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Motion Correction of Respiratory-Gated PET Images Using Deep 
Learning Based Image Registration Framework

Tiantian Lia, Mengxi Zhanga, Wenyuan Qib, Evren Asmab, Jinyi Qia

aDepartment of Biomedical Engineering, University of California, Davis, CA 95616, USA;

bCanon Medical Research USA, Inc., 706 N Deerpath Dr., Vernon Hills, IL 60061, USA

Abstract

Purpose: Artifacts caused by patient breathing and movement during PET data acquisition affect 

image quality. Respiratory gating is commonly used to gate the list-mode PET data into multiple 

bins over a respiratory cycle. Non-rigid registration of respiratory-gated PET images can reduce 

motion artifacts and preserve count statistics, but it is time consuming. In this work, we propose an 

unsupervised non-rigid image registration framework using deep learning for motion correction.

Methods: Our network uses a differentiable spatial transformer layer to warp the moving image 

to the fixed image and uses a stacked structure for deformation field refinement. Estimated 

deformation fields were incorporated into an iterative image reconstruction algorithm to perform 

motion compensated PET image reconstruction. We validated the proposed method using 

simulation and clinical data and implemented an iterative image registration approach for 

comparison. Motion compensated reconstructions were compared with ungated images.

Results: Our simulation study showed that the motion compensated methods can generate 

images with sharp boundaries and reveal more details in the heart region compared with the 

ungated image. The resulting normalized root mean square error (NRMS) was 24.3±1.7% for the 

deep learning based motion correction, 31.1±1.4% for the iterative registration based motion 

correction, and 41.9±2.0% for ungated reconstruction. The proposed deep learning based motion 

correction reduced the bias compared with the ungated image without increasing the noise level 

and outperformed the iterative registration based method. In the real data study, both motion 

compensated images provided higher lesion contrast and sharper liver boundaries than the ungated 

image and had lower noise than the reference gate image. The contrast of the proposed method 

based on the deep neural network was higher than the ungated image and iterative registration 

method at any matched noise level.

Conclusions: In this work, we proposed a motion correction method for respiratory-gated PET 

images using a deep learning based image registration framework. The proposed approach is very 

convenient to implement as it does not require the knowledge of the true deformation field for 

training the network. We validated the proposed method using simulation and clinical data and 

showed its ability to reduce motion artifacts while utilizing all gated PET data.

Disclosure
None

HHS Public Access
Author manuscript
Phys Med Biol. Author manuscript; available in PMC 2021 July 30.

Published in final edited form as:
Phys Med Biol. ; 65(15): 155003. doi:10.1088/1361-6560/ab8688.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

deep learning; motion correction; PET; image reconstruction

1. Introduction

Artifacts caused by patient breathing and movement during positron emission tomography 

(PET) data acquisition affect image quality and lead to underestimation of tumor activity and 

overestimation of tumor volume (Kalantari et al., 2016). Lesion detectability also suffers 

from motion blurring since small lesions are likely to remain undetected, which may result 

in misdiagnosis (Nehmeh et al., 2002b). Respiratory gating has been used to gate list-mode 

PET data into multiple bins over a respiratory cycle based on either an external hardware or 

a data-driven self-gating technique (Chan et al., 2017; Büther et al., 2009). Within each time 

bin, the motion blurring is assumed to be negligible (Nehmeh et al., 2002a). The motion-

frozen images can be reconstructed gate-by-gate using the data from each bin. However, 

gated PET reconstructed images suffer from low signal-to-noise ratio since the count level is 

low in each gate. One of the widely used methods to reduce noise is to utilize events from all 

gates by incorporating a motion model into the reconstruction procedure. While the motion 

information can be obtained from high resolution anatomical images, e.g. computed 

tomography (CT) (Lamare et al., 2007) or magnetic resonance imaging (MRI) (Fayad et al., 
2015), utilizing other image modalities always leads to multiple issues, such as extra time 

and cost, image co-registration, extra radiation dose from the CT scan and synchronization 

issues between the scanners. Accurate non-rigid registration based on gated PET images 

themselves is challenging due to their high noise levels and is also time-consuming. 

Recently, deep learning techniques have provided new approaches for either supervised 

(Sokooti et al., 2017; Krebs et al., 2017) or unsupervised (Balakrishnan et al., 2018; Li and 

Fan, 2018; Lau et al., 2019) image registration.

The supervised convolutional neural network (CNN) architecture aims to find a mapping 

between the learned image features and the deformation field that registers the training 

image pairs. Training these kinds of networks relies on the knowledge of the true 

deformation field; therefore, training pairs were usually simulated by warping existing 

images with artificially generated deformation fields (Sokooti et al., 2017; Krebs et al., 
2017). For real data, the ground truth deformation field is usually substituted with the 

estimate from an iterative image registration algorithm (Liao et al., 2017). However, in 

medical imaging, an accurate ground-truth deformation between image pairs is difficult to 

obtain which limits the application of supervised learning.

To address this difficulty, a spatial transformer network (STN) (Jaderberg et al., 2015) has 

been proposed to warp images, which enables neural networks to perform unsupervised 

learning without knowing the true deformation field. The combination of stacked CNNs and 

STNs have been proposed recently to learn the image feature representations and a mapping 

between the image features and the deformation field at the same time (Balakrishnan et al., 
2018; Li and Fan, 2018; Lau et al., 2019). The optimization is realized by minimizing an 

image dissimilarity metric between fixed and warped moving images with a proper 
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regularization. This unsupervised approach does not require ground truth for training the 

network, which makes it very convenient to implement. In this work, we propose an 

unsupervised non-rigid image registration framework using deep learning and incorporate 

the estimated deformation field into PET image reconstruction for motion correction. The 

rest of this paper is organized as follows. Section 2 introduces the theory of the unsupervised 

deep learning model and the motion compensated reconstruction. Section 3 describes the 

details of the simulation setup, patient data acquisition, and methods for quantitative data 

analysis. Results are shown in section 4. Finally, we discuss findings and limitations in 

section 5 and draw conclusions in section 6.

2. Theory

2.1 Unsupervised deep learning model for deformable motion estimation

The goal of this registration network is to predict a deformation field (θ) between a moving 

image (xm) and a fixed image (xf) that minimizes a penalized loss function:

θ = argminθ − S T xm, θ ,  xf + λ U θ , (1)

Where S(⋅,⋅) is an image similarity metric, the operator T(xm,θ) deforms xm based on the 

deformation field θ, U(θ) is a regularization function on θ, and λ is a weighting factor.

In this study, we use cross correlation (CC) (Balakrishnan et al., 2018) as the similarity 

metric. The CC between fixed and warped moving images is defined as:

CC M, xf = ∑i ∈ Ω
∑pi xf pi − xf i M pi − M i

∑pi (xf pi − xf i )2 ∑pi (M pi − M i ) 2
, M

= T xm, θ

(2)

where pi iterates over a 9 × 9 × 9 cubic volume around voxel i, xf i  and M i  are the mean 

values inside the 9 × 9 × 9 cubic volume around voxel i in the two images, respectively, and 

Ω is the set containing all the voxel indices.

In order to obtain a smoothed θ, an L-2 norm regularizer on the gradients of the deformation 

field is applied. Then the loss function can be written as

Loss xm,  xf, θ = − CC T xm, θ ,  xf + λ∑ ∇θ 2 . (3)

Our implementation of the network is inspired by the Voxelmorph (Balakrishnan et al., 
2018) and FlowNet 2.0 (Ilg et al., 2017) structures. We employ a stacked framework which 

comprises of three subunits. Each subunit consists of a 9-layer encoder-decoder called 

“RegNet” and a STN. The RegNet consists of a series convolution, down-sampling, and up-

sampling layers with concatenation as shown in Fig. 1. The kernel size is 3×3×3 in all 

convolutional layers. Batch Normalization (BN) (Ioffe and Szegedy, 2015), Dropout 

(Srivastava et al., 2014) and Leaky Rectified Linear Unit activation (Leaky ReLU) (Maas et 
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al., 2013) are used after each convolutional layer. Unsupervised learning is realized by using 

the differentiable STN (Jaderberg et al., 2015) to warp the moving image and by comparing 

the warped image to the fixed image. The warped image based on the intermediate estimate 

is then fed into the next subunit for refinement. The estimated deformation field of each 

subunit is combined with the result from the previous subunit through a convolution layer. 

We applied a Gaussian filter to the input gated PET images to reduce noise.

2.2 Motion compensated PET image reconstruction

Let yk, k ∈ {1,2,…K}, be the measured PET data in the kth gate and yk be the expectation of 

the measurement. The log-likelihood of all gated PET data is

L y1, …, yK|x = ∑k ∑i yik ln(yi
k) − yi

k . (4)

The expectation yk is related to the reference gate PET image x through 

yk = wk ⋅ N ⋅ Ak ⋅ P ⋅ T (x, θk) + Sk + rk, where the (i, j)th element of P ∈ ℝM×N, pi,j, denotes 

the probability of detecting an emission from pixel j, j ∊ {1,…,N}, at detector pair i, i ∊ {1,

…,M}, N ∈ ℝM×M   and   Ak ∈ ℝM×M are diagonal matrices containing the normalization 

factors and attenuation factors, respectively, for the kth gate,sk ∈ ℝM × 1 denotes the 

expectation of scattered events and rk ∈ ℝM × 1 denotes the expectation of random events for 

the kth gate, and θk is the estimated deformation field from the reference gate to the kth gate. 

The weighting factor wk accounts for the duration of gate k with ∑k wk =1.

The maximum likelihood expectation maximization (ML-EM) iteration is (Li et al., 2006)

xn + 1 = xn

∑k wk ⋅ T * uk, θk   
  ⋅ ∑k wk

⋅ T *(P T yk

wk ⋅ P ⋅ T xn, θk + sk + rk

N ⋅ Ak
  , θk)

 
 ,

(5)

Where uk denotes the sensitivity image with ujk = ∑i [N ⋅ Ak ⋅ P]ij, and the multiplications 

and divisions between the vectors are performed element-wise. The update procedure begins 

with deforming current image from the reference gate to other gates. After the deformation, 

a standard forward projection and back projection are performed to get the error image of 

that gate. All error images are deformed back to the reference gate and summed together. 

Finally, the current image is updated using the summation of deformed error images.

3. Data Generation and Evaluation

3.1. Simulation study

Twenty-two XCAT phantoms (Segars et al., 2010) with various organ sizes and genders (11 

Male and 11 Female) were generated (10 for training, 1 for validation and 11 for testing). 

Each modeled a respiratory motion amplitude between 2 and 4 cm with a period of 5 sec. 
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The respiratory cycle was divided into 8 gates, each with a matched attenuation map. 

Activity parameters included a 5% variation to simulate the population difference. A Canon 

PET/CT scanner geometry was simulated using the SimSET Monte-Carlo toolkit (Harrison 

et al., 1993). The scanner consists of 40 detector blocks arranged in a ring of diameter 90.9 

cm. Each block contains 16×48 lutetium-based scintillation crystals. The individual crystal 

size is 4 × 4 × 12 mm3. We simulated a 200 MBq 18F-FDG injection and a 20 min PET scan 

starting from 1 hour post-injection (Zhang et al., 2014). We only use true coincidences for 

reconstruction, since we assume perfect scatter and random correction. For motion 

estimation, gated PET images were first reconstructed using the ML-EM algorithm (50 

iterations) with normalization and attenuation corrections. The image matrix size was 

128×128×48 with a voxel size of 4.08× 4.08 ×4.08 mm3. Sample images are shown in Fig. 

2. The end-inspiration phase was chosen as the reference gate. In total 70 (7 moving gates 

for each of the 10 phantoms) 3D training pairs were generated, each containing 48 axial 

slices.

The network was implemented using Keras 2.2.4 with a Tensorflow 1.5.0 backend. We use 

the adaptive moment estimation (ADAM) optimizer with a learning rate of 0.005 and batch 

size of 1. Moving-reference image pairs were fed into the network for training and the 

network was trained with 3000 epochs. After the training, deformation fields (θ) between 

any pair of images can be estimated by feeding the moving and fixed images into the 

network.

For comparison, we also implemented an iterative image registration with regularization to 

encourage the deformation to be invertible (Chun and Fessler, 2009b) using a publicly 

available Bspline toolbox1. We used the default weighted-least-squares similarity measure. 

The number of iterations was chosen to be 200 based on the visual assessment of the 

deformation field. Motion compensated reconstructions were performed by running the ML-

EM algorithm in (5) for 50 iterations using deformation fields estimated either from the 

neural network or the iterative registration software.

3.2. Real data study

A patient dataset was obtained from the Canon whole-body TOF PET/CT scanner (230 MBq 
18F-FDG injection, 90 minutes uptake). Two 50% overlapping bed positions were acquired, 

at 14 mins per bed. The list-mode data were divided into 7 respiratory gates based on an 

externally measured respiratory signal (Heinz et al., 2015). Events in irregular breathing 

cycles were rejected (bed 1: 9.9%, bed 2: 22.0%). Gated PET data were first reconstructed 

with ML-EM (30 iterations) to estimate the motion fields, which were then fed into the 

motion compensated reconstruction for 50 iterations. The image matrix size was 

152×152×48 with a voxel size of 4.08× 4.08 ×4.08 mm3. The normalization factors were 

computed based on a uniform cylinder scan. The attenuation factors were obtained from a 

helical CT scan. The attenuation map was not gated and was used for all gates. Randoms 

were estimated using the delayed window method. Scatters were estimated using the single-

scatter simulation. The reconstructed gated images are shown in Fig. 3. Due to the difference 

1Part of Michigan Image Reconstruction Toolbox (MIRT) from http://web.eecs.umich.edu/~fessler/code/index.html
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between real data and simulation, the network was fine-tuned using the first-bed data with 

500 epochs and then applied to the second-bed data for evaluation.

3.3. Evaluation figures of merit

For the simulation study, we reconstructed the reference gate with 8x counts (same as the 

ungated data) and used it as the ground truth for quantitative evaluation. We calculate the 

normalized root mean square error (NRMS) between different reconstructions and the 

ground truth:

NRMS =   1
x 2

∑i = 1
N xi − xi

2, (6)

Where x denotes the ungated image or a motion compensated reconstructed image and x
denotes the ground truth. N denotes the number of voxels in the image.

For region of interest (ROI) quantification, we calculated the bias compared with the original 

phantom in the left and right myocardium regions and the standard deviation (STD) in the 

lung background. The percentage difference relative to the mean was used for both bias and 

STD.

For the real data study, a lesion ROI was drawn on the reference gate image for 

quantification. Due to the lack of a ground truth, a contrast-noise curve was used for the 

evaluation. The contrast was calculated by taking the ratio between the mean of the lesion 

ROI and the mean of a background ROI in the liver. The background noise was calculated as 

the standard deviation of the liver ROI over its mean.

4. Results

4.1. Simulation study

Fig. 4 shows a coronal slice of the reconstructed images of a test phantom with and without 

(ungated) motion correction. The ungated image looked blurry in the cardiac region and near 

the liver-lung boundary, while the motion compensated method using either the deep neural 

network or the iterative registration for deformation field estimation can generate images 

with sharp boundaries and reveal more details in the heart region. We plotted the bias-

variance curves of the left and right myocardium ROIs in Fig. 1. All the methods were 

plotted by 10-MLEM-iteration intervals except the reference gate which also included 1 to 9 

iterations for better comparison. In all cases, STD increased with increasing iterations. For 

both ROIs, the reference gate image exhibited much higher noise than either the ungated 

image or the motion corrected images. Both motion corrected reconstructions reduced the 

bias compared with the ungated image without increasing the noise level and the deep 

learning approach outperformed the iterative registration method with less bias.

For all 11 test phantoms, we computed the NRMS of reconstructed images at the 30th 

MLEM iteration and the results are shown in Table 1. The mean and standard deviation of 

the NRMS values were 24.3±1.7% for the deep learning based motion correction, 

31.1±1.4% for the iterative registration based motion correction, 41.9±2.0% for ungated 
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reconstruction, and 42.6±4.0% for the reference gate reconstruction. Clearly the proposed 

deep learning based method achieved the best performance.

4.2. Real data study

Fig. 6 shows a coronal slice of the reconstructed motion corrected and ungated images in 

comparison to the reconstructed image of the reference gate. Both motion compensated 

images provided higher lesion contrast and sharper liver boundaries than the ungated image 

and had lower noise than the reference gate image. For quantitative comparison, we plotted 

the contrast-noise curves for a lung lesion in Fig. 1(a). As expected, the contrast of the 

proposed method based on the deep neural network was higher than that of the ungated 

image and iterative registration method at any matched background STD level.

4.3. Computational time

Deep learning is a very fast registration approach after a one-time training process, which 

took a few days on an Nvidia GeForce GTX 1080ti GPU. Depending on the image size, the 

iterative registration time of a single pair of images took about 15 to 20 mins, while for the 

deep learning method it only took 8 secs to register a test pair of images. The runtimes of the 

neural network and iterative registration are compared in Fig. 1(b), with the neural network 

being about 100 times faster than the iterative method. This fast registration of PET images 

significantly speeds up image analysis and processing pipelines, which can facilitate novel 

directions in respiratory and cardiac motion correction and body movement during long time 

dynamic PET scans.

5. Discussion

In this work, we have demonstrated the feasibility of incorporating 4D deformation fields 

from deep learning into motion compensated PET image reconstruction. In addition to the 

computational speed advantage, we note a higher registration accuracy for the deep learning 

method compared with the iterative registration method. This could be attributed to the 

training of the deep neural network using an ensemble of image pairs, which improved the 

robustness of the image registration. Our methods rely on an unsupervised spatial 

registration model, which does not need ground truth. Compared with supervised learning 

which uses ground truth deformation fields from iterative registration, unsupervised 

approaches have the potential to achieve better registration accuracy. In addition, to account 

for both potential large displacements and fine deformations between images, the stacked 

architecture was used to estimate coarse-to-fine deformation fields, where the front layer 

estimates a coarse deformation field with large displacements, and the back layers provide 

fine deformation field. Although our network was trained based on respiratory motions, it 

appears to be capable of handling other kinds of motion to some degree. To demonstrate 

this, we superimposed a moderate bulk body motion (1–3 voxels) on the simulated 

respiratory motion and fed the images into the network without any retraining. The RMSE 

between the predicted warped image and the fixed image increased by 1.3% for 1-voxel shift 

and 13.7% for 3-voxel shift compared to the results without the bulk body motion. 

Obviously, motion fields having a larger deviation from the training data would require 

either retraining or fine tuning as we did for the patient data. This problem could also be 
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solved by increasing the training data size to better match the real data and it remains a part 

of future work in our research.

Since in this study we focused on the motion estimation, we used motion-independent 

correction factors for attenuation, random and scattered events. The expectation of the 

scattered and random events were estimated based on ungated emission data. The randoms 

estimation is the least sensitive to motion, because it was determined by the singles rates of 

the detectors. Scatter distribution is also less affected by respiratory motion than true 

coincidences because it has a much smoother distribution than the true events. The 

correction factor that is the most sensitive to motion is the attenuation factor. Approaches to 

compensate for motion in attenuation factors have been proposed (Alessio et al., 2007; Lu et 
al., 2018) and can be combined with the deep learning based motion estimation method 

proposed here. Modeling the motion for attenuation map and scattered events will be 

included in the future work.

One limitation of our registration network is that the invertibility of deformations is not 

considered. Recently, Dalca et al. proposed a deep learning architecture which can estimate 

probabilistic diffeomorphic deformations that is differentiable and invertible, and thus 

preserve topology (Dalca et al., 2018). This new network can also be incorporated in the 

motion compensated image reconstruction framework.

Furthermore, due to the lack of gated patient data, we only validate our proposed method 

using one patient with 50% overlapped bed positions. The fine-tuned model might be 

overfitted to the motion characteristics and tracer distribution specific to this patient. To 

address this concern, we also deployed our fine-tuned model on another patient scan with 

three respiratory gated phases for deformation fields estimation (Fig. 8). This dataset has a 

variable count distribution across the three gates with 11% in gate 1, 31% in gate 2, and 58% 

in gate 3. The image reconstruction parameters were the same as those given in Section 3.2. 

Motion compensated reconstructions were performed using deformation fields estimated 

either from the deep learning or the iterative registration. Fig. 9 show the reconstructed 

images for the motion corrected and ungated images with comparison to the reconstructed 

image of the reference gate. Higher lesion contrast and sharper liver boundary were 

observed for deep learning based method. The iterative registration however failed to capture 

the lesion motion near the liver boundary since the motion amplitude for this patient was 

relatively small (1~2 voxels). The contrast-noise curve for the deep learning based 

registration was also higher than the iterative based registration and unaged reconstruction 

(Fig. 10). Since reference gate contains over 50% of the counts, the benefit from motion 

compensation is not significant. Further investigation with systematic analysis on a large 

population of patients is needed to validated our proposed method.

It also worth noting that our deformation fields are estimated from the gated PET images 

before the motion compensated image reconstruction. Although there have been many works 

on joint estimation of the image and motion fields during image reconstruction (Wang and 

Qi, 2015; Chun and Fessler, 2009a), the nonconvex optimization problem in the joint 

estimation methods is very challenging and it is hard to guarantee monotonicity of the 
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algorithm. Incorporating the deep learning method in a joint estimation framework with 

guaranteed convergence is of great research interest.

6. Conclusion

In this work, we proposed a motion correction method of respiratory-gated PET images 

using a deep learning-based image registration framework. It does not require ground truth 

for training the network, which makes it very convenient to implement. We validated the 

proposed method using simulation and clinical data and showed its ability to reduce the 

motion artifacts while utilizing all gated PET data.
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Fig.1. 
The structure of the proposed network.
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Fig. 2. 
Sampled reconstructed MLEM images (50 iteration) for each gate.
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Fig. 3. 
Reconstructed gated PET images of the patient data (MLEM 30 iteration).
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Fig.4. 
Reconstructed images of the simulated data set (MLEM 30 iteration). (a) Motion 

compensated reconstruction using deep neural network for motion estimation, (b) motion 

compensated reconstruction using iterative registration for motion estimation, (c) ungated 

reconstruction, (d) reference gate, and (e) ground truth (no motion).
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Fig.5. 
Bias-variance trade off curves for (a) the left myocardium ROI and (b) right myocardium 

ROI.
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Fig. 6. 
Reconstructed images of the real patient data (MLEM 30 iteration). (a) Motion compensated 

reconstruction using deep learning for motion estimation, (b) motion compensated 

reconstruction using iterative registration for motion estimation, (c) ungated image, and (d) 

the reference gate image.
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Fig.7. 
(a) Contrast versus noise curve for the lung lesion. (b) Registration runtimes of the neural 

network (deep learning) and iterative registration method for a pair of images. Run time was 

plotted on a logarithmic scale.
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Fig. 8. 
Reconstructed gated PET images of the additional real patient data (MLEM 30 iteration).
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Fig. 9. 
Reconstructed images of the additional real patient data (MLEM 30 iteration). (a) Motion 

compensated reconstruction using deep learning for motion estimation, (b) motion 

compensated reconstruction using iterative registration for motion estimation, (c) ungated 

image, and (d) the reference gate image.
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Fig.10. 
Contrast versus noise curve for the lesion at liver boundary.
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Table 1.

NRMS of reconstructed images for different methods at the 30th MLEM iteration.

Test Phantom # Deep learning Iterative Ungated Reference gate

#1 23.9% 34.3% 44.0% 35.1%

#2 25.2% 28.1% 40.2% 44.2%

#3 23.0% 30.7% 40.9% 40.9%

#4 22.2% 31.2% 43.7% 37.4%

#5 24.3% 30.8% 45.3% 43.5%

#6 22.7% 30.5% 39.2% 41.7%

#7 22.8% 31.3% 42.1% 41.7%

#8 25.4% 31.9% 41.0% 48.8%

#9 28.0% 31.4% 43.6% 49.1%

#10 26.3% 30.9% 38.9% 44.6%

#11 23.0% 30.7% 41.9% 40.9%

Mean 24.3% 31.1% 41.9% 42.6%

STD 1.7% 1.4% 2.0% 4.0%

Phys Med Biol. Author manuscript; available in PMC 2021 July 30.


	Abstract
	Introduction
	Theory
	Unsupervised deep learning model for deformable motion estimation
	Motion compensated PET image reconstruction

	Data Generation and Evaluation
	Simulation study
	Real data study
	Evaluation figures of merit

	Results
	Simulation study
	Real data study
	Computational time

	Discussion
	Conclusion
	References
	Fig.1
	Fig. 2
	Fig. 3
	Fig.4
	Fig.5
	Fig. 6.
	Fig.7.
	Fig. 8
	Fig. 9.
	Fig.10.
	Table 1.



