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Abstract: We develop a convenient framework for characterizing multipartite

entanglement in composite systems, based on relations between entropies of vari-

ous subsystems. This continues the program initiated in [1], of using holography

to effectively recast the geometric problem into an algebraic one. We prove that,

for an arbitrary number of parties, our procedure identifies a finite set of entropic

information quantities that we conveniently represent geometrically in the form of

an arrangement of hyperplanes. This leads us to define the holographic entropy ar-

rangement, whose algebraic and combinatorial aspects we explore in detail. Using

the framework, we derive three new information quantities for four parties, as well

as a new infinite family for any number of parties. A natural construct from the ar-

rangement is the holographic entropy polyhedron which captures holographic entropy

inequalities describing the physically allowed region of entropy space. We illustrate

how to obtain the polyhedron by winnowing down the arrangement through a sieve

to pick out candidate sign-definite information quantities. Comparing the polyhe-

dron with the holographic entropy cone, we find perfect agreement for 4 parties

and corroborating evidence for the conjectured 5-party entropy cone. We work with

explicit configurations in arbitrary (time-dependent) states leading to both simple

derivations and an intuitive picture of the entanglement pattern.
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1 Introduction

Developing a general theory of multipartite correlations for arbitrary quantum states

is an extremely interesting, but hard, problem. In general, little is known even for

very simple quantum systems.1 Nevertheless, in specific contexts, there are certain

useful measures which appear to capture some kind of multipartite correlation (at

least intuitively).

A paradigmatic example is the tripartite information, which has found many

applications in areas of quantum physics.2 For instance, in condensed matter theory

it can characterize topological phases [6, 7]. In holographic field theories, it is asso-

ciated to an inequality (the monogamy of mutual information [8], or MMI for short)

which is often believed to characterize geometric states, i.e., states of holographic

CFTs dual to classical geometries. Moreover, it has also been argued to provide a

useful measure for detecting quantum chaos [9] probed by out-of-time-order corre-

lators (averaged over the set of local operators). Its ubiquity lends support to the

thesis that other measures of mutipartite correlations could likewise provide a useful

diagnostic for interesting states and dynamics in QFTs. Specifically, in the context

of holography, they might be useful tools to uncover some features of the mechanism

by which the bulk theory is encoded in the boundary [10, 11], and perhaps even a

mechanism whereby the bulk arises in the first place.

The first step in developing a theory of multipartite correlations is to specify

what type of correlations one is interested in. From a purely quantum information

theoretic standpoint, this is typically done from an operational perspective – more

precisely, from the point of view of resource theories. In a nutshell, one first specifies

what states and operations are available ‘for free’, which in turn defines what the

‘precious’ resources are. Perhaps the best known example is the resource theory of

quantum entanglement [12], where the allowed operations are called LOCC (local

operation and classical communication).3 In this case, the states which are available

for free are the ones which can be prepared using only LOCC operations – they

are the so called ‘separable states’. States which are not separable, the ‘entangled

states’, can then be thought of as a resource for various tasks. In principle, given an

N-partite Hilbert space, one can classify states (or more generally density matrices)

into equivalence classes, by declaring states to be equivalent if they can be mapped

into each other by LOCC operations. The problem with this approach is that even for

pure states of small quantum systems, one finds an under-determined classification

problem; eg., there are infinitely many classes for pure states of four qubits [13].4

1 For a recent introduction to the subject see [2], more extended reviews are [3, 4].
2 It is also related to the idea of interaction information which is a generalization of mutual

information to the three-party setting, first discussed in [5].
3 This means that the various parties can perform arbitrary operations on their share of the

system and are allowed to communicate classically with each other.
4 More precisely, the classes defined in [13] were obtained by considering an even weaker re-
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It therefore seems quite evident that this approach has inherent limitations in

QFTs, as both the infinitude of the Hilbert space and the unclarity in the nature

of LOCCs present obstacles. To make progress, we can either try to access further

information contained in correlation functions of local operators, or better yet, come

up with interesting quantum information inspired measures. In particular, we can

specify a-priori criteria for a reasonable measure of correlations and attempt to iden-

tify quantities that satisfy them. This can be done in a restricted context to begin

with. However, once obtained, these quantities can be examined for their utility

more broadly. This philosophy was exploited in our recent framework [1] where we

used the holographic setting to propose new information quantities. The specifics of

the construction relied on the tools of holographic entanglement entropy using the

RT and HRT proposals [14, 15],5 which resulted in measures given by specific linear

combinations of entropies.

To identify potentially useful measures, two conditions were required in [1]. The

first requirement was that it should be possible for any reasonable quantity to van-

ish, so that one can examine situations in which a particular type of correlations is

absent. This is hard to do in general QFTs, since not only does the entanglement

entropy itself typically diverge, but even the finite quantities such as mutual infor-

mation constructed therefrom typically remain non-vanishing — in other words, it

is hard to fully decorrelate spatially-separated regions in a connected QFT. On the

other hand, in the more restricted context of holographic CFTs, we can ask for infor-

mation quantities to vanish, in a regulator independent manner, at least to leading

order in the planar (large N or equivalently large central charge) expansion. Quan-

tities which are in this sense well behaved, and can vanish, are said to be faithful.

However, as one might easily guess, faithfulness is a very weak requirement and does

not suffice to extract a finite set of information quantities. For example, arbitrary

linear combinations of instances of the mutual information, evaluated for various

pairs of subsystems, are all faithful. The second, more powerful, requirement is a

notion of independence for the various measures. Heuristically, different information

quantities measure different kinds of correlations, so they should vanish indepen-

dently from each other, thus allowing us to isolate circumstances where only certain

subsets of correlations are present. Faithful quantities which also satisfy this notion

of independence are said to be primitive.

Using a partial reformulation of the RT/HRT prescriptions, in terms of what

we termed proto-entropy,6 the conditions of faithfulness and primitivity can then

quirement for equivalence, wherein one only requires that the conversion is achieved with some

probability and not necessarily with certainty.
5 Namely, the entanglement entropy of a given spatial region in a geometric state of a holographic

CFT is determined by the quarter-area of a smallest area extremal surface homologous to that

region; for reviews see [16–18].
6 Essentially one thinks of the entropy of a region as being represented by a bulk extremal surface
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usefully be converted into algebraic relations. This allowed us to rephrase the search

for the primitive information quantities into a combinatorial problem for connected

components of bulk extremal surfaces. In particular, the search reduces to a scan

over possible field theory configurations. The procedure is furthermore simplified

by a sort of ‘gauge fixing’, allowing one to restrict attention to the vacuum of a

holographic CFT3 on R2,1.

The construction was exemplified for the case of three parties, and provides the

first derivation of the tripartite information using only holographic arguments.7 As

the number of parties N increases, the situation gets much more intricate, and in

general it is an open question how to find all the primitive quantities. A first step

in this direction however was already presented in [1]. Under a certain restriction

on the topology of the allowed field theory configurations, one can show that the

problem simplifies dramatically, and one can in fact find all the primitive quantities

for an arbitrary number of parties. This result, which we refer to as the In-theorem,

shows that under such topological restriction, the primitive quantities correspond to

the natural n-party generalization of the mutual and tripartite information.

One motivation for the present work is to take a further step towards the deriva-

tion of new information quantities, going beyond the result of the In-theorem. While

one might suspect that the topological restriction on field theory configurations that

led to the In-theorem was quite special, and that it should be easy to find other con-

figurations that generate new quantities, this is far from true. A remarkable property

of the framework of [1] is the relatively small number of quantities that get generated

as the number of parties N increases. While the present work will still mostly focus

on a relatively small N, we will show how one is forced to consider rather fine-tuned

classes of configurations to circumvent the result of the In-theorem and generate new

information quantities. By considering a carefully chosen set of building blocks, we

will explicitly derive three new information quantities for four parties and a new

infinite family containing a new quantity for each value of N.

Although here we will not yet explore the potential applications of these quan-

tities, either in holography or more generally, we will prove that all the primitive

quantities found so far are well defined measures of correlations in arbitrary QFTs,

since they, like the mutual information, are finite and independent of any regulat-

ing scheme (when evaluated on configurations of non-adjoining regions). As we will

see, this fact is related to a simple algebraic property of the information quantities,

usually referred to as balance. Furthermore, all the information quantities that we

find via our construction for N ≥ 3 satisfy a natural generalization of this property,

that we will call superbalance, which guarantees that the new quantities are finite

and scheme-independent in an arbitrary QFT even more generally, when evaluated

itself, rather than by its area.
7 The procedure also generates the mutual information.
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on certain configurations where regions are adjoining.

As explained in [1], each primitive quantity can naturally be associated to a

hyperplane in entropy space. The set of all primitive quantities for a given number of

parties is then an arrangement of hyperplanes – the holographic entropy arrangement.

Part of the present work is dedicated to a first exploration of the structure of this

arrangement. We will highlight its fundamental structural properties, in particular

its symmetries with respect to various permutations, and explain how arrangements

defined for a different number of parties can be related using our technology. A

natural expectation is that this geometric representation of the set of such correlation

measures which emerges from our framework will prove useful to characterize the

entanglement structure of geometric states in holography.

It is important to note that we are not a-priori requiring any sign-definiteness for

our primitive quantities. While this would be a standard requirement for any correla-

tion measure, there are advantages to our sign-agnostic stance. In particular, being

maximally inclusive allows for a fuller and potentially more natural characteriza-

tion of the entanglement structure. Furthermore, it may happen that sign-indefinite

quantities become sign-definite under further restrictions. For example, the tripar-

tite information I3 is not generally sign-definite for arbitrary quantum states, but

ends up being so for geometric states in holography (MMI), to leading order in 1/N .

Therefore, if one specializes to the holographic context, and restricts to the limit

N → ∞, a natural question arises: Which primitive quantities, like I3, have a defi-

nite sign? This will lead us to introduce a new object, based on the arrangement, that

we will call the holographic entropy polyhedron, drawing a clear connection between

our framework and that of the holographic entropy cone [19].

In [19] it was shown that for three and four parties (N = 3, 4), there are no

holographic entropy inequalities other than MMI; new inequalities have been found

for five (or more) parties. These new inequalities were the result of a search algorithm

which unfortunately does not provide a systematic way to derive new ones, nor does

it suggest an interpretation for their significance in the holographic context. An

interesting suggestion in this direction was recently put forth in [20], which used

arguments based on the bit-thread interpretation [21] of the RT formula to conjecture

a particular decomposition of geometric states.

While we will not provide any interpretation of the holographic inequalities,

we show that our framework has the potential to derive new ones, for any number

of parties. Specifically, we develop an algorithm, called the sieve, which can be

used to extract, from a list of primitive quantities, a subset of candidates for new

inequalities. More generally, we will show how this procedure can be employed to

construct a candidate for the holographic entropy polyhedron. We will first exemplify

the construction in the simple case of four parties, showing that the outcome of the

algorithm is precisely the 4-party holographic entropy cone derived in [19]. For the

more complicated case of five parties, we will not show how to derive the information
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quantities associated to the new inequalities of [19] directly, and remain agnostic

about whether they are indeed primitive (although we suspect that this is indeed the

case). However, a useful property of the sieve is that it can be applied more abstractly,

even without the explicit knowledge of a set of possible candidates. Running this

procedure for N = 5 we are able to derive all the new inequalities of [19] with

remarkable simplicity.

The holographic entropy cone of [19] was only obtained for static or time-

reflection symmetric situations. For strong subadditivity (SSA) and MMI, using

the maximin construction, [22] gives a way to generalize the original proofs of [23]

and [8], respectively. However, [24] argues that the techniques of [22] cannot be

employed for the proof of the five (or more) party inequalities of [19] in dynamical

situations.8 A rigorous proof of the inequalities of [19], and possibly new inequalities

for N ≥ 5 which can emerge from our framework [27], will therefore require some new

technology (perhaps based on bit-threads, as suggested by the new proofs of MMI

given in [20, 28]). However, the fact that the notion of primitive quantities, and

therefore the full holographic entropy arrangement, is insensitive to the distinction

between static and dynamical spacetimes, lends support to the intuition that the RT

and HRT holographic entropy cones may in fact coincide.

The plan of the paper is as follows. In §2 we briefly review the definitions

and the technology of the framework introduced in [1]. In §3 we introduce the

holographic entropy arrangement, investigate some of its general properties, and

introduce a general notation to catalog the information quantities for an arbitrary

number of parties. In §4 we discuss the relation between algebraic properties of the

information quantities, like balance and superbalance, their properties as measures of

correlations in arbitrary QFT, and certain topological properties of the configurations

from which they are generated. §5 then focuses on how our technology can be

employed to investigate the relation between arrangements obtained for different

number of parties. The derivation of new information quantities for four parties, as

well as the new infinite family, is covered in §6. The holographic entropy polyhedron

is defined in §7, where we also present the sieve for the N = 4, 5 cases and discuss its

possible generalizations. We conclude in §8 with a discussion of the results and some

comments on multiple future directions. A short table summarizing our notation

and vocabulary can found overleaf in Table 1.

8 Recently, [25] have advanced arguments in favour of the applicability of the holographic entropy

cone in dynamical settings. Specifically they show for certain configurations in a collapsing black

hole geometry, the inequalities continue to hold at late times. One can argue that this restriction

can be lifted in the case of two-dimensional conformal field theories with AdS3 holographic duals

[26].
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Number of colors N The total number of parties that defines the set-up

Region Ai
` A connected region labeled by a color `

Monochromatic subsystem A` The union of all the regions with the same color `

Configuration CN A collection of N monochromatic subsystem

Polychromatic subsystem AI A collection (union) of monochromatic subsystem

Entropy vector S The vector of entropies of all polychromatic subsystem

Information quantity Q A linear combination of entropies with QI ∈ Z

Rank R Min number of colors required to define Q̃

Abstract quantity Q̃R An information quantity with unspecified subsystem

Standard isomer Q̃e
R A form of Q̃R used to construct the isomers

Isomers Q̃R[σQ] Forms of Q̃R obtained from Q̃e
R by permutations

Instance QR A realizations of Q̃R in a N-party set-up

Character ~n The number of colors merged in each slot of QR

Standard instance An instance of QR[σQ] with the first n colors from N

Natural instance An instance of Q̃R in a set-up with N = R

Uplifting An instance of Q̃R in a set-up with N > R

Trivial uplifting An uplifting of Q̃R with total character n = R

N-orbit Equiv. class of instances under the action of SymN

Purification (operator) P` Purification transformation w.r.t. the color `

Purification (quantity) Q̃
[i]
R The result of P`Q̃R when different from Q̃R

(N + 1)-orbit Equiv. class of instances under the action of SymN+1

Can. build. block C◦N[I] Fundamental constituent of CN that generates In

Canonical constraint Fcan
I Characteristic constraint associated to C◦N[I]

Uncorrelated union t Fundamental operation to combine configurations

In-basis {IIn} Collection of all IIn at given N, with I1 = S`

Locally purified c.b.b. C}
N [`(I)] Configuration derived from C◦N[I] and used for the sieve

Color-reducing scheme R[`|I] Specification of colors to be deleted/merged in Q

Color-deleting scheme R[`|·] Specification of colors to be deleted in Q

Color-merging scheme R[·|I] Specification of colors to be merged in Q

R-balanced Q In the In-basis Q only contains terms with n > R

Balanced Q A quantity Q which is 1-balanced

Superbalanced Q A quantity Q which is 2-balanced

Table 1: A quick reference table summarizing the terminology and notation used.

2 Review of the framework

To set the stage for our discussion, we first briefly review the basic aspects of the

framework introduced in [1]. First in §2.1 we re-motivate informally the idea of
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faithfulness and primitivity for information quantities, quite generally in QFTs. This

differs in substance from the original arguments of [1] where the motivation was in

part based on the holographic entropy cone of [19].9 Subsequently, we introduce

in §2.2 the notion of proto-entropy, along with a formulation of the faithfulness

and primitivity requirements for entropic information quantities in the holographic

context. In §2.3 we explain our algorithm for scanning over configurations of spatial

regions to find primitive information quantities. Finally, in §2.4 we review the In-

theorem, the central result of [1]. To this end, we introduce the key concepts of

canonical constraints, canonical building blocks, and uncorrelated union, which will

be used extensively in the sequel.

2.1 Measures of multipartite correlations in QFT

Our main goal is to find entropic information quantities that satisfy certain ‘nice

properties’, rendering them suitable as good candidates for measures of multipartite

correlations. Though our eventual focus will be within the holographic context, the

quantities nevertheless may be employed more broadly in QFTs. We will therefore

begin with motivating features that are desirable for such measures in QFTs, and

only subsequently specialize to holographic field theories.

To begin with, consider a pure state |ψΣ〉 of an arbitrary QFT on a Cauchy slice

Σ of the (fixed) background spacetime on which the field theory lives. A subsystem

A =
⋃
iAi is defined as the union of an arbitrary number of disjoint10 regions Ai on

Σ. A region Ai, denoted by an upper index, is defined as a connected subset of Σ. A

crucial parameter in our construction will be the number of parties N which specifies

the set-up. Specifically, on Σ, we consider a configuration CN of N subsystems as

defined above, labeled by A`
CN =

{
A` =

⋃
i

Ai`
}
, ` ∈ {1, 2, ...,N} def

= [N] . (2.1)

The subsystems are arbitrary, though by convention we will take them to be non-

overlapping.11 We will refer to the lower index ` as the color label (to be distin-

guished from the upper index labeling the regions) and to a single subsystem A` as a

monochromatic subsystem.12 The union of a collection of monochromatic subsystems

constitutes a polychromatic subsystem and will be denoted by

AI
def
=
⋃
`∈I

A` (2.2)

9 Readers familiar with our earlier discussion might find this new perspective and motivation

interesting to peruse.
10 We use the standard definition of disjoint to disallow any intersection (including those of higher

co-dimension), i.e., Ai ∩ Aj = ∅ ∀ i, j.
11 That is, for any pair of subsystemsA`1 and A`2 , we demand that their interiors do not intersect;

for closed subsystems we can equivalently demand A`1 ∩ A`2 ⊆ ∂A`1 ∩ ∂A`2 .
12 When we work with small values of N ≤ 5 we will revert to labeling our monochromatic

subsystems by A,B, C, etc.
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where I is a polychromatic index. More precisely

I ∈∆∗([N]) ≡∆([N]) \ ∅ (2.3)

where ∆([N]) is the power set of [N]. In other words, we think of I as taking values

over collections of color indices, I = `1, `2, . . . , `1`2, . . .. The complement O of the

union of all monochromatic subsystems will be called the purifier, which we take to

be uncolored.

Integrating out the degrees of freedom on the complement AcI ≡ Σ\AI, the state

of the field theory on the subsystem AI is described by the reduced density matrix

ρAI
= TrAc

I
(|ψΣ〉 〈ψΣ|) . (2.4)

The (regulated) von Neumann entropy of ρAI
will be denoted by Sε(ρAI

), where ε

is a UV regulator introduced to make the entropy finite. For a state |ψΣ〉 and a

configuration CN we can then consider the collection of the regulated entropies of all

subsystems (mono and polychromatic) and arrange them into a vector

Sε(CN, ψΣ) = {Sε(ρAI
), I ∈∆∗([N])} ∈ RD

+ (2.5)

which we will call the entropy vector of this particular pair of configuration and state

(CN, ψΣ). The space RD
+, where D = 2N−1, will be referred to as the N-party entropy

space.

In this N-party setting, we define information quantities to be linear combinations

of the components of the entropy vector, i.e., they have the general form

Q =
∑
I

QI SI, QI ∈ R . (2.6)

For a fixed value of N, we would like to identify a finite set {Q}N, which in general

can (and in fact will) depend on N, of quantities of the form (2.6), which have

the potential to be useful measures of multipartite correlations. This will entail

the need to impose some restrictions on the coefficients QI so that elements of {Q}N
satisfy a list of physically desired properties. We now briefly motivate four particular

properties we may wish to impose; of these, three we will require to be upheld, but

the fourth one (sign-definiteness) we will not a-priori impose in our construction.

(1). Finiteness and scheme-independence: As mentioned in §1, it is a well

known fact that von Neumann entropies associated with spatial regions of a field

theory in any given state are generically meaningless, as they suffer from short-

distance divergences, which cannot be regulated in a scheme-independent manner.

This is not a fundamental issue, for we are not interested in the entropies themselves,

but rather in linear combinations thereof. This motivates our first requirement: to

have a well defined measure, we need an appropriate cancellation of divergences, so
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that the quantity is finite and independent of how individual entropies are being

regulated.

The canonical example is the mutual information13 between two disjoint spatial

regions A and B,

I2(A : B) = S(ρA) + S(ρB)− S(ρAB) . (2.7)

For a choice of configuration and state (C2, ψΣ), the entropy vector is

Sε(C2, ψΣ) = {Sε(ρA), Sε(ρB), Sε(ρAB)} ∈ R3
+ . (2.8)

The key issue is that if we change the regulator ε, the values of the various entropies

will change, even if we hold (C2, ψΣ) fixed. Therefore, a single pair (C2, ψΣ) cannot

be unambiguously associated to a single vector in R3
+, but only to a collection of

infinitely many vectors, one for every choice of ε. This should be contrasted with

the case of finite dimensional Hilbert spaces, where a choice of state and subsystems

unambiguously corresponds to a single vector.14 However, despite these ambiguities

in the entropy vector, taking the limit where the regulator disappears, we obtain

lim
ε→0

[Sε(ρA) + Sε(ρB)− Sε(ρAB)] = I2(C2, ψΣ) . (2.9)

The actual value of the mutual information, for this particular choice of configuration

and state, I2(C2, ψΣ), is finite and independent of the regulator.

There is a caveat, however, to the example that we just discussed. The mutual

information is finite provided that the two regions A and B are disjoint – otherwise

it would diverge. This is the general behavior of information quantities which are

balanced, by which we mean that for every color `, the sum of the coefficients QI

of the terms with ` ∈ I vanishes.15 As we will discuss in more detail in §4.3, all

balanced information quantities are finite and scheme-independent when evaluated

on configurations where all regions are disjoint. On the other hand, they can diverge

in particular situations where some of the regions are adjoining.

However, some information quantities may be infinite even in situations where

all the regions are disjoint. In general it is not possible, without making further

assumptions, to specify a set of quantities that are finite and scheme-independent

in QFT for an arbitrary choice of regions on which these quantities are supposed to

13 For our purposes here we consider the common definition of the mutual information in terms of

von Neumann entropies. However, the fact that the mutual information is a physically meaningful

quantity is related to the fact that it can also be defined, perhaps more fundamentally, using relative

entropy.
14 In fact, even for infinite-dimensional Hilbert space, there can be special types of configurations

for which the entropy vector remains unambiguous. In particular, this happens if one considers

certain entangled states of multiple copies of a given field theory and the entire Σ (of a single field

theory) as a subsystem, like for instance in [19].
15 Later on, we will also introduce the notion of superbalanced which refers to the quantity

remaining balanced under certain natural operations – see §4.2.
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be evaluated. In the language of ‘localization’ of entropy vectors described above,

this fact has to be interpreted as a partial indeterminacy which cannot be fully

resolved. Therefore in identifying a set of quantities {Q}N, we should require that

these quantities are finite and scheme-independent at least for a reasonable class of

configurations. Nevertheless, we will find below that the requisite reasonable class is

in fact quite generic and robust.

(2). Vanishing in absence of correlations: If an information quantity Q is sup-

posed to measure a particular kind of correlation, one obvious property to require is

that it should vanish when such correlations are absent. Therefore, for each quantity

in the set {Q}N that one would like to identify, there should exist at least one choice

of (CN, ψΣ) such that Q(CN, ψΣ) = 0. This requirement is however overly restrictive

for a generic QFT, as already presaged in the Introduction. To motivate how to

interpret this condition more usefully, consider again the mutual information – as we

increase the separation between the subsystems A and B, the mutual information

will decrease, but it never vanishes exactly. Therefore, it is more appropriate to

enforce a weaker requirement that it can be made smaller than some threshold value

chosen, i.e., Q(C, ψΣ) � 1. Note that while I2(C2, ψΣ) = 0 is never really attained,

the statement of vanishing mutual information would naively be interpretable as a

factorization of the density matrix.16 For the information quantities we are after, we

can a-posteriori investigate the nature of correlations they measure, by examining

configurations where they are almost absent.

In the following, the information quantities which are scheme-independent and

can vanish, at least approximately, for some choice of state and configuration, will

be said to be faithful.

(3). Independent measures of correlations: The faithfulness requirement is

by itself very weak and does not allow for extraction of a finite set of information

quantities. To see this, consider a 3-party set-up and the following instances of the

mutual information: I2(A : B) and I2(A : C), each of which is faithful as defined

above. We can use these quantities to construct an infinite family of faithful quan-

tities; for example, for all λ ∈ R+,

Q(λ) = I2(A : B) + λ I2(A : C) . (2.10)

Hence to identify a set of useful measures, one has to impose a more stringent

requirement. The one which we employ is a notion of independence among the various

information quantities. Intuitively, if different information quantities are to measure

different types of correlations, they should be able vanish independently, depending

on presence/absence of said correlations. This requirement rules out Q(λ) which can

16 This statement is predicated on assuming a factorization of the Hilbert space, which strictly-

speaking does not hold in QFTs.

– 11 –



be seen by noting that each term in the sum is non-negative,17 so it can only vanish

when both terms in the sum do.

As in the case of the faithfulness condition, this notion of independence likewise

should be understood to be approximate in a generic QFT, and can be phrased as

follows. For any quantity Q in the set {Q}N, there should be at least one choice of

state and configuration (CN, ψΣ) such that Q(CN, ψΣ) � 1 while Q′(CN, ψΣ) ∼ o(1)

for every other Q′ 6= Q in {Q}N. Faithful information quantities that satisfy this

condition will be said to be primitive.

(4). Sign-definiteness: While conventional measures are usually defined to be

non-negative, we will not a-priori require sign-definiteness for constructing informa-

tion quantities. Such a requirement would be too restrictive; e.g., it would rule out,

in the case of three parties, the tripartite information

I3(A : B : C) = S(ρA)+S(ρB)+S(ρC)−S(ρAB)−S(ρAC)−S(ρBC)+S(ρABC) (2.11)

which nevertheless has useful applications in quantum field theory [6, 9]. More

generally, without making any restriction on the class of theories and/or states under

consideration, {Q}N would simply correspond to the set of information quantities

associated to the inequalities which specify the quantum entropy cone [29], for which

little is known for four or more parties.

On the other hand, in a more restricted scenario, certain quantities in fact do

have a definite sign. An important example is the class of geometric states of holo-

graphic field theories for which, in the N →∞ limit, certain information quantities

satisfy the holographic inequalities of [8, 19]. While this is an interesting context in

its own right, which we further explore in §7, even in holography the a priori require-

ment of sign-definiteness might be too restrictive and therefore could obfuscate the

correct interpretation of these inequalities. For instance, the inclusion of 1/N correc-

tions, which would require relaxing the sign-definiteness, may be necessary to extract

the true physical content. The fact that certain quantities, perhaps only a subset of a

larger {Q}N, end up having a definite sign in the N →∞ limit, could be interpreted

as a signal that other information quantities, which do not appear in {Q}N, do not

measure independent forms of correlations, in the sense discussed above (see also §8).

Ideally, one would like to find, for any given N, all the primitive quantities. How-

ever, a-priori it is unclear whether a universal answer to this question even exists.

Namely, whether for any given N there exists a set {Q} which satisfies the above

properties for all QFTs, and if so, how to identify them without making further

assumptions. We will therefore tackle the problem in the case of holographic field

17 Non-negativity of mutual information is a universal inequality known as subadditivity (SA) of

the von Neumann entropy.
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theories, where certain simplifications allow us to make inroads. It is an indepen-

dent question whether the quantities we extract thus, find further utility beyond

the holographic context (see §8 for further comments). In this regard, we find the

prototypical example of the tripartite information rather encouraging.

2.2 The holographic set-up: proto-entropy, faithfulness and primitivity

To extract information quantities satisfying the requirements discussed in §2.1 we

now restrict attention to the special class of holographic QFTs, where the previous

notions of faithfulness and primitivity can be phrased as precise algebraic constraints.

Our focus will be on states within the code subspace, where the entropies can be

associated with geometric objects. This enables us to make progress for the reasons

given in [1], reviewed below.

Specifically, we consider an asymptotically AdS manifoldM of arbitrary dimen-

sion, with M disjoint causally disconnected boundaries,18 ∂M =
⋃M
m=1 ∂Mm. The

bulk dynamics is dual to the time evolution of the tensor product CFT⊗M of multi-

ple copies of a holographic CFT living on ∂M. The state of the field theories on a

Cauchy slice19 Σ of ∂M is a pure state |ψΣ〉. The monochromatic and polychromatic

subsystems are now simply a collection of regions, A` and AI respectively, on Σ.

The entropy of a subsystem AI (either mono or polychromatic) is given in such a

class of geometric states by the RT/HRT prescriptions in terms of the area of a bulk

extremal surface EAI
homologous to AI (and therefore anchored to the entangling

surface ∂AI =
⋃
j ∂A

j
I) in Planck units, viz.,

Sε(ρAI
) =

Areaε(EAI
)

4GN

. (2.12)

We have made explicit the fact that the area of EAI
is infinite – to obtain a finite

value one has to introduce a cut-off surface which truncates the geometry M. This

corresponds to introducing a regulator ε in the field theory as discussed before. We

will for the most part work to leading order in the planar, large N approximation

and relegate a discussion of subleading 1/N corrections [30] to §8.

Special features of the holographic set-up are easily illustrated by considering

mutual information. Consider the vacuum of a (1 + 1)-dimensional holographic CFT

and take two subsystems A and B. When the distance between them is sufficiently

small (cf. Fig. 1a), the mutual information is non-vanishing as in any QFT. The

actual value is regulator independent in the limit ε(x) → 0, reproducing (2.9). Of

course, for finite ε(x), the value will depend on this function. However, for larger

18 We specify this general setup merely to indicate that we are not restricted to a single boundary;

however we will not actually need to evoke multiple boundaries in anything that follows.
19 To generalize the notion of Cauchy slice to multiple disconnected (boundary) spacetime com-

ponents ∂Mi, we simply take a collection of Cauchy slices (one for each component), such that

initial data on the full collection determines the evolution throughout the entire ∂M.
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A Bx
ε

ε′
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(a) Mutual information is non-vanishing for small x.

A Bx
ε

ε′

ε′′

(b) Mutual information vanishes for large x.

Figure 1: A configuration (top) where the mutual information does not vanish. When the subsystems

are sufficiently separated (bottom), the minimal surface homologous to AB is the union of the minimal

surfaces homologous to A and B individually. Figure taken from [1] for illustration.

separations we have an interesting difference: past a certain threshold the bulk sur-

face which computes the entropy of AB undergoes a phase transition [31], and the

mutual information vanishes exactly (see Fig. 1b). Consequently, something remark-

able happens to the regulator dependence. Since the surfaces cancel, the regulator

dependence of the entropies also cancels explicitly, even before taking the limit, viz.,

Sε(x)(ρA) + Sε(x)(ρB)− Sε(x)(ρAB) = 0 , (2.13)

for all ‘reasonable’ choices of ε(x).

A few comments are in order. The cancellation between surfaces is necessary for

I2(C2, ψΣ) = 0 and only happens to leading order in the large N limit. More generally,

any information quantity (2.6) can likewise vanish when the connected components of

extremal surfaces which compute the various entropies mutually cancel. This implies

that the precise values of the areas of the extremal surfaces are irrelevant. Since it

is the computation of areas that requires a regulator, by focusing on the vanishing

locus of Q for some (C, ψΣ), we can isolate faithful quantities. This is the motivation

behind the concept of the “proto-entropy” which we now introduce.

To keep track of the connectivity of an extremal surface EAI
computing the

entropy of a subsystem AI, we rewrite (2.12) in terms connected codimension-2 bulk

surfaces, ωµ, viz.,

EAI
=
⋃
µ

ωµ , Sε(ρAI
) =

1

4GN

∑
µ

Areaε(ω
µ) . (2.14)
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The proto-entropy of a subsystem AI is then defined as the following formal linear

combination of connected bulk extremal surfaces

SI =
∑
µ

ωµ . (2.15)

There is no regulator ε-dependence as we consider surfaces in their entirety, and hence

also no need to keep track of normalization. We will refer to the proto-entropy which

remains a functional of the reduced density matrix, as SI, while actual entropies

will have manifest regulator dependence (e.g., Sε(ρAI
)). Henceforth, we will focus

exclusively on the proto-entropy, and often colloquially conflate it with entropy for

simplicity.

Using the notion of proto-entropy we can correspondingly generalize the entropy

vector in a natural way

S(CN, ψΣ) = {SI, I ∈∆∗([N])} . (2.16)

For each of the subsystems AI, we can build the list ΩI =
⋃
µ[I] ω

µ[I] of all the

connected bulk surfaces ωµ[I] which enter in the computation of the entropy SI.
20 The

union of all the sets ΩI, for all I, is a finite set Ω(CN, ψΣ), completely determined by

the state and the choice of configuration. We then use Ω(CN, ψΣ) as a basis for the

construction of an abelian free group E(CN, ψΣ), which is the space of formal integer

linear combinations of the elements of Ω(CN, ψΣ), and contains the zero element 0E

(i.e., no surface).

We are interested in information theoretic quantities Q which are linear combi-

nations of entropies, as in (2.6). If we replace the entropy vector Sε(CN, ψΣ) with

the one based on the proto-entropy S(CN, ψΣ), an expression like (2.6) is an element

of E(CN, ψΣ) provided the each coefficient QI of the entropy SI (viewed as a basis

element of an abstract vector space), is rational. We therefore restrict the space of

information quantities of interest to the following21

Q =
∑
I

QI SI , QI ∈ Q . (2.17)

For a fixed state ψΣ, we say the configuration CN generates the quantity Q if

Q(S(CN, ψΣ)) = 0E.

We are now in a position to introduce the precise definitions for faithful and

primitive information quantities.

20 µ[I] is a shorthand to denote the set of bulk surfaces which are associated with a particular

polychromatic subsystem AI.
21 Note that the coefficients QI are taken to be rationals rather than integers as we are insensitive

to the overall normalization of the information quantities. With this change we also have a natural

vector space of information quantities, which we would not if QI ∈ Z.
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Definition 1. In an N-partite holographic setting, an entropic information quantity

Q is faithful if there exists at least one pair (CN, ψΣ) such that Q(S(CN, ψΣ)) = 0E.

Definition 2. In an N-partite holographic setting, an entropic information quantity

Q is primitive if there exists at least one pair (CN, ψΣ) such that Q′(S(CN, ψΣ)) = 0E

if and only if Q′ = λQ for λ 6= 0.

In other words, for any faithful quantity there exists a configuration and a state

on which the surfaces all cancel identically, while for any primitive quantity (which

is necessarily faithful), any configuration manifesting faithfulness cannot simultane-

ously generate an independent information quantity.

2.3 Searching for measures of multipartite correlations in holography

Armed with the idea of proto-entropy, we argued in [1] for a constructive algorithm

to extract primitive quantities for any number of parties N. For concreteness, let us

first illustrate this idea with a simple example. Consider the situation described in

Fig. 1b and let a and b be the extremal surfaces homologous to A and B respectively.

The proto-entropies of the various subsystems A,B,AB are

SA = a, SB = b, SAB = a+ b (2.18)

Substituting these expressions into (2.6), we can derive a formal expression for the

quantity Q (to be determined), evaluated on this configuration:

Q(C2, ψΣ) = (QA +QAB) a+ (QB +QAB) b (2.19)

Since a and b are independent objects, the equation Q(S(C2, ψΣ)) = 0E translates to

the following system of linear equations{
QA +QAB = 0

QB +QAB = 0
(2.20)

whose solution, up to an irrelevant overall constant, is the mutual information

I2(A : B). Furthermore, since this is the only solution, it follows that the mu-

tual information is primitive, since for the particular configuration we considered,

there cannot be any other (inequivalent) quantity which vanishes.

We now formalize this procedure in full generality. Consider a pair of a configu-

ration and a state (CN, ψΣ) and the corresponding vector S(CN, ψΣ). Upon formally

evaluating an unknown information quantity, we obtain

Q(S(CN, ψΣ)) =
∑
I

QI SI(CN, ψΣ) =
∑
I

QI

∑
µ[I]

ωµ[I]


≡
∑
I

QI

(∑
µ

MIµ ω
µ

)
=
∑
µ

(∑
I

MIµQI

)
ωµ .

(2.21)
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A-priori, the index µ[I] runs over the elements of the set ΩI, i.e., over connected

components of the extremal surfaces computing SI(CN, ψΣ). We extend this sum to

all elements of Ω so that we can swap the order of the summation, by introducing

a (0, 1)-matrix MIµ which for every polychromatic subsystem I takes into account

which surfaces in Ω enter in the computation. The index µ in the final expression

now runs over all elements of Ω. Since all the surfaces ωµ are independent, we have

Q(S(CN, ψΣ)) = 0E ⇐⇒

{∑
I

MIµQI = 0, ∀µ

}
(2.22)

The equations on the right hand side of (2.22) will be called constraints. For a pair

(CN, ψΣ), we will indicate the list of corresponding constraints as {F(CN, ψΣ)}. Given

a fixed choice of a pair (CN, ψΣ), we will think of the coefficients {QI} as variables, and

solve the set of constraints {F(CN, ψΣ)}. Any solution will correspond to a faithful

quantity (making evident the weakness of such property). On the other hand, when

the constraints {F(CN, ψΣ)} for a chosen pair (CN, ψΣ) have a one parameter family

of solutions, the pair (CN, ψΣ) generates a primitive quantity Q.

Therefore, to find all primitive information quantities for any given number of

parties N, we will have to scan over all possible (CN, ψΣ) in the space of holographic

field theories. This is clearly a daunting task, but as argued in [1], the problem has

a huge amount of redundancy which allows for a drastic simplification. We note

first that different pairs (CN, ψΣ) could have the same constraints {F(CN, ψΣ)} which

allows us to define an equivalence relation:

(CN, ψΣ) ' (C′N, ψ
′
Σ) ⇐⇒ {F(CN, ψΣ)} = {F(C′N, ψ

′
Σ)} (2.23)

The idea essentially is that small deformations of regions will not alter the constraint

(modulo phase transitions). Likewise we can compensate any change of state |ψΣ〉
by alternation of the configuration. In both cases the actual surfaces (and entropies)

will change, but the linear relation of interest will not. This redundancy can be used

to argue that we can restrict to the space of configurations CN in the vacuum state of

a single (2 + 1)-dimensional CFT on R2,1. To lighten notation, we henceforth write

{F(CN)}, leaving it understood that we work in the vacuum state. In fact, we are only

interested in the space of solutions to the constraints, not the constraints themselves.

So we have a further simplification: two (possibly different) sets of constraints {F(CN}
and {F(C′N)} are equivalent if they have the same space of solutions, viz.,

CN ' C′N ⇐⇒ {F(CN} ' {F(C′N)} (2.24)

To summarize, we have reduced the problem of finding the primitive information

quantities for N parties to the problem of classifying all the equivalence classes of

configurations under the relation (2.24), and identifying among them all those which

are associated to a set of constraints which has a one-dimensional space of solutions.
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2.4 Towards a general solution: the In-theorem

The reduction described above in §2.3 is a vast simplification, but performing a full

scan over all possible configurations is still a very hard problem. To make a first step

in this direction, in [1] we approached a simpler problem. We considered a particular

class of configurations specified by certain topological restrictions, and showed how

under such assumptions one can perform the full scan for an arbitrary number of

colors. We now review these ideas, giving a glimpse not only of the the main result,

the In-theorem, but also more crucially the various constructs introduced for its

derivation. Of particular importance will be the notions of canonical constraints,

canonical building blocks and uncorrelated union, which will all be used extensively

in the following sections.

The first restriction made in [1] was the requirement that the regions Ai` com-

posing the various subsystems do not share any portion of their boundaries, i.e.,

Ai1`1 ∩ A
i2
`2

= ∅ ∀`1, `2, i1, i2 (2.25)

This characterized what we called a disjoint scenario, and is a natural assumption

to make from a QFT perspective, since it guarantees that the mutual information

between any two polychromatic subsystems is finite. In fact, as we will discuss in §4.3,

primitive quantities derived from such configurations are all balanced and therefore

finite when evaluated on disjoint regions in QFT.

Restricting the scan to the disjoint scenario simplifies the problem considerably,

since the nature of the constraints becomes more transparent. However, even in this

simplified case, it is still unclear how to perform a full scan (§6 will take further

steps in this direction). To tackle the problem, in [1] we further characterized the

configurations according to an additional property, dubbed enveloping and defined

as follows. Since all the regions composing the various subsystems are assumed to be

compact, the complement O of any configuration CN (the purifier) is a union of at

most a finite number of compact regions and a remaining part which is non-compact

and extends to infinity. We will refer to this latter component of the purifier as the

universe. We will then say that the region Ai1`1 is enveloping (or envelops) the region

Ai2`2 if for every pair of points P, P ′ in the universe and the region Ai2`2 respectively,

any connected path from P to P ′ has to cross the region Ai1`1 .
22

Restricting to non-enveloping regions in the disjoint scenario allowed us in [1]

to perform the full scan over all possible configurations and thence find all possible

primitive quantities for any number of parties. We denote this particular space of

configurations as CN. The solution is summarized by the following theorem:

22 This notion of enveloping can be generalized to the case of multiple enveloping (for example

the enveloped region Ai2
`2

is itself enveloping a third region Ai3
`3

). Furthermore, this notion applies in

general to any geometrical state of a holographic CFT living on spacetime with well-defined spatial

infinity and all regions compact.
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Theorem 2.1. (“In-Theorem”) For a given N, the set of all the primitive infor-

mation quantities generated by all the configurations in CN is

{In, 2 ≤ n ≤ N} (2.26)

where In is the n-partite information for a collection [n] ⊆ [N] of n colors out of [N]

In(A`1 : A`2 : . . . : A`n) = S`1 + S`2 + · · ·+ S`n

− S`1`2 − S`1`3 − · · · − S`n−1`n

+ S`1`2`3 + · · ·+ (−1)n+1S`1`2...`n

(2.27)

We give a quick sketch of the logic of the proof, which helps introduce the various

concepts alluded to above (for details, see [1]). As discussed earlier, configurations

can be organized into equivalence classes according to associated sets of constraints.

This logic of course applies even with additional restrictions. Therefore, the goal

will be to find all equivalence classes of configurations within the topological class

of interest. One then identifies among them those associated to a set of constraints

with a one-parameter-family of solutions. The solution to the constraints will then

give the desired quantities.

To implement the scheme, we first introduce a particular class of constraints

which we will call canonical constraints. The set Fcan of canonical form constraints,

for fixed value of N, is a set of D = 2N − 1 linearly independent equations defined as

follows

Fcan = {Fcan
I ,∀ I ∈∆∗([N])}, Fcan

I :
∑
K⊇I

QK = 0 . (2.28)

We say that a set of constraints F is of the canonical form if it is a subset of this

set, F ⊆ Fcan. For example, for N = 2 both constraints in (2.20) are of the canonical

form, but their sum would not be. One can then prove the following

Lemma 2.2. For any configuration CN ∈ CN, the set of corresponding constraints

{F(CN)} is equivalent, up to linear combinations, to a subset of Fcan.

Notice that this Lemma only tells us that for any configuration CN ∈ CN we

can convert the constraints into the canonical form defined above; but it does not

guarantee that an arbitrary subset F ⊆ Fcan can be actually realized by some con-

figuration. As it turns out, this is in fact not the case. In particular, a generating

configuration exists only if the constraints include all N equations of the form of right

hand expression in (2.28) with I corresponding to a monochromatic index `. The

consistent possibilities are listed in the following result

Lemma 2.3. For any subset F ⊆ Fcan, there exists a configuration CN ∈ CN such

that {F(CN)} = F if and only if

F ⊇ F[N] , where F[N]
def
= {Fcan

` , `∈ [N]} . (2.29)
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Hence, given a set of constraints F ⊆ Fcan, to know whether there exists a config-

uration with a set of constraints {F} ' F one simply has to check if F includes F[N].

This result can easily be understood constructively using two very useful concepts

that we will now introduce.

Canonical building block: The first one is the notion of a canonical building

block. Consider a particular choice In of n ≥ 2 colors and the corresponding canonical

constraint Fcan
In

. We will now construct a particular configuration, which we will

denote by C◦N[In], which is associated to the following set of N + 1 constraints

{F(C◦N[In])} = F[N] ∪ {Fcan
In
} (2.30)

To construct such a configuration we start from N disks, one per color, with a size

and location for each disk chosen such that they are all completely uncorrelated, i.e.,

I2(A`i :
⋃
`j 6=`i

A`j) = 0, ∀`i (2.31)

Next, we consider the disks corresponding to the n colors which enter in In, and

move them closer to each other until we reach a point where we have the following

correlation pattern{
I2(A`i :

⋃
`j 6=`i A`j) 6= 0, ∀ `i, `j ∈ In

I2(A`i :
⋃
`j 6=`i A`j \ A`k) = 0, ∀ `i, `j, `k ∈ In

(2.32)

At the same time, we still keep the other disks (the ones which do not enter in In)

far away, such that we still have

I2(A`i :
⋃
`j 6=`i

A`j) = 0, ∀ `i /∈ In. (2.33)

An example of this construction is shown in Fig. 2. The final result is a config-

uration such that the RT surfaces which appear in the computation of the various

entropies are only the N ‘domes’ homologous to the various disks and one n-legged

‘octopus’ surface connecting the colors in In.

Uncorrelated union: The second useful concept to introduce is an operation that

conveniently allows us to combine two configurations C′N and C′′N to obtain a new

one, which we will call the uncorrelated union, denoted by C′N t C′′N. This is simply

obtained by considering the two configurations in the same copy of the vacuum state,

but sufficiently far apart from each other such that I2(C′N : C′′N) = 0. The resulting

configuration then inherits the following property:

Lemma 2.4. For a configuration CN = C′N t C′′N, the list of constraints {F(CN)}
is the union of the two lists of constraints {F(C′N)} and {F(C′′N)} for C′N and C′′N,

respectively.
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A6
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(b)

Figure 2: The canonical building block C◦6[A1A2A3], where the central vertex with the dashed lines

represents the particular pattern of mutual information specified in the main text (a) shows the pictorial

representation used in [1]. (b) shows the same building block in a more compact form, where we only

draw the disks which are correlated (and list the other ones in a box for completeness).

By taking uncorrelated unions of canonical building blocks we can then realize

configurations corresponding to the set of constraints listed in Lemma 2.3. The

second part of the Lemma, namely the fact that there are no other possibilities, was

proven in [1] for the topological class CN. However, we will see in §4 that it can be

generalized to an analogous statement holding in the disjoint scenario (even when

the configuration is enveloping).

Using the uncorrelated union and the canonical building blocks we can then

construct all the equivalence classes of configurations in CN. The representative of

the classes are simply all the inequivalent combinations of building blocks. It then

follows that to obtain a primitive information quantity (namely, a single relation

between the D entropies SI, obtained from D− 1 independent relations between the

QI’s), we should combine D− 1 of these canonical constraints:

Lemma 2.5. The equivalence classes of configurations in CN which generate primi-

tive information quantities are the ones which are associated to the following sets of

constraints

Fcan \ {Fcan
In
}, for any choice of a single Fcan

In
(2.34)

with 2 ≤ n ≤ N.

Finally, to find the desired primitive information quantities we just need to solve

these systems of equations, proving the theorem.
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3 The holographic entropy arrangement

Having reviewed our basic framework, we now proceed to introduce a geometric ob-

ject, the arrangement of hyperplanes in entropy space, which we call the holographic

entropy arrangement.23 The arrangement constitutes a geometric representation of

the full set of primitive quantities associated to N colors.

A detailed study of the structure of the arrangement for fixed N, specifically

how the hyperplanes intersect with each other and decompose the ambient space

into distinct cells, requires the knowledge of the full list of hyperplanes (i.e., of all

primitive quantities). This would require performing the full scan reviewed in the

previous section. We believe such a scan is best examined case by case, for different

number of colors. It is conceivable that at least part of this structure is universal

(i.e., independent from N), though it seems likely that a more detailed knowledge

of complex arrangement patterns would be necessary to unpack it. We will not

aim to be comprehensive at present, but we do envision the arrangement as the

natural framework for the characterization of multipartite entanglement structure of

geometric states, and possibly other QFTs (see §8 for additional comments).

In this section we introduce the arrangement and initiate a study of its structural

properties. In §3.1 we first define the arrangement for an arbitrary number of colors

and prove some simple results about its general structure. A systematic notation for

the information quantities associated to the hyperplanes is developed in §3.2, while

§3.3 organizes the information quantities, and the corresponding hyperplanes, into

equivalence classes according to certain symmetries.

The discussion about the construction of the arrangement beyond the In-theorem

is postponed to §5 and §6. The arrangement will play a central role in §7, where we

define the holographic entropy polyhedron and construct a sieve that enables us to

extract candidates for holographic entropy inequalities.

3.1 Definition and general structure

Let us start with the definition of the arrangement. To any primitive quantity Q

in a holographic N-party setting, we will associate a hyperplane24 hQ given by the

following expression

hQ : Q(S) = 0 , (3.1)

where the components SI of the entropy vector S are treated as real variables in the

N-party extended entropy space25 RD, with D = 2N − 1. We then define

23 The concept of hyperplane arrangement is well studied in geometry and combinatorics, cf.,

[32, 33].
24 We adopt the standard convention: hyperplane implicitly refers to a codimension-one surface.
25 We remind the reader that in the N-party set-up, entropy space is defined as RD

+. Here

we consider extending past the positive orthant for geometric convenience, since the hyperplanes

themselves, which are associated to equations, are not sensitive to the non-negativity of the entropy,
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Definition 3. (Holographic entropy arrangement) In a holographic N-party

setting, the holographic entropy arrangement AN is the collection {hQ} of the hy-

perplanes associated to all primitive quantities.

In what follows, for succinctness we will use the expression ‘a quantity in the ar-

rangement’, to informally refer to a hyperplane associated to the given quantity.

To appreciate why the holographic entropy arrangement is a natural structure,

let us re-examine the regulator independence of mutual information discussed in §2.

While it is generically not possible to associate a single entropy vector Sε(C2, ψΣ)

to a pair (C2, ψΣ) in a QFT, the value of I2(C2, ψΣ) does not depend, in the limit

ε → 0, on how we regulate the entropy. This motivates our entropy relation (2.9).

Viewing entropies SA, SB, SAB (now for an unspecified state and/or configuration) as

coordinates in R3, the equation

SA + SB − SAB = I2(C2, ψΣ) (3.2)

describes a two-dimensional plane. We can interpret (2.9) as saying that for fixed

(C2, ψΣ) the limit of the sequence of collections of vectors (2.8) associated to decreas-

ing values of ε will belong to this particular plane.

Suppose now that we modify the pair (C2, ψΣ), either by deforming the configu-

ration, or by changing the state, or both. The value of I2(C2, ψΣ), and consequently

the plane (3.2), will change. This being simply a translation in entropy space, by

changing (C2, ψΣ) we obtain an infinite family of planes, parallel to each other. We

can then choose one particular plane as a representative of the entire family. The

natural choice is, of course,

hI2 : SA + SB − SAB = 0 . (3.3)

In a generic QFT, the vectors associated to an arbitrary (C2, ψΣ) are never really lo-

calized on this particular plane, since the mutual information never vanishes exactly.

However, as the separation between A and B grows, and the amount of correlation

decreases, they will be localized, in the limit ε → 0, on planes which are closer and

closer to (3.3). The particular plane (3.3) corresponds to the special case where the

correlations are exactly absent.

As we discussed §2, this behavior becomes particularly clear in the holographic

context, if we work in the strict large N limit. The exact vanishing and explicit

regulator independence (via cancellation between surfaces) in the mutual informa-

tion, implies that any entropy vector (2.8) (for sufficiently separated regions) will

precisely satisfy the relation (3.3) and hence will be localized on the plane (3.3). If

1/N corrections are taken into account, the situation is very much the same as in a

generic QFT.

and eventual sign-definiteness of some primitive quantities.
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The logic applies more generally to all primitive information quantities, for arbi-

trary N. The algebraic relation Q(S(CN, ψΣ)) = 0E, at the level of the proto-entropy,

implies that an arbitrary collection of regulated entropy vectors Sε(CN, ψΣ) will, in

the large N limit, be localized on the hyperplane (3.1) since it will satisfy the corre-

sponding relation.

It is important to note that in (3.2) the value of I2(C2, ψΣ) depends not only

on the configuration C2, but also on the global state |ψΣ〉. We stress that this does

not contradict the ‘gauge-fixing’ discussion of §2.3. The crucial point is that such

‘gauge-fixing’ procedure can be employed to find the primitive quantities. This in

turn determines the arrangement, which however is a universal structure (at least

within all geometric states of holographic field theories). The goal is to first deter-

mine the arrangement (for some N) and then use it to characterize the multipartite

entanglement structure of holographic (and perhaps more general) states (see §8).

Properties of the hyperplane arrangement: Having introduced the general

logic behind the concept of the holographic entropy arrangement, we will now discuss

some of its general properties, which are independent of the number of colors N. This

allows us to establish some basic terminology which is standard in the mathematical

literature on hyperplane arrangements [32].

A hyperplane arrangement is said to be finite if it is a collection of a finite number

of hyperplanes and central if the intersection of all the hyperplanes is exactly the

origin. The dimension of the arrangement is defined to be the dimension of the

ambient space, in this case D, while the rank is the dimension of the space spanned

by the vectors normal26 to the hyperplanes. An arrangement with rank equal to its

dimension is said to be essential. The following lemma summarizes the fundamental

properties of the holographic entropy arrangement.

Lemma 3.1. For any number of parties N, the holographic entropy arrangement AN

is essential, central, finite, and symmetric under a particular action of the group

SymN+1 which permutes the N colors along with the purifier O.

Proof.

• Essential: We will demonstrate this by showing that we already have D linearly

independent hyperplanes associated with the In information quantities (which

necessarily belong to the arrangement) with n = {2, 3, · · · ,N}, after including

all combinations of colors along with certain purifications.

For given N, consider the collection of all the hyperplanes associated to the

quantities found by the In-theorem and note that there are D−N = 2N−N− 1

of them. Now consider the mutual information between any two colors I2(A`1 :

26 We use the standard inner product on RD.
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A`2). By “purifying” with respect to A`2 one gets the quantity27

QAL
2 (A`1 : AIN\`1) = S`1 + SIN − SIN\`1 (3.4)

where IN = [N] is the polychromatic index which includes all colors. Clearly

there are N different such expressions, therefore, combining these hyperplanes

with the previous ones, we obtain a collection of D hyperplanes in RD
+. We

now need to show that the vectors normal to these hyperlanes are all linearly

independent. For any hyperplane hQ, the coefficients QI appearing in the

equation (3.1) (when explicitly written out as (2.17)) are the components of

the vector orthogonal to the hyperplane (in the standard orthonormal basis of

RD). Let us arrange these vectors into a D×D matrix where the first rows are

the quantities QAL
2 , listed at increasing value of `1. The rows corresponding to

the various In are ordered such that n is increasing. When two rows have the

same value of n they are ordered such that `1 < `2 < · · · < `n. This matrix is

almost upper triangular, except for some ±1 entries in the rows corresponding

to the QAL
2 .

However, note the following identity:

QAL
2 (A`1 : AIN\`1) = 2SA`1

− I2(A`1 : AIN\`1) (3.5)

Further simplification is afforded by rewriting the mutual information I2(A`1 :

AIN\`1) as a linear combination of the In’s as follows:28

I2(A`1 : AIN\`1) =
N∑

n=2

∑
{`2,`3,...,`n}

(−1)n In(A`1 : A`2 : · · · : A`n) (3.6)

Using these two relations to replace the first N rows, we bring the resulting

matrix into an upper-triangular form, with all entries on the diagonal non-

vanishing. This establishes the rank of the arrangement to be D.

• Central: Since all the equations which define the hyperplanes are homogeneous,

the intersection of all hyperplanes in the arrangement is a linear subspace. But

since the arrangement is essential, this subspace is trivial, consisting of only

the origin of the extended entropy space.

• Finite: In an arbitrary N-color configuration CN, consider a surface ω ∈ Ω(CN).

The constraint F(ω) is an equation in D variables with the property that for

27 This is the standard procedure to derive the Araki-Lieb inequality (from which the name QAL
2

derives) from subadditivity. A similar procedure also allows us to derive, e.g., weak monotonicity

from strong subadditivity; we will describe this in greater detail in §3.3.2.
28 The reader is invited to consult (4.17) for general formulas and the explicit examples in §7,

where we carry out similar manipulations extensively for various information quantities.
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all variables QI, the corresponding coefficients cI are cI ∈ {0, 1}. Therefore, for

a given number of colors N, there exist at most 2D different constraints. Since

a quantity Q is a solution of a system of D− 1 linearly independent equations,

we have the (very weak, but finite) bound

#AN ≤
(

2D

D− 1

)
(3.7)

In fact, as we will see, the number of hyperplanes in the arrangement is expected

to be far smaller.

• Symmetric: The symmetry under SymN (which acts on the set [N] canonically

by permuting the elements) can easily be understood by observing that there

should be no fundamental difference between the N colors. The symmetry

enhancement to SymN+1 has instead a quantum origin, it is related to the fact

that once a purification of the full N-partite density matrix is considered, the

various entropies SI are equal to the entropies of the complementary subsystems

SIc . This allows us to permute not only the N colors, but also the purifier O.

A thorough analysis of this symmetry structure will be carried out in §3.3.

3.2 Taxonomy of primitive information quantities

In general, for not too small values of N, the holographic entropy arrangement has a

very complicated structure. It will be important to have a formalism that allows us

to catalog the various hyperplanes systematically. It will become clear as we proceed

that a large number of primitive quantities in AN are simple “upliftings” of quan-

tities appearing in arrangements defined for fewer colors. Being able to distinguish

such upliftings will be particularly important for efficient classification. We want to

identify genuinely new information emerging as N increases. Relatedly, the absence

in AN of certain upliftings of quantities found for fewer colors, will turn out to signal

the presence of new holographic inequalities.

Let us first illustrate this with a simple example (the logic of the argument here

is general and does not rely on holography, or even a QFT). We have seen in §2 how

one can derive the mutual information I2(A : B) in a 2-party setting. Suppose now

that we have a 3-party quantum system. We can consider all possible bipartitions of

these three subsystems and evaluate the mutual information on all pairs. Accounting

for symmetry under the swap A ↔ B we have the following six possibilities:

I2(A : B), I2(A : C), I2(B : C)
I2(A : BC), I2(B : AC), I2(C : AB)

(3.8)

Collectively, we will call the various instances appearing in (3.8) “upliftings”, since

the mutual information requires two parties for its definition, but here it is being
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evaluated in a context where we have three parties at our disposal. Intuitively, we

will think of these quantities as not ‘genuinely tripartite’. The instances appearing

in the first line will also be referred to as “trivial upliftings” since they are formally

analogous to the instances of the mutual information in its ‘natural’ bipartite set-up,

i.e., I2(A : B), which we will call the “natural instance” of the mutual information.

All these notions will be made precise in the following.

As we argued in [1], not all upliftings in (3.8) are primitive quantities. Specifi-

cally, the ones in the first row are primitive, while the ones in the second are not.29

By definition of primitivity, this means that there is no pair (C3, ψΣ) that generates,

for example, I2(A : BC) alone (and no other independent information quantity). This

can be understood as follows. We can rewrite I2(A : BC) as

I2(A : BC) = I2(A : B) + I2(A : C)− I3(A : B : C) (3.9)

Since the right hand side corresponds to a sum of non-negative terms, I2(A : BC)
can vanish if and only if all the other quantities simultaneously vanish, and therefore

it cannot be primitive. Of course, in making this argument we have explicitly used

the fact that holographically one has I3(A : B : C) ≤ 0. However, the statement

can also be understood in the converse direction: we can interpret non-primitivity

of I2(A : BC) (once we independently verify the same) as a hint that I3(A : B : C)
might have a definite sign (see §7 for a discussion about holographic inequalities in

our framework).

Motivated by the intuition from the above, we want to develop a general formal-

ism that allows us to determine whether or not an arbitrary primitive quantity Q

derived in an N-party setting is an uplifting of a quantity defined for fewer colors.

Furthermore, we want this formalism to be able to efficiently distinguish between

different upliftings.

The first step in this direction is to make a clear distinction between an “abstract

definition” of an entropic information quantity, which does not depend on the set-up,

and its specific instances, which instead depend on the total number of parties N.

For example, consider again the mutual information, which we now write as

Ĩ2(X1,X2) = SX1 + SX2 − SX1X2 (3.10)

Here the symbols X1,X2 indicate generic subsystems, the tilde stresses the fact that

we are working with an abstract quantity, and the lower index in Ĩ2 indicates the

number of objects which are necessary for the definition. The key point is that the

number of subsystems N which defines our set-up can in general be greater than

29 In general it is not the case that only trivial upliftings of a quantity Q are primitive. In the

case of (3.8) it is consequence of the simplicity of the example under consideration. On the other

hand, all trivial upliftings of a (non-degenerate) primitive quantity remain primitive; cf. Lemma

5.1.
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the number R of subsystems which are necessary to define an abstract quantity.

Therefore, the variables X1,X2 can represent arbitrary (but distinct) collections of

the N monochromatic subsystems, as in the second line of (3.8).

To be more precise, let us first recall our definition of the power set of [N] (sans

the empty set) introduced in (2.3), for which we will now use the shorthand ∆∗, viz.,

∆∗ ≡∆∗([N]) = {I ⊆ [N]} \ {∅} . (3.11)

The expression (3.10) is then a map

Ĩ2 : D2 ⊂∆∗ ×∆∗ → S (X1,X2) 7→ Ĩ2(X1,X2) (3.12)

where the image set, S, depends on the context. For the standard HRT formula, it

would be the space of real functions (once the regulating surfaces ε(x) are introduced).

Since we are working with the proto-entropy instead, it will be an abstract space of

formal linear combination of surfaces. The domain D2 (with the subscript indicating

the number of arguments) is defined as

D2 = {(X1,X2) ∈∆∗ ×∆∗, X1 ∩ X2 = ∅} . (3.13)

We then define the instances of Ĩ2 in an N-party setting (N ≥ 2) as the elements of

the set Ĩ2(D2)

Ĩ2(D2) =

{
Ĩ2(X1,X2)

}
, ∀ (X1,X2) ∈D2 . (3.14)

It is immediate to check that for N = 3 this corresponds to the list (3.8). We call the

instances for N = 2 the natural instances, while the upliftings of Ĩ2 are its instances

when N > 2.

This approach can be easily generalized to any number of parties. Before doing

so, let us take note of a subtle but crucial aspect. Primitive quantities found from the

study of configurations are not abstract quantities in the sense of (3.10), but rather

instances like in (3.8). While our examples thus far are trivial, involving known

quantities like mutual information, for larger N (in particular N ≥ 4), our procedure

will generate new quantities (see §6) which do not have a standard definition. In

addition, we find primitive quantities by solving a system of linear equations, which

leaves an overall factor (and sign) unspecified. We should fix this by some convention

to facilitate comparison, and specify how to associate an abstract quantity to a

primitive found from configurations.

Before getting into the technical discussion, let us intuitively understand what

the issues are. An information quantity is characterized by two distinct features. On

the one hand, it cares about the number of subsystems which show up (depending

on N). On the other, it more simply cares about how many slots there are for us to

insert polychromatic subsystems. It is helpful to a-priori separate these two facts.
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We will regard the number of slots in an information quantity as its primary

characteristic and refer to this as its ‘rank’, denoted R. We then worry about per-

mutations among the slots – some will leave the quantity unchanged, other will give

us new variants. We will focus on permutations that give us new variants and call

these ‘isomers’. All of this can be easily accomplished using the idea of the abstract

information quantity introduced above. Once we have the isomers of the abstract

quantity, we pick n ≤ N colors, which we now refer to as the ‘total character’. We

consider ordered partitions (see Eq. (3.28) below) of n into R parts, referring to each

such as a ‘character’, and use this to assign polychromatic subsystems AI into our

slots. We have to do this for each isomer of the abstract quantity, all values of n

with R ≤ n ≤ N, all partitions of n into R parts and all choices of n colors from the

full set [N]. We will now formalize these statements.

We start by explaining how one can proceed to associate an abstract quantity

to a primitive found via configurations. Consider a primitive quantity Q generated

by some configuration in an N-party setting, defined thus far only up to an overall

coefficient, with unspecified sign. We will say that Q is reducible if there exists a

collection of colors

{`1, `2, . . . , `k} ≡ K̂ with k > 1,

such that

∀ I such that QI 6= 0, either K̂ ⊆ I or K̂ ∩ I = ∅. (3.15)

If Q is reducible for a collection of colors {`1, `2, . . . , `k}, we can then introduce a

color redefinition as follows

{`1, `2, . . . , `k} → `1 (3.16)

For example, by applying the redefinition AB → A to I2(AB : C) one gets I2(A : C).
Starting from a reducible primitive quantity Q, we iterate the procedure until it is

no longer possible to reduce it further, so that we reduce Q to an irreducible form

Q′. Once this form is obtained, we can pick some (ad-hoc) convenient convention

to recast the quantity into a canonically-ordered form, so as to facilitate comparison

with other quantities. For example, we can reorder the terms Q′I SI of this expression

in order of increasing degree.30 When two terms have the same degree, we order them

according to the first color in the index I.31 If the first color coincides, we order them

according to the second color, and so on. Finally, we relabel the colors as A1, . . . ,AR

following the order by which we encounter them while reading from left to right,

and by convention, we choose the overall coefficient such that all the coefficients are

co-prime and the first term is positive.

30 The degree of an index I is the number of colors which belong to that index. This was denoted

as κ in [1] but we will find it convenient to equate it with the idea of cardinality which we denote

as #I in the sequel.
31 We always assume that the colors in an index I are increasing when read from left to right.
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Definition 4. (Abstract information quantity associated to a primitive)

For a primitive quantity Q, derived in an N-party setting, the associated abstract

information quantity is the one obtained from the result of the reduction procedure de-

scribed above, by replacing the colors with the X variables as follows {A1 → X1,A2 →
X2, . . . ,AR → XR}. The index R will be called the rank of the abstract quantity and is

the number of variables X which appear in the definition. We will write the abstract

information quantity associated to a primitive Q as Q̃R.

An abstract quantity of rank R is then defined as a map

Q̃R : DR ⊂∆∗ × · · · ×∆∗ → S (X1, . . . ,XR) 7→ Q̃R(X1, . . . ,XR) (3.17)

with domain

DR = {(X1, . . . ,XR) ∈∆∗ × · · · ×∆∗, Xi ∩ Xj = ∅ ∀ i 6= j ∈ {1, . . . ,R}} (3.18)

By convention, the rank of a primitive quantity is defined as the rank of its corre-

sponding abstract form

rank(Q)
def
= rank(Q̃R) = R (3.19)

Having introduced the notion of an abstract information quantity, we can now

define its instances, in an N-party set-up, as follows:

Definition 5. (Instances of abstract quantities) Given an abstract quantity Q̃R,

its instances in an N-party setting are the elements of the set Q̃R(DR). When N > R

the instances are called upliftings, when N = R the instances are called natural

instances.

With this definition, we can now introduce a notation for the various instances

of an abstract quantity Q̃R. These will generically be denoted by QR followed, as

conventional in information theory, by the list of arguments separated by semicolons

QR(AIn1
: AIn2

: · · · : AInR
), R ≤

R∑
i=1

ni = n ≤ N (3.20)

where ni ≥ 1 ∀ i, and we combined the monochromatic colors for simplicity into

polychromatic labels, viz.,

In1 ≡ {`1, `2, . . . , `n1}, In2 ≡ {`n1+1, . . . , `n1+n2}, . . .
. . . , InR

≡ {`n1+n2+···+nR−1+1, . . . , `n1+n2+···+nR−1+nR
}

(3.21)

Each instance QR(AIn1
: AIn2

: · · · : AInR
) is an element of the set Q̃R(DR). The

vector ~n = {n1, n2, . . . , nR} is called the character, and the value of its L1-norm, n, the

total character. In the particular case where N > R and ni = 1,∀i, the corresponding

instances will be referred to as a trivial upliftings.
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This description contains some redundancy, because it does not take into account

the symmetries of the abstract quantity for which we are listing the instances. For

example, for the mutual information, it would include also expressions like I2(B : A).

This is not efficient when N is large and the quantities have a complicated pattern of

symmetries. Furthermore, in the next section we will see that the various primitive

quantities can be organized into equivalent classes, and for this purpose, it will be

useful to have a more convenient description, at least one that takes into account the

symmetries at the level of the abstract expression (3.17).

Consider an abstract quantity Q̃R of rank R and the set [R]. We will denote

by SymR the symmetric group over [R], i.e., the group of all permutations of the

elements of [R] defined as32

σ ∈ SymR , σ : [R]→ [R], X 7→ σ(X ) . (3.22)

We define the action of SymR over the functions Q̃R as

σQ̃R(X1,X2, . . . ,XR)
def
= Q̃R(σ(X1), σ(X2), . . . , σ(XR)), σ ∈ SymR (3.23)

An abstract quantity Q̃R can be symmetric (i.e., invariant) under the action of some

elements of SymR. We define the automorphism group of Q̃R as

Aut(Q̃R) ≡ {σ ∈ SymR, σQ̃R = Q̃R} (3.24)

and we construct the quotient33

Per(Q̃R) =
SymR

Aut(Q̃R)
. (3.25)

The elements of Per(Q̃R), which we denote as σQ, act on Q̃R as in (3.23) and

generate different forms of Q̃R. We will call these the isomers of Q̃R and denote

them by Q̃R[σQ].

In the following it will be convenient to choose among the various isomers of an

abstract quantity Q̃R a “reference isomer” from which we imagine to construct all

the others by acting with the permutations σQ. It is clear that a-priori the choice is

completely arbitrary. For known information quantities like the mutual information

(or more generally the multipartite information) we will choose their conventional

form. For the new quantities that will emerge from our construction, we will simply

choose the form that we get when we first discover them.34 We will refer to this

32 To simplify the notation we will often identify the indices 1, 2, . . . ,R of X with the abstract

subsystems X1,X2, . . . ,XR themselves.
33 Note that in general Per(Q̃R) is not a group, as Aut(Q̃R) is not a normal subgroup of SymR.
34 In principle one could imagine introducing a more sophisticated version of the color reduction

procedure discussed above, such that starting from any possible (would be) instance of a certain

abstract quantity, one always ends up with the same isomer. However, such a procedure is at

present somewhat ad hoc, for it is unclear whether there exists a particular choice that is naturally

preferred on physical grounds.
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particular isomer as the standard isomer and denote it by

Q̃e
R

def
= Q̃R[σQ = e] , (3.26)

imagining that it is obtained using the identity element of σQ = e.

Having classified the different isomers of an abstract quantity based on its sym-

metries, we can now classify the instances of Q̃R, without redundancy, by considering

all possible distinct instances of the various Q̃R[σQ], for all choices of σQ ∈ Per(Q̃R).

To do this, we need to start filling in the slots, i.e., replace Xk by polychromatic

subsystems. To avoid redundancy, we will consider ordered partitions of [N] and its

subsets.

Specifically, for an isomer Q̃R[σQ] of a quantity Q̃R, we start with a fixed value

of the total character n with R ≤ n ≤ N. We first want to construct instances

for this particular value of n; later we will have to repeat the same procedure for

each value of n consistent with the aforementioned constraints. We need to pick n

monochromatic subsystems out of N and distribute these into the R available slots

of the abstract quantity as polychromatic subsystems. The important point is that

there are different options for which n monochromatic subsystems we choose, and

for how we organize each choice into R parts. There are then two equivalent ways

to proceed. We can either consider a fixed choice of the monochromatic subsystems,

and arrange them in all possible ways consistently with n, or we can list all possible

ways to organize an arbitrary choice of subsystems into R parts, and then scan over

all possible subsytem choices. We will follow the second approach.

To do so, consider all possible partitions of n. A generic element of this set has

the form {n1, n2, . . . , nR} and has no ordering. Since the different ways of ordering

the R slots are classified using the isomers, and we are now classifying the instances of

a fixed isomer Q̃R[σQ], we choose by convention to order the elements of a partition

of n in decreasing order and write ~n = (n1, n2, . . . , nR), with n1 ≥ n2 ≥ · · · ≥ nR. In

other words, the character ~n is now simply an R-tuple corresponding to an ordered

partition of the total character n. From now on we will always assume that ~n is an

ordered tuple.

A choice of character ~n specifies the size of the R slots, i.e., it tells us how

many monochromatic subsystems we should populate each slot with. The goal now

is to fill in these slots in all possible inequivalent ways, for all possible choices of

n monochromatic subsystems out of N. For any given character, we associate a

collection of mutually non-overlapping polychromatic indices built from a specific

choice of n monochromatic colors as follows:

{{`1
1, `

2
1, . . . , `

n1
1 }, {`1

2, . . . , `
n2
2 }, . . . , {`1

R, . . . , `
nR
R }} , (3.27)

where now the lower index labels the slot and the upper index a particular color in

that slot. The ordering of the colors within a polychromatic subsystem is irrelevant
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and by convention we will order the colors in increasing order from left to right. The

various slots have already been ordered by the definition of the character, but there

is an ambiguity when two or more slots have equal size. For multiple slots of equal

size, if we consider all different fillings of the slots, we would consider fillings which

correspond to a permutation of the slots as inequivalent, and this leads to redundancy

when we repeat the construction for all isomers. To avoid this, we choose an order

by convention and simply require that for slots of equal size, the sequence of the first

colors of the slots is increasing from left to right in (3.27).

We can equivalently understand the construction pictorially. For given n, its

partitions are given by Young tableaux having n boxes in R rows, each of which

corresponds to a choice of character ~n. For a fixed tableau, our partitions of subsets

of [N] with n elements, are given by decorated Young tableaux. The decorations are

monochromatic color labels which are assigned according to the rules just described.

In equations:

n1 ≥ n2 ≥ · · · ≥ nR

R∑
i=1

ni = n

`1
i < `2

i < · · · < `ni
i

`1
i < `1

j , for ni = nj, i < j



X1 : `1
1 `2

1 `3
1 . . . . . . `n1−1

1 `n1
1

X2 : `1
2 `2

2 `3
2 . . . . . . `n2

2

...
...

...
...

...

Xj : `1
j `2

j . . . `
nj

j

Xj+1 : `1
j+1 `2

j+1 . . . `
nj

j+1

...
...

...

XR : `1
R . . . `nR

R

(3.28)

For example, suppose that we want to construct the instances of an isomer

Q̃3[σQ] of a quantity Q̃3 of rank R = 3 in a set-up where we have a total of N = 6

colors. The possible choices of total character are n ∈ {3, 4, 5, 6} and for each value

of n, we should consider all possible ordered partitions (i.e. the characters). These

are classified by the following Young tableaux

︸︷︷︸
n=3

︸ ︷︷︸
n=4

︸ ︷︷ ︸
n=5

︸ ︷︷ ︸
n=6

(3.29)

For each such tableau we should then consider all possible decorations which are

consistent with the above rules. For example, in case of the last tableau above we
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have

1 2
3 4
5 6

1 2
3 5
4 6

1 2
3 6
4 5

1 3
2 4
5 6

1 3
2 5
4 6

1 3
2 6
4 5

1 4
2 3
5 6

1 4
2 5
3 6

1 4
2 6
3 5

1 5
2 3
4 6

1 5
2 4
3 6

1 5
2 6
3 4

1 6
2 3
4 5

1 6
2 4
3 5

1 6
2 5
3 4

(3.30)

Notice that in this particular example the color indices in the various boxes are

increasing both from left to right and (in the first column) from top to bottom.

This is just a consequence of the fact that all the rows have the same length. More

generally, it should be clear that the color indices are increasing downwards only

between rows that have the same length. So for example, possible decorations of the

fourth tableau in (3.29) include

2 3
4 5
1

2 3
4 6
1

1 6
2 3
4

· · · (3.31)

With this convention the instances of an abstract quantity Q̃R can then be

written as

QR[σQ](AIn1
: AIn2

: · · · : AInR
), R ≤

R∑
i=1

ni = n ≤ N (3.32)

where Inj
were defined earlier in (3.27) and follow the rules we just described. The

set of all instances associated to a given isomer and character will be denoted by

QR[σQ](n1 : n2 : · · · : nR) (3.33)

In the following it will be convenient to have a convention for choosing a repre-

sentative of the sets (3.33). We will call such representative the standard instance

of Q̃R[σQ] for the character ~n and define it as follows. We simply choose the first n

colors out of the N and decorate the tableau filling the slots with colors in ascend-

ing order from left to right and top to bottom. As an example consider the abstract

quantity Ĩ3. Being permutation (Sym3) symmetric, there is only the standard isomer

Ĩ3(X1,X2,X3). If N = 6 the possible characters of the various instances are described

by the tableaux that we listed above. The corresponding standard instances, for each

character, are then given by the following decorated tableaux

1
2
3

1 2
3
4

1 2 3
4
5

1 2
3 4
5

1 2 3 4
5
6

1 2 3
4 5
6

1 2
3 4
5 6

(3.34)
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and in the conventional notation for the instances these would be

I3(A1 : A2 : A3), I3(A1A2 : A3 : A4), I3(A1A2A3 : A4 : A5),

I3(A1A2 : A3A4 : A5), I3(A1A2A3A4 : A5 : A6), I3(A1A2A3 : A4A5 : A6),

I3(A1A2 : A3A4 : A5A6) (3.35)

The fact that we have eliminated all the redundancy in the descriptions guar-

antees that each single expression in (3.35), or more generally (3.32), corresponds

to a different instance of Q̃R. To count the total number of instances, it is more

convenient to follow the other approach mentioned above. For each isomer of Q̃R,

we consider all possible values of n in the range R ≤ n ≤ N. For each n, the number

of possible choices of n colors out of N is
(
N
n

)
and the number of partitions of this

subset of [N] into R parts is computed by the Stirling number of the second kind35{
n
R

}
. The total number of instances associated to an abstract quantity Q̃R in an

N-party set-up is therefore

#Per(Q̃R)×
∑
n

(
N

n

){
n

R

}
= #Per(Q̃R)×

{
N + 1

R + 1

}
(3.36)

The notion of rank induces a natural decomposition of the arrangement AN into

various subsets called subarrangements. Since we can unambiguously associate a

rank R to each primitive quantity Q associated to a hyperplane hQ ∈ AN (the rank

of the corresponding abstract quantity Q̃R), we can decompose AN as

AN = A2

N ∪A3

N ∪ · · · ∪AN

N (3.37)

where AR

N is the rank-R subarrangement defined as follows

AR

N = {hQ ∈ AN, rank(Q) = R} (3.38)

The primitive quantities which belong to the AN

N subarrangement, i.e., those of max-

imal rank, are the genuinely new quantities found for N parties. All other primitive

quantities, belonging to subarrangements of rank R < N, are upliftings of other

information quantities which can be defined for fewer colors.

We conclude this section with a few comments about the derivation of the ar-

rangement and the definitions that we introduced. As we discussed, the primitive

quantities in the arrangement are found constructively, starting from configurations.

Suppose that we are working in a set-up with N colors and we find a primitive Q.

We can then color-reduce it, determine its rank R ≤ N and introduce the standard

isomer of the corresponding abstract quantity Q̃e
R, from which we can obtain all other

35 The Stirling numbers can be computed explicitly using
{
x
y

}
= 1

y!

∑y
p=0 (−1)y−p

(
y
p

)
px. They

are bounded between 1
2 (y2 + y + 2) yx−y−1 − 1 and 1

2

(
x
y

)
yx−y.
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isomers and all instances for any N′ ≥ R. As we explained, part of this construction

is purely combinatorial and is not necessarily related to our notion of primitivity.

We should then be clear about what is the useful physical information that we shall

retain about Q.

There are two important elements. The first is the defining expression of the

standard isomer Q̃e
R. This could be a newly discovered quantity, or an isomer of

a quantity found previously.36 If it is a new quantity, we update our ‘library’ of

abstract quantities that constitute the arrangement. The second important element,

that we should consider irrespective of whether Q̃e
R is a new quantity or not, is the

pair (σQ,~n) which characterizes the quantity Q that we found from configurations.

This is important because it tells us which instances of Q̃e
R are primitive. Although

the isomer and character do not entirely specify the particular instance Q, we will

see in the next section that if an instance of Q̃R specified by (σQ,~n) is primitive, then

all other instances with the same isomer and character are also primitive.

3.3 Symmetries

We now have a procedure to extract, unambiguously, an abstract information quan-

tity Q̃R for any primitive Q which emerges from the framework reviewed in §2. We

also have at hand a notation to catalog, without redundancy, all possible instances

of such an abstract quantity in an N-party setting, irrespective of whether these are

primitive or not. Our next step (§3.3.1) will be to explain how these various instances

can be organized into equivalence classes, or orbits, of the symmetric group SymN,

and how these orbits respect the notion of primitivity. We will also see (§3.3.2)

that certain quantities, despite being associated to formally different abstract quan-

tities, should in fact be considered equivalent. Correspondingly, instances of different

quantities can be organized into even larger orbits, now under a certain action of the

group SymN+1. Based on the definitions of §3.2, we further introduce a convenient

notation for these orbits.

3.3.1 Equivalence between instances of an abstract quantity

Let us again begin with a simple example. In a 3-party setting, consider the config-

uration in Fig. 3a which generates

I2(A : B) = SA + SB − SAB (3.39)

To belabor the point, not only is (3.39) the usual definition of mutual information,

but it is also precisely the quantity generated by the configuration in Fig. 3a, i.e., it

is a specific instance (a trivial uplifting) of the abstract quantity (3.10) for N = 3.

36 If Q̃e
R were equal to an isomer of a previously found quantity only up to an overall coefficient,

it would just be a consequence of the ambiguity that we discussed, and we would flip the choice of

sign in the definition of Q̃e
R.
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A1

C1

B1

C2

C3

A2

B2

(a)

A1

B1

C1

B2

B3

A2

C2

(b)

Figure 3: (a) a configuration that generates I2(A : B). (b) By holding the regions fixed and permuting

the colors (B ↔ C) one obtains a new configuration that generates I2(A : C).

In particular, notice that despite the color C being present in the configuration, it

does not appear in (3.39). Moreover, the invariance of (3.39) under the swap A ↔ B
is guaranteed by the symmetry at the level of the configuration. The quantities

I2(A : B) and I2(B : A) therefore obviously correspond to the same hyperplane in

A3 – indeed, they are both identical.

If we were working in a 2-party setting, (3.39) would be generated by a different

configuration (see §2) and this swap would be the only possible permutation of the

colors. Instead, since we are now working in a 3-party setting, there are more options.

If we hold the various regions in Fig. 3a fixed and we permute the colors A,B, C in

all possible ways (see Fig. 3b for an example), it is clear that we can generate all the

instances of the mutual information listed in the first line of (3.8). The important

point here is that these instances now correspond to different hyperplanes in A3.

From a physical perspective, however, these are completely equivalent, since they all

derive from the same configuration.

While such an equivalence is evident at the level of configurations, a similar logic

also applies to non-primitive quantities. This is purely a combinatorial statement and

depends only on the total number of parties. In an N-party setting, a permutation

of the colors

π : [N]→ [N], {`1, `2, . . . , `N} 7→ {π(`1), π(`2), . . . , π(`N)} , (3.40)

induces an action of SymN on the instances of Q̃R, similar to our earlier discussion

of abstract quantities (3.23). For an instance (3.32) of total character n, we consider

the restriction of the map π to the subset [n] ⊆ [N]

π|[n] : [n]→ [N], {`1, `2, . . . , `n} 7→ {π(`1), π(`2), . . . , π(`n)} (3.41)

and then define

πQR[σQ](AIn1
: AIn2

: · · · : AInR
)

def
= QR[σQ](π(AIn1

) : π(AIn2
) : · · · : π(AInR

))

(3.42)

Not all permutations π ∈ SymN will map an instance of Q̃R to a different one,

since it is clear that (3.42) is invariant under the action of the subgroup Sym(AIn1
)×
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Sym(AIn2
)×· · ·×Sym(AInR

) ⊂ SymN, which only permutes the colors within each

row of the Young tableau (3.28). Permutations which do not belong to this subgroup

will map an instance to a different one. Notice in particular that these permutations

not only can permute a fixed set of colors across the various boxes in a tableaux, but

can also change the full set of colors which appear in the tableau. For example, they

can map the first tableau of (3.31) to the second one. However, any two instances

which are related by a permutation ought to be considered equivalent; we can simply

relabel the (physical) subsystems under the said permutation, and thus identify the

two instances. So we should understand how the action of SymN partitions the set

of instances of an abstract quantity (which depends on N) into orbits, and how to

label the various orbits.

The subtle point that we need to elucidate is that the instances of an abstract

quantity Q̃R are classified, following the scheme introduced in §3.2, according to

the various isomers Q̃R[σQ] of Q̃R. Therefore, to organize the instances into orbits

under the action of SymN, we need to understand if and when this action can relate

instances associated to different isomers. To do this, let us first notice that given an

instance of character ~n, a permutation π can change the colors which appear in the

various polychromatic subsystems AIni
according to (3.42), but it cannot change the

character ~n, i.e., the degree of the various polychromatic indices Ini
.

Consider then a choice of character such that all the components of ~n are distinct

(ni 6= nj, ∀ i, j ∈ [R]). In this particular case, all the polychromatic subsystems

which appear in the arguments of the abstract quantity Q̃R cannot be related to

each other by permutations π, and instances associated to different isomers Q̃R[σ1
Q]

and Q̃R[σ2
Q] must belong to different orbits. This can easily be seen pictorially, using

again the language of Young tableaux. For N = 6, consider for example two different

decorations of the tableau associated to the character ~n = (3, 2, 1)

1 2 3
4 5
6

2 3 6
4 5
1

(3.43)

which are related by permutation π. Different isomers are related by permutations

of the abstract subsystems Xi, and we can imagine obtaining one of them from the

other by permuting the rows of the tableaux. However, there is clearly no way to

achieve the result of such a (σQ) permutation of rows, by holding the shape of the

tableau fixed and permuting the colors with a permutation π.

On the other hand, if some components of ~n are equal, instances of two or more

isomers, with fixed ~n, can belong to the same orbit. To see when this happens, let us

again consider an example for N = 6, but now with a choice of character ~n = (2, 2, 1).

Examples of possible decorations of the corresponding tableau are shown in (3.31).

Consider for example second tableau and the following sequence of permutations:

– 38 –



π = (24)(36) ∈ Sym6 and σ = (12) ∈ Sym5.37 The action is easy to visualize on the

decorated tableau (ignoring for the moment the ordering prescription), leading to

2 3
4 6
1

π7−→ 4 6
2 3
1

σ7−→ 2 3
4 6
1

(3.44)

Essentially we are seeing that we can undo the permutation of colors by a permutation

of the rows. In the present case, the former is a restriction π|[5] acting on five

colors, of a permutation of colors π ∈ Sym6, while the latter is an element of the

residual permutations that act on the quantity Q̃R, mapping one isomer into another.

Assuming that the permutation (12) is indeed relating two distinct isomers, the two

tableaux correspond to two different instances for each isomer, and all these instances

belong to the same orbit under the action of Sym6.

More generally, consider the standard isomer Q̃e
R of an abstract quantity Q̃R,

and another isomer Q̃R[σQ] obtained from Q̃e
R under the action of a permutation

σQ ∈ Per(Q̃) as defined in (3.23). For an instance Qe
R(AIn1

: AIn2
: · · · : AInR

) of

Q̃e
R, we can write the corresponding instance of Q̃R[σQ] as

QR[σQ](AIn1
: AIn2

: · · · : AInR
) = Qe

R(σQ(AIn1
) : σQ(AIn2

) : · · · : σQ(AInR
)) (3.45)

where, as clarified by the left hand side, the polychromatic subsystems are only

reordered, but are left unchanged. Suppose then that σQ maps a subsystem AIni
to

another subsystem AInj
. If ni = nj, then the same transformation can be realized

by a permutation π, since we can imagine holding the two subsystems fixed and

transforming the colors instead. More abstractly, we can imagine an action of σQ on

the components of the character

σQ : ~n = (n1, n2, . . . , nR) 7→ σQ~n = (σQ(n1), σQ(n2), . . . , σQ(nR)) (3.46)

and consider all the permutations σQ ∈ Per(Q̃R) such that the character is invariant

under this action, i.e., such that σQ(~n) = ~n. Note that this is an equation for σQ,

not for ~n. We collect all these permutations into a set, which depends on ~n, and we

denote by {σQ}~n. We are then in a position to define

Definition 6. (N-orbits) for an abstract information quantity Q̃R in an N-party

setting, the instances Q̃R(DR) are organized into the following N-orbits under the

action of SymN

QR[{σQ}~n](n1 : n2 : · · · : nR)
def
=

⋃
σQ(~n)=~n

QR[σQ](n1 : n2 : · · · : nR) (3.47)

To label an orbit, occasionally we will also write more compactly QR[{σQ}~n](~n),

or simply QR[σQ](~n), when all the components of the character are distinct and each

37 We are using the standard cycle notation for the permutations.
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isomer is associated to a different orbit. In the particular case of a quantity Q̃R

which has just a single isomer (i.e., Aut(Q̃R) = SymR and Per(Q̃R) is trivial), we

will drop the specification of the isomer from the notation of instances and orbits.

Likewise, for any quantity Q̃R, we will drop the specification of the isomer for all

natural instances and trivial upliftings, since the distinction becomes irrelevant as a

consequence of (3.46).

We stress again that this classification of the instances of Q̃R into orbits under

the action of SymN holds irrespective of whether the instances are primitive or

not. However, the crucial aspect is that since for primitive quantities, as described

above, this action can be understood at the level of the generating configurations, the

partitions of the set of instances into orbits respects primitivity, i.e., if an instance

is (not) primitive, all other instances in the same orbit are also (not) primitive.

This fact underlies the discussion at the end of the §3.2 about the important in-

formation we need to collect for the construction of the arrangement. When different

instances of a same quantity Q̃R are derived from configurations, the details of the

specific collection of all polychromatic subsystems is irrelevant – what is crucial is

instead the pair (σQ,~n). For a given value of N, the symmetry under SymN described

above guarantees that all instances of the isomer σQ and character ~n are primitive.

3.3.2 Equivalence between instances of different abstract quantities

The equivalence between primitive quantities in the arrangement extends beyond

that obtained by the action of SymN, which relates different instances of the same

abstract quantity Q̃R. As we will see, there exist certain sets of primitive quanti-

ties which should be considered equivalent even if they are associated to abstract

quantities Q̃R and Q̃′R (not just different isomers) which are distinct according to the

previous definitions. Furthermore, even for a fixed abstract quantity Q̃R, it can hap-

pen that different orbits under the action of SymN are related in a subtle way. This

broader equivalence relation is associated to a symmetry under a particular action

of the group SymN+1 which acts on the collection of subsystems and their purifier.

The goal of this section is to describe this action, and to organize the hyperplanes in

the arrangement into orbits of this larger group, clarifying which instances of which

abstract quantities are related to each other, as well as to introduce some useful

notation.

Let us begin the discussion with an example. Consider again the configuration

of Fig. 3a, which generates (3.39). In this configuration we now permute the color B
with the purifier O, obtaining a new configuration (see Fig. 4b) which generates the

following information quantity38

QAL
2 = SA + SABC − SBC (3.48)

38 The nomenclature will become clear momentarily.
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A1

C1

B1

C2

C3

A2

B2

(a)

B

A1

C1

O

C2

C3

A2

O

(b)

B
A1

C1

C2

C3

A2

O

(c)

B1

B2

B3

A1

C1

C2

C3

A2

O

(d)

Figure 4: Starting from the same configuration (a) of Fig. 3a, we now permute the subsystem B with

the purifier O (b). The new configurations (c) and equivalently (d) likewise generate (3.48).

At least at a formal level, this expression is new and cannot be written as an instance

of the mutual information. Performing a color reduction BC → B as described above,

(3.48) reduces to

Q
′AL
2 = SA − SB + SAB (3.49)

which can be recognized as the expression which appears in the Araki-Lieb inequality,

wherefrom the name. The corresponding abstract quantity is then

Q̃AL
2 [e](X1,X2) = SX1 − SX2 + SX1X2 (3.50)

which by convention we have chosen as the standard isomer [σQ = e]. The other

isomer is then

Q̃AL
2 [(12)](X1,X2) = SX2 − SX1 + SX1X2 (3.51)

where (12) = σQ ∈ Per(Q̃AL
2 ) is the permutation which exchanges X1 and X2.

Even if these quantities are formally different from the mutual information, it

should already be clear that they are physically equivalent, since they are generated

by the same configuration where we have simply changed the role of the subsystems

by a permutation. While for a primitive quantity this equivalence is made particularly
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manifest by the generating configuration, the same logic extends more generally to

non-primitive quantities as well. Moreover, it has a simple quantum mechanical

origin.

In the previous example, to obtain (3.48) from the configurations in Fig. 4c (or

equivalently Fig. 4d) we have secretly used the fact that the overall state is pure

and hence the entropies are equal to the entropies of the complementary subsystems.

We can therefore implement a similar transformation even if a quantity is not prim-

itive. Starting directly from (3.39), we can replace all the entropies that include the

subsystem B with the entropies of the complementary subsystems, obtaining

QAL
2 = SA + SACO − SCO . (3.52)

Redefining O → B we obtain (3.48), and we can then proceed as before. In the

following we will refer to this transformation as a “purification with respect to B”.

While this particular way of transforming one quantity into another makes less evi-

dent that the operation is essentially a permutation, one should keep in mind that

this is in fact the case.

More generally, we can imagine performing this manipulation at the abstract

level. Starting from the abstract form of the mutual information (3.10), we intro-

duce an auxiliary subsystem O and formally perform the replacement just described.

Specifically, we choose one abstract subsystem Xi and replace all the entropies in the

abstract expression with the entropies of the complementary subsystems, including

the auxiliary subsystem O. Finally, we redefine O → Xi. The outcome of this trans-

formation depends on which abstract subsystem Xi we choose. Choosing X1 we get

(3.51), while the other choice gives (3.50).

As usual, working at the abstract level is a convenient way to separate the

purely algebraic properties of a given quantity from issues related to primitivity and

configurations. However, since what we ultimately want to do is to relate differ-

ent hyperplanes in the arrangement under this more general mapping, we need to

know how instances of different isomers of different quantities are related by these

transformations.

Going back to the previous example, focusing for the moment on the simple

N = 2 set-up, the only possible choice of character is ~n = (1, 1), and the two instances

QAL
2 [e](A : B) and QAL

2 [(12)](A : B) should be joined to form the orbit (under the

action of Sym2)

QAL
2 [{e, (12)}](1 : 1) (3.53)

according to (3.47). The mutual information has only one isomer, and therefore a

single orbit I2[e](1 : 1) which contains a single instance. It is immediate to check

that by purifying this particular instance with respect to A or B gives the two

instances in the above orbit of Q̃AL
2 . This is, of course, the same transformation

we just performed at the abstract level. As we discussed, these transformations are
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essentially the permutations (AO) and (BO).39 Therefore, we can collect all the

instances of Q̃AL
2 and Ĩ2 in this set-up into a single larger orbit

I2[e](1 : 1) ∪QAL
2 [{e, (12)}](1 : 1) (3.54)

under the action of the group Sym3. Since the mutual information is a primitive

quantity, the instances in (3.53) are also primitive and are generated by the same

configuration that generates I2[e](1 : 1) after performing the aforementioned permu-

tations.40

This example was straightforward, but in the N = 3 case the situation is more

interesting (and instructive). One possible choice of character is again ~n = (1, 1),

which again corresponds to an orbit I2[e](1 : 1) for the mutual information (now

containing the three instances in the first row of (3.8)) and similarly an orbit for

Q̃AL
2 which still takes the form (3.53), but also contains more instances. The key

point is that now these two orbits are not related by purifications, and therefore,

unlike (3.54), cannot be joined into a larger orbit under the action of Sym4. This

can be immediately seen from the fact that, as we discussed above, purifying (3.39)

with respect to B gives (3.48), which is an instance of (3.51) of character ~n = (2, 1)

(and not ~n = (1, 1)).

For this other choice of character (~n = (2, 1)), the two isomers of Q̃AL
2 are now

associated to two distinct orbits under the action of Sym3

QAL
2 [e](2 : 1), QAL

2 [(12)](2 : 1), (3.55)

while for the mutual information we have the single orbit I2[e](2 : 1) (with instances

listed in the second row of (3.8)). As we have shown, the instances of the second orbit

above are the ones which are obtained via purifications from the instance in I2[e](1 :

1). We leave it as an exercise for the reader to verify that the same transformations

relate the instances of the first orbit above to the instances in I2[e](2 : 1) and in

(3.53). Overall, all these instances are therefore organized into two orbits under the

action of Sym4

I2[e](1 : 1) ∪QAL
2 [(12)](2 : 1)

I2[e](2 : 1) ∪QAL
2 [e](2 : 1) ∪QAL

2 [{e, (12)}](1 : 1)
(3.56)

The crucial point is that only the quantities which belong to the first orbit above are

primitive, while the quantities in the second one are not.41

39 Using again the cyclic notation.
40 We refer the reader to [1] for further details regarding these simple configurations.
41 We have already shown in (3.9) that for N = 3 the instances in I2[e](2 : 1) are non-primitive.

We leave it as an exercise to verify, using a similar argument, that also the other quantities in the

orbit are non-primitive.
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The example discussed above is particularly instructive because it demonstrates,

quite simply, all the aspects of interest in dealing with these more general transfor-

mations. The rest of this section will be devoted to formalizing the problem and

to extending the discussion to the general case. We will start by working with ab-

stract quantities, since this conveniently allows us to separate the analysis of formal

manipulations from issues related to instances and primitivity, which depend on the

total number of colors N of a specific set-up. The next step will be to apply this

technology to a specific set-up and to organize the instances of the various quantities

mapped by these transformations into orbits under the action SymN+1.

Mapping between different abstract quantities: Consider an isomer Q̃R[σQ]

of an abstract quantity Q̃R of rank R. We introduce an auxiliary abstract subsystem

XR+1 which for distinctness we denote by O. In analogy to (3.22) and (3.23) we

consider the set [R + 1] and we introduce the generalized permutation σ] ∈ SymR+1

σ] : [R + 1]→ [R + 1], (X1, . . . ,XR,O) 7→ (σ](X1), . . . , σ](XR), σ](O)) . (3.57)

We then introduce the restriction of this map to the subset [R] ⊂ [R + 1]

σ]|[R] : [R]→ [R + 1], (X1, . . . ,XR) 7→ (σ](X1), . . . , σ](XR)), (3.58)

and define the action of SymR+1 on Q̃R[σQ] as

σ]Q̃R[σQ](X1,X2, . . . ,XR)
def
= Q̃R[σQ](σ](X1), σ](X2), . . . , σ](XR)). (3.59)

When σ](O) = O, the action of σ] on Q̃R[σQ] is equivalent to the action of a

permutation σ ∈ SymR, which, as discussed in the previous sections, can map Q̃R[σQ]

to another isomer. On the other hand, when σ](O) 6= O, the auxiliary subsystem

O will appear in at least one of the arguments of the resulting expression (3.59). In

this case, we want to transform the explicit expression that defines (3.59) to obtain

an information quantity which is a function of the original subsystems (X1, . . . ,XR).

To do this, we formally replace each entropy SI, with O ∈ I, with the entropy of the

complementary subsystem defined as42

Ic = {X1,X2, . . . ,XR,O} \ I (3.60)

In general, the outcome of this transformation can be an isomer Q̃R[σ′Q] of the same

abstract quantity Q̃R (possibly even σ′Q = σQ), or a new expression that cannot be

written as an isomer of Q̃R. The details will depend on the algebraic structure of Q̃R

and the specific permutation.

42 Here the usual polychromatic index I labels a collection of abstract subsystems Xi in the

obvious way, in perfect analogy to the case of colors. We will use this convention also in later

sections.
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Starting from an information quantity Q̃R, in principle we can imagine acting

with these transformations an arbitrary number of times. It will therefore be useful

to understand how these maps combine. In particular, we want to understand how

many formally inequivalent quantities could in principle be obtained starting from

Q̃R and which transformations we should use to obtain them.

We will denote by σ a permutation σ] such that σ](O) = O and introduce an

operator T which implements the subsystem replacement introduced above. Specif-

ically, T acts linearly on the explicit expression that defines a quantity σ]Q̃R and

it replaces all terms SI such that O ∈ I with the entropy of the complementary

subsystems. In the following we will simply say that T “removes O”. Since we are

interested in understanding how to obtain quantities which are formally different,

the distinction between isomers is immaterial, and in order to simplify the notation,

we will dispense with their specification. For example, since a transformation σ can

only change an isomer, we will simply write

σQ̃R ' Q̃R . (3.61)

An arbitrary generalized permutation σ] can always be written as a product of

a transposition (XiO), which swaps O and an abstract subsystem Xi, and a permu-

tation σ. We can then write a transformation of the kind described above as

Tσ]Q̃R = T(XiO)σQ̃R ' T(XiO)Q̃R . (3.62)

Therefore, in order to find information quantities which potentially have a different

form, all we have to do is to start from an arbitrary isomer of Q̃R, swap a subsystem

Xi with O, and remove O with T.

If we repeat this type of transformation a second time we find the following:

T(XjO)T(XiO)Q̃R = (XjXi)T(XjO)Q̃R . (3.63)

To see that this is the case, let us write the collection of all subsystems (X1, . . . ,XR,O)

in a way which lets us keep track of the two purifying systems while retaining com-

plete generality otherwise, as (Xi,Xj,K,L,O), where K,L are usual polychromatic

indices (one capturing the remaining content of I and the other the remaining con-

tent of its complement). Now consider a term SI in the expression of Q̃R. The index

I can have four different forms with respect to the inclusion of the subsystems of

interest Xi,Xj:

I =


K

XiK
XjK
XiXjK

(3.64)
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Applying the transformations on the two sides of (3.63) respectively, we obtain

K
T(XiO)−→ K

T(XjO)

−→ K

XiK
T(XiO)−→ XiXjL

T(XjO)

−→ XjK

XjK
T(XiO)−→ XjK

T(XjO)

−→ XiXjL

XiXjK
T(XiO)−→ XiL

T(XjO)

−→ XiL



K
T(XjO)

−→ K
(XjXi)−→ K

XiK
T(XjO)

−→ XiK
(XjXi)−→ XjK

XjK
T(XjO)

−→ XiXjL
(XjXi)−→ XiXjL

XiXjK
T(XjO)

−→ XjL
(XjXi)−→ XiL

(3.65)

In the equation above, the transformation on the left (right) corresponds to the left

(right) hand side of (3.63). Since the outcome is the same for an arbitrary index I,

(3.63) is proven.

This relation shows that in order to find all possible information quantities as-

sociated to Q̃R which have a different form, we can simply start from an arbitrary

isomer of Q̃R and apply T(XiO) for all possible choices i ∈ [R]. Furthermore, this

demonstrates that the maximum number of such different information quantities

obtainable from Q̃R is R.

While it is important to keep in mind that these transformations are essentially

permutations (followed by T), it will be convenient to also have a more direct means

of transforming a given quantity under these rules. For an abstract subsystem Xi,
we define a purification operator Pi

Pi
def
= T(XiO) . (3.66)

In practice, the action of this operator can be summarized as follows

Pi : SI 7→ PiSI =

{
SXi∪(Ic\O) if Xi ∈ I

SI otherwise
(3.67)

We imagine the action being linear on the defining expression of an information

quantity. When the result of PiQ̃R is an information quantity defined by a for-

mally different expression, we will denote it by43 Q̃
[i]
R and we will say that Q̃

[i]
R is a

purification of Q̃R.

Finally, let us briefly comment on the mapping of isomers. As discussed in §3.2,

the choice of the standard isomer Q̃e
R of an abstract quantity Q̃R is completely arbi-

trary. The very same freedom is present for all the new quantities Q̃
[i]
R . Furthermore,

since the operator Pi is an involution, we have

PiQ̃
[i]
R = Q̃R . (3.68)

We can in principle redefine Q̃
[i]
R ≡ Q̃′R and Q̃R ≡ Q̃

′[i]
R . In other words, there is, a-

priori, no unique choice of which quantity should be considered ‘more fundamental’

43 The upper index [i] labels the subsystem with respect to which one has to purify Q̃R in order

to obtain Q̃
[i]
R .
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in defining purifications Q̃
[i]
R . While in certain cases like the previous example of

mutual information, a particular choice might seem more natural, in general a choice

should be made case by case.

On the other hand, when a choice of a ‘reference’ Q̃R has been made, together

with its standard isomer Q̃e
R, it is natural to define the standard isomers of the

purifications Q̃
[i]
R according to this choice, i.e.,

Q̃
[i]
R [e]

def
= PiQ̃

e
R (3.69)

The mapping between the isomers of Q̃R and its purifications Q̃
[i]
R can then be de-

termined by analyzing the internal symmetries of these quantities, and how they

combine with the transformations σ and Pi.

Mapping between instances and (N + 1)-orbits: We now turn to describing

how the description of purifications at the abstract level can be used to understand

the relations between instances under such transformations. For an abstract quantity

Q̃R, suppose that we have classified all isomers of all purifications Q̃
[i]
R .44 Since by

assumption all the Q̃
[i]
R are formally different, we can use the construction of §3.2

to classify all instances of each Q̃
[i]
R in an N-party setting. We are guaranteed, by

construction, that the description will be free of redundancies. Furthermore, we

can organize all these instances into orbits under the action. What remains to be

understood is how the more general symmetries which involve the purifier relate,

under a more general equivalence relation, instances of seemingly different quantities.

In an N-party setting, we introduce a generalized permutation π] ∈ SymN+1

acting on the set of colors and purifier as follows

π] : [N + 1]→ [N + 1], {`1, `2, . . . , `N,O} 7→ {π](`1), π](`2), . . . , π](`N), π](O)} .
(3.70)

We then introduce the restriction

π]|[n] : [n]→ [N + 1], {`1, `2, . . . , `n} 7→ {π](`1), π](`2), . . . , π](`n)} , (3.71)

which entails an action on a particular instance of an abstract quantity Q̃R

π]QR[σQ](AIn1
: AIn2

: · · · : AInR
)

def
= QR[σQ](π](AIn1

) : π](AIn2
) : · · · : π](AInR

)) .

(3.72)

In complete analogy to the discussion at the abstract level, if π](O) = O, the

generalized permutation π] is one of the permutations π ∈ SymN whose action was

described in §3.2. On the other hand, if π](O) 6= O, we should again act with

T to remove O, and this transformation can map the instance of Q̃R in (3.72) to

an instance of one of its purifications. Suppose now that we write a generalized

44 For convenience here we include the reference quantity Q̃R in this list, labeling it by Q̃
[0]
R

def
= Q̃R.
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permutation on the colors as π] = (A`O)π. The key point is that in order to

determine which purification Q̃
[i]
R the resulting quantity is an instance of, the color

` is irrelevant. What matters is instead the slot Xi in the abstract form of Q̃R to

which the color ` belongs in the specific instance (3.72). In equations, assuming that

A` ∈ AIni

T(A`O)QR[σQ](AIn1
: · · · : AIni

: · · · : AInR
) = Q

[i]
R [σ′Q[i] ](AIn1

: · · · : A
Îni

: · · · : AInR
)

(3.73)

with Îni
= ` ∪ Icni

\ O and the specification of the isomer σ′
Q[i] is also determined by

abstract argument (independent of the set-up).

For certain applications, it might still be convenient to introduce, in an N-party

setting, a purification operator P` associated to a specific color. However, it should

be emphasized that the action of this operator on an instance is determined in large

part by the action of a corresponding operator Pi in the abstract setting.

Finally, note that the replacement Ini
→ Îni

in general does not preserve the

character ~n of the initial instance, which changes as follows

(n1, . . . , ni, . . . , nR) −→ (n1, . . . ,N− n, . . . , nR) (3.74)

The expression on the right in general does not satisfy the conditions introduced in

§3.2 for the classification of instances, since the components of the character are not

necessarily in decreasing order from left to right. To reorder these components we

should act with a permutation in SymR which generically can change the isomer in

(3.73) from Q
[i]
R [σ′

Q[i] ] to another Q
[i]
R [σ′′

Q[i] ].

Even if we ignore the specific details about the transformation of the isomers, it

is clear that the map that we just described relates two instances of different purifica-

tions, Q̃
[i]
R and Q̃R. Since this relation is an equivalence relation, all instances in the

equivalence classes of the two quantities should be considered equivalent and belong

to a larger equivalence class defined by the action of the generalized permutations

π]. In general we therefore have

Definition 7. ((N+1)-orbits) An (N+1)-orbit for an abstract information quantity

Q̃R in an N-party setting, is a set of some of its instances, as well as some instances

of all its purifications Q̃
[i]
R , related to each other under the action of SymN+1. Each

(N + 1)-orbit is in general a union of smaller orbits, defined under the action of

SymN, for the different purifications Q̃
[i]
R .

Finally, as we discussed in the previous section for the orbits under SymN, the

partitioning of the set of instances of Q̃R and all its purifications into (N + 1)-orbits

respects primitivity. Again, this follows from the fact that for a primitive quantity,

the action of SymN+1 can be understood directly at the level of the generating

configuration.
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4 Structural & physical properties of information quantities

We now explore how certain structural properties of an information quantity, which

are purely algebraic in nature, relate to some of its physical properties. In §4.1 we

introduce a natural choice of basis for the space of information quantities that will

be useful to highlight the structural properties we are after, and derive some useful

formulas for the expansion of various instances and purifications into this basis. Next,

in §4.2, we introduce the notion of balance and superbalance, and we discuss how these

properties relate to the behavior of the various quantities when they are evaluated on

configurations in a generic QFT. In particular, we will focus on the relation between

cancellation of divergences and scheme-independence of a given quantity and how

it relates to certain topological data characterizing the configuration on which it is

evaluated. This discussion will be independent of whether an information quantity is

primitive or not. Finally, in §4.3, we will focus on primitive quantities and discuss the

relation between these aforementioned algebraic properties and certain topological

properties of the configurations from which they can be generated. We will prove that

primitive quantities generated from configurations with non-adjoining subsystems are

balanced and we will argue for the “typical” occurrence of superbalance.

4.1 Basis in the space of information quantities

For a given value of N, the set of information quantities defined in (2.17) span a

vector space over the field Q with dimension D (the same as entropy space).45 The

standard basis in this space is given by the entropies SI, indexed by the polychromatic

subsystems I, with respect to which we write an information quantity as in (2.17).

However, for various applications, it will be convenient to introduce an alternative

basis obtained from primitive quantities. We have already seen how this can be done

(see the proof of Lemma 3.1), since the space of information quantities is precisely

the space of vectors that, geometrically, are orthogonal to hyperplanes in entropy

space. Since we will use this basis extensively in the following, we now briefly review

the elements, and also clarify the notation according to the terminology introduced

in the previous section.

The abstract form ĨR of the R-partite information is

ĨR(X1,X2, . . . ,XR) =
∑
I

(−1)#I+1SI

= SX1 + SX2 + · · ·+ SXR

− SX1X2 − SX1X3 − · · · − SXR−1XR

+ SX1X2X3 + · · ·+ (−1)R+1SX1X2...XR

(4.1)

45 More precisely, an information quantity is a ray in this space, since it is defined up to an overall

coefficient.
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where #I is the cardinality46 of the index I (the number of abstract subsystems).

Note that we do not need to specify the isomer, there being only a single one for

each R – the R-partite information is invariant under all the permutations of the

abstract subsystems, i.e., Aut(̃IR) = SymR, so Per(̃IR) is trivial. We know from the

In-theorem that in an N-partite setting all the trivial upliftings of ĨR are primitive,

for all 2 ≤ R ≤ N, and therefore belong to the arrangement AN. For any given R,

the trivial upliftings of ĨR in an N-partite setting form an orbit under the action of

SymN which is denoted by IR(1 : 1 : · · · : 1). To simplify the notation, we will denote

this orbit simply as In, stressing the fact that the total character is equal to the rank

(R = n)

In ≡ IR(1 : 1 : · · · : 1) . (4.2)

An element of this set is uniquely determined by the specification of a collection

of n colors drawn from the possible N, i.e., by a polychromatic index In. We will

therefore denote such an element by IIn . Occasionally, for small values of N, we will

also use a more explicit notation (see for example §7). We will write each element

IIn as I`1`2...`nn , specifying in the upper index the list of colors which belong to In. So

for example, for R = 3 and N = 4, we will write

I3 = {IABC3 , IABD3 , IACD3 , IBCD3 } . (4.3)

For given N, consider the set of all all trivial upliftings of all ĨR, for all values of R

in the range 2 ≤ R ≤ N. As we discussed, all these quantities are linearly independent

and there are D − N of them. To obtain a basis we can simply supplement this set

with the N trivial upliftings of the “1-partite information”

Ĩ1 = SX1 , (4.4)

which are the “monochromatic entropies” for all the N colors. We will call this basis

the In-basis and we will write the expansion of an information quantity Q in this

basis as

Q =
∑
I

qI II (4.5)

In the above expression the sum is intended over all polychromatic indices In, for

all 1 ≤ n ≤ N, and we write the coefficients as qI to distinguish them from the

coefficients QI of the same quantity Q written in the entropy basis (see (2.17)).

In the remainder of this section we will discuss some properties of the basis that

we just introduced. We will start by studying the map between the In-basis and the

usual one based on entropies. We will then derive a set of useful “reduction formulae”

which allow for converting non-trivial upliftings of the R-partite information into the

elements of the In-basis. Finally, we will discuss how the elements of this basis

transform under purifications.

46 In context of instances, this was called the degree of I as noted in footnote 30.
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Change of basis: For any value of N, the linear transformation that maps the

entropy basis to the In-basis is an involution. In other words, the expression of the

elements SI of the entropy basis in terms of the elements II of the In-basis is formally

the same that gives the inverse relation. In equations,

II =
∑
K⊆I

(−1)#K+1SK ←→ SI =
∑
K⊆I

(−1)#K+1IK . (4.6)

To see that this is the case, we only have to prove the formula on the right. For a

fixed index L, with L ⊆ I, the entropy SL only appears in the terms IK such that

L ⊆ K. The coefficient of SL is the sum of the coefficients of these terms and is given

by

(−1)#L+1

#I∑
i= #L

(−1)i+1

(
#I−#L

i−#L

)
=

{
1 if I = L

0 otherwise
(4.7)

Therefore the only term that survives in the sum is precisely SI.

Starting from the expression of an information quantity Q in one of the two

bases, it will be useful to obtain the general form of the relations qI(QK) and their

inverse QI(qK). Due to (4.7), these relations will be formally identical and it is more

convenient to derive the latter. Starting from the expression of Q in the In-basis

(4.5) and a choice of index I, the expression of QI is a sum, with appropriate signs,

of the coefficients qK such that I ⊆ K. From (4.5) it is clear that all terms in the

sum contributing to SI will have the same sign and we obtain

QI = (−1)#I+1
∑
K⊇I

qK . (4.8)

The overall sign is simply the sign of the term SI in IK. Notice that the inverse

relation, obtained by a swap q ↔ Q, is identical (up to an overall coefficient) to the

expression appearing in the canonical constraint associated to the index I.

Reduction formulae: For various applications, it will be useful to have a set of

formulae which allow us to write non-trivial upliftings of the R-partite information,

in an N-partite setting, in the In-basis. We could of course simply write out the given

uplifting explicitly in terms of the entropies SI and then use the right side of (4.6) to

re-express this in term of the Ins, but we will proceed obtain a general expression by

working with the Ins directly. Let us begin with the simplest example and consider,

in an N-partite setting, an uplifting of Ĩ2 with character ~n = (2 : 1). We can write

any such uplifting as a linear combination of certain trivial upliftings of Ĩ2 and Ĩ3 as

follows

I2(A`1A`2 : A`3) = I2(A`1 : A`3) + I2(A`2 : A`3)− I3(A`1 : A`2 : A`3) (4.9)
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More generally, consider an uplifting of Ĩ2 with character ~n = (p : 1). By iteration,

using (4.9) we can write

I2(A`1 . . .A`p : A`p+1) = I2(A`1 : A`p+1) + I2(A`2 : A`p+1) + · · ·+ I2(A`p : A`p+1)

− I3(A`1 . . .A`p−1 : A`p : A`p+1)

− I3(A`1 . . .A`p−2 : A`p−1 : A`p+1)

· · · − I3(A`1 : A`2 : A`p+1) (4.10)

To further reduce this expression we need to know how to manipulate the upliftings

of the R-partite information, for R > 2.

In an N-party setting, the generalization of (4.9) for an uplifting of ĨR with

character ~n = (2 : 1 : · · · : 1) is

IR(A`1A`2 : A`3 : · · · : AR+1) = IR(A`1 : A`3 : · · · : AR+1) + IR(A`2 : A`3 : · · · : AR+1)

− IR+1(A`1 : A`2 : A`3 : · · · : AR+1) (4.11)

To see that this is the case, it is useful to first introduce a convenient rewriting of the

R-partite information. Consider the abstract form (4.1) of ĨR and choose an abstract

subsystem Xi. We can write ĨR in a form that singles out Xi as follows

ĨR(X1, . . . ,XR) = SXi
−
∑
I

(−1)#I+1SXiI +
∑
I

(−1)#I+1SI (4.12)

where the sums are over all collections of abstract subsystems, labeled by I, which

do not include Xi. Formally, one can think of the second sum in (4.12) as

ĨR−1(X1, . . . ,Xi−1,Xi+1, . . . ,XR) (4.13)

and the first sum as a similar expression but where now each term SI has been

replaced by SXiI. Using (4.12) on the IR+1 term in (4.11), we can then write the

right hand side of (4.11) as (singling out A`1)

IR(A`1 : A`3 : · · · : AR+1)− S`1 +
∑
I

(−1)#I+1S`1I (4.14)

In the above expression, the term SA`1
cancels the same term contained in IR. Sim-

ilarly, for each term in the sum that does not include A`2 , there is a corresponding

term in IR with the opposite coefficient, and the two terms cancel.47 Moreover, for

each term in the sum which includes A`2 (and necessarily A`1), there was a similar

term in IR (which we just canceled) which included A`1 but not A`2 and had the same

sign.48 Finally, all terms in IR which do not include A`1 are unaffected. Therefore,

what the sum effectively does, is to replace each term in IR which includes A`1 with

47 For example, the term S`1`3 appears with a minus sign in IR and with a plus sign in the sum.
48 For example the sum contains the term S`1`2`3 with the same sign of S`1`3 in IR.
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a similar term that contains both A`1 and A`2 , effectively “merging” the two colors.

This proves (4.11). Notice that the formula is valid also in the particular case where

R = 1, using the definition (4.4).

Going back to (4.10), we can now use (4.11) and rewrite all non-trivial upliftings

of Ĩ3 into expressions that contain instances of Ĩ3 and Ĩ4. We proceed in this fashion

until we obtain a full decomposition into the elements of the basis. For example, in

the particular case where p = 3 (4.10) reduces to

I2(A`1A`2A`3 : A`4) = I2(A`1 : A`4) + I2(A`2 : A`4) + I2(A`3 : A`4)
− I3(A`1A`2 : A`3 : A`4)− I3(A`1 : A`2 : A`4)

= I2(A`1 : A`4) + I2(A`2 : A`4) + I2(A`3 : A`4)
− I3(A`1 : A`2 : A`4)− I3(A`1 : A`3 : A`4)
− I3(A`2 : A`3 : A`4) + I4(A`1 : A`2 : A`3 : A`4)

(4.15)

In the formula above, notice that the expansion contains instances of the R-partite

information for 2 ≤ R ≤ p+ 1 = 4. Moreover, all terms with the same rank have the

same sign, which is alternating as R increases, starting from a positive sign for the

instances of Ĩ2. Finally, notice that all the instances of the same rank are obtained

as follows. To specify an instance, which is a trivial uplifting, we have to choose R

colors out of the collection {A`1 ,A`2 ,A`3 ,A`4}. As clear from the above formula,

we always have to include A`4 in our choice, while we should consider all possible

subsets of {A`1 ,A`2 ,A`3} with R − 1 elements. Each choice gives an element of

the basis that enters into the final expansion. More generally, for an uplifting of

the mutual information with character ~n = (p : 1) we can therefore write (defining

I(p) = {`1, `2, . . . , `p})

I2(A`1 . . .A`p : A`p+1) =
∑
`i∈I(p)

I2(A`i : A`p+1)

−
∑

`i,`j∈I(p)

I3(A`i : A`j : A`p+1) + · · ·

− (−1)pIp+1(A`1 : · · · : A`p : A`p+1)

(4.16)

Proceeding in a similar fashion, the key formula (4.11) also allows us to imme-

diately derive a similar expression for an uplifting of ĨR with character ~n = (p : 1 :

1 : · · · : 1), as a sum of trivial upliftings of ĨR′ , with R ≤ R′ ≤ p + R − 1 ≤ N. By
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analogy with (4.16), we have

IR(AI(p) : A`p+1 : · · · : A`p+R−1
) =

∑
`i∈I(p)

IR(A`i : A`p+1 : · · · : A`p+R−1
)

−
∑

`i,`j∈I(p)

IR+1(A`i : A`j : A`p+1 : · · · : A`p+R−1
) + · · ·

− (−1)p Ip+R−1(A`1 : · · · : A`p : A`p+1 : · · · : A`p+R−1
)

(4.17)

Finally, since the R-partite information is completely symmetric, we can use this

relation, again by iteration, to obtain the decomposition of any uplifting of ĨR, with

general form

IR(AIn1
: AIn2

: · · · : AInR
) (4.18)

First, in (4.17), we simply replace the monochromatic subsystems {A`p+1 , . . . ,A`p+R−1
}

with the polychromatic subsystems AIn2
, . . . ,AInR

and obtain an expression where

all the colors in AIn1
are separated, i.e., they are not merged into polychromatic

subsystems in any term. Next, we proceed in the same fashion for all terms, treating

the subsystems {A`p+2 , . . . ,A`p+R−1
} as single colors and reducing the polychromatic

subsystem AIn2
. We can then proceed in this fashion until all subsystems in all terms

are monochromatic, obtaining the desired expansion.

Transformation under purifications: For certain applications (see in particular

§7), it will be convenient to know how an information quantity written in the In-basis

transforms under purifications. Since the purification operator acts on an information

quantity as a linear operator, we just need to know how the elements of the basis

transform under this operation. Following the discussion of the previous section,

we should distinguish the effect of the purification on the character of a particular

instance from how it changes the abstract form of a given quantity; we begin by

discussing the latter.

First, consider the case where R is odd and we take the purification with respect

to a subsystem Xi. From the formal expression (4.1) which defines ĨR, and the defi-

nition (3.67) of the purification operator Pi, one can notice that this transformation

maps a term in (4.1) to another one which is also present in (4.1) and has the same

coefficient. Therefore, for odd R, ĨR is invariant under purifications (obviously this

is true for all Xi due to the symmetries).

On the other hand, for even R, ĨR is not invariant and is mapped by Pi to a new

quantity. To see what the defining expression of this quantity is, it is convenient to

start from the rewriting of ĨR given in (4.12). The first term is mapped to SX1X2...XR
,

which appears in the first sum but with the opposite sign (likewise such a term in

the first sum is mapped to SXi
). Similarly, all other terms in the sum come in pairs

which are swapped under the action of Pi. Since the second sum is unaffected by
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Pi (because the terms do not contain Xi), the result of the transformation is just a

change of sign for the first two terms in (4.12) and we can write

Pi ĨR(X1, . . . ,XR) = −SXi
+
∑
I

(−1)#I+1SXiI +
∑
I

(−1)#I+1SI (4.19)

Furthermore, from the obvious identity

ĨR(X1, . . . ,XR) = ĨR(X1, . . . ,XR)− ĨR−1(X1, . . . ,Xi−1,Xi+1, . . . ,XR)

+ ĨR−1(X1, . . . ,Xi−1,Xi+1, . . . ,XR)
(4.20)

and using (4.19) we obtain the useful formula

Pi ĨR(X1, . . . ,XR) = −ĨR(X1, . . . ,XR) + 2 ĨR−1(X1, . . . ,Xi−1,Xi+1, . . . ,XR) (4.21)

Because of the symmetry of ĨR, purifying with respect to a different subsystem Xj
would simply give the same formal expression, but where the abstract subsystems

have been permuted; in other words, it gives a different isomer of the same quantity.

Having seen how the abstract form of the R-partite information transforms under

purifications, we can then write convenient formulas for the transformation of the

trivial upliftings, which are the elements of the basis. For odd R we have

P`i IR(A`1 : · · · : A`i : · · · : A`R) = IR(A`1 : · · · : A`iA`R+1
. . .A`N : · · · A`R) (4.22)

and when R is even

P`iIR(A`1 : · · · : A`i : · · · : A`R) = − IR(A`1 : · · · : A`iA`R+1
. . .A`N : · · · A`R)

+ 2 IR−1(A`1 : · · · : A`i−1
: A`i+1

: · · · A`R)
(4.23)

Both expressions (4.22) and (4.23) can then be rewritten in terms of the basis ele-

ments using (4.17).

4.2 Balanced and superbalanced measures of correlations in QFT

Having introduced a convenient basis in the space of information quantities, we

will now discuss some of their algebraic properties, focusing on how they relate to

cancellation of divergences when these quantities are evaluated on configurations in

an arbitrary QFT. The discussion here is independent of whether an information

quantity is primitive or not.

In an N-party setting, consider an information quantity Q (we drop the rank since

it is irrelevant for the purpose of this discussion). We will say that Q is balanced with

respect to the color ` ∈ [N], if the coefficients QI of Q in the entropy basis satisfy the

following constraint ∑
I, `∈I

QI = 0 . (4.24)
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Notice that this is precisely the canonical constraint Fcan
` and that we can think of

the space of solutions to this equation, which is a (D−1)-dimensional linear subspace

in the space of information quantities, as the space of quantities which are balanced

with respect to the color `. We will be interested in particular information quantities

which are balanced with respect to all colors and we define

Definition 8. (Balance v1) In an N-party setting, an information quantity Q is

balanced if it is balanced with respect to all colors ` ∈ [N], i.e., if its coefficients QI

satisfy the set of constraints Fcan
[N] .

The space of balanced quantities in an N-party setting is then a (D − N)-

dimensional linear subspace of the space of information quantities that we will call

the balance subspace.

The reason for considering this property is that balanced quantities have a par-

ticularly nice behavior as measures of correlations in a QFT. To see this, we will

first show that a balanced quantity can always be written as a linear combination of

instances of the mutual information. For a given N, consider the collection Ĩ2(D2) of

all instances of the mutual information Ĩ2. Since each element of the set is a balanced

quantity, the span of all the element of Ĩ2(D2) is a subspace of the balance subspace.

Moreover, the dimension of this subspace is (D − N), and it therefore follows that

the instances of the mutual information span the whole balanced subspace.

To show that this is the case, we just need to show that for any N, Ĩ2(D2)

contains (D − N) linearly independent quantities. For clarity, let us first take the

simple example of N = 3, and consider the following collection of instances of Ĩ2

{I2(A : B), I2(A : C), I2(B : C), I2(BC : A)} ⊂ Ĩ2(D2) (4.25)

The first element is the only one in this collection which contains the term SAB
in its defining expression in the entropy basis. Similarly, the other three terms

SAC, SBC, SABC are contained only by exactly one of the other three elements of the

collection. Therefore, the four information quantities in (4.25) are linearly indepen-

dent, forming a basis in the 4-dimensional balance subspace for N = 3.

It is straightforward to generalize this construction to arbitrary N using Young

tableaux. We have seen on multiple occasions that for fixed N, the set of all polychro-

matic indices with degree 2 ≤ n ≤ N is (D−N). We want to construct a collection of

instances of Ĩ2 such that a term SI, where I has degree in the aforementioned range,

appears in exactly one element of the collection. The instances of Ĩ2 are obtained by

decorating, according to the rules described in §3, the following Young tableaux

· · · · · ·
(4.26)

Each tableau is associated to an instance of the mutual information which contains

a term SI, where the degree of I is equal to the total number of boxes in the tableau.
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To construct the desired collection, we then simply need to decorate all the tableaux

with colors assigned in increasing order, both from left to right and top to bottom,

in all possible ways.

Having shown that, for arbitrary N, the balance subspace is spanned by the

instances of the mutual information, we can then prove the following important fact

Lemma 4.1. All balanced quantities are finite and scheme-independent in QFT when

evaluated on a disjoint configuration.

Proof. Any instance of the mutual information is finite and scheme-independent

when evaluated on a disjoint configuration. If a quantity is balanced we showed above

that it can be written as a linear combination of a finite number of instances of the

mutual information. Therefore such quantity is finite and scheme-independent.

It is interesting to notice that, for any N ≥ 3, the collection of instances of

Ĩ2 that we constructed above, using the tableaux in (4.26), is a proper subset of

the full set of instances Ĩ2(D2). This follows from the fact that the rules we used

to decorate the tableaux were more restrictive than the ones introduced in §3 to

construct all instances. Therefore, the set Ĩ2(D2) not only contains a basis of the

balance subspace, but is overcomplete. This fact has interesting consequences.

Consider again the case N = 3. The set of instances of Ĩ2 contains, besides the

quantities listed in (4.25), also the quantities I2(AB : C) and I2(AC : B). Using

these two quantities, together with the ones in (4.25), we can write the tripartite

information in three alternative ways

I3(A : B : C) =


I2(A : C) + I2(B : C)− I2(AB : C)
I2(A : B) + I2(B : C)− I2(AC : B)

I2(A : B) + I2(A : C)− I2(BC : A)

(4.27)

Consider now a simple configuration C3 made of just three regions, one per color,

such that the regions A and C are adjoining while B is disjoint from both A and

C. We now want to evaluate I3(A : B : C) on this configuration. If we use the first

expression in (4.27), the first and last terms are divergent and it is unclear if the value

of I3(C3) would be finite. However, if we use the second expression in (4.27), all terms

are finite and make manifestly clear that I3(C3) is finite and scheme independent.

This simple example shows two important facts. First, a balanced quantity

can have a domain of applicability, as a useful measure of correlations in QFT,

which extends beyond the set of non-adjoining configurations. Second, given an

information quantity Q and a configuration CN in an N-party setting, one can use the

fact that the set of instances of the mutual information is overcomplete to explore

the relation between the cancellation of divergences in Q(CN) and the pattern of

adjacency relations among the regions in CN. We leave the systematic investigation

of these interesting properties for future work (see §8 for further comments).
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A balanced quantity does not necessarily remain balanced when it transforms

under purifications. A simple example is the mutual information, which as we have

seen is mapped under purifications to the quantity associated to the Araki-Lieb in-

equality, and the latter is not balanced. In general, to see how purifications affect

balance, it is useful to work in the In-basis and introduce an alternative (but equiv-

alent) definition of balance.

Definition 9. (Balance v2) In an N-party setting, an information quantity Q is

balanced if its expansion in the In-basis does not contain any instance of the 1-partite

information.

To see that this definition is equivalent to the one given above, first notice that,

for any N, all the elements of the In-basis with n ≥ 2 are balanced. The space

generated by these information quantities is then a subspace of the balance subspace,

and since the total number of these quantities is again (D−N), this subspace coincides

with the full balance subspace.

In an N-party setting, consider a balanced information quantity Q written in

the In-basis. As we discussed, the purification operator P` acts linearly on Q and

its action on the elements of the basis is given by (4.22) or (4.23). Let us denote by

Rmin the minimal rank which appears in the expansion of Q. If Rmin is odd, it will

remain unchanged after the transformation P`. The reason is that the terms of the

basis with rank Rmin are mapped to instances of the same rank according to (4.22),

while terms of higher rank are mapped, according to (4.23), to linear combinations

of new quantities which have a minimal rank which is at most one unit smaller than

Rmin. For the same reason, if Rmin is even, it can decrease at most by one under the

action of P`. Finally, suppose that after acting with P` on Q, we purify with respect

to another color, to obtain a new quantity P`′P`Q. If Rmin was odd for Q, it did not

change under the action of P` and it will not change under the action of P`′ either.

If it was even, it is Rmin − 1 for P`Q, which is odd, and it will not change under P`′ .
From this argument, it follows that the minimal rank Rmin associated to the

expansion of an information quantity Q in the In-basis can decrease at most by one

under the action of an arbitrary combination of purification transformations. In

particular, this means that a balanced quantity Q will remain balanced if and only if

its expansion in the In-basis does not contain any instance of the mutual information.

We therefore define

Definition 10. (Superbalance) In an N-party setting, an information quantity Q

is superbalanced if its expansion in the In-basis does not contain any instance of the

1-partite and 2-partite information.

Heuristically, it seems reasonable to expect that information quantities which

are superbalanced are particularly well behaved with respect to divergences in QFT,
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when evaluated on configurations which have several adjoining regions. This obser-

vation suggests the following generalization

Definition 11. (R-balance) In an N-party setting, an information quantity Q is

R-balanced if its expansion in the In-basis does not contain terms of rank R or lower.

According to this definition, an information quantity which is balanced is 1-

balanced, while a quantity which is superbalanced is 2-balanced. Notice that we

have defined superbalance, and more generally R-balance, as a generalization of Def-

inition 9. We will see in the next section how these definitions can be translated

into certain constraints for the coefficients of an information quantity in the original

entropy basis, in analogy to the Definition 8 that we gave for balance.

4.3 Relation between (super)balance and generating configurations

In this section we will focus on primitive quantities and comment on the relation

between their R-balance and the configurations from which they are generated. We

start with the following result about primitive quantities which are balanced.

Lemma 4.2. Primitive quantities generated by disjoint configurations are balanced.

Proof. To prove the statement, we only need to prove that the set of constraints

associated to an arbitrary disjoint configuration always includes the set of constraints

Fcan
[N] , since these are precisely the conditions required for an information quantity to

be balanced. In an N-party setting, consider a disjoint configuration CN. We do not

impose any restriction on the configuration other than the fact that it is disjoint.

In particular, we allow an arbitrary level of enveloping, and an arbitrary number

of regions for each color. For a color `, consider an arbitrary region Ai` ∈ CN and

let us call its boundary ∂Ai`. For each term SI of the entropy vector, with ` ∈ I,

the formal sum which computes the proto-entropy contains exactly one connected

surface ω ∈ Ω(CN) anchored to ∂Ai`. The sum of the constraints associated to all

these surfaces is therefore precisely Fcan
` . Repeating the argument for all other colors

we obtain the set of constraints Fcan
[N] .

More generally, to see how superbalanced, or R-balanced, primitive quantities can

emerge from configurations, we should first understand how to translate Definition 10

and Definition 11 into relations for the coefficients of an information quantity Q in

the entropy basis.

For clarity, let us consider the simple example of a superbalanced quantity Q for

N = 3 (i.e., the tripartite information), the generalization will be obvious. Accord-

ing to Definition 10, the requirement that Q is superbalanced is equivalent to the
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following set of constraints for the coefficients qI of Q in the In-basis (4.5)

qA = qB = qC = 0

qAB = qAC = qBC = 0
(4.28)

The first row of constraints enforces balance, while the second one is required for

superbalance. Using the inverse of (4.8) (which is formally identical), we can rewrite

these constraints in terms of the coefficients of Q in the entropy basis. Up to an

irrelevant overall coefficient, these are the canonical form constraints

F[3] ∪ {Fcan
AB ,F

can
AC ,F

can
BC } (4.29)

which are the ones that generate I3(A : B : C).
In general, for a configuration CN to generate a balanced information quantity,

the corresponding set of constraints must include the canonical constraints of degree

one, which are the ones in F[N], as already discussed in the proof of Lemma (4.2).

Likewise, to generate an information quantity which is superbalanced, the set of

constraints should also include all the canonical constraints of degree two. In general,

a primitive quantity will be R-balanced if the set of constraints associated to the

generating configuration includes all the canonical constraints of degree R′ ≤ R.

5 Relations between arrangements with different numbers

of colors

Having understood how to classify the various quantities in the arrangement, we

now turn to exploring how the construction reviewed in §2, used to derive primitive

quantities, can also be used to extract general lessons regarding the relation between

arrangements associated to a different number of colors. We will rely extensively

on the notions of canonical constraints, canonical building blocks (or building blocks

more generally), and uncorrelated union and refer the reader to §2 for the definitions.

There are two main reasons to understand how arrangements for different values

of N are related. For one, as explained before, it can reveal crucial hints about the

existence of holographic entropy inequalities. For another, it can simplify the actual

construction of the arrangement itself. Suppose that we have at hand, for some N, a

set of building blocks BN
49 that can be used to construct, via the uncorrelated union,

certain equivalence classes of configurations, like in the case of the In-theorem. To

obtain all these classes one has to scan over all inequivalent combinations of these

building blocks; this becomes quite complicated as N gets large. Knowing how the

lower rank quantities (R < N) uplift allows us to isolate new quantities that are

genuinely associated to N parties (i.e., with rank R = N).

49 In this section we remain agnostic as to how such a set is chosen or derived, see §6 for further

discussions about this point.
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We therefore focus on addressing the following: given a set of building blocks

in an N-party setting, which combinations generate primitive quantities that are

upliftings of abstract quantities with rank R < N? To answer this question we need

to understand how a configuration CN, which by construction is an uncorrelated

union of a collection of building blocks, can generate a primitive quantity of rank

R < N.

The first step in this direction is the classification, for fixed N, of all the possible

manifestations of a reduced rank in the final expression of the generated quantity.

Clearly, this is closely related to the classification of the upliftings (which is in some

sense the inverse problem), and the formalism will in fact be analogous. While we

could still use the language of Young tableaux that we employed in §3, here we are

not interested in distinguishing between isomers, and we can dispense with issues

related to orderings of the various subsystems. It will therefore be convenient to

introduce a more compact notation.

We first construct the set of subsets of [N] of cardinality n; these can simply be

labeled by the usual polychromatic indices of degree n

∆n([N]) = {In ⊆ [N]} (5.1)

Then we consider all possible partitions50 of each element In ∈∆n([N]) into R parts

and denote it by PR(In). Finally, we denote by PR(∆n([N])) the set of all such

partitions for all In, i.e.,

PR(∆n([N])) =
⋃

In∈∆n([N])

PR(In) (5.2)

Elements of PR(∆n([N])) are precisely (3.27), though the ordering of parts and colors

is now irrelevant. Armed with this we define:

Definition 12. (Color-reducing scheme) In an N-party set-up, a color-reducing

scheme is an element R of the set PR(∆n([N]))

R = {{`1
1, `

2
1, . . . , `

n1
1 }, {`1

2, . . . , `
n2
2 }, . . . , {`1

R, . . . , `
nR
R }} (5.3)

such that either

• n < N, in which case the scheme is said to be color-deleting,

• or ni > 1 for some i, in which case it is said to be color-merging,

• or both.

50 Here a partition is defined in the standard way: it is a collection of subsets of ∆n([N]) such

that it does not include the empty set, the union of all subsets is the full set, and the intersection

of any two subsets is empty.

– 61 –



A color-reducing scheme is said to be purely deleting (merging), if it is not merging

(deleting).

For an arbitrary color-reducing scheme, it is convenient to introduce a notation

which makes manifest which colors are being deleted and/or merged, ignoring all the

other colors in [N]. We will write

R[`1, `2, . . . , `p|I1, I2, . . . , Iq] (5.4)

where {`1, `2, . . . , `p} is the list of colors being deleted and {I1, I2, . . . , Iq} is the list of

polychromatic indices which specify which collections of colors are merged. For color-

reducing schemes which are purely deleting or merging we will write, respectively

R[`1, `2, . . . , `p|∅], R[∅|I1, I2, . . . , Iq] . (5.5)

Finally, when we only focus on the color-deleting or merging aspect of a color-

reducing scheme R we write, respectively

R[`1, `2, . . . , `p|·], R[·|I1, I2, . . . , Iq] , (5.6)

ignoring the fact that the scheme can also be merging or deleting.

To see how a color-reducing scheme can be implemented by a configuration CN,

consider the case N = 3, where the set of building blocks are just the canonical ones,

i.e.,

B3 = {C◦3[AB],C◦3[AC],C◦3[BC],C◦3[ABC]} . (5.7)

Let us focus on the following configuration (which, in a slightly more compressed

form, can be obtained from Fig. 3a)

A3 = C◦3[AC] t C◦3[BC] t C◦3[ABC] , (5.8)

which corresponds to the set of constraints

{F(A3)} = Fcan
[3] ∪ {Fcan

AC ,F
can
BC ,F

can
ABC} . (5.9)

By taking suitable linear combinations, it is immediate to check that {F(A)} is

equivalent to the following set of constraints

Fcan
A , Fcan

B , QC = 0, QAC = 0, QBC = 0, QABC = 0 . (5.10)

Consequently, if a primitive quantity Q is generated by a configuration that is the

disjoint union of (5.8) and other building blocks, no polychromatic subsystem I

containing C will appear in Q. This is an implementation of the purely color-deleting

scheme R[C|∅], since we have effectively removed the color C, but we have not merged

any collection of colors. In fact, as we have seen before, the configuration A3 generates

the instance I2(A : B) of the mutual information.

– 62 –



This construction can be easily generalized. Suppose that for a given N we have a

set of building blocks BN that we use to generate primitive quantities. By definition

we will always assume that the set BN contains all the building blocks obtained from

each other by permuting the color labels (but not the purifier). We then introduce:

Definition 13. (Color-deleting architecture) For a set of building blocks BN,

and a color-deleting scheme R[`1, `2, . . . , `p|·], a color-deleting architecture is a con-

figuration

AN =
⊔
i

Bi, Bi ∈ BN (5.11)

implementing the set of constraints

{F(AN)} = {QI = 0, ∀ I s.t. I ∩ {`1, `2, . . . , `p} 6= ∅} ∪ {F(AN)}res (5.12)

where the residual constraints {F(AN)}res depend on the structure of the building

blocks. In the particular case where the constraints {F(AN)} do not implement any

color-merging scheme (see later), the architecture is said to be purely color-deleting.

The set of canonical building blocks allows for the construction of a purely color-

deleting architecture for any purely color-deleting scheme. In an N-party setting, a

color-deleting architecture for the color-deleting scheme R[`1, `2, . . . , `p|·] is simply

AN =
⊔

I, {`1,`2,...,`p}∩I6=∅

C◦N[I] , (5.13)

generalizing (5.8). The residual constraints are

{F(AN)}res = {Fcan
`i
,∀`i ∈ [N], `i /∈ {`1, `2, . . . , `p}} (5.14)

making clear that the architecture is purely color-deleting, since these constraints

cannot merge any collection of colors. Using this construction we can then prove the

following result:

Lemma 5.1. If a natural instance of a quantity Q̃R can be generated, in an R-partite

setting, by a non-adjoining configuration, all the trivial upliftings QR(1 : · · · : 1) of

Q̃R to an N-party setting are primitive, for any N ≥ R.

Proof. Suppose that an instance QR[σQ](`1, . . . , `R) can be generated by a config-

uration CR such that all the monochromatic subsystems are non-adjoining. As we

discussed in the proof of Lemma 4.1, the set of constraints {F(CR)} associated to

this configuration includes the set Fcan
[R] , and for convenience we write

{F(CR)} = Fcan
[R] ∪ {F(CR)}′, (5.15)
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where {F(CN)}′ are the constraints associated to CR which are not in Fcan
[R] . In an

N-party setting, consider then the following color deleting scheme

R[`R+1, . . . , `N|·], (5.16)

where the colors {`R+1, . . . , `N} are the ones that do not appear in QR[σQ](`1, . . . , `R),

and consider the corresponding architecture AN given by (5.13). The constraints

associated to AN are given by (5.12), and the residual constraints, given by (5.14),

are precisely the ones in the set Fcan
[R] associated to CR. If we construct the new

(N-color) configuration

CN = CR tAN (5.17)

the corresponding constraints are then

{F(CN)} = {QI = 0, ∀ I s.t. I ∩ {`R+1, . . . , `N} 6= ∅} ∪ {F(CR)} (5.18)

The new configuration CN then generates exactly the same instance QR[σQ](`1, . . . , `R)

initially generated by CR, but now in a set-up with N colors. The N−R colors which

do not appear are ‘projected out’ by the architecture. Finally, to obtain all other

instances in the orbit QR(1 : · · · : 1), we simply permute the N colors in CN in all

possible ways.

So far we have seen how to effectively remove colors, i.e., how to implement a

color-deleting scheme using a color-deleting architecture. Following the same logic,

we can define an architecture to implement a color-merging scheme:

Definition 14. (Color-merging architecture) For a set of building blocks BN

and a color-merging scheme R[·|I1, I2, . . . , Iq], a color-merging architecture is a con-

figuration

A =
⊔
i

Bi, Bi ∈ BN (5.19)

implementing the set of constraints

{F(A)} = {QK = 0, ∀K s.t. ∃ Ii ∈ R, K ∩ Ii 6= ∅ and K 6⊇ Ii} ∪ {F(A)}res (5.20)

where {F(A)}res depends on the structure of the building blocks. In the particular

case where the constraints {F(A)} do not implement any color-deleting scheme, the

architecture is said to be purely color-merging.

Using the canonical building blocks we can also construct an example of a color-

merging architecture. For example, in an N = 4 set-up, one can check that the

following architecture effectively merges A and B

A =C◦4[AC] t C◦4[AD] t C◦4[BC] t C◦4[BD]

t C◦4[ABC] t C◦4[ABD] t C◦4[ACD] t C◦4[BCD] t C◦4[ABCD] . (5.21)
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This architecture however is not a configuration that generates any primitive quan-

tity, because it is associated to only 13 independent constraints, while we need 14.

We could try to add one more canonical building block, say either C◦4[AB] or C◦4[CD].

However, in either case, in the final expression of Q, A and B are not merged, as can

be verified. The architecture has in some sense been spoiled. What happens is that

the additional building block effectively converts this color-merging architecture into

a color-deleting one!

This example shows an important subtlety related to the combinations of archi-

tectures and building blocks to form generating configurations for primitive quantities

– the issue of pattern avoidance. Suppose that we are working in an N-party setting,

with some set of building blocks BN, and we are interested in finding primitive quan-

tities of rank R. If R = N we need to consider only combinations of building blocks

which do not implement any color-reducing architecture. Similarly, for R < N, we

need to construct a suitable ‘unspoiled’ color-reducing architecture within a gener-

ating configuration. In the special case of trivial upliftings, the problem is simple

(Lemma 5.1). This is because color-deleting architectures are in some sense robust:

once they are realized, they cannot be spoiled by the addition of other constraints.

On the other hand, color-merging architectures are much more fragile, as illustrated

above. To realize a configuration that generates a primitive quantity, and contains

a color-merging architecture, such that the corresponding primitive is not a trivial

uplifting, we need new building blocks besides the canonical ones. We will see an

example of this in the next section.

6 New information quantities beyond the In-theorem

The In-theorem of [1] showed that the trivial upliftings of the R-partite information

are the only primitive quantities that can be generated, in an N-party setting, by

configurations where none of the colors envelops another, and regions do not share

any portion of their boundaries. We now generate new primitive quantities by lifting

the former restriction, while still continuing to enforce the latter.

As explained in detail in [1], and reviewed in §2.2, to derive all primitive infor-

mation quantities for any given N, one has to perform a full scan over all equivalence

classes of configurations. This is a hard problem which we shall not fully address

presently (cf., §8). However, a particularly useful feature of the approach based on

the building blocks is that one does not need to have a complete solution to the

classification problem of equivalence classes of configurations to derive new primitive

quantities of the arrangement.

One way to proceed is to restrict attention to a subset of the space of all possible

configurations (picked out by some criterion, eg., topology). With a judicious choice,

the classification of the configurations into equivalence classes might simplify dra-

matically (like for the In-theorem). However, a nice feature of using building blocks
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to generate configurations is that one can follow an even simpler approach. Instead

of defining restricted configurations and trying to solve a partial classification for

equivalence classes, one can simply introduce a working set of building blocks and

combine them in all possible ways, attempting to generate new quantities. Any new

primitive quantity obtained thus will be an element of the arrangement. In other

words, we do not risk generating false primitive quantities. This holds irrespective of

the chosen set of building blocks being complete, or there being more fundamental

building blocks that are overlooked. With sufficient luck, the subarrangement gener-

ated by our choice may already reveal interesting properties of the entire arrangement

and even provide a good approximation of the full solution.

We will follow this simpler approach below. In §6.1 we introduce our working set

of building blocks for an arbitrary number of colors. We will then use these building

blocks in §6.2 to derive a set of new primitive quantities for N = 4. In §6.3 we

generalize this to obtain a new infinite family of primitive quantities, one for each

value of N ≥ 4.

6.1 Construction of new building blocks

As usual it is useful to begin with an example. For N = 4, consider the canonical

building block C◦4[BCD] where we erase the uncorrelated disk A (see Fig. 5a). We

then envelop the three disks B, C,D with a sufficiently large adjoining region A, such

that I2(BCD : O) = 0. The resulting configuration (see Fig. 5b) will play a central

role in §7. Finally, we shrink the three disks by an infinitesimal amount, obtaining the

configuration C4 shown in Fig. 5c. We leave it as an exercise for the reader to check

that, by taking appropriate linear combinations, the set of constraints associated to

this configuration can be written as follows51

{F(C4)} = Fcan
[4] ∪ {Fcan

AB ,F
can
AC ,F

can
AD} ∪ F′ , (6.1)

where

F′ = {QA = 0, QBCD = 0} . (6.2)

These last two constraints are new and cannot be converted to canonical form by

taking linear combinations with the other constraints in (6.1). The first of these

constraints is associated to the 3-legged octopus surface a2a3a4 anchored to the ‘in-

ternal’ boundaries of the region A. The second is associated to the other 3-legged

octopus surface bcd anchored to the disks B, C,D.

The configuration described above can itself be considered a new building block.

However, in the following we mostly focus on a slightly different configuration, which

leads to a slightly simpler set of constraints. Starting from the configuration just

constructed, imagine further shrinking the disks B, C,D. We can reduce their size

51 Some constraints appear more then once; redundant copies have been removed from the list.
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Figure 5: Construction of building blocks associated to non-canonical constraints. The details of the

construction are explained in the main text. The resulting building block (d) is used throughout this

section to generate new primitive information quantities for four parties.

up to a point where each of them is completely uncorrelated with the rest of the

configuration, so that we are guaranteed that the entropy SBCD is computed by a

sum of domes, and not by the 3-legged octopus bcd any more. We then move these

three disks sufficiently close to the region A such that we are guaranteed that each

of them is individually correlated with A, i.e.,

I2(A : B) 6= 0, I2(A : C) 6= 0, I2(A : D) 6= 0 (6.3)

We do so by moving the three disks in the ‘outward’ directions, such that by increas-

ing the separation between them we are guaranteed not to develop the bcd surface

again. The result of the construction is illustrated in Fig. 5d. We denote this new
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configuration by

C~
4 [A(BCD)] (6.4)

It is straightforward to check that the constraints associated to this new configura-

tions are the same as in (6.1), but without the constraint QBCD, which was associated

to the bcd surface, i.e., (6.2) reduces to F′ 7→ {QA = 0}.
This construction can naturally be generalized to an arbitrary number of colors

N. Starting from the canonical building block C◦N[In], we choose one color ` /∈ In

and replace the corresponding disk with a large region which envelops the disks

associated to the colors in In. For all these disks we then proceed as described

above. The resulting configuration C~
N[`(In)] is then associated to the following set

of constraints (cf., §2.4 for the canonical constraints)

{F(C~
N[`(In)])} = F[N] ∪ {Fcan

``′ ,∀`′ ∈ In} ∪ {F~
`In
} (6.5)

where F~
`In

is the following single, non-canonical constraint

F~
`(In) :

∑
`∈K

K∩In=∅

QK = 0 (6.6)

We leave it as an exercise for the reader to verify that these constraints are indepen-

dent from the canonical ones only if n ≥ 3 (which also requires N ≥ 4).52

Before proceeding, let us take note of other potentially useful building blocks

constructed using a similar procedure, although we will not use them in the following.

In general, for any N, one can consider situations where the disks labeled by the

colors in In, which are enveloped by the region `, have been moved and deformed to

change the pattern of correlations among the various regions in the configuration.

Performing a scan over all possible patterns of mutual information53, even at fixed

topology, would potentially produce a list of new building blocks. At this stage, it

is unclear whether this set would be sufficient to generate all the equivalent classes

of configurations for a given number of colors. Furthermore, even if this were the

case, it is not apparent if such a set would be free from redundancies, or, if instead,

some building blocks would be redundant and therefore could be removed from the

list of generators. We will briefly revisit this possibility in §8, but by and large

we leave these questions for future investigation. Another possibility is that other

building blocks could be obtained starting from configurations of different topologies;

we however have not been able to find any such example.

52 For example, by constructing C~
4 [A(BC)]) one can check that all the corresponding constraints

are linear combinations of a subset of the canonical ones.
53 As usual we are only interested in whether the mutual information between various component

is vanishing or not.
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6.2 New information quantities for N = 4

We now explore which new information quantities can be generated for N = 4 us-

ing only the canonical building blocks along with the new ones introduced above.

Including all permutations of colors, the latter are:

C~
4 [A(BCD)], C~

4 [B(ACD)], C~
4 [C(ABD)], C~

4 [D(ABC)] . (6.7)

Generating configurations from a single C~
4 block: We begin by looking at the

new information quantities that can be generated by combining (via the uncorrelated

union) a single building block from the ones listed in (6.7) with an appropriate choice

of canonical building blocks. Since each of the building blocks above carries a set

of constraints among which only one is non-canonical, specifically the one given by

(6.6), it is convenient to rewrite this constraint in the basis of the canonical ones.

For example, for the block C~
4 [A(BCD)], the new constraint F~

A(BCD) can be written

as

F~
A(BCD) = Fcan

A − Fcan
AB − Fcan

AC − Fcan
AD + Fcan

ABC + Fcan
ABD + Fcan

ACD − Fcan
ABCD (6.8)

The first four terms in the above expression are canonical constraints already present

in the list {F(C~
4 [A(BCD)])}. Therefore, if we combine C~

4 [A(BCD)] with any three

(or more) canonical building blocks chosen from the following

C◦4[ABC], C◦4[ABD], C◦4[ACD], C◦4[ABCD], (6.9)

the constraints of the resulting configuration will be equivalent to subset of the

canonical ones, and we would be back to the situation that leads to the In-theorem.

To prevent this from happening we need to be careful about which canonical building

blocks are chosen to construct the new configuration. We can in particular add at

most two of the building blocks listed in (6.9) to F~
A(BCD).

Since we are working with N = 4, the dimension of entropy space is D = 15.

To generate a primitive quantity we need to construct a configuration associated

to 14 linearly independent constraints. The list {F(C~
4 [A(BCD)])} is composed of 8

independent constraints, among which 7 are canonical, and we need to add54 another

6. The other canonical constraints from which we can choose are

Fcan
BC , Fcan

BD , Fcan
CD , Fcan

ABC, Fcan
ABD, Fcan

ACD, Fcan
BCD, Fcan

ABCD . (6.10)

54 When we say that we ‘add a constraint to a configuration’ we mean that we add the canonical

building block associated to that constraint. We remind the reader that a canonical building block

C◦N[In] carries a set of constraints made of F[N] and a single additional constraint Fcan
In

. Since the

constraints F[N] are also associated to the new building blocks C~
N , we can ignore them and simply

consider the net effect of adding C◦N[In] to the configuration, which is the addition of the single

constraint Fcan
In

.
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We can proceed by deciding which two of these 8 constraints we decide to exclude

to pick the desired 6. The choice cannot be arbitrary if, as explained above, we wish

to avoid the In-theorem. As we can add at most two of the building blocks listed in

(6.9), there are six possible choices for the pair of constraints that we can exclude:
{Fcan
ABC,F

can
ABD}

{Fcan
ABC,F

can
ACD}

{Fcan
ABD,F

can
ACD}

,


{Fcan
ABC,F

can
ABCD}

{Fcan
ABD,F

can
ABCD}

{Fcan
ACD,F

can
ABCD}

(6.11)

The brackets group the possible choices into equivalence classes related by symme-

tries. Different choices within the same class simply give different instances of the

same quantity. The first choice from the family on the left leads to

Q
(1)
4 = SC − SD − SAC + SAD − SBC + SBD + SABC − SABD , (6.12)

while the first choice from the family on the right ends up giving

Q
(2)
4 = SD − SAD − SBD − SCD + SABD + SACD + SBCD − SABCD . (6.13)

Applying the reduction described in §3, we rewrite these quantities convention-

ally as

Q
(1)
4 = SA − SB − SAC − SAD + SBC + SBD + SACD − SBCD

Q
(2)
4 = SA − SAB − SAC − SAD + SABC + SABD + SACD − SABCD

(6.14)

In the In-basis they take the form

Q
(1)
4 = IACD3 − IBCD3

Q
(2)
4 = −IBCD3 + IABCD4

(6.15)

Repeating the same construction, but starting from a different building block C~
4 [`(I3)],

would simply generate other instances of the same underlying abstract quantities.

Generating configurations with two C~
4 blocks: Let us now consider the case

where two building blocks C~
4 [`(I3)] are combined together in a configuration. Like

before we only work up to permutations and consider as a starting point the config-

uration

C4 = C~
4 [A(BCD)] t C~

4 [B(ACD)] (6.16)

to which we want to add canonical building blocks. The set of constraints associated

to this configuration is

{F(C4)} = Fcan
[4] ∪ {Fcan

AB ,F
can
AC ,F

can
AD,F

can
BC ,F

can
BD ,F

~
A(BCD),F

~
B(ACD)} . (6.17)
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Starting from their expression in the basis of canonical constraints, like in (6.8), and

taking appropriate linear combinations, we can rewrite the last two constraints as

F~
A(BCD) = Fcan

ABC + Fcan
ABD + Fcan

ACD − Fcan
ABCD

F~
B(ACD) = Fcan

BCD − Fcan
ACD

(6.18)

Since C4 is associated to 11 linearly independent constraints, we need to add 3

more to construct a generating configuration. Notice that if we add either Fcan
BCD or

Fcan
ACD to the list of constraints associated to the configuration, the second constraint

in (6.18) can be replaced by a canonical one, and the resulting configuration would be

equivalent to one which only contains a single C~
4 block, which we already discussed

above. Therefore we are left with a choice of 3 constraints to be drawn from the

following list:

Fcan
CD , Fcan

ABC, Fcan
ABD, Fcan

ABCD . (6.19)

Furthermore, if we chose the last three, we would again end up in a situation which

is equivalent to the one discussed before, since the first constraint in (6.18) could

now be replaced by a canonical one. Therefore the only possible choices that can

generate new quantities are

{Fcan
CD ,F

can
ABC,F

can
ABD},

{
{Fcan
CD ,F

can
ABC,F

can
ABCD}

{Fcan
CD ,F

can
ABD,F

can
ABCD}

(6.20)

The first option gives

Q
(3)
4 = SC + SD + SAB − SCD − SABC − SABD + SABCD , (6.21)

while the first choice from the family on the right gives

Q
(4)
4 = 2SC + SD + SAB − SAC − SBC − 2SCD − SABD + SACD + SBCD . (6.22)

The quantity Q
(3)
4 can easily be recognized as an uplifting of the tripartite infor-

mation (see below for further comments). On the other hand, rewriting Q
(4)
4 in the

canonical way we get

Q
(4)
4 = 2SA + SB − 2SAB − SAC − SAD + SCD + SABC + SABD − SBCD

= IABC3 + IABD3 − IBCD3

(6.23)

Generating configurations with three C~
4 blocks: Working again only up to

permutations we now start from the configuration

C4 = C~
4 [A(BCD)] t C~

4 [B(ACD)] t C~
4 [C(ABD)] (6.24)

which is associated to the constraints

{F(C4)} = Fcan
[4] ∪ {Fcan

AB ,F
can
AC ,F

can
AD,F

can
BC ,F

can
BD ,F

can
CD ,F

~
A(BCD),F

~
B(ACD),F

~
C(ABD)} .

(6.25)
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We can rewrite the last three as

F~
A(BCD) = Fcan

ABC + Fcan
ABD + Fcan

ACD − Fcan
ABCD

F~
B(ACD) = Fcan

BCD − Fcan
ACD

F~
C(ABD) = Fcan

BCD − Fcan
ABD .

(6.26)

We now have 13 independent constraints and we need to add one more chosen among

5 possibilities. Similarly to the earlier discussion, to avoid reducing the configuration

to one which is equivalent to the previous cases, we cannot add Fcan
BCD, Fcan

ACD or Fcan
ABD.

The only options at our disposal are then Fcan
ABC and Fcan

ABCD. In the first case we get

Q
(5)
4 = SD + SAB + SAC + SBC − 2SABC − SABD − SACD − SBCD + 2SABCD , (6.27)

while the second gives

Q
(6)
4 = 3SD+SAB+SAC−2SAD+SBC−2SBD−2SCD−2SABC+SABD+SACD+SBCD .

(6.28)

Converting them to their standard form and writing them in the In-basis we

obtain:

Q
(5)
4 = SA + SBC + SBD + SCD − SABC − SABD − SACD − 2SBCD + 2SABCD

= IABC3 + IABD3 + IACD3 − IABCD4

Q
(6)
4 = 3SA − 2SAB − 2SAC − 2SAD + SBC + SBD + SCD

+ SABC + SABD + SACD − 2SBCD

= IABC3 + IABD3 + IACD3 − 2IBCD3

(6.29)

Generating configurations with all four C~
4 blocks: Finally, we consider the

case where we combine all the four new building blocks

C4 = C~
4 [A(BCD)] t C~

4 [B(ACD)] t C~
4 [C(ABD)] t C~

4 [D(ACD)] (6.30)

In this case, C4 is automatically associated to 14 linearly independent constraints

and we obtain

Q
(7)
4 =SAB + SAC + SAD + SBC + SBD + SCD

− 2SABC − 2SABD − 2SACD − 2SBCD + 3SABCD
(6.31)

which in the In-basis becomes

Q
(7)
4 = IABC3 + IABD3 + IACD3 + IBCD3 − 3IABCD4 . (6.32)

Let us now take stock of the results obtained for N = 4. By scanning over all

possible combinations of the building blocks (6.7), we have found a total of seven

different primitive quantities. One of them, (6.21), is an uplifting of a quantity of
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lower rank, specifically the tripartite information. This uplifting is also the purifi-

cation of the trivial uplifting of the tripartite information for N = 4. Therefore,

this quantity can also be obtained from the same configuration that generates the

tripartite information, but where we swap one color with the purifier. However, the

resulting configuration would have adjoining regions. It is interesting that the same

quantity can also be derived by a configuration where the regions are non-adjoining.

Furthermore, since (6.21) is a (non-trivial) uplifting of the tripartite information, the

configuration that generates it is an example of a realization of a purely color-merging

architecture (see §5).

The other six information quantities that we have found, although seemingly

different, are actually related by purifications pairwise. To see that this is the case,

it is convenient to work in the In-basis and use the relations of §4.1 obtaining55

PAQ
(1)
4 = I

(AB)CD
3 − IBCD3

= IACD3 − IABCD4 ' Q
(2)
4

PAQ
(4)
4 = I

(AD)BC
3 + I

(AC)BD
3 − IBCD3

= IABC3 + IABD3 + IBCD3 − 2IABCD4 ' Q
(5)
4

PAQ
(6)
4 = I

(AD)BC
3 + I

(AC)BD
3 + I

(AB)CD
3 − 2IBCD3

= IABC3 + IABD3 + IACD3 + IBCD3 − 3IABCD4 ' Q
(7)
4

(6.33)

Notice in particular that all these quantities are superbalanced. As explained in §4,

this is a consequence of the fact that the generating configuration for each of these

quantities contains all the canonical form constraints of degree less than or equal to

two.

It is straightforward to verify that although the quantities that we have found

have rank R = 4 (except for the uplifting of Ĩ3), and therefore in principle can

have four purifications of different form, their structural symmetries prevent this

from happening. In fact, all the different forms obtainable from purifications are

among the six quantities listed above. It is interesting that, similarly to the case

of the tripartite information discussed above, all these quantities, even if related by

purifications, can be obtained from non-adjoining configurations.

Finally, let us briefly comment on the derivation of other information quantities

for N = 4 using other building blocks. One possibility would be to consider an

infinitesimal deformation of the locally purified canonical building block C}
4 [A(BCD)],

as we described above, which is associated to the constraints (6.1). We can try to

construct a new generating configuration by combining this building block with the

canonical ones, as we did for the building blocks C~
4 . The two constraints (6.2) can

55 As we explained in §3, an eventual mismatch by an overall sign is just a consequence of

the ambiguity in the definition of two information quantities and can be fixed by an appropriate

redefinition of one of them.

– 73 –



be written as (in the basis of the canonical constraints and after taking appropriate

linear combinations with the other canonical constraints included in (6.1))

F′ = Fcan
ABC + Fcan

ABD + Fcan
ACD − Fcan

ABCD

F′′ = Fcan
BCD − Fcan

ABCD
(6.34)

This new building block, by itself, is associated to 9 constraints and we need to add

5 more, which we can choose among a set of 8. However, we cannot add Fcan
BCD or

Fcan
ABCD, since otherwise the second equation above, which is the only genuinely new

element associated to the building block we are considering, could be replaced by

a canonical constraint. Therefore we should add 5 constraints chosen among the

following

Fcan
BC , Fcan

BD , Fcan
CD , Fcan

ABC, Fcan
ABD, Fcan

ACD, (6.35)

or equivalently exclude one from the above list. Taking into account the symmetries,

we can organize these six possibilities into two families. We can either remove a

constraint of degree n = 2 or one of degree n = 3. In the first case, removing Fcan
BC ,

we simply get the mutual information ICD2 . The reason is that by the inclusion of all

degree n = 3 constraints from the above list, we have now spoiled the first constraint,

and this in turn also spoils the second. The net effect is that we are back to the

result of the In-theorem. In the second case, removing instead Fcan
ABC, we get again

the uplifting of the tripartite information.

While this was just a single example, it instructively reveals the ‘fragility’ of

certain constraints. What is clear is that while certain building blocks appear to

be new, as they carry new types of constraints, the combinations we use to gener-

ate information quantities from them, may equivalently be generated by combining

building blocks drawn from a more restricted set. A full classification scheme would

therefore have to categorize building block configurations more usefully, perhaps by

formally quantifying the intuitive notion of fragility.

6.3 A new infinite family of primitive information quantities

The combination of building blocks (6.30) which for N = 4 generates the information

quantity (6.31), can easily be generalized to an arbitrary number of parties, producing

a new infinite family of information quantities.56 For a given value of N, consider the

following configuration

CN =
⊔
`

C~
N[`(IN−1)]

⊔
In, n≤N−2

C◦In (6.36)

56 It seems natural to focus on this generalization, given the particularly nice structure of the re-

sulting quantities and the regularity of the pattern of building blocks which compose the generating

configuration for arbitrary N.
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which is the uncorrelated union of all the color-permutations of the new building

blocks with a maximal number of internal disks, and all the canonical building blocks

with degree up to (N− 2). The corresponding set of constraints is

{F(CN)} = Fcan
[N] ∪

{ ⋃
In, n≤N−2

Fcan
In

}
∪

{⋃
`

F~
`(IN−1)

}
. (6.37)

This configuration generates the quantity

JN(A1 : A2 : ... : AN) =
∑
n, In

(−1)n(n− 1)SIn , (6.38)

which is the only instance in this set-up, since it is completely symmetric. To prove

that this quantity is the solution to the set of constraints (6.37), we can simply verify

that this is the case by checking. Explicitly, the constraints in Fcan
[N] have the form

(for each `)

Fcan
` :

∑
I, `∈I

QI = 0 (6.39)

Substituting in this expression the coefficients from (6.38), we obtain57

N∑
n=1

(−1)n(n− 1)

(
N− 1

n− 1

)
= 0 (6.40)

More generally, a canonical constraint Fcan
Ip

is

Fcan
Ip

:
∑

K, Ip⊆K

QK = 0 (6.41)

and substituting again the coefficients from (6.38) we obtain

N∑
n=p

(−1)n(n− 1)

(
N− p

n− p

)
= 0 . (6.42)

Finally, the constraints F~
`(IN−1) are trivially satisfied, since they are simply

F~
`(IN−1) : Q` = 0 . (6.43)

Notice that formally one can imagine to extend the family to the cases N = 2, 3.

For N = 2 this would simply be

J2(A : B) = SAB (6.44)

57 This identity and the one below follow by considering the binomial expansion for the polynomial

(−1)p xp (p− 1− x (N− 1)) (1− x)N−1−p and setting x = 1.

– 75 –



which cannot be a primitive quantity because it can vanish only if both subadditivity

and the Araki-Lieb inequality are saturated. Likewise, for N = 3 one would obtain

J3(A : B : C) =SAB + SAC + SBC − 2SABC

=SAB + SAC − SA − SABC + SA + SBC − SABC
= IAB2 + IAC2 + IBC2 − 2IABC3

(6.45)

which similarly show that J3(A : B : C) cannot be primitive. Notice that by the

second line of the above expression, this quantity is always non-negative in general

in quantum mechanics, as implied by strong subadditivity.

In general, the new quantity JN can be written in the In-basis as follows:

JN =
∑
IN−1

IIN−1
− (N− 1)IN . (6.46)

To see that this is the case, one can simply check that for every SIn , the above

expression gives the correct coefficient, i.e., (−1)n(n − 1). The coefficient of SIn in

each IIN−1
is (−1)n+1 if the combination of colors In appears in IIN−1

(i.e., if In ⊆ IN−1),

and zero otherwise. For each In with n ≤ N− 1, the number of instances IIN−1
which

contain In in their expansion is the number of collections of (N− 1) colors IN−1 that

include the In colors, which is (N − n). Furthermore, the coefficient of SIn in IIN is

necessarily (−1)n+1, since IN contains all colors. Therefore for the coefficient of SIn

in the final expression, we have

(−1)n+1(N− n)− (−1)n+1(N− 1) = (−1)n(n− 1) , (6.47)

as required by (6.38).

7 Sign-definiteness of primitive quantities at large N

We now establish a connection between the holographic entropy arrangement intro-

duced in §3, and the holographic entropy cone of [19]. First, in §7.1 we introduce

a new object, the holographic entropy polyhedron – this is a convex polyhedron by

construction, and is a cone owing to the properties of the arrangement. Then in §7.2

we will study certain properties of the R-partite information IR, showing in particu-

lar that it cannot have a definite sign when R is even. Finally, in §7.3 we use these

properties to develop an algorithm, that we refer to as the sieve, which can efficiently

be used to test whether a primitive quantity in the arrangement has a definite sign.

It is important to clarify a-priori that this procedure will not provide a method

for proving holographic inequalities. Rather, it serves as a test which can be used

to filter through a list of primitive quantities in the arrangement and generate ‘good

candidates’ for new inequalities. Furthermore, we will show how one can use this
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procedure to construct a candidate holographic entropy polyhedron, in principle for

an arbitrary number of colors, by looking at certain extremal points of the space of

solutions to the set of constraints produced by the sieve. Remarkably, we will see

that for N = 4 the outcome of the construction is precisely the holographic entropy

cone, and that for N = 5 the procedure leads with surprising simplicity to all the

new holographic inequalities found in [19].

7.1 The holographic entropy polyhedron

Let us begin by discussing two simple examples which motivate our definition below.

For N = 2, the holographic entropy arrangement A2 contains only three hyperplanes,

corresponding to the primitive quantities in the generalized 3-orbit of I2(A : B) (see

(3.54)). For arbitrary bipartite density matrices these quantities are non-negative

in quantum mechanics and the corresponding inequalities are the usual subadditiv-

ity and Araki-Lieb inequality. Geometrically, we can think of each such inequality

hQ ≥ 0 as specifying a half-space in extended entropy space (see footnote 25). The

intersection of the three half-spaces corresponding to the solutions to these inequal-

ities is a convex polyhedron58 in extended entropy space R3. In fact, it is easy to

see that the resulting polyhedron is entirely contained in the positive orthant of this

space, i.e., the usual entropy space R3
+.59 Furthermore, this polyhedron is a cone, it

is the topological closure of the set of 2-party quantum entropy vectors [29] and it

coincides with the 2-party holographic entropy cone [19].

Moving on to the N = 3 case, it was argued in [1] that the arrangement A3

only contains the hyperplanes associated to the 4-orbit of the primitive upliftings of

I2(A : B) (see the first line of (3.56)) and the hyperplane associated to I3(A : B : C).
The quantities in the former set obviously have a definite sign, since they are just up-

liftings of the aforementioned inequalities; however, the tripartite information does

not, for general quantum states. If we were to consider the polyhedron, as done

above, specified only by inequalities which hold universally in quantum mechanics,

we would obtain an object that extends to regions of entropy space where entropy vec-

tors are incompatible with quantum mechanics. The quantum entropy cone for three

parties mitigates this, for it is specified not just by subadditivity and the Araki-Lieb

inequality, but additionally by the non-negativity of the conditional mutual infor-

mation, i.e., strong subadditivity (SSA). This simple example clarifies an important

point: except for the (trivial) bipartite case, the hyperplanes of the arrangement do

not in general correspond to universal quantum inequalities.

As first realized in [8], when the entropies of regions in holographic field theories

are computed by the RT formula, the tripartite information is always non-positive.

58 In general, a convex polyhedron is defined as the intersection of a finite number of half-spaces.
59 This means that the additional inequalities which simply specify non-negativity of the von

Neumann entropy are redundant for the specification of the region of entropy space where entropy

vectors live.
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This fact is commonly known as monogamy of mutual information (MMI). This also

holds more generally for dynamical spacetimes [22], assuming bulk energy conditions.

It is important to clarify the assumptions underlying MMI, since the tripartite in-

formation does not in general have a definite sign in quantum mechanics.

First of all, the proofs of [8] and [22] rely on purely geometric constructs, and

as such they are performed on the bulk side of the duality. Nevertheless, it is clear

that MMI should be understood as a statement about states of the boundary theory.

Specifically, given a field theory state of a holographic CFT60 that is dual to a

certain bulk geometry (i.e., in the code subspace), one can ask if it is the case that

for each choice of a configuration C3, the tripartite information has a definite sign.

For example, it is obviously not the case that MMI would hold for arbitrary states,

even if the theory itself is holographic. Second, even under these assumptions, the

RT/HRT prescription only computes the leading contribution in the large N limit,

whereas the inclusion of subleading corrections [30] could violate MMI.

Given these examples, it is logical to define

Definition 15. (Universal holographic inequality) We define a universal holo-

graphic inequality as an expression Q ≥ 0 which holds, at leading order in the 1
N

expansion, for any choice of configuration C, and any field theory state |ψΣ〉, dual to

a classical bulk geometry.

This definition encompasses situations where the bulk is geometric, consistent

with the set-up introduced in [1] and reviewed in §2. In particular, the bulk geometry

can be dual to the tensor product of an arbitrary number of holographic field theories

and it can be dynamical. We do not impose any restriction on the choice of subsys-

tems in the field theories and include the static multiboundary states considered in

[19].

In general, it is not clear what the structure of these universal holographic in-

equalities is. It has been shown in [19] that the collection of entropy rays associated

to multiboundary wormhole geometries, for a restricted set of regions, is a polyhedral

cone for any number of colors. Consequently, it is specified by a finite number of

linear inequalities in entropy space. However, a-priori this result does not exclude

the possibility that in more general situations, for example for choices of subregions

in field theory and/or for dynamical spacetimes, the region in entropy space where

entropy vectors are located, might have a more complicated structure. For example,

this region might be delimited by an infinite number of linear inequalities, or even

by non-linear ones. It could also be the case that, like in quantum mechanics (see

below), the structure of this region is so complicated that there exist constrained

inequalities (i.e., not universal ones), which hold under certain restrictions (see §8).

Given the difficulty of the problem, we propose to take a simpler route motivated

by the arrangement. Since the arrangement is finite and fixed (at given N) for

60 Or more generally a tensor product of multiple CFTs.
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all geometries, we can ask which primitive quantities, if any, satisfy a universal

holographic inequality. For a primitive quantity Q ∈ AN let us suppose, for the

moment, that we have some machinery to prove whether or not it satisfies a universal

holographic inequality. The hyperplane hQ associated to Q divides extended entropy

space into two half-spaces

h+
Q : Q(S) ≥ 0, h−Q : Q(S) ≤ 0 (7.1)

When Q satisfies a universal holographic inequality, we label the corresponding half-

space of solutions by h±Q, depending on the directionality. We then consider the

intersection of the half-spaces specified by all the quantities in the arrangement

which satisfy a universal holographic inequality. Since the arrangement is finite,

the intersection of all such half-spaces is a convex polyhedron. We therefore define

Definition 16. (Holographic entropy polyhedron) The intersection of all the

half-spaces associated to all primitive quantities which satisfy a universal holographic

inequality is a polyhedron in extended entropy space called the holographic entropy

polyhedron.

Since all the inequalities are homogeneous, the holographic entropy polyhedron

is a convex cone. However, it is a-priori not clear that this cone is pointed61 and

contained within entropy space RD
+ (when restricted to primitive information quanti-

ties). This depends on the number of primitives in the arrangement, how many are

associated to universal inequalities, and their linear dependence. In fact, it is already

clear that not all primitive quantities in AN have a definite sign holographically. An

example is given by I4, which, as already observed in [8], can have both signs. If

the polyhedron extends beyond entropy space, this would signal the fact that other

inequalities, not associated to primitive quantities, exist in holography, in order to

enforce compatibility with quantum mechanics. As mentioned above, these could be

non-linear inequalities, or other inequalities that are saturated only by very special

configurations, like the ones of [19], which are associated to finite entropy vectors

(see §8 for further comments).

In general, given a quantity Q ∈ AN, it is a very hard problem to determine

whether it satisfies a universal holographic inequality. We will not attempt to tackle

this question here. Instead, we want to develop a technique which can be employed

to efficiently exclude primitive quantities in the arrangement as possible inequalities,

and therefore to construct a candidate polyhedron. We will explain how this can be

done in §7.3.

61 We adopt the definition according to which a cone is pointed if it contains the origin but it

does not contain any non-trivial subspace of the ambient space.
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7.2 Evaluation of the R-partite information on special configurations

To develop the sieve that we introduce in §7.3, it will be crucial to know the value

(as a formal linear combination of surfaces) of the R-partite information, when eval-

uated on certain classes of N-partite configurations. Specifically, we will consider

three types of configurations: decoupled configurations which we introduce momen-

tarily, the canonical building blocks introduced in §2, and its variant locally purified

canonical building blocks to be defined below. Since in §7.3 we use the expansion of

an information quantity decomposed in the In-basis (see §4.1), we limit ourselves to

the evaluation of the trivial upliftings of the R-partite information for all In, with

R ≤ n ≤ N, for fixed N.

(1). Decoupled configurations: In the 3-party setting, consider the canonical

building block C◦3[AB]. This is an example of a configuration where one of the colors

is “decoupled” from the others, in the sense that

I2(AB : C)(C◦3[AB]) = 0 (7.2)

Heuristically, one can think of the configuration C◦3[AB] as being associated to a

reduced density matrix that factorizes as ρABC = ρAB ⊗ ρC (modulo usual caveats).

Geometrically, all we are doing is move the subsystem C far enough away from A
and B. It is a trivial exercise to check that the tripartite information I3(A : B : C)
vanishes if evaluated on this configuration. More generally, we define

Definition 17. (Decoupled configuration) For a configuration CN in an N-party

setting, we say that a subsystem AI is decoupled, if

I2(AI : A[N] \ AI) = 0 (7.3)

We then have

Lemma 7.1. (Decoupling) In an N-party setting, all trivial upliftings IIn of the

R-partite information, for 2 ≤ R ≤ N, vanish when evaluated on a configuration CN

where (at least) one of the colors in In is decoupled.

Proof. Consider a configuration CN where a monochromatic subsystem A`i is decou-

pled, and a trivial uplifting IIn of the R-partite information such that `i ∈ In. Using

(4.12) we can rewrite IIn in a form that singles out the subsystem A`i as follows

IIn(A`1 : · · · : A`i : · · · : A`R) = S`i −
∑

K⊆(In\`i)

(−1)#K+1S`iK +
∑

K⊆(In\`i)

(−1)#K+1SK

(7.4)

Since A`i is decoupled from the rest of the configuration, the entropy is additive and

we have

S`iK = S`i + SK, ∀K (7.5)
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In the expression above, the two sums cancel, since they are equal and have an

opposite overall sign. The entropies S`i also cancel because IIn is balanced and we

get IIn(CN) = 0.

(2). Canonical building blocks: we now want to evaluate IIn on the canonical

building blocks. Let us begin with a simple example, the case n = N = 3.62 In this

simple set-up there are only two different canonical building blocks (up to permuta-

tions), viz., C◦3[AB] and C◦3[ABC], and one instance of the tripartite information, I3.

By decoupling, I3 vanishes when evaluated on the first building block. On the other

hand, evaluating I3 on the second building block gives

I3(C◦3[ABC]) = −a− b− c+ abc ≺ 0 (7.6)

where a, b, c are the extremal surfaces which compute the proto-entropy of A,B, C re-

spectively, and abc is the ‘3-legged octopus’ surface which computes the proto-entropy

of ABC. Notice that since we are using the proto-entropy, the result of I3(C◦3[ABC])

is not a real number, but a formal linear combination of entropies. However, the

building block is defined by specifying a particular pattern of mutual information

among its component regions (disks). The choice of pattern of mutual information

that defines the above building block precisely corresponds to the assumption that

the area of the octopus surface is less than the sum of the areas of the three domes.

This specification determines a partial ordering (≺) in the space of formal combina-

tion of surfaces which allows to formally attribute a sign to the above combination

of surfaces, even if the area functional is not evaluated.

More generally, it will be convenient to introduce, for an arbitrary canonical

building block, a standard notation for a particular formal combination of surfaces

analogous to the one in (7.6). Specifically, for an arbitrary canonical building block

C◦N[In] of degree n, we denote by a` the ‘dome’ homologous to A`, with ` ∈ In, and

by a`1a`2 ...a`n the ‘n-legged octopus’ homologous to A`1A`2 ...A`n . We then introduce

the following object63

lIn

def
= −a`1 − a`2 ...− a`n + a`1a`2 ...a`n ≺ 0 (7.7)

and prove the following general result

Lemma 7.2. (Evaluation on canonical building blocks) In an N-party setting,

the evaluation of the trivial upliftings IIn of the R-partite information, for 2 ≤ R ≤ N,

on the canonical building blocks gives

IIn(C
◦
N[Km]) =

{
(−1)n+1 lKm

if In = Km

0 otherwise
(7.8)

62 As it will become clear momentarily, the case n = 2 is trivial, since one always has II2(C◦N) = 0.
63 Notice that this object is non-trivial only for n ≥ 3, for n = 2 it is simply the null element in

the abstract space of linear combinations of surfaces.
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A1

A3 A2

A4 A5 A6

(a)

A1

A3 A2

A5 A6

(b)

Figure 6: (a) The canonical building block C◦6[A1A2A3]. (b) The locally purified canonical building

block C}
6 [A4(A1A2A3)] obtained by locally purifying C◦6[A1A2A3] with A4. Notice that the disks

A5,A6 remain completely uncorrelated (box).

Proof.

• If In = Km, the term SIn in IIn , which has coefficient (−1)n+1, is computed by

the n-legged octopus surface homologous to the disks in C◦N[Km] corresponding

to the colors in In. Notice that since In = Km, there is no other term in IIn for

which this surface contributes to the entropy. All other terms SJ are instead

given by sums of certain domes, specifically the ones which are homologous

to the disks corresponding to the colors in J. Since IIn is invariant under any

permutations of the colors in In, we just need to compute how many times a

disk for one of the colors in In will appear in the finial expression. All other

colors will give an analogous contribution. Since for any color ` ∈ In, IIn is

balanced, a dome a` would cancel in the final expression if it was not for the

presence of the octopus surface. Therefore a` appears in the final expression

with the opposite sign to that of the octopus surface, and the same holds for

all other colors in In.

• If In 6= Km, either In ⊃ Km or In ⊂ Km. In the first case, there exists a color `

which belongs to In but not to Km, and we can apply the decoupling Lemma.

In the second case, the m-legged octopus surface homologous to the disks with

colors Km cannot contribute to any term J in IIn , which are therefore computed

by sums of domes. But since IIn is balanced all the domes will cancel in the

final expression.

(3). Locally purified canonical building blocks: A crucial element of the

sieve will be the evaluation of the R-partite information on a particular new class

of configurations which we now introduce. We will call these configurations locally
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purified canonical building blocks. These are simply the configurations obtained after

the first step of the construction presented in §6 (cf., Fig. 5b) to obtain the new

non-canonical building blocks for N ≥ 4.

In an N-party setting, consider one of the usual canonical building blocks C◦N[In],

where 2 ≤ n < N (nb: strict upper inequality). We now consider the disk A` in

C◦N[In] associated to one of the N colors which is not in In, and replace it by a region

which is enveloping all the colors in C◦N[In] (and thus is adjacent to all of them). We

still call this region A` and we assume that it is sufficiently large such that

I2(A`AIn : OA`n+2A`n+3 ...A`N) = 0 (7.9)

where A`n+2 ,A`n+3 , ...,A`N are all the remaining colors in the building block. (If nec-

essary, we move these remaining disks further away such that they remain completely

uncorrelated.) We will then say that the canonical building block C◦N[In] is locally

purified 64 by A`, and write the resulting configuration as

C}
N[`(In−1)], In−1 = In \ {`} (7.10)

The construction of C}
4 [A(BCD)] is shown in Fig. 5b. Notice however that this

example is special since n = N. More generally there will be additional uncorrelated

disks in the configuration (see for example Fig. 6).

The evaluation of the trivial upliftings of the R-partite information on these

particular configurations is then given by the following result:

Lemma 7.3. (Evaluation on locally purified canonical building blocks) In an

N-party setting, the evaluation of the trivial upliftings IIn of the R-partite information,

for 2 ≤ R ≤ N, on the the locally purified canonical building blocks, gives

IIn(C
}
N[`(Km)]) =


(1 + (−1)n)lKm

if In = `Km

lKm
if In ⊂ `Km and ` ∈ In

(−1)n+1 lKm
if In = Km

0 otherwise

(7.11)

Proof.

• If In = `Km, let us denote the ‘big dome’ homologous to A`AKm by a`, the

‘m-legged octopus’ homologous to AKm by ωKm , and the domes homologous to

64 The reason for the terminology is that for the resulting configuration, one can imagine, at least

heuristically, that there is a (non-spatial) decomposition of A` into two component one of which

purifies AIn .
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the disks that belong to AKm (i.e., with color `i ∈ Km) by ai. The octopus

surface appears only in the following entropies:

S` = a` + ωKm , SKm = ωKm . (7.12)

If n is even, these two terms have the same sign and therefore the two copies

of the octopus surface add up to 2ωKm . If n is odd, they cancel. Furthermore,

the big dome a` appears in all entropies SJ, with ` ∈ J, and it cancels because

IIn is balanced, independently from the parity of n. Finally, consider a dome

ai. This surface appears in two different types of terms SJ.

First, ai appears in all terms such that `i ∈ J and ` /∈ J, except for SKm . From

(4.12), the sum of terms in IIn where the color ` does not appear is formally

equal to the expression of IIn−1 , with In−1 = In \ {`}. Since this quantity is

balanced with respect to all colors, the sum of the coefficients of all terms which

include `i vanishes. Subtracting the coefficient of SKm , which is (−1)m+1, the

contribution to the coefficient of ai given by these terms is (−1)m.

Second, ai appears in all terms such that ` ∈ J and `i /∈ J, except for S`. Using

again (4.12), it follows that the sum of coefficients of all these terms is equal

to the sum of terms in IIn−1 , with In−1 = In \{`}, which do not include `i (with

an additional overall minus sign). This is

−
n−1∑
p=1

(−1)p+1

(
n− 1

p

)
= −1 (7.13)

Therefore, the total coefficient of ai is (−1 + (−1)m) = (1 + (−1)n), which

completes the proof for In = `Km.

• If In ⊂ `Km and ` ∈ In, the octopus surface ωKm always appears with a coef-

ficient +1 in the final expression, since it only appears in the term S`. Fur-

thermore, as discussed in the previous point, the dome a` always disappears

because of balance. We only have to compute the coefficient of the domes ai.

In the terms SJ of IIn , with J ⊆ In, ai appears when `i ∈ J and ` /∈ J, and in

the opposite situation, with the exception of S`. The total coefficient is

2
n−2∑
p=1

(−1)p+1

(
n− 2

p− 1

)
− 1 = −1 (7.14)

completing the proof for In ⊂ `Km.

• If In = Km, we can use the result for the non-locally-purified case, since the

presence of the additional enveloping color ` is irrelevant.
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• Similarly, if In ⊂ Km, we can again use the result for the non-locally-purified

case. If In 6⊆ Km, then there exists a color in In which is not in Km, and IIn
vanishes as a consequence of the decoupling Lemma.

(4). Sign-definiteness of the R-partite information: Using the two Lemmas

above, it is immediate to prove the following general result

Lemma 7.4. The R-partite information is not associated to a universal holographic

inequality if R is even.

Proof. It is sufficient to consider the R-partite information in its natural (and unique)

instance in an N = R set-up. Evaluating IN on the canonical building block C◦N[IN],

we have (from Lemma 7.2)

IN(C◦N[IN]) = −lIN
� 0 . (7.15)

On the other hand, evaluating the same quantity on the locally purified canonical

building block C}
N[`(IN−1)] (or any permutation) gives (using Lemma 7.3)

IN(C}
N[`(IN−1)]) = 2lIN−1

≺ 0 . (7.16)

Hence IN can attain either sign depending on the configuration, and therefore cannot

correspond to a universal holographic inequality.

When R is odd, the R-partite information always gives a non-positive sign when

evaluated on the canonical building blocks and their locally purified version. How-

ever, it is known that there are counterexamples to the sign-definiteness of the 5-

partite information.65 This will play a central role in the discussion about the result

given by the sieve for the 5-party polyhedron (see §7.3.3).

7.3 The sieve

We are now in a position to introduce the general procedure that constitutes the

sieve, i.e., the algorithm that can be used to derive a candidate holographic entropy

polyhedron from the arrangement. The logic is quite simple. For a given N, assuming

knowledge of the full arrangement AN, we wish to determine which quantities could

potentially satisfy a universal holographic inequality. For a primitive quantity Q ∈
AN, one can test for sign definiteness simply by evaluating the quantity on a collection

of configurations and winnowing out those where one finds opposite signs for the

quantity on different configurations. Should we fail to find such, we can retain Q

as a quantity associated to a candidate inequality. Clearly, the trustworthiness of

65 We thank Matthew Headrick for sharing with us examples where I5 can take either sign.
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this procedure depends on the choice made for the configurations used for the test.

For us these will be the canonical building blocks and their locally purified versions

introduced in §7.2, which turn out to lead to interesting results.

As explained in §3, any arrangement AN can be decomposed into a union of

subarrangments of different ranks AR

N. The primitive quantities in AR

N, with R < N,

are upliftings of abstract quantities with rank R to the N-partite set-up. It is clear

that such an uplifting QR ∈ AR

N can satisfy a universal holographic inequality only

if the natural instances of the same abstract quantity Q̃R also do, in a set-up with

N = R. Therefore, for any given N, we only need to test the primitive quantities of

maximal rank. Furthermore, it is sufficient to just consider one permutation, since all

the others are physically equivalent. For concreteness we will consider the standard

instance of the standard isomer (see §3).

We will start in §7.3.1 by showing how this procedure can be used to easily rule

out the new 4-party information quantities found in §6 as candidate inequalities. We

already know that this must be the case as a consequence of two facts. First, it

was shown in [19] that any valid holographic inequality for four parties is necessarily

implied by the upliftings of the inequalities for two and three parties.66 Second, since

any valid inequality for four parties is therefore redundant, it cannot be associated

to a primitive quantity [1]. Thus while we already in a sense know the answer, the

4-party example will nevertheless be useful to show how the sieve works.

The same procedure can in principle be applied to an arbitrary number of parties,

running the test for each primitive quantity in the arrangement. However, the sieve

can also be reformulated into a slightly more elaborate version. As we observed

in §6, all the new information quantities are superbalanced. It turns out to be

particularly interesting to focus on this specific subspace. The general logic will

the same as described above, we will simply evaluate an information quantity on a

family of configurations trying to find two situations where the results have opposite

sign. The difference is that instead of focusing on a particular primitive quantity,

like in the following example of §7.3.1, we will consider an unspecified quantity in

the superbalance subspace (which does not need to be primitive) and use the sieve

to derive a set of constraints on the coefficients {qI} that must be satisfied by any

information quantity QN that cannot be ruled out by the procedure as a candidate

inequality.

As we will see, these constraints will be in the form of linear inequalities for

the coefficients of QN – they will specify a polyhedral cone in the coefficient space.

The extremal rays of this cone can then be interpreted as the most “stringent”

superbalanced holographic inequalities (in entropy space) that survive the test. Any

other inequality which is more stringent would fail to pass the test, while any weaker

inequality can be obtained as a conical combination of the ones which are associated

66 In other words, there are no genuinely new holographic inequalities for four parties.
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to the extremal rays of this cone. The information quantities associated to the

inequalities which correspond to the extremal rays of this cone need not be primitive

in general, but they provide an inner67 bound for the holographic entropy polyhedron.

In §7.3.2 we present this version of the sieve for the N = 4 case. We report the

result for N = 5 in §7.3.3, showing that the sieve leads to a simple derivation of all the

new holographic inequalities proven in [19]. In §7.3.4 we comment on extending the

construction to the non-superbalanced case and other potential generalizations; eg.,

enlarging the class of configurations used for the test, or by a more refined analysis

of the local structure of the arrangement.

7.3.1 A simple example

We will now show how to rule out the new information quantities found in §6 as

candidate inequalities (with the only obvious exception of the uplifting of the tri-

partite information). Since these quantities are related by purifications pairwise, we

only need to show that one quantity for each pair can have either sign for suitably

chosen configurations. For convenience we report here the quantities for which we

will explore the sign, written in the In-basis

Q
(1)
4 = IACD3 − IBCD3

Q
(4)
4 = IABC3 + IABD3 − IBCD3

Q
(7)
4 = IABC3 + IABD3 + IACD3 + IBCD3 − 3IABCD4

(7.17)

It is immediately clear that the first quantity (Q
(1)
4 ) cannot have a definite sign,

since it is antisymmetric under the swap A ↔ B. More generally, if an information

quantity has an expansion in the In-basis which only contains terms of the same

degree, but whose coefficients do not all have the same sign, it cannot be associated

to a valid inequality. The second quantity above (Q
(4)
4 ) is an example. To see this, it

is sufficient to evaluate this quantity on the canonical building blocks C◦4[ABC] and

C◦4[BCD] obtaining

Q
(4)
4 (C◦4[ABC]) =lABC ≺ 0

Q
(4)
4 (C◦4[BCD]) = −lBCD � 0

(7.18)

Finally, consider the last quantity in (7.17). Notice that in this case all the terms

I3 have the same sign, and that the term I4 has the opposite sign. For this reason,

the evaluation of Q
(7)
4 on any canonical building block always gives a negative sign68,

for example

Q
(7)
4 (C◦4[ABC]) =lABC ≺ 0 . (7.19)

67 By inner bound, we mean that the actual holographic entropy polyhedron must contain the

region specified by the sieve. This is because the sieve may fail to rule out false inequalities which,

when assumed true, would restrict us to a smaller region of the extended entropy space.
68 We leave it as an exercise for the reader that this is the case.
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On the other hand, if we evaluate this quantity on the locally purified canonical

building block C}
4 [A(BCD)], we obtain

Q
(7)
4 (C}

4 [A(BCD)]) = −2lBCD � 0 , (7.20)

ruling out Q
(7)
4 as a possible inequality.

7.3.2 Four-party superbalanced subspace

Having introduce the logic of the sieve in a simple concrete example, we will now

consider a more abstract (and powerful) version of the procedure in the particu-

lar subspace of superbalanced information quantities. By definition, an arbitrary

superbalanced information quantity can be written in the In basis as follows

Q4 = −q1I
ABC
3 − q2I

ABD
3 − q3I

ACD
3 − q4I

BCD
3 + q5I

ABCD
4 . (7.21)

For convenience, in this section we assume that such a quantity is specified only up to

an overall sign.69 The reason for the particular choice of signs for the coefficients will

become clear momentarily. We want to evaluate (7.21) on all the canonical building

blocks for N = 4, using the result of Lemma 7.2. For the building block of degree

n = 2 we simply have Q4(C◦4[I2]) = 0. On the other hand, for the building blocks of

degree n = 3 we obtain, for example

Q4(C◦4[ABC]) = −q1 lABC . (7.22)

Thus far we have been assuming, for convenience, that the quantity Q̃4 was only

defined up to an unspecified overall sign. We can now use the above relation to make a

choice. If we choose to fix this sign in the definition of Q̃4 such that q1 ≥ 0, the above

result implies that Q4 is non-negative when evaluated on C◦4[ABC]. The quantity

Q̃4, now completely specified, can only be a candidate holographic inequality if it is

consistently non-negative also when evaluated on other configurations. This is what

will allow us to determine further constraints on the coefficients {q1, q2, q3, q4, q5}.
Evaluating now Q4 on the other canonical building blocks of degree n = 3 gives,

similarly, the constraints q2, q3, q4 ≥ 0. The last canonical building block on which

we have to evaluate Q4 is the only one of degree n = 4, for which we obtain

Q4(C◦4[ABCD]) = −q5 lABCD (7.23)

which again is non-negative if q5 ≥ 0. To summarize, Q4 is consistently non-negative

only if

q1, q2, q3, q4, q5 ≥ 0 (7.24)

clarifying our choice of signs in (7.21).

69 For the purpose of this discussion, the convention described in §3 to fix the sign in the definition

of an abstract quantity Q̃ is irrelevant.
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We next want to evaluate Q4 on the locally purified canonical building blocks,

using the results of Lemma 7.3. Similarly to the previous case, for n = 2, we have

Q4(C}
4 [A(BC)]) = 0 (7.25)

and likewise for all other I2. In the case n = 3 instead

Q4(C}
4 [A(BCD)]) = (−q1 − q2 − q3 − q4 + 2q5)lBCD , (7.26)

from which we obtain the constraint

q1 + q2 + q3 + q4 − 2q5 ≥ 0 . (7.27)

It is immediate to check that by evaluating Q4 on the other configurations, for

different I3, we obtain precisely the same constraint, because of the symmetries that

simply permute q1, q2, q3, q4 in the above expression.

Having evaluated Q4 on all the canonical building blocks and their locally purified

versions consistent with N = 4, we now want to repeat the same procedure for all

purifications P`Q4 of Q4, with ` ∈ {A,B, C,D}. Let us consider the purification with

respect to the color D:

PDQ =− (q1 + q2 + q3 + q4 − 2q5) I3
ABC − q2I

3
ABD − q3I

3
ACD − q4I

3
BCD

+ (q2 + q3 + q4 − q5) I4
ABCD . (7.28)

We can now treat the quantity (7.28) as a new quantity, writing it as

PDQ4 = −q′1IABC3 − q′2IABD3 − q′3IACD3 − q′4IBCD3 + q′5I
ABCD
4 (7.29)

where the new coefficients q′1, q
′
2, q
′
3, q
′
4, q
′
5 are combination of the original qi given

by (7.28). We can then repeat exactly the same procedure that we carried out for

the original quantity Q4, obtaining precisely the same constraints that we derived

before, but now for the new coefficients q′i. Specifically, evaluating PDQ4 on the

canonical building blocks gives the constraints q′1, q
′
2, q
′
3, q
′
4, q
′
5 ≥ 0, which in terms of

the original qi translate to

q1 + q2 + q3 + q4 − 2q5 ≥ 0

q2 + q3 + q4 − q5 ≥ 0
(7.30)

Notice that the first constraint is redundant, since it is again (7.27), while the second

is new. By purifying Q4 with respect to the other three colors, we then obtain

analogous constraints. Altogether, we have

q2 + q3 + q4 − q5 ≥ 0

q1 + q3 + q4 − q5 ≥ 0

q1 + q2 + q4 − q5 ≥ 0

q1 + q2 + q3 − q5 ≥ 0

(7.31)
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Similarly, we can now evaluate (7.28) on the locally purified canonical building

blocks, obtaining again the constraint (7.27), but now for the new coefficients q′i.

Writing it in the terms of the original coefficients qi, this is

q′1 + q′2 + q′3 + q′4 − 2q′5 ≥ 0 7→ q1 + 4q2 + 4q3 + 4q4 − 4q5 ≥ 0 (7.32)

and including the results for all possible purifications of Q4 we have:

q1 + 4q2 + 4q3 + 4q4 − 4q5 ≥ 0

4q1 + q2 + 4q3 + 4q4 − 4q5 ≥ 0

4q1 + 4q2 + q3 + 4q4 − 4q5 ≥ 0

4q1 + 4q2 + 4q3 + q4 − 4q5 ≥ 0

(7.33)

Collectively, the constraints (7.24), (7.27), (7.31), and (7.33), specify a convex

polyhedral cone in the coefficient space R5
+. Each vector within this cone is associated

to an information quantity Q4 which consistently has a definite sign when evaluated

on the canonical building blocks and their purified versions. Therefore, any vector

outside this cone corresponds to an information quantity that cannot be associated

to a true holographic inequality, since it would be ruled out by the sieve. On the

other hand, each vector inside the cone corresponds to an information quantity that

is associated to a good candidate inequality which should then be tested, or proved,

via other methods.

Since the space of solutions to the constraints is a convex polyhedral cone, it

can equivalently be described by a set of extremal rays. The extremal rays are the

generators of the cone, in the sense that every vector inside the cone can be obtained

as a conical linear combination70 of the extremal rays. We can associate with the

extremal rays the corresponding information quantities. Then the inequalities arising

from the said quantities may be interpreted in entropy space as the most stringent

superbalanced inequalities that are admissible through the sieve (cf., below for further

comments). Any other inequality that one cannot rule out by our procedure is

expressible as a conical linear combination of the aforementioned ones. Basically,

the inequalities we extract are those that restrict as much as possible, consistently

with the sieve, the region of entropy space where entropy vectors associated to states

and configurations can be located.

For the N = 4 case that we just presented, the extremal rays of the cone of

constraints are, up to permutations,

{{1, 0, 0, 0, 0}, {1, 1, 0, 0, 1}} . (7.34)

70 A conical linear combination is a linear combination with non-negative coefficients.
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Converting these rays into the corresponding information quantities using (7.21), we

obtain the associated holographic inequalities

− I3(A : B : C) ≥ 0

− I3(CD : A : B) ≥ 0
(7.35)

which can immediately be recognized as the instances of MMI corresponding to some

of the facets of the 4-party holographic entropy cone [19].

The other facets of the cone correspond instead to certain instances of subad-

ditivity and the Araki-Lieb inequality. The fact that they do not emerge from our

construction thus far is a consequence of our restriction to superbalanced quantities.

We will return to this important point in §7.3.4, where we discuss possible extensions

of the sieve to the non-superbalanced case.

7.3.3 The five-party case

We now turn to the results of employing our sieve for N = 5. Since the logic is

exactly the same as for four parties, we will only give a brief sketch of the derivation.

We start with the following general form of a superbalanced information quantity for

five parties:

Q5(A : B : C : D : E) =− q1I
ABC
3 − q2I

ABD
3 − q3I

ABE
3 − q4I

ACD
3 − q5I

ACE
3

− q6I
ADE
3 − q7I

BCD
3 − q8I

BCE
3 − q9I

BDE
3 − q10I

CDE
3

+ q11I
ABCD
4 + q12I

ABCE
4 + q13I

ABDE
4 + q14I

ACDE
4 + q15I

BCDE
4

− q16I
ABCDE
5 .

(7.36)

As before, with this convention for the signs, the evaluation on the canonical building

blocks implies that we need to impose

qi ≥ 0, ∀ i ∈ {1, 2, ..., 16} (7.37)

to consistently have Q5 ≥ 0.

For the locally purified canonical building block, again we do not obtain any

constraint for n = 2 since

Q5(C}
5 [A(BC)]) = 0 (7.38)

and similarly for all permutations.

For n = 3, consider C}
5 [A(BCD)]. Since the color E is decoupled, the decoupling

Lemma implies that all terms in (7.36) which contain E will vanish and we have

Q5(C}
5 [A(BCD)]) = Q′4(C}

4 [A(BCD)]) (7.39)

where we deleted the disk with color E and

Q′4 = −q1I
ABC
3 − q2I

ABD
3 − q4I

ACD
3 − q7I

BCD
3 + q11I

ABCD
4 . (7.40)
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This shows how the sieve can be implemented recursively, making it more efficient.

For each value of N, one only has to derive a small set of new relations which are

specific to N, and then complete the sieve with the relations found for N′ < N.

Evaluating (7.40) on C}
4 [A(BCD)] correspondingly gives

Q4(C}
4 [A(BCD)]) = (−q1 − q2 − q4 − q7 + 2q11)lBCD , (7.41)

which is the analogue of (7.26), with the appropriate replacement of the coefficients.

By scanning over all cases with n = 3, and reducing (7.36) accordingly, we then have

the constraints

q1 + q2 + q4 + q7 − 2q11 ≥ 0

q1 + q3 + q5 + q8 − 2q12 ≥ 0

q2 + q3 + q6 + q9 − 2q13 ≥ 0

q4 + q5 + q6 + q10 − 2q14 ≥ 0

q7 + q8 + q9 + q10 − 2q15 ≥ 0

(7.42)

The genuinely new constraints which are specific to N = 5 are now obtained by

evaluating Q5 on C}
5 [A(BCDE)], which gives

Q5(C}
5 [A(BCDE)]) =(−q1 − q2 − q3 − q4 − q5 − q6

+ q11 + q12 + q13 + q14 − q15)lBCDE

(7.43)

Including all permutations we obtain the constraints

q1 + q2 + q3 + q4 + q5 + q6 − q11 − q12 − q13 − q14 + q15 ≥ 0

q1 + q2 + q3 + q7 + q8 + q9 − q11 − q12 − q13 − q15 + q14 ≥ 0

q1 + q4 + q5 + q7 + q8 + q10 − q11 − q12 − q14 − q15 + q13 ≥ 0

q2 + q4 + q6 + q7 + q9 + q10 − q11 − q13 − q14 − q15 + q12 ≥ 0

q3 + q5 + q6 + q8 + q9 + q10 − q12 − q13 − q14 − q15 + q11 ≥ 0

(7.44)

We next turn to the purifications of Q5. Purifying with respect to E , we get

PEQ5 =− (q1 + q3 + q5 + q8 − 2q12)IABC3 − (q2 + q3 + q6 + q9 − 2q13)IABD3

− q3I
ABE
3 − (q4 + q5 + q6 + q10 − 2q14)IACD3 − q5I

ACE
3 − q6I

ADE
3

− (q7 + q8 + q9 + q10 − 2q15)IBCD3 − q8I
BCE
3 − q9I

BDE
3 − q10I

CDE
3

+ (q3 + q5 + q6 + q8 + q9 + q10 − q12 − q13 − q14 − q15 + q11)IABCD4

+ (q3 + q5 + q8 − q12)IABCE4 + (q3 + q6 + q9 − q13)IABDE4

+ (q5 + q6 + q10 − q14)IACDE4 + (q8 + q9 + q10 − q15)IBCDE4

− (q3 + q5 + q6 + q8 + q9 + q10 − q12 − q13 − q14 − q15 + q16)IABCDE5

(7.45)
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As in the N = 4 case, we can now view this as a new ansatz quantity with redefined

coefficients {q′1(qj), . . . , q
′
16(qj)}. We can re-evaluate this new quantity on all canoni-

cal building blocks and their locally purified versions, obtaining again the constraints

(7.37), (7.42), and (7.44), but now with the coefficients qi 7→ q′i. Using the explicit

map q′i(qj) given by (7.45), we then obtain a new set of constraints (many of which

will be redundant). Repeating the procedure for all purifications of Q5, collecting

all constraints, and removing all redundancies, we finally obtain a collection of 35

constraints which specify a polyhedral convex cone in R16
+ . Extracting the extremal

rays and converting them into the corresponding information quantities using (7.36),

we obtain the following candidate holographic inequalities:

0 ≤− IABC3

0 ≤− IABC3 − IABD3 + IABCD4

0 ≤− IABD3 − IABE3 − IACD3 − IACE3 + IABCD4 + IABCE4 + IABDE4

+ IACDE4 − IABCDE5

0 ≤− IABC3 − IABD3 − IABE3 + IABCD4 + IABCE4 + IABDE4 − IABCDE5

0 ≤− IABD3 − IACD3 − IACE3 − IBCE3 − IBDE3 + IABCD4 + IABCE4 + IABDE4 + IACDE4

+ IBCDE4 − IABCDE5

0 ≤− IABD3 − IABE3 − IACE3 − IBCD3 + IABCD4 + IABCE4 + IABDE4

0 ≤− IABE3 − IACE3 − IADE3 − IBCD3 + IABCE4 + IABDE4 + IACDE4

0 ≤− IABC3 − IADE3 − IBCD3 − IBCE3 + IABCD4 + IABCE4

0 ≤− IABC3 − 2IABE3 − 2IACD3 − IADE3 − IBCD3 − IBCE3 + 2IABCD4 + 2IABCE4

+ IABDE4 + IACDE4

0 ≤− IABCDE5

(7.46)

One can immediately verify that the first four expressions above are upliftings

of MMI to N = 5, specifically they are

− I3(A : B : C) ≥ 0

− I3(CD : A : B) ≥ 0

− I3(DE : A : BC) ≥ 0

− I3(CDE : A : B) ≥ 0

(7.47)

The other expressions (except for the last one) are precisely the five-party holographic

inequalities proven71 in [19]. Note that the expressions in the In-basis are simpler

than in the entropy basis. According to the current version of the sieve, one should

consider the last expression in (7.46) as a new candidate inequality associated to

71 Technically, they have been proven only for geometries for which entropies can be computed

by the RT formula (not HRT).
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the 5-partite information, I5 ≤ 0. However, as we mentioned before, this is not a

true inequality, since counterexamples are known. In practice, this false inequality

should be replaced by a weaker one (or several), which perhaps could be found by an

upgraded version of the sieve. As for the N = 4 case discussed in the previous section,

the result of this construction does not include the instances of subadditivity and

the Araki-Lieb inequality which characterize the 5-partite holographic entropy cone.

This is again a consequence of the fact that so far the sieve have been developed for

superbalanced quantities only. We will discuss possible generalizations in the next

subsection.

Finally, it should be clear that this derivation of the inequalities found in [19] does

not prove that the corresponding information quantities are primitive. Whether this

is the case or not should be established by the usual construction from configurations.

We leave this problem for future work.

7.3.4 Extending the sieve

Let us briefly comment on how one could try to upgrade the current version of the

sieve.

(1). The case of non-superbalanced quantities: The derivation of the N = 4

and N = 5 inequalities of the entropy cone relied on the assumption that the corre-

sponding quantities are superbalanced. The fact that all known purely holographic

inequalities are associated to superbalanced quantities is an intriguing property, but

is a-priori unclear whether this should necessarily be the case.

If one wants to test a given information quantity Q which is not superbalanced,

one can certainly try to apply the sieve in its simplest version, as exemplified in

(7.3.1). However, when Q is not superbalanced, it is unclear how to extend the sieve

in its more general form for the following reason.

For given N, we can consider the generalization of the ansatz (7.21) to N colors

where we also include the terms I1 and I2. When we evaluate this expression on the

various configurations, the terms I1 in general do not cancel and it is not possible

to attribute a sign to the resulting expression without requiring further information

from the configurations, in particular the area of the various bulk surfaces. The

same issue is encountered for balanced quantities as well, since even if the terms I2

might cancel nicely, such a quantity would not in general remain balanced under

purifications, and the purified version would again contain the terms I1.

There are however particular situations where the sieve can be applied in its

more abstract form even for non-superbalanced quantities. For given N, consider the

superbalanced subspace, and suppose that we run the procedure that we described.

The result is a set of extremal rays which are the generators of the conical region in

this subspace corresponding to the set of information quantities that pass the test.

Suppose then that Q is a superbalanced information quantity within this conical
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region, and suppose that we have chosen the overall sign in its definition such that

Q ≥ 0. Consider then the information quantity Q′ given by the following (schematic)

expression:

Q′ =
∑

α I1 +
∑

β I2 + γQ, α, β ≥ 0 , (7.48)

where the specific terms in the sums depend on N. Clearly, any quantity of this form

will also satisfy the inequality Q′ ≥ 0 according to the sieve, since I1 and I2 are

always non-negative.

The meaning of (7.48) is that we can imagine obtaining such a quantity Q′

as a conical combination of a quantity in the aforementioned conical region of the

superbalanced subspace, and instances of I1 and I2. Since the instances of I1 are not

primitive quantities, we can instead imagine to repeat the same construction where

we use, besides the instances of I2, the primitive instances of QAL
2 . In the full space of

information quantities at given N, we can then construct a full-dimensional cone by

considering, as generators, the extremal rays that we obtained in the superbalanced

subspace, supplemented by the N +
(
N
2

)
vectors associated to the instances of I2

and QAL
2 . Any vector in this cone would then correspond to a quantity, now not

necessarily superbalanced (or even balanced), that cannot be ruled out by the sieve.

In the case of N = 4, this construction gives precisely the holographic entropy

cone. For N = 5, it supplements the list (7.46) with the correct instances of subad-

ditivity and the Araki-Lieb inequality which are known to correspond to the facets

of the cone.

(2). Evaluation on new configurations: The current version of the sieve relies

on two particular families of configurations, namely the canonical building blocks

and their locally purified version. Clearly one way to improve the sieve would be to

extend the class of configurations that are used for the test.

The structure of the locally purified canonical building blocks seems to be inti-

mately related to the structure of the building blocks described in §6 for the deriva-

tion of the new four-party primitive quantities. A reasonable expectation is that

understanding how to construct new building blocks could similarly suggest what

configurations should be used for the sieve.

Another direction would be to search for particular configurations C5 for which

one has I5(C5) > 0. A distinctive feature of the configurations that we have used

so far is that we never had to evaluate the area of any bulk surface. The result of

the evaluation of a quantity Q on a configuration CN was always given in terms of a

formal linear combination of surfaceslI
to which one can formally attribute a sign

using a partial ordering in the space of combinations of surfaces. In other words, the

crucial ingredient was, as usual, the pattern of correlations that determines which

connected bulk surfaces enter into the computation of an entropy SI. The currently

known examples for which I5 > 0 are not of this kind, and positive values are only

attained after the areas have been evaluated.
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(3). Improving the sieve by studying the structure of the arrangement:

So far we have remained agnostic about the detailed structure of the arrangement

and how the configurations that we used for the sieve are localized with respect to

the various hyperplanes. One possibility is that studying the local structure of the

arrangement could provide useful information for the construction of new special

configurations that, as described above, could be employed to upgrade the sieve (for

example configurations for which I5 > 0 at the level of the proto-entropy).

8 Discussion

The main goal of the present work was to further develop the framework introduced

in [1] for the analysis of multipartite correlations in holography, and more generally

in quantum field theory. In §3 we have introduced a new object, that we called

the N-party holographic entropy arrangement, which we envision to be the proper

‘reference frame’ for the analysis of N-partite correlations. We studied some of its

general structural properties, established a useful taxonomy for its elements, and

discussed how these can be organized into equivalence classes according to certain

symmetries.

We then discussed, in §4, how certain algebraic properties of primitive quantities

relate to their behavior as measures of correlations in arbitrary QFT and introduced

the notion of superbalance (and more generally R-balance). This property makes an

information quantity particularly well behaved in QFT and interestingly holds for

all known information quantities derived so far (except for I2 and QAL
2 ), including

all the inequalities of [19].

The construction of the arrangement relies on a collection of special configura-

tions that we refer to as building blocks. In §5 we initiated the analysis of how, under

this construction, arrangements associated to different numbers of parties are related

to each other. We then showed in §6 how to expand the set of canonical building

blocks of [1] to derive new primitive quantities beyond the result of the In-theorem.

We exemplified the construction by deriving three new information quantities for

N = 4 and a new infinite family of information quantities for any N ≥ 4.

The arrangement then served as the starting point, in §7, for the construction

of another object, the holographic entropy polyhedron, which we argued is the most

natural representation of the set of holographic inequalities. We explained how the

machinery first used in [1] for the search of primitive information quantities, with

a few proper modifications, can be employed to construct a candidate polyhedron,

in principle for any number of parties. Furthermore, we showed that for N = 4, 5

this construction reproduces known results about the holographic entropy cone with

remarkable simplicity. More importantly, the examples clearly show that the pro-

cedure is ‘scalable’, since for each N one only has to upgrade the results which are

already known for N′ < N.

– 96 –



The program initiated in [1], and further developed by the present work, is

however still in its infancy – a lot remains to be done. We describe below various

salient directions for future investigations, which should aid in taking the program

to its logical conclusion.

Construction of the arrangement for arbitrary N: The new building blocks

introduced in §6 were constructed by relaxing one of the assumptions behind the In-

theorem, in particular by allowing regions of different colors to envelop each other.

Our goal was to exemplify how this allows for the derivation of new information

quantities, while still maintaining the regions to be non-adjoining. By no means is

our intention for these building blocks to be exhaustive. Although we do not expect

many more new information quantities to exist for N = 4, there certainly exist other

building blocks, which are not equivalent to the ones that we considered thus far.

These in principle could allow for the generation of further primitive quantities.

Moreover, allowing the regions to be adjoining, or even allowing more than two

regions to adjoin at a single point, may unearth even more quantities.

A central question for the future is how to construct the full arrangement, for

an arbitrary number of parties, and how to do it efficiently. In the case of non-

adjoining regions, one way to proceed would be, following the logic introduced in

[1], to first derive the minimal set of building blocks that generate all equivalence

classes of configurations. The existence of this set is guaranteed by the fact that

the arrangement is finite, but finding it is a formidable challenge. At present, while

we suspect that we have complete knowledge the arrangement for N = 3, we are far

from having a formal proof.

Assuming we have all the building blocks at hand, the next step would be to

study the combinatorics of combining them to generate all primitive quantities in an

efficient way. The naive approach quickly becomes unfeasible as N grows. Instead,

one should organize the search based on the classification of primitives presented in

§3, according to their rank and character. Furthermore, for an efficient construction,

one should find a way to generate various primitives modulo permutations.

To target the search for genuinely new quantities (those of rank R = N), one

should avoid realizing, when combining the building blocks, any color-reducing ar-

chitectures (see §5). This however still does not suffice to derive the full arrangement.

As explained on several occasions, it is also important to know which upliftings of

the quantities of rank R < N are primitive. Since the number of such upliftings is

expected to grow quickly as N increases, it would be useful to understand at a more

general level, independently from any specific QR and value of N, which upliftings

remain primitive as N changes. This would require a detailed study of color-reducing

architectures and how they can be realized by the building blocks.

Finally, it remains to be understood if one can limit the classifications of the

building blocks to the case where regions are non-adjoining, or if instead there exist
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“degenerate” information quantities (or perhaps even a hierarchy of degeneracies)

which can only be obtained from adjoining regions.72 This is also related to the

question of whether there exist balanced, but not superbalanced, quantities, other

than I2 or QAL
2 .

Analysis of the local structure of the arrangement: The hyperplanes in the

arrangement intersect in particular subspaces of higher codimension, and decompose

the extended entropy space into various ‘cells’. Both for the construction of the

arrangement discussed above, and for the usage of the arrangement as a reference for

the analysis of multipartite correlation (which we discuss below), it would be useful

to study the local structure of the arrangement in detail, and develop a formalism

for an efficient description.

A first step would be to study the structure of each subarrangement AR

N ⊂ AN

(viewed on the corresponding (2R − 1)-dimensional subspace of the entropy space)

and compare its structure to the arrangement AR. This should already reveal useful

information about how arrangements for different number of colors are related to each

other. Furthermore, one would like to study how different subarrangements ‘interact’

within the full arrangement, i.e., at which specific locations on the arrangement

do information quantities of different rank and character intersect. Similarly, one

would like to delineate which cells of extended entropy space are bounded by specific

information quantities.

Second, one would like to know how various locations on the arrangement, and

cells, are associated to particular algebraic properties of the various information

quantities. For example, we noted in [1] that balanced quantities intersect on a

special subspace. Moreover, we have seen in §7 that the sieve suggests a natural

decomposition of entropy space into the subspace of superbalanced quantities and

a transverse subspace generated by I1 and I2. More generally, one can imagine

characterizing other locations according to the notion of R-balance.

Finally, the information about the local structure of the arrangement contains

redundancies associated to the permutation symmetries. Since the information quan-

tities related by the action of SymN+1 are physically equivalent, there are also lo-

cations of the arrangement which are correspondingly equivalent for all practical

purposes. It would be extremely useful to find a way to truncate the arrangement

to a fundamental domain after quotienting out this permutation symmetry, thereby

removing unnecessary redundancies from the construction.

We have already seen that different representations (bases) of the arrangement

in the entropy space can have their own specific advantages. For example, as demon-

strated by (7.46), the five new N = 5 inequalities of [19] are much more compact

72 So far QAL
2 is the only example, and is equivalent to I2, which can be derived from non-

adjoining configurations. We do not have any example of an information quantity which can only

be derived from adjoining configurations, such that all of its purifications satisfy the same property.
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when written in terms of the In basis as opposed to the entropy basis. However,

even the In basis, whose components are by construction Symn symmetric, does not

manifest the full SymN+1 symmetry optimally, and further simplifications can in fact

be attained in a different basis tailored to this larger symmetry. This will be further

explored in [34].

Characterization of multipartite correlations in a given state: Armed with

the knowledge of the full local structure of the arrangement one can investigate the

localization of a pair (C, ψΣ) with respect to it in the entropy space. The extent to

which a particular pair (C, ψΣ) localizes is related to the divergence of various quan-

tities in the arrangement in QFT, and will depend on certain topological properties

of the configuration C (cf., §4.2).

For geometric states, one can imagine using the knowledge of the local structure

of the arrangement to study the relation between properties of the bulk geome-

try and the pattern of multipartite correlations. Entropy space provides a rather

‘coarse-grained’ characterization of a particular (C, ψΣ). This is because in general

it is possible to find for a state |ψ′Σ〉, very different from |ψΣ〉, a new configura-

tion C′N such that the two pairs have the same ‘localization properties’ with respect

to the arrangement. This was indeed the redundancy which we gauge-fixed in our

construction (see §2).

We could however do better by studying families of states and configurations. For

example, we can choose a particular state |ψΣ〉, and a family of ‘probe configurations’

CN(λ), and study the localization properties of this entire family with respect to

the arrangement (this is reminiscent of the various methods of reconstructing bulk

geometry using entanglement entropies). This can then be compared to the behavior

of the same family for a different state |ψ′Σ〉. Similarly, one can imagine a situation

where a particular configuration is chosen, and one scans over a family of states

|ψΣ(λ)〉.
Another interesting question concerns the localization properties of typical states

in a given theory. Similar questions can also be asked, using the same arrangement

derived from holography, for other quantum systems, e.g., QFTs outside the large

N approximation, or non-relativistic many body systems. In particular, while we

expect that only geometric states in holographic CFTs can be exactly localized on

quantities in the arrangement (for some subset of the configurations, and in the strict

N →∞ limit), one would more broadly like to characterize such a QFT in terms of

the structural properties of the arrangement, and gain further insight into deviations

therefrom.

Dynamics: The previous discussion pertained to the analysis of the structure of

multipartite correlations in a particular state, but it would also be interesting to

explore how our framework could be used to characterize dynamical evolution. It was
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for example shown in [9] that the tripartite information provides a certain measure

of quantum chaos and information scrambling. Given the richer structure of the

arrangement for N ≥ 4, it seems reasonable to expect that these new quantities

might be able to probe more fine-grained details of such evolution.

In general one can imagine dynamical evolution being visualized as a sort of

‘flow’ of any given family of configurations in entropy space. The arrangement then

provides a way to characterize the flow. An interesting direction would be to imagine

a situation with a family of probe configurations in a given initial state, as described

above, and to follow how their localization changes under time evolution. For ex-

ample, it might transpire that certain locations function as attractors. Alternately,

there could be constraints to the flow, preventing a sort of ‘phase transition’ from

one cell to another.

The growth of entanglement entropy of a region in field theory has been used

extensively as a useful diagnostic to characterize quantum quenches (see for example

[35] for a review). The arrangement could be useful in this context as well, with the

flow characterizing the evolution of the pattern of multipartite correlations. In this

respect, it would also be interesting to explore the connection between our picture

and the ‘minimal membrane’ description of entanglement growth developed in [36]

for random quantum circuits, and recently applied to holography in [37].73

Relation to other measures: While our framework has been developed using

the von Neumann entropy, it would be interesting to explore the connection with

other measures of correlations commonly employed in quantum information theory

and quantum field theory.

Once a set of entropic information quantities (the arrangement) has been iden-

tified for a given number of parties N, a natural generalization of these quantities

is obtained by simply replacing the von Neumann entropy of a polychromatic sub-

system SI, with the α-Renyi entropy S
(α)
I . It would be interesting to study these

quantities in detail, given that Renyi entropies can also be computed holographically

using the prescription of [38], and that in quantum mechanics the structure of the

corresponding ‘entropy cone’ simplifies considerably [39].

Another potentially useful direction would be to establish a clear connection

between the structure emergent from our framework and properties of relative en-

tropies, which are known to be well behaved measure of correlations for continuum

field theories (see [40] for a recent review).

Multipartite entanglement structures: In [1] we already commented on the re-

lation between certain types of factorization of a density matrix, and the localization

of a pair (C, ψΣ) on the hyperplanes associated to the multipartite information In.

The emergent picture suggests that the vanishing of In in field theory is symptomatic

73 See also [25] for a discussion about the holographic inequalities of [19] in this framework.
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of the absence of more obvious multipartite correlations. It would be similarly useful

to know what the vanishing of other quantities in the arrangement implies for the

structure of the density matrix.

More generally, when a pair (C, ψΣ) localizes on higher codimension subspaces,

we expect the structure of the density matrix to further specialize. Correspond-

ingly, numerous types of multipartite correlations should vanish simultaneously, as

suggested by the geometric picture.

In general it would be interesting to understand how to characterize the struc-

ture of density matrices corresponding to localization on particular locations of the

arrangement. However, it should remain clear that these statements have to be un-

derstood in an approximate sense, given that exact localization can only take place in

the strict N →∞ limit, and perhaps only at the heuristic level, since a description of

subregions in QFT should be realized using the language of algebras of observables,

rather than density matrices. The aforementioned relation to properties of relative

entropies should be particularly useful in this sense.

Finally, fleshing out this connection in detail could ultimately help in investigat-

ing the conjecture of [20] about the general structure of geometric states.

Derivation of the polyhedron for arbitrary N: Assuming that one has full

knowledge of the arrangement for some number of parties N, we explained in §7 how

to use the sieve to extract a candidate polyhedron. However, given the complexity

of the problem of constructing the full arrangement, it would also be interesting to

explore another direction.

As we showed in the case of N = 4 and N = 5, one can use some version of the

sieve to derive an inner bound for the polyhedron, even without having any knowl-

edge of the arrangement.74 One possibility is that the construction of a candidate

polyhedron might actually be simpler than the construction of the full arrangement.

To do this, one should first find a way of deriving the optimal version of the sieve

which gives the most stringent bound, by identifying suitable ‘platonic’ configura-

tions to be used for the test. Then, one should prove that the extremal rays obtained

from the procedure do in fact correspond to primitive information quantities. The

power in our implementation of the abstract version of the sieve relied on the as-

sumption that the (non-obvious) facets of the polyhedron are superbalanced. Should

one prove this to be true in general, one would attain a significant simplification of

the problem.

Finally, we reemphasize that these procedures are intended to derive a set of

candidates for new universal holographic inequalities, but it is a-priori unclear to

74 Note however, that the choice of the optimal configurations for the sieve appears to be very

closely related to the set of building blocks used to construct primitive quantities.
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what extent they can be helpful in actually proving them.75 Perhaps one could gain

further insight by trying to combine these ideas with techniques based on bit threads

recently introduced in [20, 28].

Interpretation of universal holographic inequalities: Suppose that for a given

N we are able to construct the full arrangement and derive the corresponding poly-

hedron. Furthermore, suppose that we are also able to prove that the facets of the

polyhedron do in fact correspond to valid universal holographic inequalities. Can

we use the detailed knowledge of these structures and the “experiments” described

in the above paragraphs, to gain further insight regarding the interpretation of the

holographic inequalities?

The answer to this question depends on the extent to which the arrangement

(nb: not the polyhedron) is specific to the holographic set-up (see also below). Let us

consider a key example. It has already been noticed in [8] that states which saturate

SSA holographically, do so only if they also simultaneously saturate MMI and a

particular instance of SA.76 More precisely, from the general form [41] of a tripartite

density matrix ρABC that saturates SSA exactly77, it follows that the reduced density

matrix ρAC takes the form

ρAC =
∑
i

pi ρ
(i)
A ⊗ ρ

(i)
C (8.1)

i.e., it is a separable state. In the holographic context, MMI implies that this can

only happen if I2(A : C) = 0 and the density matrix has an even more special form;

namely, if it completely factorizes as ρAC = ρA ⊗ ρC.
An analogous situation arises in the vacuum of an arbitrary quantum field theory

(not necessarily holographic). In general it is not possible to saturate SSA in the

vacuum of a QFT – this is a consequence of the Reeh-Schlieder theorem. However,

one can achieve this when the spatial regions defining the subsystems lie on a null

plane [42]. If SSA is saturated for a certain choice of configuration, the density

matrix is a quantum Markov state [41], implying again the structure (8.1) for ρAC.

One can moreover show that the density matrix does in fact factorize as described

above by also invoking the saturation of α-Renyi entropies (for arbitrary α) [43].

In turn, this implies that the mutual information between A and C also vanishes;

likewise I3(A : B : C) = 0.

This observation suggests the following intriguing question. Is it possible in a

QFT to find a ‘physical state’ which (nearly) saturates SSA but has an o(1) value for

75 See also the discussion of [1] for further comments on this point and the relation between the

polyhedron and the holographic entropy cone of [19].
76 Relatedly, in the entropy cone analysis of [19], SSA is implied by MMI (at leading order in the

planar (1/N) expansion.
77 In the form SAB + SBC ≥ SB + SABC .
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I3, irrespective of the sign?78 Should the answer be in the negative, the conditional

mutual information would be small only when both I3 and I2 are simultaneously

small, which would then violate our notion of primitivity, leading us to conclude that

SSA is not a primitive quantity. Should this be the case, it behooves us to understand

better how the centrality of SSA in quantum field theories (where it follows from the

monotonicity of relative entropy [40]), gels with the idea of primitive information

quantities used extensively herein.

Such a situation could suggest an interpretation that, at least for states in some

code subspace in a holographic field theory, the universal holographic inequalities are

a signal of the non-primitivity of certain types of multipartite correlations. Further-

more, it is possible that this behavior, in particular this inter-dependence between

different types of multipartite correlations, which is captured very cleanly by holog-

raphy, is much more general in QFT.

Universality of the arrangement: As explained in §2, we have used holographic

intuition to introduce a precise notion of faithfulness and primitivity for information

quantities. At least at an heuristic level, these notions can be understood more gen-

erally in QFT. At this stage it is not fully clear how the arrangement depends on the

fact that we have used holography, and in particular RT/HRT, for its construction.

One possibility is that there is a strong correlation between the arrangement and cer-

tain properties of geometric states (and perturbations thereof) in holographic field

theories, and that for other states, or more generally other QFT, the arrangement

would be different.

On the other hand, the construction based on the proto-entropy makes use of a

very limited amount of information about the fact that the states we are considering

have a geometric dual (cf., [1]). The building blocks and the constraints associated

to them only depend on the presence/absence of correlations between the component

regions, but are insensitive to the actual value of the mutual information. Therefore

it is also possible that the arrangement is indeed much more universal, and would

be the same for a broader class of states and theories.

It would be interesting to explore if the notions of faithfulness and primitivity can

be made precise more generally in QFT, using methods other than holography, and if

an arrangement can be constructed. A similar question pertains to finite dimensional

Hilbert spaces. In full generality in quantum information theory the arrangement

is likely to be infinite, but it would be interesting to explore if under some limited

setting of physical relevance (perhaps many body systems, or field theories on a

lattice), one can introduce a similar notion of faithfulness and primitivity and derive

a corresponding arrangement. In turn, this could ultimately provide useful intuition

78 In quantum mechanics, such states certainly exist, and one can likewise imagine constructing

a similar state also in QFT. The existence of a state in Hilbert space however does not guarantee

that it has any physical significance.
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for the understanding of the holographic case, or more generally for other quantum

field theories.
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