented block decompositions, we have
modified GenomeDecoder for enlarging blocks generated by
SDquest, implicitly adding the benefit of iterative graph simplifi-
cations to SDquest (Supplementary Note S10).

3.3 Block decomposition reveals rapid birth/death
of IGH genes
Figure 6A illustrates large variations in the architectures of
two human IGH loci (IGHhum and IGHhumT2T) and reveals
that multiple SDs/TDs led to a rapid birth/death of IG genes
within the human population. For example, F, G, and K
blocks have 1þ1þ2 additional block-instances in IGHhum

and 1þ1þ3 additional V genes as compared to IGHhumT2T.
Figure 6B shows the human and orangutan IGH loci in the

block alphabet and reveals many non-aligned blocks. For each
edge in the graph DBk(Genome1þGenome2), we represent its
multiplicity as (m1.m2), where m1 and m2 are its multiplicities
in Genome1 and Genome2, respectively. An edge with multiplic-
ity (m1.m2) in the graph DBK(Genome1-DISþGenome2-DIS) is
called imbalanced if m16¼m2. A block is classified as imbalanced
if one of its edges is imbalanced. Imbalanced blocks reveal dif-
ferences in SDs across two genomes.

Figure 6B demonstrates that, even for close primate spe-
cies, most blocks in the IGH locus are imbalanced, revealing
a very high rate of SDs/TDs. We emphasize that even though
the alignment of human and orangutan IGH loci in the block
alphabet (Fig. 6B) becomes so obvious that it can be con-
structed by hand, adequate alignment of HRRs in the nucleo-
tide alphabet is a non-trivial task (Bzikadze and Pevzner
2023, Liao et al. 2023).

3.4 Block decomposition reveals large structural
variations in human chromosomes and prevalence
of reverse tandem duplications
Figure 7A illustrates large variations in genome architectures
of chromosomes HUM20 and HUMT2T20 that are repre-
sented in the alphabet of 26 blocks. These blocks form 69
(70) block-instances in the HUM20 (HUMT2T20) that vary in
length from 2 to 127 kb. However, only 51 out of these
block-instances are aligned against each other.

Human chromosome 20 has a relatively simple architecture
as compared to other human chromosomes. Figure 7B presents
the block decomposition of chromosomes HUMX and
HUMT2TX generated by GenomeDecoder. It only shows large
blocks (longer than 32 kb) since the block decomposition for
shorter blocks is so complex that its visualization becomes diffi-
cult. GenomeDecoder generated 26 large blocks forming 53
and 47 block-instances in HUMX and HUMT2TX, respectively.
Figure 7B illustrates that reverse tandem duplications (such as
the block C followed by its reverse-complementary sequence
with some mutations) are common elements of the human chro-
mosomal architecture. Even when the analysis is limited to large
blocks, HUMX and HUMT2TX differ from each other in the
number of instances of blocks A, F, I, S, and U. Supplementary
File S2 presents decomposition of HUMX and HUMT2TX into
shorter blocks (at least 2 kb) and illustrates that these chromo-
somes have very different architectures (139 blocks that form

Figure 5. Comparison of blocks generated by GenomeDecoder and Sibelia for the IGHhum locus. Dashes (‘-’) represent gaps in the alignment of
block-instances.

GenomeDecoder 7

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf058#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf058#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf058#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf058#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf058#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf058#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf058#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf058#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf058#supplementary-data

413 and 371 block-instances for HUMX and HUMT2TX,
respectively).

3.5 Block decomposition reveals selective pressure
in the IGH loci
Here, we illustrate how block decomposition contributes to
gene prediction in IG loci. We limit analysis to D genes that
are notoriously difficult to predict by the existing IG gene
prediction tools (Safonova and Pevzner 2020, Sirupurapu
et al. 2022, Lees et al. 2024). D genes are located in the
IGHD locus and 23 out of 27 human D genes in IGHhum oc-
cur within the four-unit tandem repeat AAAA within this lo-
cus (Fig. 1). We denote its four units as A1hum/A2hum/A3hum/
A4hum. We also analyzed this tandem repeat in Bornean
orangutan (units A1B.orang–A5B.orang), Sumatran orangutan
(units A1S.orang–A5S.orang), gorilla (units A1gorilla–A5gorilla),
and bonobo (units A1bonobo–A6bonobo). Each of these
4þ 5þ 5þ5þ6¼25 A-blocks was aligned against A1hum

using the edlib tool (Sosic and Sikic 2017).
There are six annotated D genes in the block A1hum

(IGHD5-24, IGHD4-23, IGHD3-22, IGHD2-21, IGHD1-20,
IGHD6-19). Twenty-four pairwise alignments of this block
against various A-blocks allow us to trace the birth/death of

D genes. Figure 8A shows alignments of IGHD5-24 in A1hum

against A2hum, A3hum, and A4hum within a 100 bp window
centered at IGHD5-24. The gene PI in this figure refers to the
percent identity of the alignment between IGHD5-24 in
A1hum and the gene it aligns to. The window PI refers to the
percent identity of the alignment between the 100 bp long
window centered at this gene in A1hum and the window it
aligns to. The case when the gene PI is significantly larger
than the window PI suggests selective pressure on this gene
(Kondrashov 2012).

Figure 8A demonstrates that evolution of the IGHD5-24
gene was subjected to a strong selective pressure that resulted
in an increased mutation rate in this gene as compared to the
mutation rate in the surrounding window. Indeed, the aver-
age percent identity between IGHD5-24 in A1hum and its
aligned regions in A2hum, A3hum, and A4hum (68%) is much
smaller than the average percent identity between the sur-
rounding regions (89%). The same conclusion holds for 5
out 6 D genes in the block A1hum: IGHD4-23 (75% vs 87%),
IGHD3-22 (71% vs 82%), IGHD2-21 (76% vs 89%), and
IGHD6-19 (81% vs 89%). In contrast, IGHD1-20 turned
out to be very conserved when aligned to A2hum (only 2 sub-
stitutions) and A3hum (only 1 substitution). Further analysis

A

B

Figure 6. Differential analysis of blocks in IGHhum vs. IGHhumT2T (A) and IGHhum vs. IGHB.orang (B). (A) 15 blocks form 39 and 37 block-instances for IGHhum

and IGHhumT2T, respectively. Block decomposition illustrates large variations on the copy numbers and gene numbers between IGHhum and IGHhumT2T.
For example, F/G/K blocks have 1/1/2 additional copies and 1/1/3 additional V genes in IGHhum as compared to IGHhumT2T. The figure provides information
about the length of each block-instance, and the number of IG genes in each block-instance. The block alphabet derived for the single IGHhum sequence
(Fig. 1) differs from the block alphabet derived for the same sequence in the case when we compare it with a different sequence IGHhumT2T because we
apply the same default parameters to different graphs DBk(IGHhum) and DBk(IGHhumþIGHhumT2T). For example, a short block J in Fig. 1 ‘disappeared’ in
(A) because its length (2 kb) is close to the threshold k-mer size 2 kb. (B) Human and orangutan IGH loci in the alphabet of 16 blocks that form 26 and
40 block-instances in the induced alignment of IGHhum and IGHB.orang, respectively (only 22 of these block-instances are aligned against each other).

A

B

Figure 7. Differential analysis of blocks in human chromosomes HUM20 and HUMT2T20 (A) and HUMX and HUMT2TX (B). Figure provides information
about the length of each block-instance. Reverse complementary block-instances are shown using an overline on the corresponding block letters.
All blocks longer than 2 kb are shown in (A) but only blocks longer than 32 kb are shown in (B).

8 Zhang et al.

revealed that this D gene is exceptionally conserved in all
considered primate IGH loci and it is the only D gene that is
more conserved than the surrounding window. Figure 8B
confirms this conclusion by illustrating a high number of
genes that have gene PI lower than window PI.

3.6 Block decomposition contributes to gene
identification in IGH loci
Alignments of some gene-centered windows reveal that an
annotated IG gene in A1hum was disrupted in some A-blocks.
Figure S5 in Supplementary Note S7 shows alignments of
genes IGHD3-22 and IGHD1-20 in A1hum against A4hum.
The edlib alignment of IGHD3-22 has a high window PI of
89% and reveals a related D gene in A4hum that differs from
IGHD3-22 by 2 indels and 5 mismatches. In contrast, the
edlib alignment of IGHD1-20 has a very low window PI of
36%, suggesting that IGHD1-20 was disrupted in A4hum.

Recently, the Primate T2T consortium annotated genes in
all primate species using IGDetective (Sirupurapu et al. 2022)
and Digger (Lees et al. 2024). This annotation includes 24,
23, 34, and 25 D genes in Bornean orangutan, Sumatran
orangutan, bonobo, and gorilla IGHD loci, respectively, out

of which 20, 19, 29, and 19 lie within the A-blocks of respec-
tive genomes. The number of annotated D genes within a sin-
gle A-block varies from 2 to 7, illustrating the birth/death of
D genes.

We say that a D gene in A1hum is disrupted in a given A-
block if the window PI of its alignment against this block falls
below a threshold minPI (default value 60%) or if its RSS dif-
fers from the RSS of the corresponding gene in A1hum by
more than maxDiff substitutions in heptamers and nonamers
(default value maxDiff¼ 2). Otherwise, we classify a D gene
as block-annotated.

Out of 6�24¼144 alignment windows of the annotated D
genes in A1hum, 25 were disrupted (crosses in Fig. 9), 93 were
predicted by the Primate T2T consortium/NCBI (hollow
circles that are not highlighted with color in Fig. 9), and 26
were block-annotated but missed by Primate T2T consor-
tium/NCBI annotations (hollow circles that are highlighted
with color and not marked by crosses in Fig. 9). Solid circles
that are not highlighted with color in Fig. 9 show 11 D genes
annotated by the Primate T2T consortium/NCBI that are not
orthologous/paralogous to the annotated D genes in A1hum

and thus cannot be ‘lifted’ from the constructed
block alignments.

A

B

Figure 8. Alignments of the block A1hum against blocks A2hum, A3hum, and A4hum centered at gene IGHD5-24 (A) and analysis of selective pressure in
primate IGHD loci (B). (A) The D genes within a 100 bp long window are centered in each sequence. The downstream (upstream) heptamers and
nonamers forming the Recombination Signal Sequence (RSS) are highlighted in different colors. In the example shown, the alignment between A1hum

and A2hum/A3hum/A4hum aligns the gene IGHD5-24 with D genes IGHD5-18/IGHD5-12/IGHD5-5. (B) The block-based alignments reveal the selective
pressure on D genes in primate IGH loci. Each block-annotated D gene is represented as a point (x, y) in 2D, where x represents the gene PI between this
gene and the corresponding D gene from A1hum and y represents the window PI between the 100 bp long window centered at this gene and the
corresponding window from A1hum.

GenomeDecoder 9

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf058#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf058#supplementary-data

Figure 9 illustrates that block-annotated genes reveal many
D genes missed by the state-of-the-art tools for predicting IG
genes. It is not surprising since these tools have to be very
conservative to maintain the trade-off between false positive
and false negative gene predictions. However, even with this
conservative trade-off, some D genes, represented by solid
black circles in Fig. 9, may be false positives.

3.7 Block-based analysis suggests that
immunoglobulin loci are subjected to
diversifying selection
All analyzed primate IGH loci feature a significantly elevated
percentage of SDs/TDs (�35%) compared to the average per-
centage of duplications in the primate genomes (�6%).

Moreover, our analysis of the primate IGH loci revealed consid-
erable variations in block decompositions across different pri-
mates and even within each individual primate population.

While previous studies did not provide block decomposi-
tions of the human IGH loci, they identified large SVs in these
loci using existing SV identification tools (Ebert et al. 2021,
Rodriguez et al. 2023). These studies, along with our own,
raise the question of the evolutionary benefits provided by
maintaining population-wide structural diversity in IG loci as
opposed to the highly conserved architectures of other loci.
Since this question remained unanswered, we hypothesize
that high variability of human IG loci provides a population-
wide selective advantage in mounting antibody response to
location-specific and new infections. Supplementary Note

Figure 9. Schematic visualization of the alignment of A1hum against all A-blocks in primate species along with information about D-genes located within
these A-blocks. Each of 24 A-blocks in the primate IGH loci was aligned against A1hum. An alignment of the entire A1hum block against each primate
A-block aligns each of six annotated D genes in A1hum against a short segment in this block that often reveals a putative primate D gene. Crosses
schematically show disrupted genes within A-blocks. Hollow circles that are not highlighted with color (such as all circles in A2_hum), and all solid filled
circles (such as the first circle in A1_hum and the third circle in A3_hum) show all the 23þ 20þ 19þ29þ19 annotated D genes within all A-blocks in
human, Bornean orangutan, Sumatran orangutan, bonobo, and gorilla IGH loci, respectively. Hollow circles that are not highlighted with color show the
annotated genes that were also predicted by our block-based alignment against A1hum while solid filled circles in lines 3, 4, 8, 10, 13, 20, and 25 (such as
the third circle in A3_hum) show the annotated genes that the block-based approach failed to match. The hollow circles highlighted with color (such as
the fourth circle in A4_hum, and the first circle in A1_B.orang) show the D genes predicted by our block-based approach but missed in the existing
annotations. The numbers within the hollow circles show the percent identity with the aligned D gene in A1hum.

10 Zhang et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf058#supplementary-data

S11 ‘Diversifying selection in immunoglobulin loci’ describes
this hypothesis.

4 Discussion
SDs and TDs play crucial roles in genome evolution. While
numerous studies have focused on identifying and mapping
blocks of SDs and TDs to decompose genomes, current algo-
rithms struggle with highly complex genomic regions like IG
loci. This is unfortunate since studies of SD/TD evolution
face multiple challenges, e.g. even identification of ortholo-
gous/paralogous genes in SDs/TDs remains an open problem.

The challenge in developing block decomposition algo-
rithms for highly repetitive regions also stems from the lack
of a universally accepted objective function for assessing the
quality of block decompositions. Without a clear objective
function, comparing different algorithms becomes difficult,
making downstream biological analysis a key factor in evalu-
ating each novel block decomposition tool. In this context,
we presented both GenomeDecoder and downstream analysis
of genomic architectures it generated. Specifically, we showed
that it revealed rapid birth/death of IG genes, prevalence of
reverse TDs, evidence of diversifying selection in IG loci, pre-
viously undetected IG genes, etc These findings highlight po-
tential of GenomeDecoder in advancing our understanding of
complex genomic regions.

Although GenomeDecoder is based on the same key ideas
that were implemented in DRIMM-Synteny (DBG simplifica-
tion) and Sibelia (iterative DBG simplification), our benchmark-
ing suggests that it generates more adequate representations of
genome architectures. After the genomes are decomposed into
blocks, alignment of sequences in the block alphabet becomes
much simpler than their alignment in the nucleotide alphabet,
thus addressing the difficult problem of finding orthologous/
paralogous genes in HRRs. We illustrated how block-based
alignments lead to predictions of novel primate IG genes (that
were missed by existing IG gene prediction tools) and revealed
selective pressure on IG genes. Another contribution of
GenomeDecoder is a new approach for generating non-
overlapping blocks from the de Bruijn graph and minimizing
the number of blocks for a compact representation of a genome
in the block alphabet. This compact representation is important
since over-fragmented block decompositions complicate the
downstream analysis.

Analysis of genome rearrangements often becomes unreli-
able in the case of incomplete and error-prone assemblies
(Alekseyev and Pevzner 2009). As a result, although many
mammalian genomes have been assembled in the first two
decades after completing the mouse genome project
(Waterston et al. 2002), the inference of the rearrangement
history of mammals remains an open problem. Recent
‘complete genomics’ projects have addressed this limitation
and opened a possibility to generate accurate rearrangement-
based evolutionary scenarios using complete genomes (Rhie
et al. 2021). However, such rearrangement analysis is only
possible after the inference of blocks.

One limitation of genome rearrangement tools is that they are
mainly limited to analyzing non-duplicated blocks appearing only
once in each genome (Bourque and Pevzner 2002, Alekseyev and
Pevzner 2009). Since including duplicated blocks in this analysis
faces significant challenges (Avdeyev et al. 2016), evolutionary
studies of HRRs, such as immunoglobulin loci, remained difficult.
First, it was unclear how to represent such regions in the alphabet

of blocks, and second, analyzing evolution of such regions, even af-
ter representing them in the alphabet of blocks, remains an open
algorithmic problem. GenomeDecoder addresses the first problem
and thus opens a possibility of exploring various approaches to the
second problem.

Acknowledgements
We are grateful to Lianrong Pu and Ksenia Krasheninnikova
for their help with benchmarking SDquest and halSynteny.

Supplementary data
Supplementary data are available at Bioinformatics online.

Conflict of interest: None declared.

Funding
None declared.

Data availability
All IGH, MHC, and human chromosomes have been
uploaded to https://doi.org/10.5281/zenodo.14753844.
GenomeDecoder is available at https://github.com/
ZhangZhenmiao/GenomeDecoder. The block-plot visualiza-
tion code is available at https://github.com/
IshaanSD/BlockPlot.

References
Alekseyev M, Pevzner P. Breakpoint graphs and ancestral genome

reconstructions. Genome Res 2009;19:943–57.
Avdeyev P, Jiang S, Aganezov S et al. Reconstruction of ancestral

genomes in presence of gene gain and loss. J Comput Biol 2016;
23:150–64.

Bankevich A, Bzikadze AV, Kolmogorov M et al. Multiplex de Bruijn
graphs enable genome assembly from long, high-fidelity reads. Nat
Biotechnol 2022;40:1075–81.

Bourque G, Pevzner PA. Genome-scale evolution: reconstructing gene
orders in the ancestral species. Genome Res 2002;12:26–36.

Bourque G, Pevzner PA, Tesler G. Reconstructing the genomic architec-
ture of ancestral mammals: lessons from human, mouse, and rat
genomes. Genome Res 2004;14:507–16.

Bzikadze AV, Pevzner PA. UniAligner: a parameter-free framework for
fast sequence alignment. Nat Methods 2023;20:1346–54.

Darling A, Mau B, Blattner FR et al. Mauve: multiple alignment of con-
served genomic sequence with rearrangements. Genome Res 2004;
14:1394–403.

Delehelle F, Cussat-Blanc S, Alliot JM et al. ASGART: fast and parallel
genome scale segmental duplications mapping. Bioinformatics
2018;34:2708–14.

Drillon G, Carbone A, Fischer G. SynChro: a fast and easy tool to re-
construct and visualize synteny blocks along eukaryotic chromo-
somes. PLoS One 2014;9:e92621.

Ebert P, Audano PA, Zhu Q et al. Haplotype-resolved diverse human
genomes and integrated analysis of structural variation. Science
2021;372:eabf7117.

Grabherr MG, Russell P, Meyer M et al. Genome-wide synteny through
highly sensitive sequence alignment: satsuma. Bioinformatics 2010;
26:1145–51.

Haas BJ, Delcher AL, Wortman JR et al. DAGchainer: a tool for mining
segmental genome duplications and synteny. Bioinformatics 2004;
20:3643–6.

GenomeDecoder 11

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf058#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf058#supplementary-data
https://doi.org/10.5281/zenodo.14753844
https://github.com/ZhangZhenmiao/GenomeDecoder
https://github.com/ZhangZhenmiao/GenomeDecoder
https://github.com/IshaanSD/BlockPlot
https://github.com/IshaanSD/BlockPlot

I�seri�c H, Alkan C, Hach F et al. Fast characterization of segmental du-
plication structure in multiple genome assemblies. Algorithms Mol
Biol 2022;17:4.

Jain C, Koren S, Dilthey A et al. A fast adaptive algorithm for computing
whole-genome homology maps. Bioinformatics 2018;34:i748–56.

Jiang Z, Tang H, Ventura M et al. Ancestral reconstruction of segmen-
tal duplications reveals punctuated cores of human genome evolu-
tion. Nat Genet 2007;39:1361–8.

Kent WJ, Baertsch R, Hinrichs A et al. Evolution's cauldron: duplica-
tion, deletion, and rearrangement in the mouse and human
genomes. Proc Natl Acad Sci U S A 2003;100:11484–9.

Kondrashov FA. Gene duplication as a mechanism of genomic adapta-
tion to a changing environment. Proc Biol Sci 2012;279:5048–57.

Krasheninnikova K, Diekhans M, Armstrong J et al. halSynteny: a fast,
easy-to-use conserved synteny block construction method for multi-
ple whole-genome alignments. Gigascience 2020;9:giaa047.

Lees WD, Saha S, Yaari G et al. Digger: directed annotation of immuno-
globulin and T cell receptor V, D, and J gene sequences and assem-
blies. Bioinformatics 2024;40:btae144.

Liao WW, Asri M, Ebler J et al. A draft human pangenome reference.
Nature 2023;617:312–24.

Liu D, Hunt M, Tsai IJ. Inferring synteny between genome assemblies:
a systematic evaluation. BMC Bioinformatics 2018;19:26.

Ma J, Zhang L, Suh BB et al. Reconstructing contiguous regions of an
ancestral genome. Genome Res 2006;16:1557–65.

Minkin S, Patel A, Kolmogorov M et al. Sibelia: a scalable and compre-
hensive synteny block generation tool for closely related microbial
genomes. Lecture Notes in Computer Science, 8126 Proceedings of
Workshop on Algorithms in Bioinformatics (WABI 2013). Vol.
8126, 2013, 215–29.

Numanagi�c I, G€okkaya A, Zhang L et al. Fast characterization of seg-
mental duplications in genome assemblies. Bioinformatics 2018;
34:i706–14.

Nurk S, Koren S, Rhie A et al. The complete sequence of a human ge-
nome. Science 2022;376:44–53.

Paten B, Herrero J, Beal K et al. Enredo and pecan: genome-wide mam-
malian consistency-based multiple alignment with paralogs.
Genome Res 2008;18:1814–28.

Peng Q, Pevzner PA, Tesler G. The fragile breakage versus random
breakage models of chromosome evolution. PLoS Comput Biol 2006;
2:e14.

Pevzner P, Tesler G. Genome rearrangements in mammalian evolution:
lessons from human and mouse genomes. Genome Res 2003;
13:37–45.

Pevzner PA, Tang H, Tesler G. De novo repeat classification and frag-
ment assembly. Genome Res 2004;14:1786–96.

Pham SK, Pevzner PA. DRIMM-Synteny: decomposing genomes into evo-
lutionary conserved segments. Bioinformatics 2010;26:2509–16.

Pu L, Lin Y, Pevzner PA. Detection and analysis of ancient segmental
duplications in mammalian genomes. Genome Res 2018;28:901–9.

Rodriguez OL, Safonova Y, Silver CA et al. Genetic variation in the im-
munoglobulin heavy chain locus shapes the human antibody reper-
toire. Nat Commun 2023;14:4419.

Rhie A, McCarthy SA, Fedrigo O et al. Towards complete and error-
free genome assemblies of all vertebrate species. Nature 2021;
592:737–46.

Safonova Y, Pevzner PA. V (DD) J recombination is an important and
evolutionarily conserved mechanism for generating antibodies with
unusually long CDR3s. Genome Res 2020;30:1547–58.

Sankoff D. The signal in the genomes. PLoS Comput Biol 2006;2:e35.
Sirupurapu V, Safonova Y, Pevzner PA. Gene prediction in the immu-

noglobulin loci. Genome Res 2022;32:1152–69.
Sosic M, Sikic M. Edlib: a C/Cþþ library for fast, exact sequence align-

ment using edit distance. Bioinformatics 2017;33:1394–5.
Waterston RH, Lindblad-Toh K, Birney E et al.; Mouse Genome

Sequencing Consortium. Initial sequencing and comparative analy-
sis of the mouse genome. Nature 2002;420:520–62.

Watson CT, Glanville J, Marasco WA. The individual and population
genetics of antibody immunity. Trends Immunol 2017;38:459–70.

Yoo DA et al. Complete sequencing of ape genomes. biorxiv
2024. 07.31.605654.

© The Author(s) 2025. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Bioinformatics, 2025, 41, 1–12
https://doi.org/10.1093/bioinformatics/btaf058
Original Paper

12 Zhang et al.

	Active Content List
	1 Introduction
	2 Materials and methods
	3 Results
	4 Discussion
	Acknowledgements
	Supplementary data
	Funding
	Data availability
	References

