
UCLA
Recent Work

Title
The Retail Planning Problem under Demand Uncertainty.

Permalink
https://escholarship.org/uc/item/4mc1z48n

Authors
Georgiadis, G.
Rajaram, K.

Publication Date
2012

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4mc1z48n
https://escholarship.org
http://www.cdlib.org/
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Uncertainty

George Georgiadis , Kumar Rajaram

January 19, 2012

UCLA Anderson School of Management, Los Angeles, California, USA

georgiadis@ucla.edu , krajaram@anderson.ucla.edu

Abstract

We consider the Retail Planning Problem in which the retailer chooses suppliers, and

determines the production, distribution and inventory planning for products with un-

certain demand in order to minimize total expected costs. This problem is often faced

by large retail chains that carry private label products. We formulate this problem as

a convex mixed integer program and show that it is strongly NP-hard. We determine

a lower bound by applying a Lagrangean relaxation and show that this bound out-

performs the standard convex programming relaxation, while being computationally

efficient. We also establish a worst-case error bound for the Lagrangean relaxation.

We then develop heuristics to generate feasible solutions. Our computational results

indicate that our convex programming heuristic yields feasible solutions that are close

to optimal with an average suboptimality gap at 3.4%. We also develop managerial

insights for practitioners who choose suppliers, and make production, distribution and

inventory decisions in the supply chain.

Keywords: Retailing, facility location, inventory management, stochastic demand, newsven-

dor, Lagrangean relaxation, heuristics, nonlinear integer programming.
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1 Introduction

Retail store chains typically carry private label merchandise. For example, department store

chain Macy’s carries several private label brands such as Alfani, Club Room, Hotel Collec-

tion and others. Similarly, Target, J. C. Penney and others carry their own private label

brands. Other retail store chains such as GAP, H&M and Zara carry private label prod-

ucts exclusively. Private labels allow firms to differentiate their products from those of their

competitors, enhance customer loyalty, and they typically provide higher profit margins.

However, these benefits are accompanied by additional challenges. The retailer must plan

the entire supply chain by selecting suppliers, and by making decisions on production, dis-

tribution and inventory at the retail (and possibly other) locations for each of these private

label products in order to minimize total costs. This problem can be complicated when there

is a large number of products with uncertain demand that can be sourced from various sup-

pliers, and they are distributed across various demand zones. An example of such a supply

chain is illustrated in figure 1.

Figure 1: The retail supply chain for private label products

Private label products can be produced in-house, or production can be outsourced to third

party suppliers. Without loss of generality, we refer to these options as suppliers. Supplier
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choice entails fixed costs such as building and staffing a plant when producing in-house or

negotiation, contracting and tooling costs when outsourcing it. Each production facility

can manufacture multiple products interchangeably, and there are economies of scale in

manufacturing and distribution. Demand at each zone (i.e., store or city) is stochastic and

inventory is carried at every demand zone. Here, demand zones can be interpreted either as

retail stores, or as distribution centers (DC’s).1 The retailer incurs overstock and understock

costs for leftover inventory and unmet demand, respectively. In this context, there are three

types of decisions. First, the retailer needs to decide which suppliers to choose. Second, they

need to conduct production and logistics planning. Third, inventory management decisions

on how much of each product to stock at each demand zone need to be made.

We develop the retail planning problem under uncertainty to address these decisions. In this

problem, we model the selection of suppliers, production, distribution and inventory decisions

faced by the retailer as a nonlinear mixed integer program that minimizes total expected

costs. We show that this problem is convex and strongly NP-hard. An interesting attribute of

this problem is that it combines two well-known subproblems: a generalized multi-commodity

facility location problem and a newsvendor problem. We exploit this structure to develop

computationally efficient heuristics to generate feasible solutions. In addition, we apply a

Lagrangean relaxation to obtain a lower bound, which we use to assess the quality of the

feasible solutions provided by the heuristics. We show that the feasible solutions of a convex

programming heuristic are close to optimal: on average within 3.4% of optimal, while in the

majority of cases they are closer to optimal as evidenced by the 2.8% median suboptimality

gap. Further, the performance gap of this heuristic improves with larger problem sizes, and

the computational time of this heuristic scales up approximately linearly in the problem size.

We also conduct robustness checks and find that the performance of our convex programming

heuristic, as well as its advantage relative to the benchmark practitioner’s heuristic is not

sensitive to changes in the problem parameters. All these are desirable attributes for potential

implementation in large-sized, real applications.

Our analysis enables us to draw several managerial insights. First, the optimal inventory

level when solving the joint supplier choice, production, distribution and inventory problem

is smaller than when the inventory subproblem is solved separately. Thus, in order to reduce

1With the latter interpretation we implicitly assume (i) that the locations of DCs and the assignment
of stores to DCs are pre-determined, and (ii) that stores maintain only a minimal amount of inventory so
that inventory costs at individual stores are negligible. This latter assumption is consistent with the existing
literature (e.g., Shen at al. (2003)). While it is plausible that management must also determine the location
of DCs and allocate stores to DCs, we leave this important problem for future research.
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inventory costs across the supply chain, one needs to adopt an integrated approach to solve

the joint problem. Second, it is important to consider the effect of downstream inventory

decisions on upstream production and distribution costs. Our model provides a framework to

analyze these decisions. Third, the two major costs that influence supply chain costs across

the retailer are production costs and the understock costs associated with the variance in

demand. Therefore retailers should focus on reducing these costs first before considering

the effects of supplier capacity and contracting costs. Fourth, it is important to consider

establishment, production, distribution and inventory costs together when choosing suppliers,

because a supplier who is desirable in any one of these aspects may in fact not be the best

overall choice. Our analysis provides a mechanism to integrate these aspects and pick the

best set of suppliers.

Since one of the decisions considered in the retail planning problem under demand uncertainty

is the establishment of production capacity by the explicit choice of suppliers, this problem

can be placed in the broad category of facility location problems under uncertain demand.

Aikens (1985), Drezner (1995), Owen and Daskin (1998), Snyder (2006), and Melo et al.

(2009) provide comprehensive reviews. The problem with stochastic demand was first studied

by Balachandran and Jain (1976) and Le Blanc (1977), who developed a branch and bound

procedure, and a Lagrangean heuristic, respectively. This paper generalizes their models by

considering multiple products, as well as incorporating economies of scale in production and

distribution.

This paper is also related to Daskin et. al. (2002) who studied a location-inventory prob-

lem in a supplier - DC - retailer network, where the planner’s problem is to determine (i)

which DCs to establish, (ii) the inventory replenishment policy at each DC, and (iii) logistics

between DCs and retailers. Shen (2005) studied a multi-commodity extension of Daskin

et. al. (2002) with economies of scale but without explicitly modeling inventory decisions

and without capacity constraints. Relative to these papers, we incorporate economies of

scale in both production and distribution, as well as capacity constraints at each supplier.

Moreover, we explicitly model the inventory problem. Here, by using the newsvendor in-

stead of a replenishment model to make inventory decisions, we capture features of the retail

fashion industry, where lead times are long relative to product lifecycles so that inventory

cannot be replenished mid-season, and unmet demand is lost, resulting in underage costs.2

A related problem was also studied by Shen at al. (2003), who investigate the benefits from

2Specific lead times faced by manufacturers are reported to be seven months for Oxford shirts ordered by
J.C. Penney, and five months for Benetton apparel (Iyer and Bergen (1997)).
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risk-pooling by choosing some retailers to serve as DCs, and by Oszen et al. (2008) who

studied a capacitated extension of Shen at al. (2003). However, in contrast to these papers

we focus on the joint supplier choice, logistics and inventory planning problem, as opposed

to the risk pooling effects from strategically locating DCs. This is because manufacturing

is often outsourced to third party suppliers and contracts are volume-based, production and

inventory decisions are best made simultaneously (Fisher and Rajaram (2000)).3 Finally,

in contrast to all these papers, we motivate an important problem faced by retail chains

carrying private label products, propose an effective methodology to generate feasible solu-

tions for this problem, test it on realistic data to assess its performance, and develop insights

that practitioners can use for choosing suppliers, and making production, distribution and

inventory decisions.

The paper is organized as follows: In Section 2 we present the basic model formulation,

in Section 3 we discuss the corresponding Lagrangean relaxation, while in Section 4 we

propose heuristics. In Section 5 we present results from our numerical study. In Section 6

we summarize and provide future research directions.

2 Model Formulation

We formulate the retail planning problem under uncertainty as a nonlinear mixed-integer

program. To provide a precise statement of this problem, we define:

Indices:

I, J, K: The set of possible suppliers, demand zones and products, respectively.

i, j, k: The subscripts for suppliers, demand zones and products, respectively.

Parameters:

fi: Fixed annualized cost associated with choosing supplier i.

dik: Setup cost associated with producing product k at supplier i.

eij: Setup cost associated with shipping from supplier i to demand zone j.

cijk: Marginal cost to produce and ship product k from supplier i to demand zone j.

3For example, leading retailers H&M and GAP outsource 100% of their manufacturing, while Zara out-
sources approximately 40% of its manufacturing to third party suppliers (Tokatli (2008)). Anecdotal evidence
suggests that Macy’s outsources all of its manufacturing.
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Li, Ui: Minimum acceptable throughput and capacity of supplier i, respectively.

αijk: Units of capacity consumed by a unit of product k at supplier i that is shipped

to demand zone j.

hjk / pjk: Per unit overstock / understock cost associated with satisfying demand for prod-

uct k at demand zone j.

Φjk (ξ) / φjk (ξ): The cumulative / probability density function of the demand distribution

for product k at demand zone j.

Decision variables:

zi: 0 − 1 variable that equals 1 if supplier i is chosen to supply products, and 0

otherwise.

wik: 0−1 variable that equals 1 if product k is produced in supplier i, and 0 otherwise.

vij: 0−1 variable that equals 1 if supplier i ships to demand zone j, and 0 otherwise.

xijk: Quantity of product k shipped from supplier i to demand zone j.

yjk: Inventory level of product k carried at demand zone j.

To capture economies of scale so that per-unit production and shipping costs decrease in

quantity, we approximate these costs by a setup cost dik that is incurred to initiate production

for each product k at every supplier i, a setup cost eij that is incurred to ship from each

supplier i to every demand zone j, and a constant marginal cost (cijk) that is incurred to

produce and distribute each additional unit. While a more complex cost structure could be

desirable in some applications, we employ this structure as it captures economies of scale

and it permits structural analysis of the problem.

To model the inventory problem faced by the retailer we employ the newsvendor model.

In contrast to Daskin et. al. (2002) who use a (Q, r) replenishment model, this paper is

motivated by the fashion retail industry, where merchandise is often seasonal and lead times

are long relative to the season length. Consequently, the retailer cannot replenish inventory

mid-season so that unmet demand is lost, while leftover demand needs to be salvaged via

mark downs at the end of the season. Therefore, the standard single-period newsvendor

model would seem most appropriate here. Under this model, let Sjk (y) denote the expected

overstock and understock cost associated with carrying y units of inventory for product k at

demand zone j. This can be written as
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Sjk (y) = hjk

ˆ y

0

(y − ξ)φjk (ξ) dξ + pjk

ˆ ∞
y

(ξ − y)φjk (ξ) dξ (2.1)

=⇒ Sjk (y) = (hjk + pjk)

ˆ y

0

Φjk (ξ) dξ + pjk [E (ξ)− y]

The problem of supplier selection, production, distribution, and inventory planning faced by

the retailer can be expressed by the following nonlinear mixed-integer program, which we

call the Retail Planning Problem (RPP):

(RPP)

ZP = min

{∑
i∈I

fizi +
∑
i∈I

∑
k∈K

dikwik +
∑
i∈I

∑
j∈J

eijvij +
∑
i∈I

∑
j∈J

∑
k∈K

cijkxijk +
∑
j∈J

∑
k∈K

Sjk (yjk)

}

subject to ∑
i∈I

xijk = yjk ∀j ∈ J, k ∈ K (2.2)

Lizi ≤
∑
j

∑
k

αijkxijk ≤ Uizi ∀i ∈ I (2.3)

∑
j∈J

αijkxijk ≤ Uiwik ∀i ∈ I , k ∈ K (2.4)

∑
k∈K

αijkxijk ≤ Uivij ∀i ∈ I , j ∈ J (2.5)

xijk ≥ 0 , yjk ≥ 0 ∀i ∈ I , j ∈ J , k ∈ K (2.6)

wik ∈ {0, 1} , vij ∈ {0, 1} , zi ∈ {0, 1} ∀i ∈ I , j ∈ J , k ∈ K (2.7)

The objective function of the RPP consists of four terms. The first term represents the

annualized fixed cost associated with securing capacity at supplier i. The second term rep-

resents the setup cost associated with production, while the third term represents the setup

cost associated with distribution. The fourth term represents the corresponding (constant)

marginal production and distribution costs. The fifth term represents the total expected cost

associated with carrying inventory at the demand zones.

Constraint (2.2) ensures that total inventory level for each product at every demand zone

equals the total quantity produced and shipped to that zone. Note that it is also a coupling

constraint. Were it not for (2.2), the RPP would decompose by supplier i into a set of mixed
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integer linear problems, and by demand zone j and product k into a set of newsvendor

problems. This observation suggests that this may be a good candidate constraint to use in

any eventual decomposition of the problem. The left hand side inequality of (2.3) imposes a

lower bound on the minimum allowable throughput of a supplier, if the supplier is selected.

A lower bound on a supplier’s throughput may be desirable in order to achieve sufficient

economies of scale. The right hand side inequality of (2.3) imposes the capacity constraint

(i.e., Ui) for each supplier that is selected, and it enforces that no production will take place

with suppliers that are not selected. Constraint (2.4) enforces the condition that xijk > 0 if

and only if product k is produced at supplier i (i.e., iff wik = 1 for some j ∈ J), while (2.5)

enforces the condition that xijk > 0 if and only if some quantity is shipped from supplier i to

demand zone j (i.e., iff vij = 1 for some k ∈ K). Finally (2.6) are non-negativity constraints,

while (2.7) are binary constraints.

Observe that the RPP is a convex mixed integer program since it consists of a linear gener-

alized facility location subproblem and a convex inventory planning subproblem. By noting

that the Capacitated Plant Location Problem (CPLP) is strongly NP-hard (Cornuejols et.

al. (1991)), it can be shown that the RPP is also strongly NP-hard.4 Therefore, it is unlikely

that real-sized problems can be solved to optimality. We verify this in our computational

results. Consequently, it is desirable to develop heuristics to address this problem. The

quality of these heuristics can be assessed by comparing them to a lower bound, which we

establish in the next section.

3 Decomposition & Lower Bounds

In order to obtain a tight lower bound, we apply a Lagrangean relaxation to the RPP (see

Geoffrion (1974) and Fisher (1981)). An important issue when designing a Lagrangean

relaxation is deciding which constraints to relax. In making this choice, it is important to

strike a suitable compromise between solving the relaxed problem efficiently and yielding a

relatively tight bound. Observe that by relaxing (2.2), the problem can be decomposed into a

mixed integer linear program (MILP) containing the xijk, wik, vij, and zi variables, and into a

convex program containing the yjk variables. Moreover, this relaxation enables us to further

decompose the MILP by supplier (i.e., by i), and the convex program by demand zone and

product (i.e., by j and k) into multiple subproblems. A key attribute of this decomposition

4This result can be shown by reducing an instance of the RPP to the CPLP. Specifically, in this reduction,
let (i) demand assume a degenerate probability distribution, (ii) the overage and underage costs to be
arbitrarily large (i.e., hjk and pjk → ∞ ∀j, k), (iii) dik = 0 and eij = 0 ∀i, j, k, (iv) Li = 0 ∀i ∈ I, and (v)
Ui’s take values from the set {1, .., p} for any fixed p ≥ 3 ∀i ∈ I.
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is that all subproblems can be solved analytically. On the other hand, a potential concern

is that this decomposition generates a relatively large number of dual multipliers: J ×K of

them, which we denote by λjk. Relaxing (2.2) for a given J ×K-matrix λ of multipliers, the

Lagrangean function takes the following form:

(Lλ)

L (λ) = min
∑
i∈I

[
fizi +

∑
k∈K

(
dikwik +

∑
j∈J

(cijk − λjk)xijk

)
+
∑
j∈J

eijvij

]
+
∑
j∈J

∑
k∈K

[λjkyjk + Sjk (yjk)]

(3.1)

subject to (2.3), (2.4), (2.5), (2.6) and (2.7).

Note that (Lλ) decomposes by i into I independent production and distribution subproblems,

and by j and k into J ×K independent inventory subproblems. More specifically, (3.1) can

be re-written as:

L (λ) =
∑
i∈I

Lmilpi (λ) +
∑
j∈J

∑
k∈K

Lcvxjk (λ)

where

Lmilpi (λ) = min

{
fizi +

∑
k∈K

[
dikwik +

∑
j∈J

(cijk − λjk)xijk

]
+
∑
j∈J

eijvij

}

and

Lcvxjk (λ) = min {λjkyjk + Sjk (yjk)}

Note that the Lagrangean multipliers in the production and distribution subproblems (i.e.,

Lmilpi (λ)) can be interpreted as the cost saved (or cost incurred if λjk < 0) from producing

and distributing an additional unit of product k to demand zone j. On the other hand, the

Lagrangean multipliers in the inventory subproblems (i.e., Lcvxjk (λ)) can be interpreted as the

change in holding cost associated with carrying an additional unit of inventory of product k

at demand zone j.

For any given set of multipliers λ, the following Proposition determines the optimal solution

for (Lλ), thus providing a lower bound for the RPP.

Proposition 1. For given set of multipliers λ ∈ RJ×K, a lower bound for the RPP is given
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by

L (λ) =
∑
i∈I

min

{
min
j∈J

{
eij + min

k∈K

{
dik + (cijk − λjk)

Ui
αijk

}}
+ fi , 0

}

+
∑
j∈J

∑
k∈K

[
pjkEjk (ξ)− (pjk + hjk)

ˆ yjk(λjk)

0

ξφjk (ξ) dξ

]
, (3.2)

where

yjk (λ) =


Φ−1jk (1) if λjk ≤ −hjk
Φ−1jk

(
pjk−λjk
pjk+hjk

)
if − hjk ≤ λjk ≤ pjk

Φ−1jk (0) if λjk ≥ pjk

(3.3)

Proof. To begin, fix λ ∈ RJ×K . Let us first consider each production and distribution sub-

problem. To solve each subproblem, we apply the integer linearization principle by Geoffrion

(1974). First, observe that if zi = 0, then Lmilpi = 0. Hence the optimal solution must

satisfy Lmilpi (λ) ≤ 0. As a result, we fix zi = 1 and solve

Lmilpi (λ , zi = 1) , min
∑
k∈K

[
dikwik +

∑
j∈J

(cijk − λjk)xijk

]
+
∑
j∈J

eijvij + fi

subject to (2.3), (2.4), (2.5), (2.6), and (2.7).

Because the problem is linear, using (2.3) it can easily be shown that xijk (λ) ∈
{

0, Ui

αijk

}
.

Using that Lmilpi (λ) ≤ 0, (2.4), (2.5) and (2.7), it follows that

Lmilpi (λ) = min

{
min
j∈J

{
eij + min

k∈K

{
dik + (cijk − λjk)

Ui
αijk

}}
+ fi , 0

}
Next, consider each inventory subproblem. It is easy to show that this problem is convex

in yjk and by solving the first order condition with respect to yjk, we obtain (3.3), where

Φ−1jk (•) denotes the inverse of Φjk (•). Finally, by using (2.1) and yjk (λjk), it is easy to show

that for each j ∈ J and k ∈ K, Lcvxjk (λjk) can be written as

Lcvxjk (λjk) = pjkEjk (ξ)− (pjk + hjk)

ˆ yjk(λjk)

0

ξφjk (ξ) dξ

By noting that a lower bound can be obtained by L (λ) =
∑

i∈I L
milp
i (λ)+

∑
j∈J
∑

k∈K Lcvxjk (λ),

the proof if complete.

Note that the Lagrangean solution will chose a supplier (i.e., set zi (λ) = 1) if and only if

the cost savings associated with producing and distributing an additional unit of product k
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to demand zone j exceed the fixed cost associated with choosing this supplier for at least

some j and k (i.e., if and only if −minj∈J

{
eij + mink∈K

{
dik + (cijk − λjk) Ui

αijk

}}
≥ fi).

However, this solution may not be feasible. Thus, the purpose of this solution is more to

establish the value of the objective function of (Lλ), which is a lower bound on the value of

the optimal solution of the RPP. This lower bound can then be used to evaluate the quality of

any feasible solution generated by heuristics for this problem. In the unlikely event that the

corresponding solution is feasible for the original problem, it then solves the RPP optimally.

In the following Lemma we show that the Lagrangean problem (Lλ) does not possess the

integrality property (see Geoffrion (1974)). Therefore the Lagrangean bound is likely to

be strictly better than that of a convex programming relaxation (i.e., the relaxation that is

obtained by replacing the binary constraints in 2.7 by the continuous interval [0, 1] for the

RPP). We confirm this in our computational results in Section 5.

Lemma 1. The Lagrangean problem (Lλ) does not possess the integrality property.

Proof. It suffices to show that a convex programming relaxation of the RPP where (2.7) is

replaced by

0 ≤ wik ≤ 1 , 0 ≤ vij ≤ 1 and 0 ≤ zi ≤ 1 ∀i ∈ I , j ∈ J , k ∈ K

does not yield a solution such that the w,v, and z variables are integral. We prove this by

constructing a counterexample as follows: Let |J | = |K| = 1, ei1 = di1 = Li = 0 ∀i ∈
I, αi11 = 1 ∀i ∈ I, and Φ11 (ξ) = ξ. To simplify exposition, in the remainder of this

proof we drop the subscripts j and k. Observe that by cost minimization, ∀i we will have

that zi = xi
Ui

. As a result, it suffices to show that there exists an instance of the convex

programming relaxation of the RPP with optimal solution x∗i /∈ {0, Ui} for some i ∈ I (and

hence z∗i /∈ {0, 1}. To proceed, by noting that Slater’s condition is satisfied for the primal

problem, we dualize (2.2) and write the Lagrangean

L (ν) = min
0≤xi≤Ui

{∑
i∈I

(
ci +

fi
Ui

+ ν

)
xi + (h+ p)

ˆ y

0

ξdξ +
p

2
− (ν + p) y

}

It is straightforward to check that for any given dual multiplier ν, the Lagrangean program

assumes the following optimal solution:

xi (ν) =


Ui if ci + fi

Ui
+ ν < 0

∈ [0, Ui] if ci + fi
Ui

+ ν = 0

0 otherwise

, and y (ν) =
ν + p

h+ p

11



Observe that a solution of the form xi ∈ {0, Ui} will be optimal (and hence zi ∈ {0, 1}) if

and only if there exists a dual multiplier ν such that∑
i∈I

Ui1{
ci+

fi
Ui

+ν≤0
} =

ν + p

h+ p

By noting that the RHS is a smooth function strictly increasing in ν, while the LHS is a step

function decreasing in ν, it follows that there may exist at most one ν such that the above

equality is satisfied. We now construct an example in which there exists no ν such that the

above equality is satisfied. Letting h = p = 1, |I| = 2, Ui = i
2

and ci + fi
Ui

= i
3
, observe that

if
−1

3
< ν (LHS) = 0 < ν+1

2
= (RHS)

−1 < ν ≤ −1
3

then (LHS) = 1
2
> ν+1

2
= (RHS)

ν < −1 (LHS) = 3
2
> ν+1

2
= (RHS)

We have thus constructed an instance for which the convex programming relaxation does

not yield an optimal solution that is integral, and hence proven that the Integrality Property

does not hold.

We next consider the problem of choosing the matrix of Lagrangean multipliers λ to tighten

the bound L (λ) as much as possible. Specifically, we are interested in the tightest possible

lower bound, which can be obtained by solving:

LBLR = max
λ∈RJ×K

L (λ)

One way to maximize L (λ) is by using a traditional subgradient algorithm (see Fisher (1985)

for details). However this technique may be computationally intensive in our problem as we

have J ×K Lagrangean multipliers.

To overcome this difficulty, we exploit the structure of the dual problem to demonstrate how

the optimal set of Lagrangean multipliers λ can in some cases be fully or partially determined

analytically. In preparation, we establish the following Lemma.

Lemma 2. The optimal set of Lagrangean multipliers λ∗ ∈ J ×K satisfy

min

{
min
i∈I

{
cijk +

αijk
Ui

(dik + eij + fi)

}
, pjk

}
≤ λ∗jk ≤ pjk ∀j ∈ J and k ∈ K

Proof. First, it is easy to check from the first line of (3.2) that Lmilp (λ) decreases in λ, and

Lmilp (λ) = 0 if dik + eij + (cijk − λjk) Ui

αijk
+ fi ≥ 0 ∀i, j, k. By re-arranging terms, one can
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show that Lmilp (λ) = 0 if λjk ≤ cijk +
αijk

Ui
(dik + eij + fi) ∀i, j, k. It is also easy to verify

from the second line of (3.1) that Lcvxjk (λjk) increases in λjk, and Lcvxjk (λjk) = pjkEjk (ξ) if

λjk ≥ pjk ∀j , k.

To show that min
{

mini∈I

{
cijk +

αijk

Ui
(dik + eij + fi)

}
, pjk

}
≤ λ∗jk ≤ pjk, first suppose

that the LHS inequality is not satisfied for some j , k. Then Lmilpi (λ∗) = Lmilpi

(
λ̂
)

and

Lcvxjk
(
λ∗jk
)
≤ Lcvxjk

(
λ̂jk

)
, where λ̂ = max {λ∗, min

{
mini∈I

{
cijk +

αijk

Ui
(dik + eij + fi)

}
, pjk

}}
.

As a result, L (λ∗) ≤ L
(
λ̂
)

and hence λ∗ cannot be optimal. Now suppose that λ∗jk > pjk

for some j, k. then Lcvxjk
(
λ∗jk
)

= Lcvxjk (pjk) and Lmilpi (λ∗) ≤ Lmilpi

(
λ∗jk
)
, where λ∗jk denotes

the set of Lagrangean multipliers λ∗, in which the j − kth element has been replaced by pjk.

As a result L (λ∗) ≤ L
(
λ∗jk
)
, and hence λ∗ cannot be optimal. This completes the proof.

This Lemma states that the optimal set of Lagrangean multipliers λ∗ lies in a well-defined

compact set. Observe from the left hand side expression in Lemma 2 that λ∗jk > 0 ∀j , k.

From (3.3) observe that the optimal inventory level yjk
(
λ∗jk
)

is strictly smaller than the

optimal inventory level that would be determined from solving the inventory subproblem

separately from the supplier choice and production planning subproblem. This is a direct

consequence of performing production, distribution and inventory planning in an integrated

manner. The second implication of this Lemma is that the optimal solution of the Lagrangean

relaxation will always satisfy
∑

i∈I xijk (λ∗) ≥ yjk (λ∗), and if the set defined in Lemma 2

is a singleton for some j and k, then it is possible to partially characterize the optimal set

of Lagrangean multipliers ex-ante. When these sets are singletons for all j and k, then

it is possible to completely characterize λ∗ ex-ante. This is established by the following

Proposition.

Proposition 2. If mini∈I

{
cijk +

αijk

Ui
(dik + eij + fi)

}
≥ pjk, then the optimal Lagrangean

multiplier λ∗jk = pjk. If this inequality holds ∀j ∈ J and k ∈ K, then λ∗ = p, and ZP = LBLR

(i.e., the Lagrangean relaxation solves the RPP).

Proof. For any j and k, if mini∈I

{
cijk +

αijk

Ui
(dik + eij + fi)

}
≥ pjk, then by Lemma 2 λ∗jk =

pjk. If this condition holds for all j and k, then it follows that λ∗jk = pjk, and by substituting

λ∗jk = pjk into (3.1) it is easy to check that (Lλ) is feasible for RPP. This completes the

proof.

Observe that mini∈I

{
cijk +

αijk

Ui
(dik + eij + fi)

}
can be interpreted as the lowest marginal

cost associated with establishing capacity at some supplier, producing product k, and dis-

tributing it to demand zone j. As a result, when this marginal cost exceeds the marginal

underage cost, it is optimal not to produce any quantity of product k for demand zone j, and
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incur the expected underage cost ; i.e., set λjk = pjk, which yields yjk (pjk) = 0 by applying

(3.3).

By using Lemma 2 and Proposition 2 we now establish a worst-case error bound for the

Lagrangean relaxation studied in this section.

Corollary 1. The worst-case error bound for this Lagrangean relaxation satisfies

εLR ≥ 1 + max

−
∑

j,k (pjk + hjk)
´ y(λ1jk)
0 ξφjk (ξ) dξ∑

j,k pjkEjk (ξ)
,

∑
i min

{
minj∈J

{
eij + mink∈K

{
dik + (cijk − pjk) Ui

αijk

}}
, 0
}

∑
j,k pjkEjk (ξ)


where εLR = LBLR

ZP
and λ1jk = min

{
mini∈I

{
cijk +

αijk

Ui
· (dik + eij + fi)

}
, pjk

}
∀j and k.

Moreover, there exists a problem instance of the RPP such that the bound is tight (i.e.,

εLR = 1).

Proof. First note that the Lagrangean dual is a concave maximization problem, and recall

from Lemma 2 that λ∗jk ≥ min
{

mini∈I

{
cijk +

αijk

Ui
(dik + eij + fi)

}
, pjk

}
= λ1jk. Moreover,

it is easy to check that a trivial feasible solution can be obtained by setting zi = wik = xijk =

yjk = 0 ∀i, j, k, in which case the objective function is equal to
∑

j,k pjkEjk (ξ). As a result,

the following inequalities hold:

max
{
L
(
λ1
)
, L (p)

}
≤ LBLR ≤ ZP ≤

∑
j,k

pjkEjk (ξ)

Hence εLP = LBLR

ZP
≥ max{L(λ1) , L(p)}∑

j,k pjkEjk(ξ)
, and the result follows by substituting L (λ1) and L (p)

from (3.2). To show that there exists an instance such that this bound is tight, for every

i ∈ I, pick fi such that minj,k

{
dik + eij + (cijk − pjk) Ui

αijk

}
+fi ≥ 0. Then it is easy to check

that εLR ≥ 1. Because εLR ≤ 1 by definition, we conclude that εLR = 1 in this instance.

This completes the proof.

4 Heuristics & Upper Bounds

In this section we develop heuristics, which can be used to obtain feasible solutions for

the RPP. These heuristics can be used in conjunction with the lower bound developed in

Section 3 to provide upper bounds for a branch and bound algorithm, or to generate a
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feasible solution for the RPP. We initially propose two intuitive heuristics. The first is a

practitioner’s heuristic developed based on observed practice at a large retail chain. The

second is a sequential heuristic, which solves the inventory management subproblem first,

and then it solves the remaining standard facility location problem by applying the well-

known Drop procedure (Klincewicz and Luss (1986)).

These two heuristics can be used to benchmark the performance of the analytically more

rigorous heuristics we develop. The first is a convex programming based heuristic, which

generates a feasible solution by solving a sequence of convex programs. We also propose

a simpler LP based heuristic, which is computationally more efficient. This heuristic uses

the inventory levels from the Lagrangean problem (i.e., y (λ∗)), and it generates a feasible

solution by solving a sequence of linear programs. We next present these heuristics, and we

evaluate their performance in Section 5.

4.1 Practitioner’s Heuristic

This heuristic first chooses the inventory level for every product at each demand zone to

equal the respective expected demand; i.e., yjk = µjk ∀j ∈ J , k ∈ K. Second, suppliers are

sorted according to the ratio Ri = fi
Ui

, which captures the fixed cost per-unit of capacity

associated with choosing supplier i. Third, the algorithm establishes sufficient capacity to

satisfy the total inventory by choosing suppliers that have the lowest Ri. For example if R1 ≤
R2... ≤ RI , then the algorithm will set zi = 1 ∀i ∈ {1, .., n} and zi = 0 otherwise, where n =

min
{
n ≤ I :

∑n
i=1 Ui ≥

∑
j∈J
∑

k∈K yjk

}
. Finally, production and transportation decisions

are made by solving a relaxed version of the RPP, where the fixed cost variables wik and vij

are relaxed to lie in [0, 1]. Here, a feasible solution is obtained by rounding to 1 the fractional

wik and vij variables, and by re-solving the linear program with respect to xijk ≥ 0. Note that

this heuristic does not take into account the underage and overage costs due to the variation

in demand as inventory levels are set to simply equal the mean demand. We denote the

objective function of this heuristic by UBPr. This procedure is formalized in Algorithm 1.

A more sophisticated version of this heuristic can be obtained by choosing the inventory

levels according to the newsvendor model, and then using the same approach as described in

Algorithm 1 to choose suppliers and conduct logistics planning. We call this the newsvendor-

based practitioner’s heuristic, and we denote its objective function by UBNV
Pr .
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Algorithm 1 Practitioner’s Heuristic

1: Let Ri = fi
Ui

, and sort candidate facilities such that R1 ≤ R2... ≤ RI .
2: Fix yjk = µjk ∀j and k.

3: Let n = min
{
n ≤ I :

∑n
i=1 Ui ≥

∑
j∈J
∑

k∈K yjk

}
.

4: Fix zi = 1 ∀i = 1, .., n and zi = 0 otherwise.

5: Solve the RPP with relaxed variables vij , wik ∈ [0, 1].

6: Fix to 1 any vij > 0 and wik > 0, re-solve LP, and compute objective function UBPr.

4.2 Sequential Heuristic

This heuristic obtains a feasible solution for the RPP in two stages: In the first stage, it fixes

the inventory level for each product at every demand zone by solving J × K newsvendor

problems. This reduces the problem to a standard capacitated facility location problem with

piece-wise linear costs. Then, in the second stage it uses a Drop heuristic - a well-known

construction heuristic for facility location problems to determine which suppliers to choose.

The general idea of the Drop heuristic is to start with a solution in which all candidate

suppliers are chosen (i.e., zi = 1 ∀i), iteratively deselect one supplier at a time, and solve

the remaining subproblem in which the fixed cost variables wik and vij are relaxed to lie

in [0, 1]. Then any fractional wik and vij variables are rounded to 1, and the problem is

resolved with respect to the xijk variables. In each loop, the heuristic permanently deselects

the supplier who provides the greatest reduction in total expected costs, and it terminates

if no further cost reduction is possible. Since exactly one zi is dropped in each loop, and

at least one supplier must be selected in any feasible solution, the algorithm needs at most

I (I − 1) iterations in total, and two convex programs are solved in each iteration. We denote

the objective function of this heuristic by UBSeq. This procedure is formalized in Algorithm

2.

For completeness, we also consider a variant of the sequential heuristic that fixes the inventory

level for each product at every demand zone to equal the respective expected demand. We

call this the simplified sequential heuristic, and we denote its objective function by UBS
Seq.

4.3 Convex Programming Based Heuristic

One disadvantage of the practitioner’s and the sequential heuristics is that inventory decisions

are made independent of supplier selection and logistics decisions. Moreover, the Drop

approach used in the sequential heuristic can be computationally intensive. Therefore, we

construct a convex programming based heuristic as an alternative way to obtain a feasible

solution for the RPP.
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Algorithm 2 Sequential Heuristic

1: Fix yjk = y (newsvendor) ∀j and k

2: Fix zi = 1 ∀i and UBSeq = +∞.

3: for n = 1 to I do

4: for m = 1 to I do

5: if zm = 1 do

6: Fix zmi = zi ∀i 6= m and zmm = 0.

7: Solve the RPP with zmi and relaxed variables vij , wik ∈ [0, 1].

8: Fix to 1 any vij > 0 and wik > 0, and resolve RPP to find xijk variables.

9 Compute objective function UBm
Seq.

10 end if

11 end for

12 if minm UB
m
Seq < UBSeq do

13 UBSeq = minm UB
m
Seq and zm∗ = 0, where m∗ = arg minm UB

m
Seq.

14 terminate

15: end if

16: end for

The heuristic begins by solving a relaxed RPP where the fixed cost variables zi, wik and vij

have been relaxed to lie in [0, 1]. First, it temporarily fixes the largest fractional zi to 1,

solves the remaining (relaxed) problem, and rounds to 1 any fractional wik and vij variables.

Second, it temporarily fixes the smallest fractional zi to 0, and again it solves the remaining

(relaxed) problem and rounds to 1 any fractional wik and vij variables. The algorithm then

permanently fixes the zi that yielded the lowest total expected costs, and it continues to

iterate until all zi variables have been fixed to 0 or 1. The assumption behind this approach

is that the fractional value of zi is a good indicator of the “worthiness” of choosing supplier i.

Since at least one zi is fixed in each loop, the algorithm needs at most I iterations in total,

and two convex programs are solved in each iteration. We denote the objective function of

this heuristic by UBCvx. This procedure is formalized in Algorithm 3.

To gauge the value of joint logistics and inventory planning, we also consider a simplified

version of the convex programming heuristic, in which inventory levels are selected in advance

using the solution corresponding to the lower bound from the Lagrangean relaxation (i.e.,

yjk (λ∗) ∀j and k). Then the problem of finding a feasible solution reduces to solving a

sequence of linear programs, which are easier to solve than convex programs. We denote the

objective function associated with this LP-based heuristic by UBLp.
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Algorithm 3 Convex Programming Based Heuristic

1: Initiate zmini = 0 and zmaxi = 1 ∀i
2: while zmaxi > zmini for some i do

3: Solve the RPP with relaxed variables vij , wik ∈ [0, 1] and zmini ≤ zi ≤ zmaxi

4: if zi ∈ {0, 1} do
5: Set zmini = zmaxi = zi
6: end if

7: Let imax = arg max {zi : zi ∈ (0, 1)} and imin = arg min {zi : zi ∈ (0, 1)}.
8: Solve the RPP with relaxed variables v+ij , w

+
ik ∈ [0, 1] , zmini ≤ z+i ≤ zmaxi and z+imax

= 1.

9: Fix to 1 any v+ij > 0 and w+
ik > 0, and compute objective function UB+

CV X .

10: Solve the RPP with relaxed variables v−ij , w
−
ik ∈ [0, 1] , zmini ≤ z−i ≤ zmaxi and z−imin

= 0.

11: Fix to 1 any v−ij > 0 and w−ik > 0, and compute objective function UB−CV X .

12: if Z+ > Z− do

13: zminimax
= 1

14: else

15: zmaximin
= 0

16: end if

17: end while

18: Fix to 1 any vij > 0 and wik > 0, re-solve the convex program, and compute UBCvx.

5 Computational Results

In this section we present a computational study to evaluate the performance of the heuristics.

In addition, we investigate the key factors that drive their performance, and also examine

their robustness. In addition, we use our analysis develop managerial insights about the

solution of the RPP.

To test our methods across a broad range of data, we randomly generated the parameter

values using a realistic set of data made available to us by a large retailer. We generated 500

randomly generated problem instances, each comprising between 5 to 20 candidate suppliers,

10 to 40 demand zones, and 1 to 25 products (i.e., I ∼ U {5, .., 20}, J ∼ U {10, .., 40} and

K ∼ U {1, .., 25}). The parameters we used in our computational study are summarized in

table 1. To solve the optimization problems associated with the bounding techniques we

propose, we used the CVX solver for Matlab (CVX (2011)) running on a computer with an

Intel Core i7-2670QM 2.2GHz processor and 6 GB of RAM memory.

To evaluate the performance of the Lagrangean lower bound, we benchmark it against a

standard convex programming relaxation, in which the integrality constraints are relaxed so
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Parameters Distribution of Values Parameters Distribution of Values

Fixed Cost of f̄ ∼ N (50, 10) Overstock h̄ ∼ N (5, 1)

Choosing a Supplier fi ∼ N
(
2JK
3I f̄ ,

3JK
2I f̄

)
Cost hjk ∼ U

[
2
3 h̄,

3
2 h̄
]

Setup Cost Associated d̄ ∼ N (200, 40) Understock p̄ ∼ N (50, 10)

with Production dik ∼ U
[
0, d̄

]
Cost pjk ∼ U

[
2
3 p̄,

3
2 p̄
]

Setup Cost Associated ē ∼ N (200, 40) Mean µ̄ ∼ N (20, 4)

with Distribution eij ∼ U [0, ē] Demand µjk ∼ U
[
2
3 µ̄,

3
2 µ̄
]

Marginal Production c̄ ∼ N (10, 2) Demand σ̄ ∼ N (5, 1)

and Distribution Cost cijk ∼ U
[
2
3 c̄,

3
2 c̄
]

Variance σjk ∼ U
[
2
3 σ̄,

3
2 σ̄
]

Supplier Capacity
Ū ∼ N (100, 20) Weights αijk = 1

Ui ∼ N
(
40JK
I Ū , 90JK

I Ū
)

Min. Throughput Li = 0

Table 1: Summary of Parameters used in our Computational Study.

that (2.7) is replaced by

0 ≤ wik ≤ 1 , 0 ≤ vij ≤ 1 , 0 ≤ zi ≤ 1 ∀i ∈ I , j ∈ J , k ∈ K

The lower bound from this relaxation is denoted by LBCvx, and to compare it to the lower

bound obtained from the Lagrangean relaxation we use the metric LBLR−LBCvx

LBCvx
. In every one

of the problem instances tested, the Lagrangean relaxation generated a better lower bound

than the convex programming relaxation, on average by 2.34%. This is consistent with

Lemma 1, which asserts that the Lagrangean problem Lλ does not possess the Integrality

Property.

To test the performance of the heuristics developed in Section 4, we evaluate the suboptimal-

ity gaps relative to the Lagrangean lower bound using the metrics UBCvx−LBLR

LBLR
,
UBLp−LBLR

LBLR
,

UBSeq−LBLR

LBLR
,
UBS

Seq−LBLR

LBLR
, UBPr−LBLR

LBLR
, and

UBNV
Pr −LBLR

LBLR
for the convex programming based , the

LP based, the sequential, the simplified sequential, the practitioner’s, and the newsvendor-

based practitioner’s heuristic, respectively. The average and median values, as well as the

range of these metrics are illustrated in figure 2.

First observe that the convex programming based heuristic unambiguously outperformed

the other heuristics. In particular, it provided feasible solutions that were on average within

3.44% of optimal, and ranged from 0.41% to 18.76%. While the gap of the LP based heuristic

was higher than the convex programming based heuristic on average, in the majority of
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Figure 2: Suboptimality Gap

cases it generated a feasible solution that was quite close to optimal as evidenced by the

median gap of 4.32%. The practitioner’s heuristics generated feasible solutions that were

on average 19.95% and 36.32% from optimal for the standard and the newsvendor-based

version, respectively. On the other hand, the suboptimality gap for the sequential heuristics

was on average 36.72% and 23.7% for the standard and the simplified version, respectively.

Interestingly, with both heuristics, the versions in which inventory levels are set equal to the

mean demand (i.e., the practitioner’s and the simplified sequential heuristics) outperform

the versions in which inventory levels are chosen according to the newsvendor solution. This

is because the understock costs are generally larger than the overstock costs, and hence

the newsvendor model led to a larger stocking quantity than the average demand. This in

turn increased production and distribution costs, as well as the fixed costs associated with

establishing suppliers in excess of the benefit of reducing underage costs. In addition, we

found that the inventory levels corresponding to the solution of the convex programming

based heuristic were always higher than those determined by the newsvendor solution, and

they were often lower than the expected demand. The takeaway from this observation is that

when planning the entire supply chain, it is important to consider the effect of the inventory

decisions to the upstream costs. When such costs are adequately represented, a lower fill rate

may actually be preferable in order to lower total costs. Retailers often underestimate the

impact of upstream costs in their urge to have a higher market share associated with higher

fill rates. Finally, note that the cost reduction resulting from the convex programming based
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heuristic relative to the other heuristics is important, because retailers operate in a highly

competitive environment with very low margins and even a small cost reduction can lead to

a large profit increase.

To get an idea of the computational complexity of the heuristics, table 2 reports the mean,

median and maximum computational time for the problem instances tested. Observe that

both practitioner’s heuristics are computationally very fast, while both sequential heuristics

are quite slow. Also note that the standard sequential heuristic is computationally less in-

tensive than its simplified counterpart. Because the standard sequential heuristic chooses

the stocking quantities according to the newsvendor model, which in general are higher than

the expected demand, the Drop procedure needs fewer iterations in the standard sequential

heuristic. Finally, observe that the convex programming based heuristic is about as compu-

tational intensive as the simplified sequential heuristic, but leads to much lower average gaps.

Thus it clearly dominates both versions of the sequential heuristic. However, as expected, it

is computationally more intensive than the LP based heuristic.

UBPr UBNV
Pr UBSeq UBS

Seq UBCvx UBLp

mean 2.02 2.03 80.85 187.41 175.76 105.04

median 1.68 1.72 59.48 91.00 96.78 52.48

max 9.44 10.23 463.98 1974.96 1472.18 949.64

Table 2: Computational Times (sec)

Since the convex programming heuristic dominates the other heuristics in terms of the gap

from the lower bound, we focus on this heuristic to examine (a) how the computational time

scales up with the size of the problem, (b) how the suboptimality gap and its performance

advantage relative to the practitioner’s heuristic depend on the parameters of the problem,

and (c) which parameters have the greatest impact on the total expected costs.

To conduct this analysis, we regress the computational times, the suboptimality gap (i.e.,

100% UBCvx−LBLR

LBLR
), the gap between the convex programming and the practitioner’s heuristic

(i.e., 100% UBCvx−UBPr

UBPr
), and the total expected cost associated with the convex programming

heuristic (i.e., UBCvx) of the 500 problem instances tested earlier on the size (i.e., I, J , K),

and the parameters of the problem (i.e., µ̄, σ̄, h̄, p̄, c̄, d̄, ē, f̄ , Ū). Table 3 summarizes the

results.5

5Values in (·) denote standard errors. * denotes significance at 10% level, ** denotes significance at 5%
level, and *** denotes significance at 1% level.
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Computational Time Suboptimality Gap Cvx. vs. Pract. H. Expected Cost

I
23.93*** -0.13*** 0.32*** 5247.77***
(1.301) (0.034) (0.089) 1094.73

J
7.66*** -0.09*** 0.06 9798.92***
(0.651) (0.016) (0.042) 517.59

K
18.33*** -0.16*** 0.15** 19590.85***
(0.803) (0.026) (0.067) 822.44

µ̄
-0.35 -0.12*** 0.25*** 11042.93***

(0.893) (0.017) (0.044) 543.84

σ̄
0.04 0.101 -0.12 48.77

(3.732) (0.071) (0.185) 2278.22

h̄
7.79 0.12 0.12 7702.49**

(5.706) (0.109) (0.2865452) 3521.77

p̄
0.023 0.012 0.25*** 2048.43***

(0.548) (0.0104) (0.027) 334.45

c̄
6.13 0.055 -0.038 8629.04***

(2.69) (0.051) (0.134) 1647.61

d̄
0.02 0.026 -0.053 261.74

(1.108) (0.0204) (0.054) 657.6

ē
-1.59 0.011 -0.007 1269.01*

(1.099) (0.021) (0.055) 672.77

f̄
-1.40** -0.00003*** -0.00008*** 2.29***
(0.551) (0.000003) (0.00001) 0.12

Ū
1.38*** 0.0015*** 0.002*** -37.82***
(0.266) (0.0001) (0.0003) 3.35

Intercept
-689.2*** 8.52*** -36.62*** -830954.6***

(88.8) (1.469) (3.851) 47333.18
R2 0.641 0.40 0.315 0.891

Table 3: Suboptimality Gap vs. Problem Parameters (Convex Programming Heuristic).

First note that the computational time of the convex programming heuristic is strongly de-

pendent on the problem size (i.e., I, J and K), while it is insensitive to the other parameters

of the problem. More interestingly, the relatively large R2 ratio implies that the computa-

tional time of the convex programming heuristic is explained by a linear model well, which in

turn suggests that the computational time scales up approximately linearly in the problem

size.

From the second column, observe that the suboptimality gap decreases in the size of the

problem (I, J and K), and this effect is significant at the 1% level. This finding is en-

couraging: it predicts that the convex programming heuristic will perform even better in

larger problem instances that could be expected in some applications. The suboptimality
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gap increases in the capacity of the candidate suppliers (Ū), while it decreases in the mean

demand (µ) and the fixed costs associated with choosing a supplier (f̄). The suboptimality

gap also increases in the demand variance (σ̄), the underage and overage costs (p̄ and h̄), and

the production costs (c̄, d̄, and ē), but this effect is not significant at the 10% level. Finally,

note that the values of all regression coefficients are close to zero, which suggests that that

the performance of the convex programming heuristic is robust to changes in the parameters

of the RPP.

The third column examines how the performance advantage of the convex programming

heuristic relative to the practitioner’s heuristic depends on the parameters of the problem.

Observe that the performance advantage of the convex programming heuristic becomes larger

in the size of the problem, while it is insensitive to the cost parameters as evidenced by the

small regression coefficients. This, together with the finding that the value of the intercept

is negative at the 1% significance level, reinforces the benefits from using the convex pro-

gramming heuristic, as one could expect even larger problems with different cost parameters

in certain applications.

The fourth column considers the relationship between the total expected cost of the feasible

solutions generated by the convex programming heuristic, and the parameters of the problem.

Predictably, the expected cost increases in the size of the problem (I, J and K), in the mean

demand (µ̄), in the production costs (c̄, d̄ and ē), in the fixed costs associated with choosing

a supplier (f̄), as well as in the underage and overage costs (p̄ and h̄). On the other hand, the

expected cost decreases in the capacity of the candidate suppliers (Ū), while the effect of the

demand variance (σ̄) is insignificant. Therefore, our findings suggest that besides the problem

size (i.e., I, J , K and µ̄), the two most important factors that affect the expected cost of

a feasible solution are (i) the marginal production cost and (ii) the inventory underage and

overage costs. Consistent with earlier results, the latter observation emphasizes the value

of an improved demand forecast. On the other hand, the capacity of a supplier as well

as the fixed contracting costs appear to have a secondary effect. This is consistent with

the initiatives undertaken at several retailers to reduce the impact of production, inventory

underage and overage costs (Fisher and Raman (2010)).

Since the gaps of the convex programming based heuristic are the smallest, we analyzed the

solutions to develop some insights about how it chooses suppliers. This could be useful for

practitioners who make such decisions. We found that suppliers are chosen in increasing
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order of the ratio ri, where

ri =
1

Ui

[
fi +

1

|J | |K|
∑
j,k

(
dik + vij + cijk

αijk
Ui

)]

The term in brackets represents the sum of fixed establishment costs and the average pro-

duction and distribution costs across products and demand zones when a supplier is fully

utilized. Therefore the ratio ri can be interpreted as the average total cost per unit of capac-

ity at supplier i. This suggests that it is important to consider establishment, production and

distribution costs together when choosing suppliers, and it is beneficial to choose suppliers

with the lowest total average cost per unit of capacity.

6 Conclusions

We analyze a multi-product retail planning problem under demand uncertainty, in which the

retailer jointly chooses suppliers, plans production and distribution, and selects inventory

levels to minimize total expected costs. This problem typically arises in retail store chains

carrying private label products, who need to plan the entire supply chain by making decisions

with respect to (i) supplier selection for their private label products, (ii) distribution of

products from suppliers to demand zones (i.e., stores or distribution centers), and (iii) the

inventory levels for every product at each demand zone. This problem is formulated as a

mixed integer convex program.

Since the retail planning problem is strongly NP-hard, we use a Lagrangean relaxation to

obtain a lower bound, and we develop heuristics to generate feasible solutions. First we

develop an analytic solution for the Lagrangean problem (Proposition 1), and we establish

conditions under which the Lagrangean dual can be solved analytically (see Proposition 2).

We first develop a practitioner’s and a sequential heuristic. We then propose two heuristics,

which reduce the problem of generating a feasible solution to solving a sequence of convex

or linear programs. To test the performance and the robustness of our methods we conduct

an extensive computational study. The convex programming based heuristic and its LP

based counterpart yielded feasible solutions that were on average within 3.4% and 10.2%

from optimal, respectively. Sensitivity analysis suggests that the computational time of

the convex programming heuristic scales up approximately linearly in the problem size,

while it is stable to changes in problem parameters. Finally, these heuristics outperformed

both the Sequential and the Practitioner’s heuristics, and the performance advantage of the

convex programming based heuristic relative to the practitioner’s heuristic is robust to the
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parameters of the problem. All these are desirable features for any eventual implementation

in large sized real applications.

Several managerial insights can be drawn from this work. First, solving the more compli-

cated joint supplier choice, production, distribution and inventory problem leads to a leaner

supply chain with lower total costs than solving the simpler subproblems separately. Our

methodology provides an effective approach to solve this joint problem. Second, it is impor-

tant to consider the effect of inventory decisions on upstream production and distribution

costs. Our model provides a framework to analyze these decisions. Third, the major costs

that influence supply chain costs across the retailer are production costs, as well as the under-

stock and overstock costs associated with carrying inventory at the demand zones. Therefore

retailers should focus on reducing these costs first before considering the effects of supplier

capacity and contracting costs. Fourth, it is important to consider establishment, produc-

tion, distribution and inventory costs together when choosing suppliers, because a supplier

who is desirable in any one of these aspects may in fact not be the best overall choice. Our

analysis provides a mechanism to integrate these aspects and pick the best set of suppliers.

This paper opens up several opportunities for future research. First, this problem could be

extended to explicitly model nonlinear production and shipping costs, which is of particular

interest for applications that exhibit significant economies of scale. In that case the problem

formulation is a mixed integer nonlinear program that is neither convex nor concave (see

Caro et al. (2010) for details about addressing a related problem in the process industry

with uncertain yields). Second, our model could be extended to incorporate multiple echelons

in the supply chain (i.e., wholesalers, distribution centers, etc.) and allow multiple echelons

to carry inventory. Third, it may be desirable to incorporate side constraints pertaining to

facilities, production and distribution (i.e., v, x, w, and z variables) as in (Geoffrion and

McBride (1978)). Undoubtedly, all of these extensions would require significant, non-trivial

modifications to our model. Finally, further work could be done to improve the heuristics in

order to further reduce the suboptimality gap.

In conclusion, we believe the methods described in this paper provide an effective method-

ology to address the retail planning problem under demand uncertainty.
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