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ABSTRACT OF THE DISSERTATION

Control relevant identification of plant and disturbance dynamics with

application to noise and vibration control

by

Jie Zeng

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2006

Professor Raymond A. de Callafon, Chair

Professor Robert Bitmead, Co-Chair

Estimation of models for both plant and disturbance dynamics is important in

controller design applications which especially focus on the disturbance and vi-

bration rejection. Several methods for low order model estimation on the basis

of the closed-loop data exist in the literature, but fail to address the simultane-

ous estimation of low order models of both plant and disturbance dynamics. This

dissertation contributes to the development of a new methodology to extend the

results to low order disturbance model estimation, and apply these techniques to

the control problems for disturbance rejection.

In addition to the control relevant estimation problem, this dissertation also

provides new tools for feedforward based disturbance rejection found in Active

Noise Control (ANC) systems. We focus on the feedforward control algorithms

that are one of the most popular methods to cancel low frequency sound where

passive methods are ineffective. This dissertation shows that the feedforward fil-

ter design can also be seen as a model matching problem with the system model

xii



approximated on the basis of the expansion of orthonormal basis functions. There-

fore, existing results on generalized FIR filters are exploited to provide feedforward

compensation with the advantage of including the prior information of the system

dynamics in the tapped delay line of the filter. It has the same linear parameter

structure as FIR filter which is favorable for adaptation process. In the case that

the acoustic coupling can not be neglected in the process of designing the feed-

forward filter, a dual-Youla parametrization is introduced and applied to estimate

the possible perturbation of the feedforward filter and the robust stability of the

closed loop system is enforced during the design of feedforward filter for active

noise cancellation.
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Chapter 1

Identification for Disturbance

Modeling

1.1 Rational

Noise and vibration caused by traffic, industry, or recreational activities, is an

ever increasing problem in the modern world. Noise comes from almost everywhere

in our life such as automobile, jet planes, computer server, rotating fans, garbage

trucks, construction equipment, manufacturing processes. Noise negatively affects

human health and well-being. Problems related to noise include hearing loss,

stress, high blood pressure, sleep loss, distraction and lost productivity, and a

general reduction in the quality of life. Vibration can not only create unwanted

noise, but also cause the mis-operation of a dynamical system. Because of the

bad effect of noise and vibration on our life, we have to find a way to control the

unwanted noise and vibration. Many researchers made their efforts to the fields of

noise and vibration control in the past decades.

Traditionally, noise was reduced by passive ways like mufflers, damping plates,

sound absorbing materials, double-glazing windows, noise barriers etc. All these

passive methods are mostly effective for reducing high frequency sound compo-

1
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nents. However, to reduce low frequency noise signals it will require large amounts

of absorption materials which will make the cost expensive and also make the

passive treatments bulky and heavy. In the last decade, active control of sound

and vibration (at audio frequencies) has emerged as a viable technology to bridge

the gap between desired active noise control using passive solutions and active

solutions. The basic mechanism and idea behind active noise control is to cancel

the offending sound (disturbance) by a controller emission of a secondary opposite

(out-of-phase) sound signal.

In order to get the most effective active noise control in a dynamical system,

the understanding of the dynamics of sound propagation within the ANC sys-

tem becomes very important. Sound propagation, even in a simple air duct, is

characterized by a dynamical system with many resonance mode due to sound

reflection and standing waves of sound propagation. As such accurate modeling of

the dynamics of sound and vibration propagation requires intricate models with

accurate knowledge on the boundary conditions of the ANC system. An alterna-

tive approach would be to model dynamics of disturbances on the basis of actual

experimental data and use so called identification techniques to model dynamics

relevant for disturbance rejection. The basic idea behind the system identification

technique is that the modeling of system dynamics can be characterized with the

systematic relationship of measured input/output data by minimizing the 2-norm

of prediction error. The schematic diagram of system identification is shown in

Fig. 1.1. By measuring the control variable and observed variable, the physical

noise and vibration system can be characterized with dynamics of control system

Gθ and dynamics of disturbance Hθ with the use of Least Mean Square (LMS)

technique. The motivation to use system identification technique in this disser-

tation is that the complexity of the system or incomplete knowledge of dynamic

system limits the usage of modeling in many engineering application. Therefore

it is desirable to formulate a model that is linear, and time invariant and has

low complexity that can be used for optimal/robust control design which system
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identification can be used to satisfy this requirement.

- -

?

Dynamics of
disturbance

Gθ
-

Observed
variable

- ¾

H
−1
θ

?

?

Control variable Noise and
vibration system

Disturbance

Dynamics of
control system

− +

Prediction error

Figure 1.1. Schematic diagram of system identification

1.2 Contribution of dissertation

The goal of this dissertation is to find an efficient system identification tech-

nique to identify both models of deterministic system and disturbance, and find

ways to provide techniques for designing feedback and feedforward algorithms for

noise and vibration control. This dissertation mainly focuses on feedforward based

techniques as adaptation of feedforward compensation is a very effective way for

sound cancellation. The contribution of this research include:

• This dissertation will present a new extended new stage identification method

to estimate control-relevant models for both plant and noise dynamics. These

models are important for the control applications that focus on the noise and

vibration rejection.
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• Model approximation based on the expansion of the orthonormal basis func-

tions. How to choose the set of the orthonormal basis will directly affect the

approximation results.

• Apply the generalized (orthonormal) finite impulse response (FIR) filter in

the feedforward active noise control application to provide better perfor-

mance than simple FIR filter.

• Apply a recursive least square generalized FIR filter estimation to provide an

on-line adaptive feedforward active noise control which is the most popular

ANC application.

• Apply dual-Youla parametrization to estimate the possible perturbation of

a feedforward filter in the active noise control in the presence of the acoustic

coupling.



Chapter 2

Background and Problem

Formulation

2.1 Identification of models for disturbance con-

trol

2.1.1 Identification and closed loop experiments

For the modeling purposes of a system with unknown or partially known dy-

namics, system identification techniques can be used to characterize the dynamic

behavior of the system [59]. Models obtained by system identification techniques

can be used for simulation, prediction or control purposes. Depending on the

intended purpose of the model, different quality requirements on the modeling

procedure need to be posed. These requirements differ especially in many practi-

cal situations where models are used to approximate signal and system dynamics

behavior.

Models for simulation purposes focus mainly on system dynamics, whereas

models for prediction purposes may require open-loop accurate models of both

system and noise dynamics to provide reliable prediction of output signals [59].

5
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On the other hand, models intended for control purposes may require high quality

system dynamic representations of critical closed-loop behavior to design reliable

robust servo controllers [83]. The difference between open-loop and closed-loop ap-

proximate modeling lies in the requirement of control-relevant approximate model-

ing and the ability to deal with data obtained from closed-loop experiments. Even

though the correlation between the unmeasurable noise and the input is a funda-

mental problem in closed loop experiment, performing identification experiments

under the closed loop environments is necessary because of the safety and economic

reasons.

2.1.2 Approaches to closed-loop identification

The need for control oriented modeling has resulted in several methodologies

that aim at iteratively improving closed-loop system behavior on the basis of closed-

loop experiments [57, 66, 1, 41]. In most of the existing methods, the emphasis is

placed on the control-relevant approximation of system dynamics only and ignore

the approximate modeling of the noise (disturbance) dynamics that is relevant in

noise (disturbance) control. For minimum variance and LQG control, successful

modeling and control performance improvements have been shown in [26, 38], but

these results assume consistent estimation of system and disturbance dynamics.

In dealing with closed-loop data, one of the problems in approximate closed-

loop identification of plant and noise dynamics is the correlation of the disturbance

with any of the signals in the closed-loop. As a result, a so-called direct identifi-

cation using input and output of the plant will lead to bias approximation results

for the system and disturbance dynamics [83, 11]. Possible ways to overcome this

problem is by assuming low noise correlation condition [25, 91, 3] that might only

be realistic in simulation studies.

A possible way to deal with closed-loop data is a reparametrization of the

closed-loop identification problem. Reparametrization can be done by a direct

parametrization of the closed-loop transfer function as done in [84] or in the recur-
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sive algorithms for closed-loop identification of [51, 52, 53]. Although powerful for

estimating control-relevant plant dynamics, bias approximation results similar to

direct identification are obtained in case an approximate noise model is estimated

[44].

An alternative parametrization of the closed-loop identification problem is built

on the dual-Youla parametrization [58], coprime factor identification [12] or a two-

stage identification [81]. In these methods, an auxiliary or previously estimated

model is used for filtering purposes to recast the closed-loop identification problem

in a standard open-loop estimation problem [83]. These methods have shown

promising results for low order and control-relevant plant modeling, but do not

address the low order model estimation of the disturbance dynamics. However, if

we are interested in designing a controller that can be used for noise (disturbance)

rejection, the noise model should have the same importance as the model of the

system dynamics in order to obtain a good performance of noise (disturbance)

control.

Is it possible to develop a new identification method that can be used
to identify low order control-relevant plant and disturbance modeling,
and the estimated models can be directly applied for optimal/robust
control design for noise (disturbance) rejection?

If the models estimated using the above described identification methods can cap-

ture the essential closed loop dynamical behavior of a physical system, then these

approximated models can be used to design optimal feedback or feedforward con-

troller for this physical system, and the control design process is so called model-

based control design process. In this dissertation, we only focus on the feedfoward

control design technique for active noise cancellation based on the models estimated

with the corresponding identification method.
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2.2 Active control of sound disturbance

2.2.1 Active noise control (ANC)

Acoustic noise has more and more negative effects to the human health as

the rapid development of the modern technology. Many industrial machines and

transportation equipments such as engines, fans, transformer, compressors, auto-

mobile, and airplane create high decibel noise that can influence the hearing of the

population around their environment. Other than that, the mechanical vibration

generated by the operation of the equipments is another related type of noise that

deteriorate the environments.

The traditional way to suppress the acoustic noise applied mufflers, damping

plates, sound absorbing materials, double-glazing windows, noise barriers to at-

tenuate the undesired noise [32, 6], and this kind of methods are called passive

noise control. All these passive methods are effective for reducing high frequency

sound components. However, they are relatively heavy, bulky, and of course more

expensive for a low frequency noise reduction.

In order to overcome these problems caused by the the passive methods, active

noise control (ANC) has received considerable consideration and showed significant

promise in the last decade. The basic idea of active noise control is that an addi-

tional secondary opposite (out-of-phase) sound signal generated by a controller is

used to cancel the undesired sound (disturbance).

The design of active noise control utilizing a microphone and a speaker to

generate a cancelling sound was first proposed in a 1936 patent by Lueg [60]. Even

though the patent outlined the basic idea of active noise control, it did not have

any real applications at that time. Fig. 2.1 illustrates how the unwanted sound

disturbance measured with a microphone can be cancelled by a anti-phase sound

created by a speaker.

Active noise control is developing rapidly because it permits improvements of

the performance of noise control with potential benefits in size, weight, volume
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Unwanted sound

Anti−sound

Residue

Figure 2.1. Illustration of active noise control

and cost. A historic reviews of the development of active noise control is presented

in [87, 27, 28, 48].

2.2.2 Approaches to active noise control (ANC)

Control algorithms for noise cancellation are typically based on feedforward

compensation, feedback control or a hybrid form of both [45, 21]. Feedback control

is effective for disturbance attenuation in the case that the reference signal is not

available to be measured. However, performance limiting aspects such as time

delays, non-minimum phase behavior and requirements on fast adaptation pose

different design constraints on creating stabilizing feedback control application for

noise control system. Successful implementation of feedback noise control can be

found in specific applications that have been optimized with respect to feedback

performance limitation [90, 2, 62].

In the application of active noise control, feedforward filter algorithms have

been widely used in active noise cancellation for broadband noise reduction. The

basic principle of this algorithm is based on the fact that the feedforward signal,i.e,
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the external noise source is an independent (or known) signal which has no cor-

relation with the actuator output. Failure to reach this requirement implies that

the overall system contains acoustic coupling, and then closed loop stability and

robustness become more crucial and need to be considered.

In the case that the reference signal can be measured and has no correlation

with the actuator output, a pure feedforward compensation algorithm based on

the finite impulse response (FIR) filter can be obtained in the active noise control.

The advantage of choosing the FIR filter as an adaptive filter is that the FIR

filter only incorporates zeros, hence the filter is always stable, and can provide

a linear phase response. However, when a more complex dynamical system is

considered, a sufficient number of coefficient are needed to represent the related

dynamical system, and it will increase the computational burden substantially,

and also may cause a slow convergence. As a result, infinite impulse response

(IIR) adaptive filter could be a good choice over the FIR filter with the advantage

that the poles of an IIR filter can achieve the same performance (resonance, sharp

cutoff, etc) as the FIR filter, but with a much lower order. Therefore, IIR filters

may require less computation than FIR filters. The other important advantage is

that IIR filters with sufficient order can insistently match poles as well as zeros of a

physical system, whereas FIR filters can give only rough approximations to poles.

Therefore, IIR filters can further minimize the mean-square error of an adaptive

filter, which is very important for ANC applications.

Even though the potential saving in computation and further reduction of the

residual error, these advantage come at certain costs, such as IIR filters are not

unconditionally stable because of the possibility that some poles of the filter may

move outside of the unit circle during the adaptive process, the adaptation may

converge to a local minimum because the performance surface of adaptive IIR

filters is generally non-quadratic and the convergence rate is relatively slower than

FIR filters. These problems described above make adaptive IIR filters much more

difficult to use in the practical applications.
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Is there a way we develop a filter that has the properties of the advan-
tage of both FIR filters and IIR filters to maintain the new adaptive
filters stable, and much lower order?

In the case that an independent reference signal is difficult to obtained in many

practical situations, the most common way to obtain the feedforward signal it to

use sensors located in the upstream locations to measure the feedforward signal.

From a control point of view, the system is no longer a pure feedforward cone

because a positive feedback (also called acoustic coupling) exists between the con-

trol speaker and input microphone which tends to destabilize an ANC system.

Therefore, modifications to the control algorithm have to be made to stabilize the

feedforward based ANC system. This problem has been extensively studied in the

ANC literature, and several solving methods have been proposed, listed as follows.

• Directional microphones and loudspeakers [43, 79, 68, 17]. The main limita-

tion of this method is that directional arrays are usually highly dependent on

the spacing of the array elements and are only directional over a relatively

narrow frequency range [20]. It means that it is difficult to obtain a good

performance over a broad frequency range with this method.

• Adaptive neutralization filter in parallel with the feedback path [88].

• Adaptive IIR filter to compensate for acoustic feedback [20].

• Distributed parameter systems [39]. By using distributed parameter models,

a unidirectional signal can be obtained as a feedforward signal to cancel the

external noise using distributed parameter models.

• H∞ theory to design a feedforward filter. H∞ theory can automatically

incorporate the acoustic coupling during the design process [5].

More details about the effect of acoustic coupling and the related solutions please

refer to [47]. The methods described above have their own advantages and draw-

backs in the system stability and ANC performance view.
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Is there an alterative way to solve the acoustic coupling problem during
the design of feedforward controller for ANC? Can the system stability
be enforced and ANC performance be maintained with the proposed
method?

2.2.3 Adaptive algorithms for ANC

Basically, active noise control can be divided into two categories: nonadaptive

active control and adaptive active control. Nonadaptive active control has been de-

veloped using the standard control technique such as LQG, H2 and H∞ algorithms

to compute an optimal controller. The drawback of nonadaptive active control is

that it can not track and respond to any changes of the dynamical system. In

order to overcome this, the ANC system has to be adaptive.

Adaptive filters have received much attention over last 20 years [16]. Adaptive

filters adjust their coefficients to minimize an error signal by using the least-mean-

square (LMS) algorithms, and it can be realized as finite impulse response (FIR)

filter, infinite impulse response (IIR) filter, lattice and transform-domain filter.

A modified version of LMS algorithm named FxLMS algorithm is the most

popular adaptation algorithms for practical applications. This FxLMS algorithm

is computationally simple, but the relatively slow convergence speed is the main

drawback. In order to improve the convergence properties, some different ANC al-

gorithms have been proposed, namely., lattice-ANC systems [78, 46, 67]; Frequency-

domain ANC systems [74, 75, 69, 49]; IIR-filter-based LMS algorithms [20, 10];

Recursive least square based algorithms [9, 47, 7, 33]; Kalman filtering [8]. The

selection of a good adaptive algorithm is based on the requirements for the con-

vergence rate, computation and performance. For example, if a fast convergence

rate is needed in an ANC application, and if we do not care about the compu-

tation, then RLS algorithm or Kalman filtering should be chosen instead of LMS

algorithm because RLS algorithm and Kalam filtering can provide much better

convergence rate, but much more computation burden than LMS algorithm.
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2.3 Problem formulation

As pointed out in the previous sections, most closed-loop identification methods

[83, 23] have shown promising results for low order and control-relevant plant

modeling, but do not address the low order model estimation of the disturbance

dynamics. If we are interested in designing a controller that can be used for

noise (disturbance) rejection, the estimate of the noise model should be given the

same treatment as the modeling of the system dynamics in order to obtain a good

performance of noise control. Using the models of system dynamics and noise

dynamics, the next step would be to design optimal controllers for disturbance

rejection. As part of the research effort, the emphasis is focused on active noise

cancellation.

In active noise control techniques, feedforward ANC is the most popular and

simplest method to be applied to cancel the undesired noise, and an adaptive filter

must be considered in order to cope with the variations such as system dynamics

and environment. Usually an adaptive filter is realized by FIR filter or IIR filter.

However, FIR filter is not good enough to adapt a very complicated system because

FIR filter incorporates only zeros and a much higher order FIR filter will be needed.

Even though IIR filter can overcome the problem of FIR filter confronts, stability

problem is the main limitation of IIR filter. We may find a way to develop a filter

that can combine the advantages of both FIR filter and IIR filter and can be easily

applied in the ANC application.

In ANC application, the acoustic coupling is an intricate problem. As indicated

before, there are many methods trying to solve the effect of acoustic coupling in

the ANC application. Many of these methods focus on cancelling the bad effect

of acoustic coupling, and do not incorporate the acoustic coupling in the process

of designing a feedforward filter. So, we are interested in designing an adaptive

feedforward filter that can incorporate the acoustic coupling for ANC?

The overall problem formulation of this dissertation are described as follows
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• Problem 1:

– Given input/output data measurements obtained under closed-loop condi-

tions, estimate models that approximate the plant and disturbance dynamics.

The approximation is done in such a way that models can be used in control

design applications that focus on the disturbance rejection.

• Problem 2:

– In the feedforward ANC, design an adaptive filter to provide broad band

frequency noise cancellation. This type of adaptive filter can be used to

describe a more complicated system in a relatively lower order comparing

with FIR filter.

• Problem 3:

– In the feedforward ANC, find a method to design a feedforward filter in

the presence of acoustic coupling. This method can incorporate the effect of

acoustic coupling and the robust stability of the closed loop system can be

enforced during the design of feedforward filter for ANC.

2.4 Overview of this dissertation

Following the proposed problem formulation, this dissertation is structured

as follows. In Chapter 3, some closed loop approximate identification methods

are discussed, and also their properties are presented. Chapter 4 presents a new

identification method so called extended two stage method. The advantage of

this method lies in the simultaneous estimation of low order of plant dynamics

and disturbance dynamics. An application of using extended two stage method to

estimate the low order plant dynamics and disturbance dynamics in a mechanical

data storage application is given at the end of the chapter. Chapter 5 discusses

the model approximation using orthonormal basis function. An analytical solution

for model matching using orthonormal basis is also derived. In this chapter, the
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advantage of including orthonormal basis in the tapped delay line is presented. In

the end, a case study to illustrate the advantage of using orthonormal basis function

is presented. in Chapter 6, general techniques used in the active noise control such

as adaptive algorithm and adaptive filter structure are discussed. The problems it

may face in the application of active noise control are also presented. Chapter 7

shows the application of a generalized (orthonormal) FIR filter to the active noise

cancellation. Chapter 8 presents an application of dual-Youla parameterization to

active noise control in the present of acoustic coupling. Chapter 9 summarizes the

conclusions of this dissertation.



Chapter 3

Approximate Identification Under

Closed Loop Conditions

3.1 Preliminaries

In order to analyze the problems that are associated to an identification based

on closed-loop experiments, a linear time invariant finite dimensional feedback

connection T (G0, C) of a plant G0 and a feedback controller C is considered. The

feedback connection T (G0, C) can be defined in the following definition.

Definition 3.1.1. Consider a well-posed feedback connection T (G0, C) where u

and y indicate respectively the input and possibly disturbed output signal of G0.

Then T (G0, C) is defined by

T (G0, C) :=





G0

I



 (I + CG0)
−1

[

C I
]

(3.1)

and maps the reference signals col(r2, r1) to the signals col(y, u)

The feedback connection T (G0, C) is called stable if and only if T (G0, C) ∈
RH∞ where RH∞ indicate the standard space of all proper, real rational and

16
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Figure 3.1. Closed-loop data generating system

stable transfer functions [24]. This feedback connection T (G0, C) can be observed

from the block diagram depicted in Fig. 3.1.

In Fig. 3.1, G0(q) denotes a finite dimensional, discrete time, linear and time

invariant (FDLTI) unknown plant, C(q) presents a causal, discrete time, finite

dimensional, linear, time invariant feedback controller. For analysis purposes, both

G0(q) and C(q) are assumed to be stable.

The data set

ZN =
{

u(1), y(1), · · · , u(N), y(N)
}

(3.2)

consisting of measured input and output signals u(t) and y(t), t = 1, · · · , N is the

basis of system identification technique.

The output y(t) of the plant G0(q) is feed back to the input u(t) using a negative

feedback

u(t) = r1(t) − C(q)
[

y(t) − r2

]

(3.3)

and r1(t) and r2(t) are possible external reference signals for closed-loop excitation

purposes. Additionally, an additive disturbance v(t) acts on the output of the



18

plant

y(t) = G0(q)u(t) + v(t), v(t) = H0(q)e(t) (3.4)

which is modelled as a monic stable and stably invertible disturbance filter H0(q)

having a white noise input e(t) with variance λ0.

The z-transform shift-operator q is defined as

qu(t) := u(t + 1), q−1u(t) = u(t − 1) (3.5)

where q and q−1 denote the forward and backward shift operators, respectively.

In this dissertation, the argument q of the transfer function and the argument

t of the signals will be omitted frequently to simplify the notations.

For notational convenience, the shorthand notation

r := r1 + Cr2 (3.6)

is introduced in order to rewrite (3.3) into a reduced form.

On the basis of the shorthand notation (3.6), the data coming from the plant

G0 operating under closed-loop conditions can be formulated as follows.

y = G0Sinr + SoutH0e (3.7)

u = Sinr − CSoutH0e (3.8)

where Sin and Sout are the input and output sensitivity function [61] defined with

Sin = (1 + CG0)
−1 (3.9)

Sout = (1 + G0C)−1 (3.10)

In the case that both unknown plant G0 and controller C are single-input-single-

output (SISO) transfer functions, the multiplication of C and G0 is commutative

and then Sin = Sout. In this dissertation, we only focus SISO problem, therefore,

Sin and Sout are not discriminated.

For future use we introduce

Ḡ0 = G0Sin, H̄ = SoutH0 (3.11)
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so that we can rewrite (3.7) as

y = Ḡr + vc, vc = H̄e (3.12)

3.2 Prediction error identification

In the prediction error identification, a following model structure M is consid-

ered.

y(t) = G(q, θ)u(t) + H(q, θ)ε(t, θ) (3.13)

where G(q, θ) is called plant model and H(q, θ) noise model. ε(t, θ) denotes the

one step ahead prediction error. The parameter vector θ ranges over a set ΘM

which is assumed to be compact and connect.

The one-step-ahead predictor of the open-loop system for the model structure

is given by [59]

y(t|t − 1, θ) = H−1(q, θ)G(q, θ)u(t) + (1 − H−1(q, θ))y(t). (3.14)

Therefore, the prediction error can be determined

ε(t, θ) = y(t) − y(t|t − 1, θ) = H−1(q, θ)
[

y(t) − G(q, θ)u(t)
]

(3.15)

For notational brevity Gθ = G(q, θ) and Hθ = H(q, θ) will be defined in the next.

Rewrite (3.15) in terms of the input u(t) and noise e(t), we get

ε(t, θ) = H−1
θ [(G0 − Gθ)u(t) + (H0 − Hθ)e(t)] + e(t) (3.16)

Given the model (3.14) and measured data ZN , the prediction error estimate

[59] can be obtained by minimizing the filtered prediction error

θ̂N = arg min
θ∈ΘM

1

N

N
∑

t=1

ε2
F (t, θ) (3.17)

with εF (t, θ) = L(q)ε(t, θ) and L(q) is a stable and monic filter that can be used

to enhance wanted frequency regions. L(q) = 1 can be assumed in the remain text

without loss of generality.
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By Parseval’s relation [59], the following frequency domain expression holds

θ̂N = arg min
θ∈ΘM

1

2π

∫ π

−π

Φe(ω, θ) dω (3.18)

where Φe(ω, θ) denotes the (auto) spectrum of the prediction error ε(t, θ).

Under weak regularity condition this prediction error estimate is known to

converge with probability 1 to θ∗.

θ∗ = lim
N→∞

θ̂N = arg min
θ∈ΘM

1

2π

∫ π

−π

Φe(ω, θ) dω (3.19)

In the case of open loop identification, the input u(t) and the noise e(t) are

uncorrelated. As a result the asymptotic expression of (3.19) for N → ∞ can be

represented by

θ̂ = arg min
θ

∫ π

−π

∣

∣H−1
θ (ejω)

∣

∣

2
[

∣

∣ G0(e
jω) − Gθ(e

jω)
∣

∣

2
Φu(ω)+

+ |H0(e
jω) − Hθ(e

jω)|2 Φe(ω)
]

dω.
(3.20)

and Φu(ω) and Φe(ω) are the spectral densities of input and noise, respectively.

From the above analysis, we know that the input u(t) and output y(t) signals

of the plant G0 are used directly to identify the plant model Gθ and disturbance

model Hθ, and this is so-called direct identification method [59]. In this method

the feedback is ignored and possible information with respect to the controller C(q)

or the reference signal r(t) is not used.

For notational purposes, consider the definition of the model sets G and H with

G := {Gθ | θ ∈ ΘM} (3.21)

H := {Hθ | θ ∈ ΘM} (3.22)

where ΘM is the parameter space that guarantees stability of the prediction error

(3.16). If the true system belongs to the model set, which is defined by G0 ∈ G
and H0 ∈ H, then a consistent identification of G0 and H0 is obtained [59]. In

case G0 6∈ G and H0 ∈ H, an expression for the approximate identification of the

models Gθ and Hθ can be obtained.
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In the case that the signals u and y are obtained under feedback, substitution

of (3.8) into (3.16) yields the prediction error

ε(t, θ) = H−1
θ [(G0 − Gθ) Sinr(t) + ((Gθ − G0) CSinH0 + (H0 − Hθ)) e(t)] + e(t)

(3.23)

The last term e(t) can be ignored as it does not depend on θ and does not contribute

to the minimization. Because r(t) and e(t) are uncorrelated, we can get a bias

expression of θ̂ as

θ̂ = arg min
θ

∫ π

−π

∣

∣H−1
θ

∣

∣

2 [

|G0 − Gθ|2 |Sin|2 Φr+

+ |(Gθ − G0) CSinH0 + (H0 − Hθ)|2 Φe

]

dω

(3.24)

and Φr is the spectral density of the reference signal r.

By comparing (3.24) and (3.20), it shows that in the closed-loop identification,

the estimation of G0 and H0 will effect each other and no explicit tunable expression

is obtained, even if the plant model Gθ and disturbance model Hθ are parametrized

independently. However, a consistent identification of G0 and H0 is possible if the

true system is in the model set. The bias of the plant model Gθ related to the bias

of the noise model Hθ. If we have a good noise model and /or good signal to noise

ratio Φr/Φe, then the bias of the estimation of plant model Gθ will be small [23].

The biased effect is more obvious when the disturbance model is parametrized

independently and fixed to 1, as in an Output Error (OE) model structure. By

using output error (OE) model structure, the parameter estimate can be charac-

terized by

θ̂ = arg min
θ

∫ π

−π

[

|G0 − Gθ|2 |Sin|2 Φr + |(GθC + 1)SinH0|2 Φe

]

dω. (3.25)

When signal to noise ratio Φr/Φe is very small, it means that the spectrum of the

noise dominates spectrum of the reference signal, and in the case of −C−1 ∈ G, a

biased estimation of Gθ is obtained with Gθ approaching to −C−1, even if G0 ∈ G.

As a result, the estimation of plant model Gθ will be biased, and it depends on

the disturbance present on the closed-loop data.
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In order to construct closed-loop approximate identification methods that have

an explicit tunable bias expression we can consider indirect method [11]. This

method is based on the idea of first estimating a closed-loop transfer function and

then recalculating the model by using the knowledge of the controller C present

in the estimated closed-loop transfer function. Even though it can provide an

explicit tunable approximation expression, the McMillan degree of the model Gθ

and Hθ founded by re-computation will be larger than the McMillan degree of the

estimated closed-loop transfer function, and as a result, it is not attractive to us.

In the next sections, we will present some developments in the area of closed-

loop approximate identification.

3.3 Two-stage identification

3.3.1 Method description

Two stage method can provide an explicitly tunable approximation criterion

which is proposed in [81]. In the two-stage method, identification of the plant

model and disturbance model in closed loop is performed in two separate steps.

The two steps are used to eliminate the correlation between the input u(t) and the

noise e(t) in case of closed-loop data. The two-stage method does not require the

knowledge of the controller C. Only the knowledge of the reference signal r(t) and

the output signal y(t) are needed and the method can be summarized as follows

[81].

In the first step, a model Sβ of the input sensitivity function Sin is estimated

by considering the map from reference signal r(t) to the plant input u(t) in (3.8).

Estimation is done by minimizing the prediction error

e1(t, β) = u(t) − Sβ(q)r(t)

using a high order model Sβ for the sensitivity function. The model Sβ is used only

for filtering purposes in the second step of the method and no specific restrictions
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on the order of Sβ are imposed.

In the second step of the two-stage method, the estimate Sβ is used to simulate

a disturbance free input signal ur(t) via

ur(t) = Sβ(q)r(t).

that will be uncorrelated with noise e(t) on the closed-loop data. In case a consis-

tent estimate Sβ = Sin is obtained in the first step, (3.7) rewrites into

y(t) = G0ur(t) + SinH0e(t)

Subsequently, in the second step of this method a plant model Gθ (and possibly

a disturbance model Hθ) can be estimated by minimizing the two-norm of the

prediction error

ε2(t, θ) = H−1
θ [G0u(t) − Gθur(t)

+(H0 − Hθ)e(t)] + e(t)
(3.26)

where Gθ and Hθ are again the desirable low order approximation of the plant G0

and disturbance filter H0.

In general, the two-stage method is used only to estimate (low order) models

Gθ of G0 in the second step and the estimation of disturbance filters is omitted.

For comparison and analysis purposes, we also consider the estimation of distur-

bance models in the standard two-stage method. Rewriting (3.26) in terms of the

reference signal yields

ε2(t, θ) = H−1
θ [(G0Sin − GθSβ) r(t)

+ (H0Sin − Hθ) e(t)] + e(t)
(3.27)

and we will compare the results of disturbance model estimation with the direct

method and the extended two-stage method proposed in this dissertation.
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3.3.2 Bias distribution for two-stage method

The minimization of the 2-norm of the prediction error in (3.27) during the

second step of the two-stage method yields the asymptotic expression

θ̂ = arg min
θ

∫ π

−π

∣

∣H−1
θ

∣

∣

2
[| (G0 − Gθ) Sin

+Gθ (Sin − Sβ) |2Φr + |H0Sin − Hθ|2 Φe] dω

(3.28)

for N → ∞ [81]. It can be observed that the estimation of the plant model Gθ

depends on the estimate Sβ of the input sensitivity function Sin in the first step.

In case Sβ 6= Sin the term Gθ (Sin − Sβ) influences the estimation of the model Gθ,

but this term can be made small by estimating an accurate model Sβ of the input

sensitivity in the first step of the method [81].

An explicit tunable expression for the bias of the plant model can be obtained by

using an independent parametrization of the plant model Gξ and the disturbance

model Hη. For example, for an OE-model with a fixed disturbance model Hη = 1,

the asymptotic expression of (3.28) can be simplified to

ξ̂ = arg min
ξ

∫ π

−π

[| (G0 − Gξ) |2|Sin|2Φr dω

in case Sβ = Sin and clearly indicates the tunable bias expression of the plant

model estimate. Moreover, a consistent estimate of the plant dynamics G0 can be

obtained, even though Hη is fixed. Consistency of the plant model estimate for

Hη 6= H0 was not shared by the direct identification method.

Unfortunately, the favorable properties of consistency and tunable bias expres-

sion for the plant model do not carry over to the disturbance model estimate. It

can be observed from (3.28) that the estimation of an independently parametrized

disturbance model Hη will always be biased, as it aims at the approximation of

the closed-loop disturbance model H0Sin. As a result, the estimation of the distur-

bance models in the two-stage identification method does not share the consistency

and tunable bias expressions found for the plant model estimate.
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3.4 Dual Youla method for closed loop identifi-

cation

3.4.1 Coprime factorizations

The basic idea behind dual-Youla method is introduced by [30] in view of

closed-loop experiment design. It was further elaborated and modified in [31]. It

was applied for approximate identification in [29, 72, 73]. The main advantage of

this method lies in the fact that the identified plant models are guaranteed to be

stabilized by the present controller. In order to describe this method, following

concepts will be needed.

Definition 3.4.1. Let N,D ∈ RH∞ , then the pair (N,D) is called right coprime

factorization (rcf) over RH∞ if there exists X,Y ∈ RH∞ such that

XN + Y D = I (3.29)

Let Ñ , D̃ ∈ RH∞ , then the pair (D̃, Ñ) is a left coprime factorization (lcf) if there

exists X̃, Ỹ ∈ RH∞ such that

ÑX̃ + D̃Ỹ = I (3.30)

Definition 3.4.2. A rcf (N,D) is called a normalized right coprime factorization

(nrcf) if it satisfies

N∗N + D∗D = I (3.31)

Similarly, a lcf (D̃, Ñ) is called a normalized left coprime factorization (nlcf) if it

satisfies

ÑÑ∗ + D̃D̃∗ = I (3.32)

Definition 3.4.3. Let (N,D) be a rcf and (D̃, Ñ) be a lcf, then the pair (N,D) is

a rcf of a system G if

det{D} 6= 0, G = ND−1
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Similarly, the pair (D̃, Ñ) is a lcf of a system G if

det{D̃} 6= 0, G = D̃−1Ñ

The requirement on the determinant of D and D̃ is needed to ensure that D−1

and D̃−1 are well defined real rational transfer functions.

3.4.2 Method description

By using coprime factorization, a possibly unstable plant can be represented

by a quotient of two stable transfer functions.

Lemma 3.1 ([15]). Let (Nc, Dc) be a ref of a controller C, and let (Nx, Dx) be

a rcf of any arbitrary system Gx that is stabilized by the controller C. Then, the

plant G0 with a rcf (N0, D0) is stabilized by the controller C if and only if there

exists an R0 ∈ RH∞ such that

N0 = Nx + DcR0

D0 = Dx − NcR0

(3.33)

Proof: For a proof, one is refered to [93].

From Lemma 3.1 it shows that R0 can vary over all possible transfer functions in

RH∞ such that (Dx − NcR0)
−1 is well defined, which characterizes a set of plant

G0 that are internally stabilized by the given controller C. R0 in (3.33) is the

only unknown stable transfer function, therefore, estimation of a model R̂ of the

stable transfer function R0 would yield an estimate (N̂ , D̂) of a rcf of the plant Ĝ

described by

N̂ = Nx + DcR̂

D̂ = Dx − NcR̂
(3.34)

If the estimate R̂ is stable, then the model Ĝ = N̂D̂−1 estimated in (3.34) is

guaranteed to be stabilized by the controller C.
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Consider the feedback configuration presented in Fig. 3.1, the feedback connec-

tion T (G0, C) can be replaced by a combination of a rcf (Nx, Dx) of any arbitrary

plant Gx, a rcf (Nc, Dc) of the controller C and a stable transfer function R0. The

representation of T (G0, C) in Fig. 3.1 can be found in Fig. 3.2

Dc

g D−1
x

?
C

-g -- Nx
- g

g¾

6

u

R0

?

Nc

6

?

uc

- ? -

?

+

−

6
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6
g- -

¾

+

+
++

+
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y

e
z

x
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+

Figure 3.2. Block diagram of the dual Youla representation of the closed-loop data

generating system

In order to estimate the dual-Youla parameter R0 using the open loop identi-

fication algorithm, the following lemma is needed.

Lemma 3.2 ([11]). Let (Nx, Dx) be a rcf of an auxiliary plant Gx over RH∞,

and (Nc, Dc) be a rcf of a given controller C such that T (Gx, C) ∈ RH∞, then

the intermediate signals x(t) and z(t) can be considered as an input signal and an

output signal

z = R0x + S0e (3.35)

The transfer functions R0 and S0 are given as

R0 = D−1
c (I + G0C)−1(G0 − Gx)Dx (3.36)

S0 = D−1
c (I + G0C)−1H0 (3.37)
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Moreover, x is defined by the filter operation

x := (Dx + CNx)
−1

[

C I
]





y

u



 (3.38)

The so-called dual-Youla signal z is defined by the filter operation

z := (Dc − GxNc)
−1

[

I −Gx

]





y

u



 (3.39)

where u can be obtained by u = r − Cy and r = r1 − Cr2.

Proof: For a proof, one is referred to [11].

From Lemma 3.2, it can be observed that R0 and S0 are the only unknown

transfer functions. If the intermediate signals x and z can be reconstructed from

(3.38) and (3.39), respectively, in the case that the controller is known, then es-

timate of R0 and S0 is a standard open loop identification problem. When the

models Rθ and Sθ are obtained, the model Gθ of the plant G0 and the noise model

Hθ of the noise filter H0 can be obtained via

Gθ = (Nx + DcRθ))(Dx − NcRθ)
−1

Hθ = Dc(I + GθC)Sθ

(3.40)

From (3.40) it can be observed that the McMillan degrees of Gθ and Hθ will be

much higher because of the reparemetrization as presented in (3.40). This implies

that in the identification discussed above, the McMillan degrees of the identified

models Gθ and Hθ are not tunable. As a control point view, even though the

identified models Gθ are guaranteed to be stabilized by the controller, it may not

be a good choice to be used to design a low order controller because the complexity

of identified model is a nontrivial problem to design a low order controller.

3.4.3 Bias distribution for dual-Youla parametrization

The asymptotic frequency domain expression of minimizing the 2-norm of the

prediction error corresponding to (3.35) can be depicted as
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θ̂ = arg min
θ∈Θ

1

2π

∫ π

−π

∣

∣Sθ
−1

∣

∣

2 [

|R0 − Rθ|2 Φx + |S0 − Sθ|2 Φe

]

dω (3.41)

(3.41) is almost the same as the open loop asymptotic frequency domain expression

(3.20) in direct method. The only difference is that (3.41) is obtained under the

closed loop experiment, but (3.20) in open loop experiment. As mentioned before,

identification in closed loop experiments has more benefit than that in open loop

experiments. The expression in (3.41) can be made an explicit and tunable expres-

sion if an independent parametrization is used. Specifically, if we use an output

error structure to estimate Rθ and fix Sθ to 1, the asymptotic estimate

θ̂ = arg min
θ∈Θ

1

2π

∫ π

−π

[

|R0 − Rθ|2 Φx

]

dω (3.42)

is a simple explicit tunable expression for Rθ. The resulting plant model Gθ can

be calculated according to

Gθ = [Nx + DcRθ] [Dx − NcRθ]
−1

3.5 Coprime factor identification

3.5.1 Method description

An alternative to the dual-Youla parametrization described in the previous sec-

tion is coprime factor identification [72, 73]. Unlike the dual-Youla parametrization

in which the complexity of the model Gθ is highly dependent on the controller, the

auxiliary model Gx and the model Rθ, this method is directed towards estimate of

the coprime factors of a plant G0. Therefore, the order of the resulting model can

be controlled more efficiently.

Rewrite the closed loop data generating system in (3.7) and (3.8) into a compact

form




y

u



 =





G0Sin

Sin



 r +





SoutH0

−CSoutH0



 e (3.43)
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Now, consider a stable filter F that create an intermediate signal x according to

x = Fr which is shown in Fig. 3.3. Then (3.43) can be rewritten as





y

u



 =





G0SinF−1

SinF−1



x +





SoutH0

−CSoutH0



 e

=





G0SinF−1

SinF−1



x +





Dc

−Nc



S0e

(3.44)

where S0 is defined as

S0 = D−1
c (I + G0)

−1H0
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Figure 3.3. Construction of intermediate signal x

Define

N0 = G0SinF
−1

D0 = SinF−1
(3.45)

Then according to the scheme shown in Fig. 3.4, the identification of N0 and D0

can be done with a standard open loop identification because the intermediate

signal x and the noise e are uncorrelated. The plant model Gθ is then constructed

from Gθ = NθD
−1
θ .
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Figure 3.4. Open loop identification of coprime factors

In order to keep N0 and D0 to be stable and the intermediate signal x to be

bounded, then how to choose the filter F is crucial and the result is given in [82].

Corollary 3.5.1. A filter F yields stable mappings (y, u) → x and x → (y, u) if

and only if there exists an auxiliary system Gx with a rcf (Nx, Dx), stabilized by

the controller C, such that

F = (Dx + CNx)
−1

Furthermore, for all such F , N0 and D0 are a pair rcf of system G0 with G0 =

N0D
−1
0

Proof: For a proof, one is referred to [11]

After F has been chosen from the above corollary, coprime factors Nθ, Dθ and the

noise filter Sθ can be estimated by minimizing the 2-norm of the prediction error

described as

ε(t, θ) =







1

DcSθ

0

0 − 1

NcSθ











y − Nθx

u − Dθx



 (3.46)
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in terms of the intermediate signal x and noise e.

The plant model Gθ and noise model Hθ can be obtained with a re-computation.

Gθ = NθD
−1
θ

Hθ = Dc(I + GθC)Sθ

(3.47)

From (3.47) it can be observed that the estimate of Gθ only depends on the estimate

of Nθ and Dθ. Therefore, the complexity of the plant model Gθ can be largely

simplified. The noise filter model Hθ also depends on the order of Dc, Gθ and Sθ

which is the same formula as used in the dual-Youla parametrization.

3.5.2 Bias distribution for coprime factor identification

The asymptotic frequency domain expression for the minimization of the 2-

norm of the prediction error in (3.46) is given as follows.

θ̂ = arg min
θ∈Θ

∫ π

−π

[
∣

∣

∣

∣

1

DcSθ

∣

∣

∣

∣

2 ∣

∣

∣

∣

1

NcSθ

∣

∣

∣

∣

2 ] {





|N0 − Nθ|2

|D0 − Dθ|2



 Φx +

+





|Dc|2

|Nc|2



 |S0 − Sθ|2 Φe

}

dω (3.48)

Although (3.48) yields an expression for the resulting estimate obtained by

approximate identification, it is not an explicit expression for the misfit among

N0, D0 and S0 being estimated. This is due to the fact that the estimated Sθ will

influence the approximate estimate Nθ, Dθ. The mutual influence of the estimation

of S0 and N0, D0 can be decoupled by applying an independently parametrized

model structure such as BJ-model structure. Therefore an explicit and tunable

expression for the bias or misfit between N0, D0 and Nθ, Dθ can be obtained. If

we only want to estimate the plant model Gθ, then a OE-model structure can be

chosen by setting the filter Sθ = 1. Then (3.48) becomes
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θ̂ = arg min
θ∈Θ

∫ π

−π

[
∣

∣

∣

∣

1

Dc

∣

∣

∣

∣

2 ∣

∣

∣

∣

1

Nc

∣

∣

∣

∣

2 ] {





|N0 − Nθ|2

|D0 − Dθ|2



 Φx

}

dω (3.49)

(3.49) is also an explicit and tunable expression for the bias between N0, D0

and Nθ, Dθ. It can be observed that (3.49) is zero when Dθ = D0 and Nθ = N0 in

case G0 ∈ G.



Chapter 4

Extended Two-Stage Method

4.1 Extended two-stage method

4.1.1 Method description

The extended two-stage method is similar to the previously mentioned two-

stage method. But the main difference lies in the use of a disturbance model

estimate in the two subsequent steps of this method. The estimate of the distur-

bance filter in the first step of the method is being used to create filtered signals

for the low order model approximation of both plant and disturbance dynamics in

the second step of the method.

To explain the extended two-stage method in more details, the closed loop data

generating system shown in Fig. 4.1 is considered. Ḡ = G0Sin and H̄ = H0Sin are

defined for notational convenience. The notations Ḡ and H̄ are used to respectively

indicate the closed-loop reference signal filter and the closed-loop disturbance filter.

With this definition, (3.7) can be rewritten into

y(t) = Ḡr(t) + H̄e(t) (4.1)

y(t) = G0(1 − CḠ)r(t) + H0(1 − CḠ)e(t) (4.2)

where the knowledge of the controller C is exploited. From (4.2) it can be observed

34
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Figure 4.1. Closed-loop data generating system

that with knowledge of Ḡ, the controller C and a time realization of e(t), the

estimation of G0 and H0 on the basis of closed-loop data becomes a standard

open-loop identification problem. A time realization of e(t) can be obtained via

an accurate estimation of Ḡ, H̄ on the basis of the closed-loop data in (4.1).

Consistent estimation of the closed-loop disturbance filter H̄ is possible in the

prediction error framework if H̄ is a stable and stably invertible filter. If the

controller C internally stabilizes the plant G0, and the open-loop disturbance filter

H0 is stable and stably invertible, then it is straightforward to see that H̄ is stable

and stably invertible provided both C and G0 are stable. Under these conditions,

the consistent estimation of Ḡ, H̄ on the basis of the closed-loop data in (4.1) also

becomes a standard open-loop identification problem. From these observations,

the extended two-stage method can be summarized by the following two steps:

1. In the first step, a standard open-loop identification of Ḡ and H̄ is performed

on the basis of the closed-loop reference r(t) and output y(t) signal in (4.1).

Using the estimated models Ḡ∗ and H̄∗, the closed-loop prediction error

εcl(t) = H̄−1
∗

(

y(t) − Ḡ∗r(t)
)

. (4.3)

is computed to obtain a realization of the (unfiltered white) noise present on
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the closed-loop data.

2. In the second step of the method, the estimated models Ḡ∗ and H̄∗ are used

to create a filtered input uf (t) and a filtered prediction error εf (t):

uf (t) := (1 − CḠ∗)r(t) (4.4)

εf (t) := (1 − CḠ∗)εcl(t) (4.5)

using the knowledge of the feedback controller C. Subsequently, the signals

uf (t) and εf (t) according to (4.2) are used to estimate low order models Gθ

and Hθ by minimizing the two-norm of the output error

ε(t, θ) = y(t) − [Gθ(q) Hθ(q)]





uf (t)

εf (t)



 (4.6)

that allows for a low order approximation of the open-loop plant G0 and

disturbance filter H0.

During the open-loop identification of Ḡ and H̄ in the first step of this method,

a stable plant model Ḡ and a stable and stably-invertible disturbance model H̄

are estimated. The reason for the construction of the closed loop residuals in (4.3)

in the first step of the method is to allow control over the order of the estimated

disturbance model in the second step. An alternative would be to compute a

disturbance model Hθ from the estimate H̄∗ using knowledge of C and a model

Gθ, but this would lead to a higher order estimate of the disturbance model Hθ.

Furthermore, it can be noted that only the signals r(t) and y(t) are used in this

method, but the knowledge of the controller C can be replaced by an additional

measurement of u(t).

Similar to the standard two-stage method [81], the models in the first step are

only used for filtering purposes and no restriction on the order of these models is

required. A similar idea was also exploited in [44] to obtain consistent estimates of

plant and disturbance models, but the results in this dissertation also include the
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approximation of plant and disturbance dynamics. Moreover, the computation of

the prediction error εcl(t) can be used for model validation purposes [59] to address

the accuracy of the models Ḡ∗ and H̄∗ being estimated in the first step.

4.1.2 Bias distribution for the extended two-stage method

The asymptotic frequency domain expression for the minimization of the 2-

norm of the prediction error in (4.6) depends on the estimation results of Ḡ∗ and

H̄∗ in the first step of the method. In case modeling errors are made in the first

step, i.e. Ḡ∗ 6= G0Sin, H̄∗ 6= H0Sin, then the following asymptotic bias expression

is obtained.

Theorem 4.1. Consider the first step in the extended two-stage method where

estimates Ḡ∗ and H̄∗ satisfy

Ḡ∗ 6= Ḡ = G0Sin, H̄∗ 6= H̄ = H0Sin (4.7)

then for N → ∞ the two-norm minimization of the output error in (4.6) is equiv-

alent to

min
θ

∫ π

−π

[

∣

∣(G0 − Gθ)Sin + (Ḡ∗ − Ḡ)(GθC + Hθ(1 − CḠ∗)H̄
−1
∗ )

∣

∣

2
Φr(ω)+

+
∣

∣(H0 − Hθ)Sin + Hθ(Sin − (1 − CḠ∗)H̄H̄−1
∗ )

∣

∣

2
Φe(ω)

]

dω
(4.8)

where Gθ and Hθ denote the models estimated in the second step of the extended

two-stage method.

Proof: With the biased estimates of (4.7), the closed-loop prediction error in (4.3)

can be rewritten into

εcl(t) = H̄−1
∗ (Ḡ − Ḡ∗)r(t) + H̄−1

∗ H̄e(t) (4.9)

The output error in (4.6) satisfies

ε(t, θ) = y(t) − Gθuf − Hθεf

= G0Sinr(t) + H0Sine(t) − Gθuf − Hθεf

(4.10)



38

Using (4.4), (4.5) and (4.9), the output error in (4.10) can be written as

ε(t, θ) =
[

(G0 − Gθ)Sin + (Ḡ∗ − Ḡ)(GθC + Hθ(1 − CḠ∗)H̄
−1
∗ )

]

r(t)+

+
[

(H0 − Hθ)Sin + Hθ(Sin − (1 − CḠ∗)H̄H̄−1
∗ )

]

e(t)
(4.11)

Using the fact that the closed-loop (unfiltered white) noise e(t) is uncorrelated with

the reference signal r(t), autocorrelation of ε(t, θ) and application of Parseval’s

theorem leads to the bias distribution given in (4.8).

Although the result in (4.8) is fairly general, it provides little insight in the bias

distribution of plant model estimate Gθ and disturbance model estimate Hθ. It can

be seen that in the general situation of Ḡ∗ 6= G0Sin, H̄∗ 6= H0Sin, the plant model

estimate Gθ will be influenced by the second term (Ḡ∗−Ḡ)(GθC+Hθ(1−CḠ∗)H̄
−1
∗ )

which again depends on the disturbance model Hθ. However, this second term

can be made small in case a consistent estimate Ḡ∗ is obtained of the closed-

loop transfer function G0Sin. This effect was also observed in the standard two-

stage method. However the bias expression is slightly more complicated due to

estimation of the disturbance model Hθ which is now also based on a filtered

prediction error ε(t).

More simplified expressions of the bias distribution can be obtained by assuming

that consistent estimate of the closed-loop transfer functions G0Sin and/or H0Sin

are obtained in the first step of the method. A bias distribution similar to the

standard two-stage method is obtained by assuming the consistent estimation Ḡ∗ =

G0Sin and the result is summarized in the following.

Corollary 4.1.1. Let Ḡ∗ = Ḡ, H̄∗ 6= H̄ in the first step in the extended two-stage

method, then for N → ∞ the two-norm minimization of the output error in (4.6)

is equivalent to

min
θ

∫ π

−π

[

|(G0 − Gθ)|2 |Sin|2 Φr(ω)+

+
∣

∣(H0 − Hθ)Sin + Hθ(1 − H̄H̄−1
∗ )Sin

∣

∣

2
Φe(ω)

]

dω
(4.12)
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Proof: Substitution of Ḡ∗ = G0Sin, H̄∗ 6= H̄ into (4.8) yields the result of (4.12).

In the case Ḡ∗ = G0Sin, H̄∗ 6= H̄, a tunable bias expression for the model esti-

mate Gθ is obtained that is weighted by the sensitivity function and the spectrum

of the reference signal. In case of an independent parametrization of plant model

Gθ and disturbance Hθ, the bias distribution of the model in the minimization

of (4.12) can be decoupled from the disturbance model estimation. However the

disturbance model estimate Hθ will still be biased due to the influence of the term

Hθ(1 − H̄H̄−1
∗ )Sin, which is an effect that can be eliminated only if H̄∗ = H0Sin.

It should be noted that exchanging the consistency conditions Ḡ∗ 6= G0Sin and

H̄∗ = H0Sin does not provide the converse of the result mentioned in (4.12). The

result is summarized in the following corollary.

Corollary 4.1.2. Let Ḡ∗ 6= G0Sin, H̄∗ = H̄ in the first step in the extended two-

stage method, then for N → ∞ the two-norm minimization of the output error in

(4.6) is equivalent to

min
θ

∫ π

−π

[

∣

∣(G0 − Gθ)Sin + (Ḡ∗ − Ḡ)(GθC + Hθ(1 − CḠ∗)H̄
−1
∗ )

∣

∣

2
Φr(ω)+

+
∣

∣(H0 − Hθ)Sin + (Ḡ∗ − Ḡ)CHθ

∣

∣

2
Φe(ω)

]

dω

(4.13)

Proof: Substitute Ḡ∗ 6= G0Sin, H̄∗ = H̄ into (4.8) and the result in (4.13) is

obtained.

In case Ḡ∗ 6= G0Sin, H̄∗ = H̄, two terms including (Ḡ∗ − Ḡ) remain and will

effect the bias distribution of Gθ and Hθ. The biased estimation of Ḡ will effect

both the estimation of the plant model and the disturbance model. As a result,

no explicit tunable expressions of the misfit between G0 and Gθ, and between H0

and Hθ are obtained.

The most simplified results is obtained when consistent estimates of both the

closed-loop transfer function G0Sin and H0Sin are obtained in the first step of the
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method. In that case explicit tunable expressions for both the plant model Pθ and

the disturbance model Hθ can be derived.

Corollary 4.1.3. Let Ḡ∗ = Ḡ, H̄∗ = H̄ in the first step in the extended two-stage

method, then for N → ∞ the two-norm minimization of the output error in (4.6)

is equivalent to

min
θ

∫ π

−π

[

| G0 − Gθ|2 |Sin|2 Φr(ω)+

+ |H0 − Hθ(|2 |Sin|2 Φe(ω)
]

dω

(4.14)

Proof: Substitute Ḡ∗ = G0Sin, H̄∗ = H̄ into (4.8), then (4.14) is obtained.

It is easily observed that in the case Ḡ∗ = G0Sin and H̄∗ = H0Sin, the difference

|G0 − Gθ|2 is weighted by the reference spectrum Φr and the difference |H0 − Hθ|2

is weighted by noise spectrum Φe, while both are weighted by the input sensitiv-

ity function Sin. As a result, explicit tunable bias expressions are obtained for

both plant and noise model dynamics. Moreover, consistent models for plant or

disturbance dynamics can be obtained if either G0 ∈ G or H0 ∈ H.

4.2 Case study

Several parameter identification methods that address the posed identification

problem have been proposed in this dissertation. In most of the existing methods,

the emphasis is placed on the control-relevant approximation of the system dynam-

ics only and ignore the approximate modeling of the disturbance that is relevant

in disturbance control. The new methodology extended two stage method we pro-

posed allows the estimation of low order control relevant plant and disturbance

models based on the time series r(t) and y(t), and allows for a control-relevant

estimation of low order models of both system and disturbance dynamics. With

this method, a tunable bias distribution of the plant model and disturbance model

is obtained.
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A case study will be given in this section and be used to illustrate the identifica-

tion concepts proposed and analyzed in this dissertation. The case study consists

of a discrete-time sixth order plant G0(q) and monic stable and stably invertible

disturbance filter H0(q). The dynamics of the plant and disturbance filter are given

by

G0(q) =
1

100
· −7.737q5 + 1.113q4 − 4.014q3 + 1.377q2 − 6.016q − 2.493

q6 − 1.441q5 + 2.296q4 − 1.791q3 + 2.181q2 − 1.317q + 0.9206

H0(q) =
q6 − 0.5574q5 + 1.293q4 − 0.7303q3 + 1.269q2 − 0.2837q + 0.4032

q6 − 1.441q5 + 2.296q4 − 1.791q3 + 2.181q2 − 1.317q + 0.9206

and follow an [6,6,6,1]-ARMAX structure [59] with a common denominator.

An amplitude Bode plot of the sixth order plant G0 and disturbance H0 is given

in Fig. 4.2, where it can be observed that the plant G0 exhibits a large resonance

frequency at approximately 1 rad/s and small resonance modes on either side. Due

to the common dynamics in G0 and H0, the disturbance filter exhibits a similar

dynamic behavior, but has different zero locations. The dynamics of G0 and H0

is characteristic for a mechanical system subjected to external disturbances that

excite the same resonance modes.

As G0 and H0 are known in this case study, the knowledge of the plant G0

and disturbance dynamics H0 is used to design a simple 2nd order discrete time

lead/lag feedback controller

C(q) =
0.9455q + 0.9347

q2 − 0.1315q + 0.3956

that is used for the reduction of the main resonance mode at approximately 1 rad/s.

The feedback controller C(s) is tuned in such a way that the main resonance mode

in the open-loop disturbance dynamics H0(q) in (3.4) has been eliminated in the

closed-loop disturbance filter Sin(q)H0(q) of (3.7). For identification purposes, the

closed-loop input u(t) and output y(t) signals in (3.8) and (3.7) are generated of

N = 4096 points, where the r(t) and e(t) are chosen as independent Gaussian
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Figure 4.2. Amplitude Bode plot of system dynamics G0 (solid) and disturbance

dynamics H0 (dashed).

distributed white noise signals. The reference signal r(t) has a unit variance,

whereas the noise e(t) has a variance λ = 0.04.

The objective of the case study is fairly straightforward: find low (2nd order)

models Gθ and Hθ that capture the main resonance mode in G0 and H0 on the

basis of closed-loop data. Since the mutual influence of the estimation between

the input-output model and the noise model can be decoupled by employing an

independent parametrization, the low order models are parametrized using a BJ

structure:

G(q, θ) =
b2q

−2 + b1q
−1 + b0

q−2 + a1q−1 + a0

H(q, θ) =
q−2 + c1q

−1 + c0

q−2 + d1q−1 + d0

θ = [ a1 a0 b2 b1 b0 c1 c0 d1 d0 ] ∈ R
1×9

(4.15)

The estimated low order models Gθ and Hθ can then be used to design an opti-

mal low order controller for disturbance suppression of the main resonance mode.

The case study is illustrative for the methodologies discussed in this dissertation,

as it requires the estimation of low order models that describe the system dynam-
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ics and the disturbance dynamics to design a low order controller for disturbance

reduction. Three different methods are compared: direct identification, two-stage

method and the proposed extended two-stage method. To distinguish between the

bias and variance effects of the different closed-loop identification methods, several

low order models will be estimated using Monte-Carlo simulations on the basis of

different stochastic realizations of the closed-loop data. The identification results

are shown in Fig. 4.3, Fig. 4.4 and Fig. 4.5, respectively.
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Figure 4.3. Identification results of direct identification. Left: Bode plot of plant

G0 (solid) and the 2nd order model Gθ (dashed). Right: Bode plot of H0 (solid)

and the 2nd order noise model Hθ (dashed).

From Fig. 4.3, it can be observed that the estimate of both plant model Gθ and

Hθ can not fit the real system very well even though they are estimated separately.

The possible reason for the bias of both plant model Gθ and Hθ lies in the fact

that the signal to noise ratio used in this case study is 11, and it may be too small

for direct method to get a good identification results.

From Fig. 4.4 it can obtained that the estimate of the plant model Gθ can get

a consistent identification, but the estimate of the noise model Hθ can not fit the

real noise filter very well. From the description of the two stage method, we know

that the estimate of the noise model are always bias and it will tend to the closed



44

10
−1

10
0

−40

−20

0

20

10
−1

10
0

−300

−200

−100

0

Frequency [Hz]

A
m

p
li
tu

d
e[

d
B

]
P

h
as

e[
d
eg

]

10
−1

10
0

−10

0

10

20

30

40

10
−1

10
0

−150

−100

−50

0

50

Frequency [Hz]

A
m

p
li
tu

d
e[

d
B

]
P

h
as

e[
d
eg

]

Figure 4.4. Identification results of two-stage method. Left: Bode plot of plant G0

(solid) and the 2nd order model Gθ (dashed). Right: Bode plot of H0 (solid) and

the 2nd order noise model Hθ (dashed).

loop noise filter H0Sin.

From Fig. 4.5, it is obvious to see that the estimate of both plant model Gθ

and noise model Hθ can get a consistent fit of the real system. By comparing the

identification results of these three method, we can conclude that the extended

two stage method gives a much better approximation of the plant model and noise

model than direct method and two stage method.

4.3 Application to Hard Disk Drive

4.3.1 Experimental setting

Due to the extreme miniaturization of the components, and the importance of

the hard disk’s role in the PC, the entire hard disk is manufactured to a high degree

of precision. The main part of the disk is isolated from outside air to ensure that no

contaminants get onto the platters, which could cause damage to the read/write

heads. In order to obtain reliable and realistic experimental data to measure
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Figure 4.5. Identification results of extended two-stage method. Left: Bode plot

of plant G0 (solid) and the 2nd order model Gθ (dashed). Right: Bode plot of H0

(solid) and the 2nd order noise model Hθ (dashed).

windage disturbance, the cover of the hard disk drive should keep untouched. So,

the same closure with an aperture covered by a transparent material for LDV on

hard disk is needed which is illustrated in left part of Fig. 4.6. It can be seen that

the cover has been left intact while a small plastic transparent apperture is used to

measure the read/write head position with a LDV. The schematic representation

of the experiment setup is also depicted in the right part of Fig. 4.6, where it can

be seen that the LDV measurement is fed back through an external controller. An

additive reference signal r(t) is applied for excitation and identification purposes.

In Fig. 4.7, a block diagram of experiment configuration of hard disk drive is

shown. Here G0(q) indicates the dynamics of voice-coil motor (VCM), E-block and

suspension, and H0(q) denotes the external windage disturbance. For experimen-

tation purposes the external controller C(q) is a discrete time PD controller given

by

C(q) =
4.219e005q − 4.097e005

q − 0.1879
(4.16)

where C(q) is used only to stabilize the VCM during the experiments. Without

such a controller, the open loop marginally unstable VCM drifts and LDV mea-
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Figure 4.6. Hard disk drive with a slot for LDV measurement (left); Experiment

configuration of HDD and servo controller C for track following (right)

surements are compromised.

4.3.2 Experiments and spectral analysis

The experiment setup indicated in Fig. 4.6 is used to gather time sequences

of external reference signal r(t), input signal u(t) and output position error signal

y(t). To analyze the effect of windage disturbance dynamics in the hard disk

drive, experiments were conducted with the read/write head located at 3 different

positions on the disk. The VCM was positioned via a feedback controller at the

OD ( outer diameter), the MD (middle diameter) and ID (inner diameter) of the

platter.

For validating the parametric estimation results of actuator dynamics G0(q)

and windage disturbance dynamics H0(q) with extended two-stage identification

method, non-parametric estimates of G0(q) and H0(q) are needed, which can be
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Figure 4.7. Closed-loop data generating system

obtained by a spectral analysis [59], and given by

P̂ (ω) := Φ̂−1
ru (ω)Φ̂ry(ω) (4.17)

Ĥ(ω) :=
√

(Φ̂yy(ω) − Φ̂2
ry(ω)Φ̂rr(ω))Φ̂−1

ru (ω)λ−1 (4.18)

where Φ̂ru(ω) denotes an approximation of the transfer function from reference

signal r(t) to input signal u(t), Φ̂ry(ω) denotes an approximation of the transfer

function from reference signal r(t) to output position error signal y(t), Φ̂yy(ω) and

Φ̂rr(ω) are approximations of the (auto) spectra of output position error signal y(t)

and reference signal r(t), respectively. λ is the variance of the external disturbance.

It should be noted that Ĝ(ω) and Ĥ(ω) will only be used as a validation tool

for the parametric models Gθ and Hθ being estimated with extended two-stage

method.

4.3.3 Application of extended two-stage method

In this section, the extended two-stage method discussed in Section 4.1 is ap-

plied to data measured using closed loop experiments.

In the case when the VCM located at the OD (outer diameter) of the plat-

ter, reference signals r(t), input signal u(t) and output position error signal y(t)
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measured in closed-loop experiment setting (Fig. 4.7) are plotted in Fig. 4.8. In

the first step of the method, a 17th order ARMAX model structure is selected

to estimate the closed-loop actuator dynamics Ḡ and closed-loop windage distur-

bance dynamics H̄ which are used for later filtering purposes. The minimization

of the prediction error (4.3) leads to 12th order model estimates of the open-loop

actuator dynamics G0 and windage disturbance dynamics H0 which are depicted

in Fig. 4.9 and Fig. 4.10, respectively.

Fig. 4.9 presents the amplitude plots of the non-parametric estimate of actu-

ator dynamics G0 and the 12th order parametric model Gθ. Fig. 4.10 shows the

amplitude plot of non-parametric estimate of windage disturbance dynamics H0

and 12th order parametric model Hθ. It can be observed that a good estimation

of E-block resonance mode, torsion mode and sway mode is obtained in Gθ and

Hθ that are parametrized to share the same resonance modes.

To analyze the effect of windage disturbance dynamics in the hard disk drive,

other two experiments also were conducted when VCM was positioned at the MD

(middle diameter) and ID (inner diameter) of the platter, respectively. Similar to

the process of analyzing the data measured in the case when the VCM located

at the OD (outer diameter) of the platter, the estimate models Gθ and Hθ are

obtained and compared for illustration in Fig. 4.11 and Fig. 4.12.

Fig. 4.11 and Fig. 4.12 present the amplitude plot of 12th order parametric

model Gθ and Hθ when VCM was located at 3 different positions of the platter,

respectively. From Fig. 4.11, we can observe that the positions of resonant modes

of system dynamics keep the same even though data was measured at different

positions. From Fig. 4.12, it can be seen that the position of VCM will affect the

magnitude of the windage disturbance dynamics.
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Figure 4.8. Time plots of measured data: r(t) (top); u(t) (middle); y(t) (bottom)

4.4 Conclusions

In this chapter, a new control relevant parametric identification scheme is intro-

duced and analyzed and is so called extended two-stage identification algorithm.

In this method, high order models are estimated in the first step for filtering pur-

poses. In the second step, filtered signals are used to provide means for low order

model approximation of both actuator and disturbance dynamics which can be

used to design a low order control for disturbance rejection. Comparing with other

identification methods such as two stage method and direct methods, the extended

two stage methods can be not only used to estimate a low order plant model, but

also a low order disturbance model which can be used to design a low order control

design for disturbance rejection.
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Chapter 5

Modele matching using

orthonormal basis functions

5.1 Introduction

Affine model parametrizations using orthonormal basis functions have been

widely used in system identification and adaptive signal processing [36, 65, 14, 64,

80, 13, 35, 37]. The main advantage of using orthonormal basis functions in a (gen-

eralized) orthonormal Finite Impulse Response (FIR) filter lies in the possibility of

incorporating prior knowledge of the system dynamics into the identification and

approximation process. As a result, more accurate and simplified models can be

obtained with a limited number of parameters in the offline model representation.

In this chapter the linear parameter structure of a generalized FIR filter is used to

formulate analytic solutions for model matching problems.

In the constructions of the orthonormal basis functions, Laguerre and Kautz

basis have been used successfully in system identification and signal processing

[85, 86]. A unifying construction [65] generalized both the Laguerre and Kautz

basis in the context of system identification. Laguerre basis can be used for the

identification of well-damped dynamical systems with one dominant first-order

53
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[85], whereas Kautz basis is suitable for the identification of dynamical systems

with second order resonant modes [86]. A further generalization of these results

for arbitrary dynamical systems was reported in [36] and is called generalized

(orthonormal) basis functions. The generalized orthonormal basis and unifying

construction can be used for systems with wide range of dominant modes, i.e,

both high frequency and low frequency behavior.

It has been shown in [36] that if the dynamics of the orthonormal basis func-

tions approaches the dynamics of the system to be approximated, the convergence

rate of the affine series expansion will increase and as a result the number of the

parameters to be determined to accurately approximate the system will be much

smaller. Therefore, the choice of the orthonormal basis becomes an important

issue in order to obtain accurate models.

In this chapter, the use of a generalized FIR filter F (q, θ) is considered to solve

a model matching problem of the form

min
θ

‖H(q) − F (q, θ)G(q)‖2 (5.1)

where H(q) and G(q) are models that are stable but not necessarily have a stable

inverse. The model matching in (5.1) occurs in many applications that require the

computation of a stable filter to approximate an unstable system. The problem

(5.1) arises for example in Active Noise Control (ANC), there H(q) is primary

noise path, G(q) is second noise path, and F (q, θ) is a feedforward controller to be

designed [92]. This chapter provides analytic solutions to the optimization of (5.1)

in case F (q, θ) is a generalized FIR filter, parameterized using an orthonormal basis

function. Furthermore, a comparison is made between the approximation results

for different orthonormal basis functions that use the same prior knowledge on the

system dynamics of H(q) and G(q) both of which can be estimated from closed

loop identification method depicted in Chapter 4.
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5.2 Structure of orthonormal basis functions

Consider a linear time invariant stable discrete time system F (q) written as

F (q) =
∞

∑

k=0

Fkq
−k (5.2)

where {Fk}k=0,1,2··· are the sequence of Markov parameters. In general, the system

F (q) can be approximated by F̂ (q) using a finite number of expansion coefficients

θ = {Fk}k=0,1,··· ,N−1 through

F̂ (q, θ) =
N−1
∑

k=0

Fkq
−k (5.3)

The model F̂ (q) represented via (5.3) is a Finite Impulse Response (FIR) model and

has some favorable properties. First, it is linearly parameterized. Secondly, least

square estimation of the parameters θ on the basis of input/output measurements

of F (q) is robust against colored noise on the output measurements, which is one

of the main features exploited in model identification.

However, it is known that for a dynamical system including both high and

low frequency dynamics, a large number of coefficients N are required in order to

capture the most important dynamics of the system F (q) into the model F̂ (q).

Therefore, the FIR model structure in general is too simple to capture a system

with a broad-band dynamics.

Suppose {Vk(q)}k=0,1,2,··· is an orthonormal basis sequence for the set of systems

in H2. Then there exists a unique expansion

F (q) =
∞

∑

k=0

LkVk(q) (5.4)

where {Lk}k=0,1,2,··· are the generalized orthonormal expansion coefficients for the

basis {Vk(q)}. Based on this rationale, a model of the dynamical system F (q) can

be represented by an finite length N series expansion

F̂ (q, θ) =
N−1
∑

k=0

LkVk(q), θ = [LT
0 , · · · , LT

N−1]. (5.5)
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When Vk(q) are chosen as Vk(q) = q−k, then (5.5) simplifies to (5.3). There-

fore, (5.5) will be called a generalized FIR filter in the remainder of the chapter.

The orthornomal basis sequence {Vk(q)}k=0,1,2,··· can incorporate the possible prior

knowledge of the system to be approximated, and the model F̂ (q) can be more

accurate for a finite number of coefficients N compared to a standard FIR model

structure. It is obvious that the accuracy of the model F̂ (q) depends on the choice

of the basis function Vk(q).

A well-known orthonormal basis function expansion is based on the Laguerre

functions [85] and described by

Vk(q) =
√

1 − a2q
(1 − aq)k

(q − a)k+1
, |a| < 1 (5.6)

where the variable a should be chosen in a range that matches the dominating

dynamics of the system to be approximated. Although useful, the Laguerre func-

tions Vk(q) can only include knowledge of a single pole. For moderately damped

systems, Kautz functions [86] have been employed and they are given as

Vk(q) =



















√

(1 − b2)(1 − c2)

q2 − b(c + 1)q + c

(

cq2 − b(c + 1)q + 1

q2 − b(c + 1)q + c

)k

(q − b)
√

(1 − c2)

q2 − b(c + 1)q + c

(

cq2 − b(c + 1)q + 1

q2 − b(c + 1)q + c

)k (5.7)

where |b| < 1 and |c| < 1.

A unifying construction of the orthonormal basis function was presented in [65]

and given by

Vk(q) =

(

√

1 − |ξk|2
q − ξk

)

k−1
∏

i=0

(

1 − ξ̄iq

q − ξi

)

(5.8)

where {ξi}i=0,1,2,··· ,N−1 is the variety of the poles. A model structure using uni-

fying construction is illustrated in Fig. 5.1. The advantage of using the unifying

construction (5.8) lies in the possibility to include knowledge of multiple possible

pole locations in the generalized FIR filter, while the orthonormality of basis Vk(q)

is still preserved. This property may lead to a more accurate model F̂ (q, θ) of the

system F (q) to be approximated.
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Figure 5.1. Illustration of model structure using unifying construction of the basis

functions.

The set of (generalized) orthonormal basis functions presented in [36] provides

an alternative way to construct an orthonormal basis with all-pass functions. For

details on the construction of the generalized basis functions Vk(q) one is referred

to [36]. The following result shows the existence and construction of the inner

function which is crucial to create the orthonormal basis functions.

Proposition 5.2.1. Let (A,B) be the state matrix and input matrix of an input

balanced realization of a discrete time transfer function H ∈ RHp×m
2 ( RHp×m

2

indicates the set of real rational p × m matrix functions ) with a McMillan degree

n > 0, and with rank(B) = m. Then

(a) There exist matrices C,D such that (A,B,C,D) is a minimal balanced real-

ization of a square inner function P .

(b) A realization (A,B,C,D) has the property mentioned in (a) if and only if

C = UBT (In + AT )−1(In + A)

D = U [BT (In + AT )−1B − Im]
(5.9)

where In is n×n identity matrix, Im is m×m identity matrix, and U ∈ Rm×m

is any unitary matrix.
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Proof: This proposition is original described in [36]. For the proof, one is referred

to [36].

Proposition 5.2.1 yields a square m × m inner transfer function P (q) = D +

C(qI − A)−1B, where (A,B,C,D) is a minimal balanced realization. With the

information obtained in Proposition 5.2.1, the orthonormal basis functions can be

created with following proposition.

Proposition 5.2.2. Let P (q) is a square inner function with McMillan degree

n > 0 and (A,B,C,D) is a minimal balanced realization of P (q). Define the input

to state transfer function V0(q) := (qI − A)−1B and

Vk(q) = (qI − A)−1BP k(q)

= V0(q)P
k(q)

(5.10)

then the set of functions {Vk(q)}k=0,1,2,... are orthonormal basis functions which

have the following property

1

2πj

∮

Vi(q)V
T
j (1/q)

dq

q
=







I i = j

0 i 6= j
(5.11)

Proof: For the proof, one is referred to [37].

Proposition 5.2.1 and Proposition 5.2.2 show how to use an inner function to

construct the orthonormal basis function Vk(q). In summary, if an orthonormal

basis with poles at {ξi}i=0,1,2,··· ,N−1 is desired, then from Proposition 5.2.1 an inner

function P (q) with these poles can be created. As a result, a balanced realization

(A,B,C,D) of inner function P (q) can be found to form the orthonormal basis

function Vk(q) as in (5.10). The construction of a generalized FIR filter on the

basis of the (generalized) orthonormal basis function is shown in Fig. 5.2.

The difference between the generalized basis functions in (5.10) and the uni-

fying construction (5.8) is that using (5.10) the poles of F̂ (q) are restricted to a
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Figure 5.2. Illustration of model structure based on (generalized) orthonormal

basis functions.

finite set {ξ0, · · · , ξn−1}. Using unifying construction (5.8), the poles of F̂ (q) can

be extended to infinite. The reason the generalized basis functions can only incor-

porate finite modes is that the order of the inner function P (q) in the orthonormal

basis functions is finite. A more general orthonormal basis functions which can

incorporate an infinite number of poles is summarized in the following proposition.

Proposition 5.2.3. Consider a sequence of inner function Pi(q), i = 0, 1, 2, · · · ,
each Pi(q) having a corresponding balanced realization (Ai, Bi, Ci, Di) and defining

Φi(q) = (qI − Ai)
−1Bi. Then the set of functions {Vi(q)}i=0,1,2,··· with

V0(q) = Φ0(q)

Vi(q) = Φi(q)P0(q)P1(q) · · ·Pi−1(q)
(5.12)

is mutually orthonormal.

Proof: The proof is similar to the proof for Proposition 5.2.2, and is omitted for

sake of brevity.

Because the set of functions {Vi(q)}i=0,1,2,··· are mutually orthonormal, then

Vi(q) can constitute a set of orthonormal basis functions. The construction of
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orthonormal basis function described in Proposition 5.2.3 is named (generalized)

mutual orthonormal basis functions. With Vi(q) in place, the model F̂ (q) of a

dynamical system F (q) can be represented as

F̂ (q) =
N−1
∑

k=0

LkΦk(q)P0(q)P1(q) · · ·Pk−1(q)

=
N−1
∑

k=0

LkVk(q).

(5.13)

If P (q) = P0(q) = P1(q) = · · · = PN−2(q), then (5.12) can be simplified to (5.10)

and therefore the construction of the basis functions in (5.12) is the generalization

of the construction of basis functions in (5.10).

A model structure using (generalized) mutual orthonormal basis functions is

illustrated in Fig. 5.3.

P0(z) . . . PN−2(z)

L1

-

-

-

. . .

Φ1

6

-

6

LN−1

6

6

ΦN−1

-
+

+

y(t)

+

6

6

L0

+

6

Φ0

-
x(t)

6

-

Figure 5.3. Illustration of model structure using (generalized) mutual orthonormal

basis functions

Compared with Fig. 5.3 and Fig. 5.1, it is easy to observe that when each

Pi(q) in Fig. 5.3 only include one pole ξi, then the construction of generalized

mutual orthonormal basis functions (5.12) is equal to unifying construction (5.8).

Therefore, the unifying construction described in (5.8) is again a special case of

the generalized mutual basis functions given in (5.12).
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5.3 Model matching with generalized FIR filters

Given the parametrization results for a filter F (q, θ) using generalized mutual

orthonormal basis function, the model matching problem defined earlier in (5.1)

will be solved. The model matching in (5.1) occurs in many applications that

require the computation of a stable filter to approximate an unstable system and

arises for example in feedforward control design algorithms for active noise control.

For the model matching problem (5.1), let the dynamical systems H(q) and

G(q) be given by the state space realizations (Ah, Bh, Ch, Dh) and (Ag, Bg, Cg, Dg),

where H(q) is stable and stable invertible, and G(q) is stable but not stable invert-

ible. As a result, the filter F (q, θ) can not be directly obtained by using H(q)/G(q).

Furthermore, the objective is to find a filter F (q, θ) such that

‖H(q) − F (q, θ)G(q)‖2 (5.14)

is minimized, where F (q, θ) is parametrized affinely using an orthonormal FIR ex-

pansion. It is straightforward to show that the minimization of (5.14) is equivalent

to minimizing

‖H̄(q, θ)‖2, H̄(q, θ) := H(q) − F (q, θ)G(q)

where H̄(q, θ) is parametrized by a state-space representation (A,B,C(θ), D(θ))

in which the output matrix C(θ) and the feedthrough matrix D(θ) depend affinely

on the parameter θ. To formulate an analytic solution to (5.1), first an expres-

sion for the state space realization (A,B,C(θ), D(θ)) is derived in case F (q, θ) is

parametrized using an orthonormal FIR expansion. The state space realization of

the orthonormal FIR expansion F (q, θ) is given by the following two propositions.

Proposition 5.3.1. Suppose a square inner transfer function P (q) has a minimal

balanced realization (Ab, Bb, Cb, Db) with the state dimension nb > 0, then for any

k > 1 the realization (Ak, Bk, Ck, Dk) of P (q)k can be computed with the recursive
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forms

Ak =





Ak−1 0

BbCk−1 Ab





Bk =





Bk−1

BbDk−1





Ck =
[

Dk−1Cb Ck−1

]

Dk = DbDk−1

(5.15)

and is a minimal balanced realization of P (q)k with state dimension n · k.

Proof: For the proof, one is referred to [36].

Proposition 5.3.2. Given an orthonormal FIR expansion F (q, θ) in the form of

F (q, θ) = Df +
n

∑

k=1

Lk−1Vk−1(q), θ = [Df , L
T
0 , · · · , LT

n−1]

where Vk−1(q) are obtained from (5.10). Let the inner function P (q)n−1 has a

minimal balanced realization (An−1, Bn−1, Cn−1, Dn−1), then (An−1, Bn−1, Cf , Df )

is a realization of F (q, θ), where Cf = [LT
0 , LT

1 , · · · , LT
n−1].

Proof: The proof of this proposition follows by inspection.

If (5.12) is chosen to create the orthonormal basis function Vk(q), i.e, many different

all-pass functions Pi(q) are selected to create the orthonormal basis function Vk(q),

then the state space realization of orthonormal FIR can still be easily obtained fol-

lowing the similar procedures described in Proposition 5.3.1 and Proposition 5.3.2.

With the state space realization of H(q), G(q) and F (q, θ), the state space

realization (A,B,C(θ), D(θ)) of H(q) − F (q, θ)G(q) is given by

A =









Ah 0 0

0 Ag 0

0 Bn−1Cg An−1









, B =









Bh

Bg

Bn−1Dg









C(θ) =
[

Ch −DfCg −Cf

]

, D(θ) = [DfDg]

θ = [Df , L
T
0 , · · · , LT

n−1]

(5.16)
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With these results, the minimization of ‖H̄(q, θ)‖2 can be computed as a func-

tion of θ and the result is summarized in the following theorem.

Theorem 5.1. Consider the discrete-time system H̄(q, θ), Minimization of ‖H̄(q, θ)‖2
2

is equivalent to

min
θ
{tr

[

D(θ)D(θ)T + C(θ)QC(θ)T
]

} (5.17)

where Q is the solution to the Lyapunov (Stein) equation

AQAT − Q + BBT = 0

The optimization in (5.17) can be solved via a SemiDefinite Programming (SDP)

problem

min
γ,X1,X2,θ

γ such that

γ − tr{X1} − tr{X2} > 0,





X1 C(θ)

C(θ)T Q−1



 > 0,





X2 D(θ)

D(θ)T I



 > 0

(5.18)

where γ is a positive real number.

Proof: Since C(θ) and D(θ) depend affinely on the parameter θ, the condition

tr{D(θ)D(θ)T} + tr{C(θ)QC(θ)T} ≤ γ

can be recasted as a Linear Matrix Inequality (LMI). The LMI will be of the form

tr{X1} + tr{X2} < γ,





X1 C(θ)

C(θ)T Q−1



 > 0,





X2 D(θ)

D(θ)T I



 > 0
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where X1 = XT
1 and X2 = XT

2 are two new (slack) variables of appropriate dimen-

sion needed to formulate the convex constraints. As a result, the SDP problem

min
γ,X1,X2,θ

γ such that

γ − tr{X1} − tr{X2} > 0,





X1 C(θ)

C(θ)T Q−1



 > 0,





X2 D(θ)

D(θ)T I



 > 0

can be used to find the value of the parameter θ that minimizes ‖H̄(q, θ)‖2 =
√

γ.

A more efficient algorithm to compute θ is by exploiting the structure of C(θ)

and D(θ). Since H̄(q, θ) is defined as H(q) − F (q, θ)G(q), it follows that C(θ) =

[Ch −DfCg −Cf ] and D(θ) = Dh −DfDg where the pairs (Ch, Dh), (Cg, Dg) and

(Cf , Df ) are the output matrices of H(q), G(q) and F (q, θ) respectively. Defining

the parameter θ as

θ =
[

Df Cf

]

the minimization of ‖H̄(q, θ)‖2 can also be written as a weighted least squares

problem. The result is summarized in the following corollary.

Corollary 5.3.1. The analytic solution for the minimization

min
θ
{tr

[

D(θ)D(θ)T + C(θ)QC(θ)T
]

} (5.19)

is given by

θ = [Y XT ][XXT ]−1 (5.20)

where

Y =
[

Dh Ch 0 0
]

H, X =
[

D C
]

H

C =





0 Cg 0

0 0 I



 , D =





Dg

0




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and H is found by a Cholesky factorization of the positive definite matrix Q̄ =




I 0

0 Q



.

Proof: Matrices C(θ) and D(θ) in (5.16) can be rewritten as

C(θ) =
[

Ch 0 0
]

− θC, D(θ) = Dh − θD,

C :=





0 Cg 0

0 0 I



 , D :=





Dg

0





Define

E =
[

Dh Ch 0 0
]

− θ
[

D C
]

, Q̄ =





I 0

0 Q





then (5.19) can be rewritten as

‖H̄(q, θ)‖2
2 = tr{EQ̄E}

where H is found by a Cholesky factorization Q̄ = HHT of the positive definite

matrix Q̄. With the definition of

Y =
[

Dh Ch 0 0
]

H, X =
[

D C
]

H

E is defined as E = Y − θX and the minimization of tr{EQ̄E} for Q̄ > 0 is

a standard weighted least squares optimization problem for which the analytic

solution can be computed via (5.20).

5.4 Model error bounds

With full knowledge of the dynamics of H(q) and G(q), the modeling matching

problem in (5.1) can be seen as an H2-optimal control or filtering problem. In case

no restrictions on the parametrization of F (q, θ) are imposed, the minimization

‖H(q) − F (q, θ)G(q)‖2 can be solved with standard H2 optimal control solutions

[93]. Including a requirement on the parametrization of F (q, θ) in the form of an
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affine orthonormal FIR model structure, only allows the model F (q, θ) to approach

the optimal solution Fopt(q).

To formulate error bounds for the model error between F (q, θ) and Fopt(q), the

model error is quantified by the 2-norm

‖H(q) − F (q, θ)G(q)‖2 (5.21)

and the optimal solution Fopt(q) gives a lower bound ‖H(q) − Fopt(q)G(q)‖2 for

the model error in (5.21). An upper bound for (5.21) can be formulated by con-

sidering the poles ξi of the basis functions, when F (q, θ) is parametrized using an

affine orthonormal FIR model structure. The result is summarized in the following

proposition.

Proposition 5.4.1. Let {κi} be the set of stable poles of H(q) and stable zeros

of G(q), let {σi} be the set of unstable zeros of G(q) and let the all-pass transfer

function P (q) used for the construction of the orthonormal basis functions have

poles ρj, j = 1, · · · , np. Define

λ := max
i

np
∏

j=1

∣

∣

∣

∣

νi − ρj

1 − νiρj

∣

∣

∣

∣

, νi = κi ∪ σ−1
i

and denote

F (q, θ) = Df +
n

∑

k=1

Lk−1Vk−1(q), θ = [Df , L
T
0 , · · · , LT

n−1].

Then there exists a finite constant c ∈ R and any η ∈ R, λ < η < 1 such that

‖H(q) − F (q, θ)G(q)‖2 ≤ c
ηn+1

√

1 − η2

Proof: Let Fopt(q) be the solution to (5.21), where Fopt(q) is freely parametrized,

e.g. Fopt is not restricted to be an affine orthonormal FIR. Then it is straightfor-

ward to show that (5.21) is an LQG control problem that minimizes

∞
∑

t=1

zT (t)z(t), z(t) = H(q)d(t) + u(t),

u(t) = Fopt(q)G(q)d(t)
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in which only the variance of the control signal u(t) is being penalized. For such

a minimum variance controller it was shown in [4] the zeros of G(q) should be

mapped into the unit circle in order to obtain a stable minimum variance controller.

As a result, the poles of Fopt(q) will include all stable poles of H(q), all stable

zeros of G(q), and all unstable zeros of G(q) which are mapped into the unit

circle, e.g. νi = κi ∪ σ−1
i . Therefore, minθ ‖H(q) − F (q, θ)G(q)‖2 is equivalent

to minθ ‖Fopt(q) − F (q, θ)‖2. For computation of the upper bound of model error

‖Fopt − F (q, θ)‖2, one is referred to the work of [34].

The above proposition shows that if the poles {ρj} of P (q) approach the poles

{νi}, then λ = 0 and the upper bound of model error ‖H(q) − F (q, θ)G(q)‖2 will

decrease drastically. Therefore, from Proposition 5.4.1 it can be observed that an

appropriate selection of the poles of the all-pass function will have an important

contribution to the reduction of the model error ‖H(q) − F (q, θ)G(q)‖2. This is

due to the improvement in the convergence rate of the coefficient {Lk−1}k=1,...,n in

the generalized FIR filter expansion.

5.5 Case study

For the case study, consider a 4th order system H(q) and a 2nd order system

G(q)

H(q) =
q2 − 1.2q + 0.4

q2 − 1.8q + 0.8
· q2 − q + 0.5

q2 − q + 0.89
,

with poles at 0.9 ± 0.3i, 0.5 ± 0.8i

G(q) =
q2 − 1q + 1.94

q2 − q + 0.74
,

with poles at 0.5 ± 0.7i, zeros at 0.5 ± 1.3i

sampling time ∆T = 1

(5.22)

The objective is to find optimal ORTFIR models

F (q, θ) = Df +
∑n

k=1 Lk−1Vk−1(q),

θ = [Df , L
T
0 , · · · , LT

n−1]
(5.23)
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with a limited number of parameters, such that

‖H(q) − F (q, θ)G(q)‖2 (5.24)

is being minimized. Using H2 optimal control design technique, an optimal Fopt(q)

can be obtained as

Fopt(q) =
b5q

5 + b4q
4 + b3q

3 + b2q
2 + b1q + b0

q6 + a5q5 + a4q4 + a3q3 + a2q2 + a1q + a0

where b0 = −0.08646, b1 = 0.2046, b2 = −0.2522, b3 = 0.1443, b4 = −0.0267,

b5 = 0.004005. a0 = 0.4129, a1 = −1.7032, a2 = 3.941, a3 = −5.796, a4 = 5.549,

a5 = −3.315. The poles of Fopt(q) are q1, q̄1 = 0.9 ± 0.3i, q2, q̄2 = 0.5 ± 0.8i and

q3, q̄3 = 0.2577 ± 0.6701i. With Fopt(q) in place, the lower bound of model error

can be computed as ‖H(q) − Fopt(q)G(q)‖2 = 1.2243. Since Fopt(q) is computed

with a feed-through matrix Df = 0, the feed-through term Df in (5.23) also be set

to 0 for comparison purposes.

For the sake of illustration in this case study, it is assumed only the first two

(conjugate) poles {q1, q̄1, q2, q̄2} of the model Fopt(q) are known for the construction

of basis functions Vk(q). Actually, these poles are also the poles of H(q). Obvi-

ously, if all pole locations of Fopt(q) were known beforehand, n can be set to n = 1

as only one unique coefficient L0 will be able to represent Fopt(q). However, in this

case incomplete knowledge of the pole locations of Fopt(q) is assumed, requiring

theoretically an infinite number of parameters for an accurate representation of

Fopt(q), increasing the McMillan degree of F (q). To make a fair comparison be-

tween the usage of different basis functions, n is limited such that Fopt(q) will have

a McMillan degree that is less than or equal to 20.

The quality of the approximation measured by (5.24) is compared for different

sets of basis functions. The first set of basis function consists of the standard

orthonormal FIR expansion as presented in Section 5.2 and based on the all-pass

function P (q) that uses the knowledge of the two (conjugate) poles q1, q̄1 and q2, q̄2

of Fopt(q). Since P (q) is a fourth order all-pass function, the parametrization of
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the first orthonormal FIR expansion F1(q) is given by

F1(q) =
5

∑

k=1

Lk−1Vk−1(q), Vk−1(q) = Φ0(q)P (q)k−1 (5.25)

where Φ0(q) = (qI −A)−1B in which (A,B) are computed from an input balanced

state-space realization of P (q). With the fourth order all-pass function P (q), it

can be seen from (5.25) that n has been limited to n = 5 to ensure that F (q) has

a McMillan degree that is less than or equal to 20.

Instead of a single basis function Vk(q), an alternative approach would be to

create mutually orthonormal basis functions on the basis of the two all-pass func-

tions P1(q) and P2(q) that separate the knowledge of the (conjugate) poles location

at q1, q̄1 and q2, q̄2. On the basis of the two all-pass functions P1(q) and P2(q), fol-

lowing the parametrization given in Proposition 5.2.3, the following orthonormal

FIR Fm(q) is considered:

Fm(q) =
10

∑

k=1

Lk−1Vk−1(q) where

Vk−1(q) =











Φ1(q)P1(q)
k−1, k = 1, . . . , m

Φ2(q)P1(q)
mP2(q)

k−m−1, k = 1 + m, . . . , 10

(5.26)

where Φ1(q) = (qI − A1)
−1B1 in which (A1, B1) are computed from an input

balanced state-space realization of P1(q) and Φ2(q) = (qI − A2)
−1B2 in which

(A2, B2) are computed from an input balanced state-space realization of P2(q).

In case the orthonomal basis functions are simply set to Vk(q) = q−k to ob-

tain a 20th order FIR model Ffir(q, θ), then the model error becomes ‖H(q) −
FfirG(q)‖2 = 1.2586. With the 4th order all-pass function P (q) and the construc-

tion of the orthonormal basis functions in (5.25), the computations of 5 coeffi-

cients Li for a 20th ORTFIR model F1(q) reduces the model error to ‖H(q) −
F1(q)G(q)‖2 = 1.2257. This illustrates that a generalized FIR filter can provide

much better approximation results than a conventional FIR filter.

Different combinations m of basis functions in the mutual orthonormal basis

functions in (5.26) to construct Fm(q, θ) will give different model error results. As
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a final comparison for this case study, the modeling error of ‖H(q)−Fm(q, θ)G(q)‖2

is calculated and shown in Fig. 5.4
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Figure 5.4. Comparison of model error using 20th order ORTFIR filter Fm(q, θ)

with different combinations m of mutual orthonormal basis functions

From Fig. 5.4, the following observations can be made. Firstly, if only the

2nd order P1(q), m = 10 or P2(q), m = 0 all-pass function is used to create

orthonormal basis functions, the approximation result is worse than choosing 4th

order basis function P (q) or any linear combination of P1(q) and P2(q) as all-

pass functions. Hence. higher order orthonormal basis functions which include

more poles of the dynamic system to be approximated is preferable to reach an

improvement in model approximation.

Secondly, the smallest model error is obtained when m = 1. This implies that

the quality of the approximation is not only related to the location of the poles

of the basis function, but is also determined by the number of coefficients used

for building the series expansion on the basis of a specific basis function. In this

case study, only two poles of Fopt are used to create an orthonormal basis. A

possible explanation for the approximation results lies in the location of the poles,

as indicated by Proposition 5.4.1. Since the poles q3, q̄3 are closer to q2, q̄2 than to
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q1, q̄1 less coefficients (m = 1) are needed to obtain a better approximation.

5.6 H∞ norm model matching problem

Let H(q) and G(q) are stable proper transfer functions, the H∞ norm model

matching problem is to find a stable transfer function F (q) to minimize the H∞

norm of H(q) − F (q)G(q). The H∞ norm model matching problem can be in-

terpreted as this: H(q) is a model, G(q) is a plant, and F (q) is a controller to

be designed so that F (q)G(q) can approximate H(q). The contoller F (q) can be

designed with the use of generalized FIR filter

F (q, θ) = Df +
∑n

k=1 Lk−1Vk−1(q),

θ = [Df , L
T
0 , · · · , LT

n−1]
(5.27)

to solve a model matching problem with the form of H∞ norm

min
θ

‖H(q) − F (q, θ)G(q)‖∞ (5.28)

Given the state space realization (A,B,C(θ), D(θ)) of H(q)−F (q, θ)G(q) in (5.16),

the minimization of ‖H(q) − F (q, θ)G(q)‖∞ can be computed by using Linear

Matrix Inequalities (LMIs), which is given in the following proposition.

Proposition 5.6.1. Given the system matrix





A B

C(θ) D(θ)



 of a discrete time

system H̄(q, θ) := H(q)−F (q, θ)G(q), ‖H̄(q, θ)‖∞ < γ is equivalent to there exists

a positive definite symmetric matrix P > 0, such that








AT PA − P AT PB C(θ)T

BT PA BT PB − γ2I D(θ)T

C(θ) D(θ) I









< 0 (5.29)

where C(θ) and D(θ) can be written as

C(θ) =
[

Ch 0 0
]

− θC, D(θ) = Dh − θD,

C :=





0 Cg 0

0 0 I



 , D :=





Dg

0




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and

θ =
[

Df Cf

]

Proof: It is well known that ‖H̄(q, θ)‖∞ < γ is equivalent to there exists a positive

definite matrix P such that

AT PA−P +CT C − (AT PB +CT D)(BT PB +DT D− γ2I)−1(BT PA+DT C) < 0

(5.30)

Perform schur complement for (5.30), then we can obtain (5.29).

From Proposition 5.6, it is easy to know that H∞ norm model matching using the

orthonormal basis function can be transferred to a standard LMI problem which

is easy to be solved.

5.7 Conclusions

In this chapter an analytic solution for a H2-norm based model matching prob-

lem, typically found in problems associated to feedforward active noise control

design, is formulated on the basis of an affine model structure parametrized by

generalized orthonormal basis functions. The analytic solution is formulated in

terms of Semidefinite Programming problem to a quadratic optimization problem

that can also be generalized to H∞-norm specifications. Exploiting the structure

of the quadratic optimization problem, an analytic solution is presented on the

basis of a weighted least-squares optimization that can be solved reliably even for

a relatively large model approximation order.

A model error bound for the model approximation is formulated and using

the analytic solution, different orthonormal basis functions for the construction of

generalized FIR filter are compared in a case study. The results show that during

the construction of the orthonormal basis functions, a high order orthonormal

basis function with a small number of coefficients is preferred over a low order

orthonormal basis functions with a larger number of parameters.



Chapter 6

Feedforward Active Noise Control

6.1 Basic principles of feedforward active noise

control

Active noise control is based on either feedforward control or feedback control.

Feedforward control can be classified into broad-band feedforward control system

and narrow-band feedforward control system. In this chapter, only a broad-band

feedforward active noise control system will be introduced. Usually in a feedfor-

ward control system, a reference sensor, a secondary source, a control actuator and

an error sensor will be essential to obtain a good active noise control performance.

This standard feedforward ANC system can be exemplified by a single channel

airduct ANC shown in Fig. 6.1

In Fig. 6.1, the reference signal is picked by the reference microphone and

is processed by a ANC system to generate a control signal to drive the control

loudspeaker to create an anti-phase signal to cancel the primary noise. The error

microphone is used to monitor the performance of the ANC system. The objective

of the feedforward controller is to minimize the measured acoustic noise by creating

a secondary path noise to cancel the primary noise.

Fig. 6.2 shows the block diagram of the single channel feedforward ANC system

73
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Figure 6.1. Active noise control system in an airduct

setup in Fig. 6.1. Following this block diagram, dynamic relationship between

signals in the ANC system are characterized by discrete time transfer functions,

with qx(t) = x(t + 1) indicates a unit step delay. The primary path H0(q) models

the propagation path between the reference microphone and error microphone, and

G0(q) is the secondary path between the control speaker and the error microphone.

W (q)
?

e(t)

H0(q)
?

F (q)

G0(q)
y(t)

-
?

-
ε(t)

w(t)

v(t)
+

+

x(t)

Figure 6.2. Block diagram of ANC system with feedforward

For the analysis we assume in this section that all transfer functions in Fig. 6.2



75

are stable and known. The error microphone signal e(t) can be described by

ε(t) = [H0(q) + G0(q)F (q)]x(t), x(t) = W (q)e(t) (6.1)

In case the transfer functions in Fig. 6.2 are known, perfect feedforward noise

cancellation can be obtained in case

F (q) = −H0(q)

G0(q)
(6.2)

and can be implemented as a feedforward compensator in case F (q) is a stable and

causal transfer function.

In general, the filter F (q) in (6.2) is not a causal or stable filter due to the

dynamics of G0(q) and H0(q) that dictate the solution of the feedforward compen-

sator. Therefore, an optimal approximation has to be made to find the best causal

and stable feedforward compensator. With (6.1) the variance of the discrete time

error signal e(t) is given by

λ

2π

∫ π

−π

|H0(e
jω) + G0(e

jω)F (ejω)|2 |W (ejω)|2 dω

where λ denotes the variance of e(t). In case variance minimization of the error

microphone signal ε(t) is required for ANC, the optimal feedforward controller is

found by the minimization

minθ

∫ ω=π

ω=−π
|L(ejω, θ)|2dω := min

θ
‖L(q, θ)‖2,

L(q, θ) = [H0(q) + G0(q)F (q, θ)] W (q)
(6.3)

where the parametrized filter F (q, θ) is required to be a causal and stable filter.

The minimization in (6.3) is standard 2-norm based feedback control and model

matching problems [5, 40] that can be solved in case the dynamics of W (q), G0(q)

and H0(q) are known. Actually, the dynamics of W (q) can be obtained auto-

matically via spectrum analysis of x(t), and the dynamics of G0(q) and H0(q)

can be estimated with the use of closed loop identification techniques. Instead of

separately estimating the unknown transfer functions and computing the feedfor-

ward controller via an adaptive optimization from (6.3), a direct estimation of the

feedforward controller can also be performed.
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Defining the signals

y(t) := H0(q)x(t), xf (t) := −G0(q)x(t) (6.4)

(6.1) can be rewritten as

ε(t, θ) = y(t) − F (q, θ)xf (t)

for which the minimization

min
θ

1

N

N
∑

t=1

ε(t, θ) (6.5)

to compute the optimal feedforward filter F (q, θ) is a standard output error (OE)

minimization problem in a prediction error framework [59]. Using the fact that the

input signal x(t) satisfies ‖x‖2 = |W (q)|2λ, the minimization of (6.5) for limN→∞

can be rewritten into the frequency domain expression

min
θ

∫ −π

π

|H0(e
jω) + G0(e

jω)F (ejω, θ)|2|W (ejω)|2dω (6.6)

using Parceval’s theorem [59]. Due to the equivalency of (6.6) and (6.3), the same

2-norm objectives for the computation of the optimal feedforward compensator are

used.

From above analysis, we know that the design of a feedforward controller F (q, θ)

can be seen as a system identification problem and can be solved with standard

open loop identification technique. However, as mentioned before, because the

characteristics of the acoustic noise and the environment may be time varying, the

frequency content, amplitude, phase, and sound velocity of the undesired noise are

possible nonstationary, an ANC system with adaptive filter would be required to

accommodate with these possible variations. The adaptive filter for ANC applica-

tion is presented in Fig. 6.3.

From Fig. 6.3, it can be observed that the coherence between the error micro-

phone signal ε(t) and the reference microphone signal x(t) determines the perfor-

mance of the adaptive feedforward ANC.
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Figure 6.3. Block diagram of adaptive feedforward ANC system

The coherence function in the frequency domain between two stationary ran-

dom processes v(t) and x(t) is defined as

γvx(ω) =
Svx(ω)

√

Svv(ω)Sxx(ω)
(6.7)

where Svx(ω) is the cross spectrum between v(t) and x(t), Svv(ω) and Sxx(ω) are

the auto spectrum of v(t) and x(t), respectively.

The coherence function γvx(ω) is a dimensionless function of frequency having

only the real part and values in the range 0 to 1.

The spectrum of error microphone signal ε(t) is given by

Sεε(ω) = E |V (ω) + G0(ω)F (ω)X(ω)|2

= Svv(ω) + F ∗(ω)G∗
0(ω)Svx(ω) + G0(ω)F (ω)S∗

vx(ω) +

+ |G0(ω)F (ω)|2 Sxx(ω)

=

[

1 − |Svx(ω)|2
Svv(ω)Sxx(ω)

]

Svv(ω) +

∣

∣

∣

∣

G0(ω)F (ω) +
Svx(ω)

Sxx(ω)

∣

∣

∣

∣

2

Sxx(ω)(6.8)

Define

|γvx(ω)|2 =
|Svx(ω)|2

Svv(ω)Sxx(ω)
(6.9)

and with the optimal filter Fo(ω) that minimizes (6.8) given by

Fo(ω) = −G−1
0 (ω)

Svx(ω)

Sxx(ω)
= −G−1

0 (ω)H0(ω)
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which is the same as (6.2).

Then (6.8) becomes

Sεε(ω) = [1 − |γvx(ω)|2]Svv(ω) (6.10)

(6.10) shows that the performance of the adaptive feedforward ANC system

is dependent on the coherence between v(t) and x(t). In order to obtain a good

feedforward ANC performance, it is necessary to have a very high coherence at

frequencies for which there is significant disturbance energy, so v(t) and x(t) should

have a very good correlation, i.e γvx(ω) ≈ 1.

In general, the adaptive filter F (q) in Fig. 6.3 can be realized with finite impulse

response (FIR) structure and infinite impulse response (IIR) structure. Because

the FIR filter incorporates only zeros, always stable and provides a linear phase

response, it is a more popular adaptive filter widely used in the adaptive control.

The structure of FIR filter is depicted in Fig. 6.4.

q−1 q−1 q−1- - - -. . .

f0

6

f2

6

6

6

f1 fL−1

g- g g
6 6

- - -. . .

6

-+

+

+

+

+

+

x(t)

y(t)

Figure 6.4. Block diagram of digital FIR filter

From Fig. 6.4, It can be obtained that by using FIR filter F (q) can be presented

as

F (q) =
L−1
∑

k=0

fkq
−k (6.11)

Given a set of L filter coefficients fl(t), l = 0, 1, . . . , L − 1, and a data se-

quences x(t), x(t − 1), . . . , x(t − L + 1), the output signal y(t) constructed by a
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FIR structure can be computed as

y(t) =
L−1
∑

l=0

fl(t)x(t − l) (6.12)

where the filter coefficients fl are time-varying and updated by the adaptive algo-

rithms.

Define the reference vector at time t as

x(t) = [x(t) x(t − 1) . . . x(t − L + 1)]T

and the weight vector at time t as

f(t) = [f0(t) f1(t) . . . fL−1(t)]
T

Then the output signal y(t) in (6.12) can be expressed by

y(t) = fT (t)x(t) (6.13)

= xT (t)f(t) (6.14)

The error signal e(t) then can be computed as

ε(t) = v(t) + g0(t) ∗ y(t) = v(t) + g0(t) ∗ [fT (t)x(t)] (6.15)

where g0(t) is the impulse response of secondary path G0(q) at time t, ∗ is linear

convolution.

The objective is to determine the weight vector so that the mean square value

of the error signal is minimized by using adaptive algorithms.

6.2 Filtered-X LMS algorithm

Using the standard LMS algorithm when the secondary path transfer function

following the controller will cause instability [18], this is because the error signal

is not correctly “aligned” in time with the reference signal due to the presence of
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G0(q) [47]. Filter-X LMS algorithm which is first derived by [89] is an alternative

form of the standard LMS algorithm for ANC application to ensure the convergence

when there has a transfer function in the second path following the adaptive filter.

Generally, in order to minimize the instantaneous squared error value of the er-

ror signal, ξ̂(t) = ε2(t), a most widely used method to achieve this is the stochastic

gradient, or LMS algorithm. By using this method, the coefficient vector is up-

dated in the negative gradient direction with step size µ which is given by

f(t + 1) = f(t) − µ

2
∇ξ̂(t) (6.16)

where ▽ξ̂(t) is an instantaneous estimate of the mean square error (MSE) gradient

at time t, and can be depicted as

∇ξ̂(t) = ∇ε2(t) = 2∇ε(t)ε(t) (6.17)

From (6.15) we get

∇ε(t) = g(t) ∗ x(t) (6.18)

Define

xf (t) = g(t) ∗ x(t) (6.19)

Then (6.17) can be rewritten as

∇ξ̂(t) = 2xf (t)ε(t) (6.20)

where xf (t) = [xf (t) xf (t − 1) . . . xf (t − L + 1)]T and xf (t) = g(t) ∗ x(t)

Substitute (6.20) into (6.16), then the FXLMS algorithm can be obtained

f(t + 1) = f(t) − µxf (t)ε(t) (6.21)

In practical ANC applications, the secondary path G0(q) is unknown and it

must be replaced by a model G(q) in order to utilize the FXLMS algorithm. For-

tunately, the model G(q) can be easily estimated with system identification tech-

nique. Therefore, the filtered reference signal is generated by passing the reference



81

signal through the estimated model G(q) of the second path G0(q).

xf (t) = g(t) ∗ x(t) (6.22)

where g(t) is the estimated impulse response of the secondary path model G(q).

The block diagram of feedforward ANC system using the FXLMS algorithm is

depicted in Fig. 6.5
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Figure 6.5. Block diagram of feedforward ANC system using FXLMS algorithm

The FXLMS algorithm is not sensitive to the model errors in the estimate of

G0(q) by G(q). In [63], the analysis shows that within the limit of slow adaptation,

the algorithm will converge with nearly 90◦ of phase error between G0(q) and G(q).

Therefore, an offline modeling G(q) can be used to instead G0(q) for most ANC

applications.

The step size µ in (6.16) and (6.21) is difficult to determine in real applications.

Improper selection of µ might make the convergence speed unnecessarily slow or

introduce large excess mean square error. If the signal is non-stationary and real

time tracking capability is crucial for a given application, then a large µ should

be selected. If the signal is stationary and convergence rate is not important, a

small µ should be chosen to achieve a better performance in steady state. In some
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applications, usually a larger µ is used at the beginning of the operation for a

faster initial convergence, then a smaller µ is used to achieve a better steady-state

performance.

The maximum step size that can be used in the FXLMS algorithm is approxi-

mated in [19] as

µmax =
1

Pxf
(L + ∆)

(6.23)

where Pxf
= E[x2

f (t)] is the power of the filtered reference signal xf (t), and ∆

is the number of samples corresponding to the overall delay in the second path

transfer function G0(q). From (6.23), it can be observed that the delay in the

secondary path influences the dynamic response of the ANC system by reducing

the maximum step size of the FXLMS algorithm.

6.3 Recursive least square algorithm for ANC

6.3.1 Recursive least square algorithm

The recursive least square (RLS) algorithm can be used with an adaptive FIR

filter to provide faster convergence and smaller steady-state error than the FXLMS

algorithm. In this section, the detail of RLS algorithm will be discussed.

To derive the RLS algorithm, we assume that the weight vector f(t) is constant

during the time interval (1, t). The error signal at time i can be described as

ε(i) = v(i) − fT (t)x(i), 1 6 i 6 t (6.24)

where

f(t) = [f0(t) f1(t) . . . fL−1(t)]
T

is the current weight vector of the Lth-order adaptive filter and

x(i) = [x(i) x(i − 1) . . . x(i − L + 1)]T
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is the L × 1 reference signal vector at time i.

The cost function at time t is expressed by

J(t) =
t

∑

i=1

λt−ie2(i) (6.25)

where 0 6 λ 6 1 is a forgetting factor, which is used to weight recent data more

heavily in order to accommodate nonstationary signals.

Substituting (6.24) into (6.25), we can get

J(t) =
t

∑

i=1

λt−iv2(i) − 2fT (t)

[

t
∑

i=1

λt−iv(i)x(i)

]

+ fT (t)

[

t
∑

i=1

λt−ix(i)xT (i)

]

f(t)

(6.26)

Define the autocorrelation matrix as

R(t) =
t

∑

i=1

λt−ix(i)xT (i) (6.27)

and define the cross correlation vector as

p(t) =
t

∑

i=1

λt−iv(i)x(i) (6.28)

Then (6.26) can be written as

J(t) =
t

∑

i=1

λt−iv2(i) − 2pT (t)f(t) + fT (t)R(t)f(t) (6.29)

J(t) can be minimized with respect to f(t) at time t by setting the gradient of J(t)

respect to f(t) to zero, this will yield

R(t)fo(t) = p(t) (6.30)

where fo(t) is the optimum weight vector at time t that minimizes the weighted

sum of squared errors ξ(t). If the inverse matrix R−1(t) exists, then a unique

solution for fo(t) can be obtained by solving equation (6.30).

Because the time index t could increase to a very large value in real-time pro-

cessing, computation of R(t) and p(t) will become very difficult. This problem
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can be solved by using a recursive algorithm, which computes R(t) and p(t) from

previous R(t − 1) and p(t − 1).

Isolating the term corresponding to i = t from the rest of the summation on

the right hand of (6.27), it yields

R(t) =
t−1
∑

i=1

λt−ix(i)xT (i) + λ0x(t)xT (t)

= λ
t−1
∑

i=1

λ(t−1)−ix(i)xT (i) + x(t)xT (t)

= λR(t − 1) + x(t)xT (t) (6.31)

(6.31) shows that the current correlation matrix R(t) can be obtained recursively

from the previous correlation matrix R(t − 1) and the matrix product x(t)xT (t).

Similarly, the recursive update of the cross-correlation vector p(t) can also be

obtained from (6.28), and expressed as

p(t) = λp(t − 1) + v(t)x(t) (6.32)

To compute the least-square estimate fo(t) according to (6.30), the inverse of the

correlation matrix R(t) have to be computed. However, the computation of R−1(t)

can be quite time consuming, particularly when the number of coefficients, L is

large. Therefore, in practice, we try to avoid computing R−1(t) directly, instead

we apply the matrix inversion lemma to compute the inverse of R(t) to reduce the

computation requirement.

The matrix inversion lemma is given [33] by

(A + BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1 (6.33)

where A, B, C, D are any dimensionally compatible matrices.
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Now, define

A = λR(t − 1) (6.34)

B = x(t) (6.35)

C = 1 (6.36)

D = xT (t) (6.37)

(6.38)

Then (6.31) can be expressed as

R(t) = λR(t − 1) + x(t)xT (t)

= A + BCD (6.39)

Therefore, R−1(t) can be described as

R−1(t) = (A + BCD)−1

= λ−1R−1(t − 1) − λ−2R−1(t − 1)x(t)xT (t)R−1(t − 1)

1 + λ−1xT (t)R−1(t − 1)x(t)
(6.40)

For notational and computational convenience, define

Q(t) = R−1(t) (6.41)

and

k(t) =
λ−1Q(t − 1)x(t)

1 + λ−1xT (t)Q(t − 1)x(t)
(6.42)

(6.40) can be rewritten as

Q(t) = λ−1Q(t − 1) − λ−1k(t)xT (t)Q(t − 1) (6.43)

(6.43) shows that matrix Q(t) can be computed in a recursive fashion, this will

save much computation time.

Rearranging (6.42), we can obtain

k(t) = λ−1Q(t − 1)x(t) − λ−1k(t)xT (t)Q(t − 1)x(t)

=
[

λ−1Q(t − 1) − λ−1k(t)xT (t)Q(t − 1)
]

x(t)

= Q(t)x(t) (6.44)
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Combine (6.30), (6.32) and (6.41), the recursive equation for updating the

weight vector is given by

fo(t) = R−1(t)p(t)

= Q(t)p(t)

= Q(t) [λp(t − 1) + v(t)x(t)]

= λQ(t)p(t − 1) + v(t)Q(t)x(t) (6.45)

Substituting (6.43) for Q(t) in the first term only on the right hand side of (6.45),

we can get

fo(t) = Q(t − 1)p(t − 1) − k(t)xT (t)Q(t − 1)p(t − 1) + v(t)Q(t)x(t) (6.46)

= fo(t − 1) − k(t)xT (t)fo(t − 1) + v(n)k(t) (6.47)

= fo(t − 1) + k(t)
[

v(t) − foT (t − 1)x(t)
]

(6.48)

= fo(t − 1) + k(t)ξ(t) (6.49)

Here,

ξ(t) = v(t) − foT (t − 1)x(t)

is the a priori estimation error. The inner product of f oT (t − 1)x(t) represents an

estimate of the desired response v(t), based on the previous weight vector that was

made at time t − 1.

Therefore, the RLS algorithm is thus derived and summarized as follows.

First, initialize the algorithm by setting

fo(0) = 0

Q(0) = δ−1I

where

δ =







small positive constant for high signal noise ratio (SNR)

large positive constant for low SNR
(6.50)
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Then, compute the gain vector k(t) and the weighting vector f o(t)

π(t) = Q(t − 1)x(t) (6.51)

k(t) =
π(t)

λ + xT (t)π(t)
(6.52)

ξ(t) = v(t) − foT (t − 1)x(t) (6.53)

fo(t) = fo(t − 1) + k(t)ξ(t) (6.54)

Finally, update the inverse correlation matrix Q(t).

Q(t) = λ−1Q(t − 1) − λ−1k(t)xT (t)Q(t − 1) (6.55)

It is well known that RLS algorithm at steady-state operation exhibits a windup

problem if the forgetting factor λ remains constant, which will deteriorate the

estimation results. As a results, a variable forgetting factor RLS algorithm [50, 94,

76] can be employed to prevent this problem from occurring.

In (6.44), if we assume that Q(t) = µI, then k(t) = µx(t), and (6.16) becomes

fo(t) = fo(t − 1) + µx(t)ξ(t) (6.56)

(6.56) is actually the LMS algorithm we described before. Instead of compute

Q(t), the LMS algorithm simply assume that Q(t) = µI, and this assumption

greatly simplifies the algorithm. However, the cost is the lose of the performance

advantage in convergence rate and steady-state error. The computation of Q(t)

in RLS algorithm results in faster convergence rate and lower residual error than

with the LMS algotirhm.

6.3.2 Feedforward ANC using RLS algorithm

Same as the modification of LMS algorithm because of the secondary path G(q)

following the feedforward filter F (q) in Section 6.2, the RLS algorithm described
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in Section 6.3.1 needs to be modified to ensure the convergence. Therefore, (6.24)

is modified as

ε(i) = v(i) − g(t) ∗ [fT (t)x(i)] (6.57)

= v(i) − fT (t)xf (i) (6.58)

where g(t) is the impulse response of the model G(q) of the secondary path G0(q),

and xf (i) = g(t) ∗ x(i) is the reference signal x(t) filtered through the secondary

path transfer function G(q). The modified RLS algorithm for feedforward ANC

can be derived the same procedure as before, the results can be summarized as

follows.

xf (t) = g(t) ∗ x(t) (6.59)

π(t) = Q(t − 1)xf (t) (6.60)

k(t) =
π(t)

λ + xT
f (t)π(t)

(6.61)

ξ(t) = v(t) − foT (t − 1)xf (t) (6.62)

fo(t) = fo(t − 1) + k(t)ξ(t) (6.63)

Q(t) = λ−1Q(t − 1) − λ−1k(t)xT
f (t)Q(t − 1) (6.64)

6.4 Acoustic coupling effects in ANC

Generally, in an acoustic ANC system illustrated in Fig. 6.1, a reference micro-

phone is used to pick up the reference noise in order to process this noise through

an adaptive filter to generate an anti-phase sound to cancel the primary noise.

However, the anti-phase sound coming from the control speaker will not only be

used to cancel the primary noise, but also radiate upstream to the reference micro-

phone to interfere the reference signal. The coupling of the acoustic wave from the

control speaker to the reference microphone is called acoustic coupling or acoustic

feedback. A block diagram of a feedforward ANC system that includes the acoustic

coupling is shown in Fig. 6.6.
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Figure 6.6. Block diagram of feedforward ANC system with acoustic coupling

In Fig. 6.6, Gc0(q) is used to indicate the acoustic coupling from control speaker

to the reference microphone that creates a positive feedback loop with the feedfor-

ward controller F (q). For the analysis we assume in this section that all transfer

functions in Fig. 6.2 are stable and known. The error microphone signal ε(t) can

be described by

ε(t) =

[

H0(q) +
G0(q)F (q)

1 − Gc0(q)F (q)

]

x(t), x(t) = W (q)e(t) (6.65)

In case the transfer functions in Fig. 6.6 are known, perfect feedforward noise

cancellation can be obtained in case

F (q) = − H0(q)

G0(q) − H0(q)Gc0(q)
(6.66)

and can be implemented as a feedforward compensator in case F (q) is a stable and

causal transfer function.

It should be noted that the optimal feedforward controller derived in (6.66)

assumed that there is not measurement noise in the reference input. However, in

practice, (6.66) should be modified to include the effects of the measurement noise
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[71] as

F (q) = − αH0(q)

G0(q) − αH0(q)Gc0(q)
(6.67)

where α is given as

α =
SNR

1 + SNR
(6.68)

and SNR is the signal to noise ration at the reference microphone. In this disser-

tation, we assume that α = 1 for analysis convenience.

Refer to Fig. 6.6, a closed loop transfer function L(q) between x(t) and y(t)

can be given as

L(q) =
F (q)

1 − Gc0(q)F (q)
(6.69)

The closed loop transfer function L(q) is unstable if we did not consider the effect

of Gc0(q) in the design process of the feedforward controller. In order to avoid the

negative effects of the acoustic coupling Gc0(q), one way is to constrain the effect

of acoustic coupling Gc0(q) to the feedforward controller such as directional micro-

phones and loudspeakers, feedback neutralization and dual-microphone reference

sensing. The other way is to consider the effect of the acoustic coupling Gc0(q)

during the design process of the feedforward controller F (q) such as using IIR filter

and H2/H∞ control design algorithm. Some popular methods to be used to design

the feedforward control in the case that acoustic coupling is present in the ANC

system will be discussed in the next.

6.4.1 Feedback neutralization

In this method, a model Gc(q) of acoustic coupling Gc0(q) is used to cancel or

neutralize the feedback effect of acoustic coupling within the positive feedback loop.

The model Gc(q) can be estimated offline with standard open loop identification

technique [59]. This method is exactly the same technique as that in acoustic

echo cancellation [77]. A feedforward ANC system with feedback neutralization is

illustrate in Fig. 6.7.
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Figure 6.7. Block diagram of a feedforward ANC system with acoustic feedback

neutralization

From Fig. 6.7, feedback neutralization filter Gc(q) takes the output y(t) of the

F (q) as its input, and the reference signal x(t) is produced to design feedforward

controller F (q) by the output of Gc(q) subtracted by the signal measured by the

reference microphone.

Refer to Fig. 6.7, the error signal e(t) is given as

ε(t) = H0(q)x(t) + G0(q)y(t)

= H0(q)x(t) + G0(q)F (q) [x(t) + (Gc0(q) − Gc(q))y(t)] (6.70)

From (6.70) It can be observed that in the case that a perfect model of acoustic

coupling can be obtained, that is, Gc(q) = Gc0(q), the resulting transfer function

from the controller speaker to the reference microphone is zero, which means that

the ANC system appears to be no acoustic coupling existing. At this case, the

error signal ε(t) is reduced to

ε(t) = [H0(q) + G0(q)F (q)] x(t) (6.71)

which is the same as the standard feedforward ANC system we have discussed in

Section 6.1.
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Let us discuss the case that Gc(q) 6= Gc0(q). Assuming modeling error Gc(q)−
Gc0(q) = ∆ is bounded by ‖∆‖∞ 6 1/γ with γ > 0. Based on the small gain

theory [93], robust stability is guaranteed for all ∆(q) ∈ RH∞ if and only if

‖∆(q)F (q)‖∞ < 1. That means that if the error ∆ is small, the feedforward

controller F (q) can be large to obtain a good ANC performance, and even if the

modeling error ∆ is large, we also can make F (q) small to guarantee the internally

stability of the closed loop system. Of course, this will cause the performance of

feedforward ANC system getting deteriorated.

6.4.2 IIR filter to compensate the acoustic coupling

FIR filter has been widely used in the adaptive filter algorithm because of the

property of linear parameters and linear phase. However, In order to model a

very complicated dynamical system such as airduct, FIR filter will need a very

high order to incorporate the frequency modes of the airduct, but a small step

size µ has to be used for stationary purposes. This results in slow convergence and

computational complexity, which is undesirable for some ANC applications. When

computation burden becomes a big issue, an IIR filter is a good substitute because

the poles of the IIR filter make it possible to obtain the same performance as the

FIR filter with a relative much lower order comparing to FIR filter. Another im-

portant property of IIR filter is that it could consistent match both poles and zeros

of a dynamical system, whereas FIR filter only can give an approximation to the

poles because FIR filter only has zeros. Therefore, IIR filter can further minimize

the mean square error of the adaptive filter, and this is very important in ANC

applications. Except that IIR filter can replace the FIR filter in some feedforward

ANC applications, IIR fitler can also used to solve the acoustic coupling problem.

In Section 6.4.1, it shows one way to solve the effect of acoustic coupling by use an

additional filter to neutralize the negative effect of acoustic coupling. Therefore,

the performance of ANC application is largely dependent on the accuracy of this

additional filter. In order to overcome this drawback, IIR filter is an alternative
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method because it can automatically incorporate the acoustic coupling as a part of

the overall plant model [20]. In this method, acoustic coupling was considered as

a part of the system and the adaptive IIR filter deal with it directly as part of the

problem. A block diagram of an adaptive IIR ANC system is shown in Fig. 6.8.
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Figure 6.8. Block diagram of a feedforward ANC system with IIR adaptive filter

In Fig. 6.8, the error microphone signal ε(t) is given as

ε(t) = v(t) + g0(t) ∗ y(t) (6.72)

and the output signal y(t) is

y(t) = bT (t)r(t) + aT (t)yT (t − 1) (6.73)

where a(t) is the coefficient vector of A(q) and given as

a(t) = [a1(t) a1(t) . . . aN(t)]T (6.74)

The coefficient vector b(t) is

b(t) = [b0(t) b1(t) . . . aM(t)]T (6.75)
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and y(t − 1) is the output vector delayed by one sample defined as

y(t − 1) = [y(t − 1) y(t − 2) . . . y(t − N)]T (6.76)

Define

f(t) =





b(t)

a(t)



 (6.77)

and define

u(t) =





r(t)

y(t − 1)



 (6.78)

Then (6.73) can be simplified as

y(t) = fT (t)u(t) (6.79)

which is a linear regression. (6.72) can be rewritten as

ε(t) = v(t) + g0(t) ∗ fT (t)u(t) (6.80)

The error gradient can be calculated as

∇ε(t) =

[

∂ε(t)

∂b0(t)
. . .

∂ε(t)

∂bM−1(t)

∂ε(t)

∂a0(t)
. . .

∂ε(t)

∂aN(t)

]

= g0(t) ∗
[

∂y(t)

∂b0(t)
. . .

∂y(t)

∂bM−1(t)

∂y(t)

∂a0(t)
. . .

∂y(t)

∂aN(t)

]

(6.81)

where

∂y(t)

∂bp(t)
= r(t − p) +

M
∑

j=1

aj(t)
∂y(t − j)

∂bp(t)
, p = 0, 1, . . . ,M − 1 (6.82)

and
∂y(t)

∂aq(t)
= y(t − q) +

M
∑

i=1

ai(t)
∂y(t − j)

∂aq(t)
, q = 1, . . . , N (6.83)

Assuming that the step size µ is small, then we can get

∂y(t − j)

∂aq(t)
≈ ∂y(t − j)

∂aq(t − j)
(6.84)

∂y(t − j)

∂bp(t)
≈ ∂y(t − j)

∂bp(t − j)
(6.85)
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and assuming that the recursion based on the old output gradients is negligible

[22], we have
∂y(t − j)

∂aq(t − j)
=

∂y(t − j)

∂bp(t − j)
= 0 (6.86)

Therefore, the error gradient ∇ε(t) can be rewritten as

∇ε(t) = g0(t) ∗ [r(t) r(t − 1) . . . r(t − M − 1) y(t − 1) . . . y(t − N)]T

= g0(t) ∗ u(t) (6.87)

The mean square error gradient estimate in (6.17) can expressed as

∇ξ̂(t) = ∇ε2(t) = 2∇ε(t)ε(t)

= 2g0(t) ∗ u(t)ε(t) (6.88)

Substitute (6.88) into (6.16), we can get the filtered-U recursive LMS algorithm

for IIR filter

f(t + 1) = f(t) − µ

2
∇ξ̂(t)

= f(t) − µ[g0(t) ∗ u(t)]ε(t)

= f(t) − µuf (t)ε(t) (6.89)

where

uf (t) = g0(t) ∗ u(t) (6.90)

In practice, g0(t) is replace by g(t) which is the impulse response of the estimated

model G(q) of the secondary path transfer function G0(q).

(6.89) can separated into two vector equations for adaptive filter A(q) and B(q)

as follows.

b(t + 1) = b(t) − µrf (t)e(t) (6.91)

and

a(t + 1) = a(t) − µyf (t − 1)e(t) (6.92)

where rf (t) = g(t) ∗ r(t) and yf (t − 1) = g(t) ∗ y(t − 1)
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Figure 6.9. Block diagram of a feedforward ANC system using the filtered-U

recursive LMS algorithm

The filtered-U recursive LMS algorithm applied an ANC system is illustrated

in Fig. 6.9.

The filtered-U recursive LMS algorithm uses the same error microphone error

ε(t) in the adaptation process for both filters A(q) and B(q). Therefore, Both filters

A(q) and B(q) will stop adapting when ε(t) reaches its minimum. Actually, filter

A(q) models −H0(q)/G0(q), and filter B(q) models H0(q)Gc0(q)/G0(q). However,

global convergence and stability of the filter-U recursive LMS algorithm have never

been proved formally. A filtered-U recursive LMS algorithm with a posteriori

estimates has been proposed [70] and shows that the reference signal contamination

from Gc0(q) does not require any algorithmic modification.

An important property of adaptive IIR filter is to generate poles correspond-

ing to the ideal response. However, the trajectory of the filter poles during the

convergence is unpredictable, one or several poles may move outside of the unite

circle and lead to instability. The problem with unstable filter poles can be solved

by use of the leaky LMS algorithm [55]. A modified leaky version of the simplified

hyperstable adaptive recursive filter algorithm [54] has also developed for ANC
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applications to improve the stability of IIR filter. In that algorithm, a low pass

filter is used to smooth the error signal for the filtered-U recursive LMS algorithm.



Chapter 7

Generalized FIR Filter for

Feedforward ANC Applications

7.1 Generalized FIR filter

Filter estimation using FIR models converge to optimal and unbiased feedfor-

ward compensators irrespective of the coloring of the noise as indicated in (6.3).

However, a FIR filter is usually too simple to model the dynamics of a complex

sound control system with many resonance modes. As a result, many tapped delay

coefficients of the FIR filter are required to approximate the optimal feedforward

compensator.

To improve the approximation properties of the feedforward compensator in

ANC, the linear combination of tapped delay functions q−1 in the FIR filter in

(6.11) are generalized to

F (q) = f0 +
L−1
∑

k=1

fkVk(q)

where Vk(q) are generalized (orthonormal) basis functions [36] that may contain

knowledge on system dynamics.

For details on the construction of the functions Vk(q) one is referred to Chap-

ter 5 and [36].

98
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Given an inner transfer function P (q) = D+C(qI−A)−1B, where (A,B,C,D)

is a minimal balanced realization, define V0(q) := (qI − A)−1B and

Vk(q) = (qI − A)−1BP k(q) = V0(q)P
k(q) (7.1)

then a generalized FIR filter can be constructed that consists of a linear combina-

tion of the basis functions f0 +
∑L−1

k=0 fkVk. This yields a generalized FIR filter

F (q) =

[

f0 +
L−1
∑

k=0

fkV0(q)P
k(q)

]

(7.2)

A block diagram of the generalized FIR filter F (q) in (7.2) is depicted in Fig. 7.1

and it can be seen that it exhibits the same tapped delay line structure found in a

conventional FIR filter, with the difference of more general basis functions Vk(q).

P (q) P (q) P (q)- - - -. . .-

x(t)

6

6

f2

6

6

- - . . .

6

+

6

f1

6

-

f0

y(t)

+ +

+

+

fL−1

g g- g -
+

V0

Figure 7.1. Block diagram of generalized FIR filter

An important property and advantage of the generalized FIR filter is that

knowledge of the (desired) dynamical behavior can be incorporated in the basis

function Vk(q). Without any knowledge of desired dynamic behavior, the trivial

choice of Vk(q) = q−k reduces the generalized FIR filter to the conventional FIR

filter. If a more elaborate choice for the basis function Vk(q) is incorporated, then

(7.2) can exhibit better approximation properties for a much smaller number of

parameters L than used in a conventional FIR filter. Consequently, the accuracy of

the optimal feedforward controller will substantially increase. In the next section
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we will elaborate on the choice of the basis function Vk(q) and the use of the

generalized FIR filter in the role of ANC based on feedforward compensation.

7.2 Estimation of Generalized FIR filter

7.2.1 Construction of basis functions

To facilitate the use of the generalized FIR filter, the basis function Vk(q) in

(7.1) have to be selected. A low order model for the basis functions will suffice,

as the generalized FIR model will be expanded on the basis of Vk(q) to improve

the accuracy of the feedforward compensator. In order to more easily analyze the

estimation of generalized FIR filter, let us recall the block dialog of of a feedforward

ANC system Fig. 6.2 again for illustration purpose.

W (q)
?

e(t)

H0(q)
?

F (q)

G0(q)
y(t)

-
?

-
ε(t)

w(t)

v(t)
+

+

x(t)

Figure 7.2. Block diagram of ANC system with feedforward

With no feedforward compensator in place, the signal y(t) is readily available

via

y(t) := v(t) = H0(q)x(t) (7.3)

and an initial low order IIR model F̂ (q) of the feedforward filter F (q) can be
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estimated using the OE-minimization

F̂ (q) = F (q, θ̂), θ̂ = min
θ

1

N

N
∑

t=0

ε2(t, θ) (7.4)

of the prediction error

ε(t, θ) = y(t) − F (q, θ)xf (t)

where xf (t) is given as

xf (t) = g(t) ∗ x(t) (7.5)

and θ is defined as θ = [f0 f1 f2 . . . fL−1]

The initial low order IIR model F̂ (q) can be used to generate the basis functions

Vk(q) of the generalized FIR filer of the feedforward compensator F (q). An input

balanced state space realization of the low order model F̂ (q) is used to construct

the basis function Vk(q) in (7.1).

With a known (initial) feedforward F (q, θ̂) in place, the signal y(t) can be

generated via

y(t) := H0(q)x(t) = ε(t) + F (q, θ̂)xf (t) (7.6)

and requires measurement of the error microphone signal ε(t), and the filtered input

signal xf (t) = G(q)x(t). Since the feedforward filter is based on the generalized FIR

model, the input xf (t) is also filtered by the tapped delay line of basis functions.

A new filtered input signal x̄k(t) can be defined as

x̄k(t) = Vk(q)G(q)x(t) (7.7)

With the signal y(t) in (7.6), xf (t) in (7.5), x̄k(t) in (7.7) and the basis function

Vk(q) in (7.1) from the initial low order model in (7.4), the system dynamics can

be rewritten as a linear regression form

y(t) = φT (t)θ, θ = [f0, f1, ..., fL−1]
T (7.8)

where φT (t) = [x̄T
1 (t), ..., x̄T

L−1(t)] is the available input data vector and θ is the

parameter vector to be estimated of the generalized FIR feedforward compensator.
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7.2.2 Recursive estimation

The objective is to identify (estimate) the values of the parameters θ in (7.8)

such that the feedforward controller minimizes the error signal ε(t). The param-

eters θ can be identified with the available input-output data up to time t by a

standard recursive least square (RLS) algorithm [33]. It is known that RLS algo-

rithm at steady-state operation exhibits a windup problem if the forgetting factor

remains constant, which will deteriorate the estimation results. As a result, a vari-

able forgetting factor [50] be employed to prevent this problem from occurring.

The parameters ϑ can be estimated by RLS algorithm with variable forgetting

factor through two steps in each sample time:

1. Compute the gain vector k(t) and the parameters θ̂(t) at the current sample

time

k(t) =
P (t − 1)φ(t)

λ1(t) + φT (t)P (t − 1)φ(t)
(7.9)

ξ(t) = y(t) − θ̂T (t − 1)φ(t) (7.10)

θ̂(t) = θ̂(t − 1) + k(t)ξ∗(t) (7.11)

2. Update the inverse correlation matrix P (t) and the forgetting factor λ1(t)

P (t) = λ1(t)
−1P (t − 1)−

λ1(t)
−1k(t)φT (t)P (t − 1)

(7.12)

λ1(t) = λ0λ1(t − 1) + 1 − λ0; 0 < λ0 < 1 (7.13)

where the typical values can be: λ1(0) = 0.95 ∼ 0.99; λ0 = 0.95 ∼ 0.99.

Relationship (7.13) leads to a forgetting factor that asymptotically tends to-

wards 1. The recursive least square minimization will be

J(t) =
t

∑

i=1

λ1(i)
t−i[y(i) − θ̂(t)T φ(i)]2 (7.14)
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The algorithm is initialized by setting

θ̂(0) = 0, P (0) = δ−1I

a typical value for δ choose in this paper is δ = 0.001.

From (7.9), we can see that even though the input data vector φ(t) is zero at

some time t, the gain vector k(t) does not increase because λ1 6= 0. A zero or small

input data vector φ(t) can occur when the sound disturbance x(t), measured by

the reference microphone, is small. In that event, the recursive estimation routine

will be robust in the presence of lack of excitation from the sound disturbance. As

a result, θ̂(t) = θ̂(t−1), and the parameters θ(t) of the generalized FIR filter at the

current sample time t remain constant when only a small or no inlet disturbance

signal x(t) is being measured. An additional advantage of the usage of a variable

forgetting factor λ1(t) computed by (7.13) is a rapid decrease of the inverse correla-

tion matrix. In general this results in an accelerating convergence by maintaining

a high adaptation at the beginning of the estimation when the parameters θ are

still far from the optimal value.

7.3 Low order modeling of secondary path G0

From (7.7), it is obtained that the modeling of secondary path G0(q) is needed

for filtering purpose. Therefore a high order of model G(q) of secondary path

G0(q) may be estimated for filtering purpose by the standard open loop/closed

loop identification technique. Even though a high order model G(q) is desired in

the filtering process in order to obtain a accurate filtered signal, a low order model

G(q) may be acceptable if it can maintain a good performance of feedforward

compensation. In this section a low order model estimation of secondary path

G0(q) is discussed and analyzed.

Suppose the performance of a feedforward controller applied to a system which

is shown in Fig. 7.2 can be described by ‖(H0(q) − F (q)G0(q))W (q)‖. Then
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‖(H0(q) − F (q)G0(q))W (q)‖ can be bounded by

‖(H0 − FG0)W‖ ≤ ‖(H0 − FG)W‖ + ‖(FG0 − FG)W‖ (7.15)

where G is the model of secondary path G0, F is the feedforward controller, and

W is a tunable weighting function.

As indicated in (7.15), a model G can be used to formulate an upper bound for

‖(H0−FG0)W‖, and a tight upper bound can be obtained by minimizing ‖(FG0−
FG)W‖. For a given feedforward controller F , the minimization of ‖(FG0 −
FG)W‖ is so called control relevant identification problem [83].

Given the optimal (ideal) control F with F = H0

G0

, ‖(FG0 − FG)W‖ can be

rewritten as

‖(FG0 − FG)W‖ = ‖(G0 − G)FW‖ = ‖G0 − G‖‖H0

G0

‖‖W‖

Defining Φu = ‖H0

G0

‖‖W‖, we can get

‖(FG0 − FG)W‖ = ‖G0 − G‖Φu

Then the estimation of a model G of the secondary path G0 is a standard open loop

prediction error framework identification problem, and a low order model G may

be obtained with the guarantee of the performance of active noise cancellation.

7.4 Applications to feedforward ANC

7.4.1 Modeling of the system dynamics

For the experimental verification of the proposed feedforward noise cancellation,

the ACTA silencer depicted in Fig. 7.3 was used. The system is an open-ended

airduct located at the System Identification and Control Laboratory at UCSD

that will be used as a case study for the ANC algorithm presented in this chapter.

Experimental data and real time digital control is implemented at a sampling
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Figure 7.3. ACTA airduct silencer located in the System Identification and Control

Laboratory at UCSD

frequency of 2.56kHz and experimental data of the error and input microphone

were gathered for the initialization of the feedforward controller.

In order to create the filtered input digital xf (t) in (7.5) and x̄k(t) in (7.7), a

21th order ARX model G(q) which can pick most main resonance modes of G0(q)

was estimated for filtering purposes.

The identification results of G(q) can be found in Fig. 7.4. Because G(q) can

pick most main resonance modes of G0(q), G0(q) has been estimated reasonably

well for filtering purposes.

The filtered input signal xf (t) and the observed error microphone signal y(t)

sampled at 2.56kHz were used to estimate a low (4th) order IIR model Ff (q, θ) to

create the basis function Vk(q) in (7.1) for the generalized FIR filter parametriza-

tion of the feedforward controller. During the estimation of the low order model

F̂ (q) also an estimate of the expected time delay nk in (7.2) was performed and was

found to be nk = 16. The identification results of the 4th order IIR model Ff (q, θ)

is shown in Fig. 7.5. From Fig. 7.5 it can be observed that the 4th order model

Ff (q, θ) picks two resonance modes of H0(q)
G0(q)

. The reason only 4th order model

Ff (q, θ) is estimated is that Ff (q, θ) is only used to create the basis function, and

a high accurate model is not necessary.
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Figure 7.4. Amplitude plot of spectral estimate of G0(q)(solid) and 21th order

parametric model G(q) (dotted)

7.4.2 Implementation of feedforward ANC

After initialization, the information of the filter G(q), the basis function Vk(q)

and the time delay nk was used to perform a recursive estimation of the generalized

FIR filter based feedforward compensator F (q). To illustrate the effectiveness of

the recursive generalized FIR feedforward compensator, data has been generated

over 1.5 seconds, where a sound disturbances is generated into the air-duct during

the first half second and the last half seconds, and is turned off in between. For

the generalized FIR filter only N = 5 parameters θi, i = 1, . . . , 5 in (7.8) were

estimated for the construction of the feedforward compensator. With a 4th order

basis function Vk(q), each parameter θi ∈ R1×4 and this amounts to IIR feedforward

compensator of order 20.

The performance of the generalized FIR filter is confirmed by the estimates of

the spectral contents of the microphone error signal e(t) plotted in Fig. 7.6. The

spectral content of the error microphone signal has been reduced significantly by

the generalized FIR filters in the frequency range from 40 till 400Hz.

To illustrating the stability and convergence properties of the recursive least
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Figure 7.5. Amplitude of spectral estimate of −H0(q)
G0(q)

(solid) and 4th order para-

metric model Ff (q, θ) (dotted)

square (RLS) estimation, the norm of parameters ‖θi‖ for i = 1, . . . , 5 is shown

in Fig. 7.7. Since each parameter θi in (7.8) is of dimension R1×4, only ‖θi‖ for

i = 1, ..., 5 is plotted to provide 5 lines for each multidimensional parameter. From

Fig. 7.7, it can be observed that the parameters ‖θi‖ converge to a steady state

very quickly which validates an important property for the recursive least square

(RLS) algorithm. Moreover, the parameter values remain constant in the presence

of lack of excitation at the middle part of the experiment.

The final conformation of the performance of the ANC has been depicted in

Fig. 7.8. From Fig. 7.8 it can be observed that, even though the sound distur-

bance excitation drastically reduces from t = 0.5 and t = 1 seconds during the

experiment, the error microphone signal is not identically zero because of the mea-

surement error of the inlet and outlet microphones. Furthermore, the estimation

of the parameters θi do not diverge during this time interval due to the robust

property of the RLS algorithm. The significant reduction of the error microphone

signal observed in the time traces and the norm of the signals displayed on the

right part of Fig. 7.8 indicates the effectiveness of the generalized FIR filter for
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Figure 7.6. Estimate of spectral contents of error microphone signal e(t) without

ANC (solid) and with ANC using 20th order generalized FIR filter (dotted)

feedforward sound compensation.

7.5 Conclusions

In this chapter, a new methodology has been proposed for the active noise

control in an airduct using a feedforward compensation that is parametrized with

a generalized FIR filter. The feedforward filter with the linear parametrization

is an IIR filter that can be estimated via filtered recursive least squares (RLS)

techniques with variable forgetting factor. The design is evaluated on the basis of

an experimental active noise cancellation experiment and shows significant sound

reduction. The RLS is robust with respect to lack of disturbance excitation by the

adaptation of the forgetting factor in the recursive estimation.
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Chapter 8

Application of Dual-Youla

Parametrization in ANC System

In Section 6.4, some methods have been presented to compensate the effect

of acoustic coupling in an ANC system. Even though somehow these methods

maybe helpful to cancel the negative effect of acoustic coupling, the performance

of the feedforward ANC is not guaranteed in practice. This chapter presents a

framework to recursively estimate a feedforward filter in the presence of acoustic

coupling, addressing both stability and performance of the active feedforward noise

cancellation algorithm. The framework is based on fractional model representa-

tions in which a feedforward filter is parametrized by coprime factorization which

is described in Section 3.4. Conditions on the parametrization of the coprime fac-

torization formulated by the existence of a stable perturbation enables stability in

the presence of acoustic coupling. In addition, this chapter shows how the stable

perturbation can be estimated on-line via a recursive least square estimation of a

generalized FIR filter to improve the performance of the feedfoward filter for active

noise cancellation.

111
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8.1 Dual-Youla parametrization

Referring the block diagram of a feedforward ANC system that includes the

acoustic coupling has been shown in Fig. 8.1.

W (q)
?

e(t)

H0(q)Gc0(q)

¾

6

F (q)

G0(q)

?

-
?

-
ε(t)

w(t)

v(t)
+

+

+

+

x(t)

y(t)

Figure 8.1. Block diagram of feedforward ANC system with acoustic coupling

The error microphone signal ε(t) can be described by

ε(t) =

[

H0(q) +
G0(q)F (q)

1 − Gc0(q)F (q)

]

x(t)

= H0(q)x(t) +
F (q)

1 − Gc0(q)F (q)
· G0(q)x(t)

(8.1)

and definition of the signals

v(t) := H0(q)x(t), xf (t) := G0(q)x(t) (8.2)

leads to

ε(t) = v(t) +
F (q)

1 − Gc0(q)F (q)
xf (t)

= v(t) + L(q)xf (t) L(q) :=
F (q)

1 − Gc0(q)F (q)

(8.3)

From (8.3) it can be seen that the acoustic coupling Gc0(q) creates a positive

feedback loop with the feedforward filter F (q). The presence of the acoustic cou-

pling Gc0(q) might lead to an undesirable or unstable feedforward compensation

if Gc0(q) is not taken into account in the design of the feedforward filter F (q) for
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active noise cancellation [42]. To address the issues of stability it can be noted that

certain signals can be used for estimation purposes of the dynamics of the various

transfer functions in the ANC system. In case the signals v(t) can be measured

and the signal xf (t) can be created by filtering the measured signal x(t) through

a filter that models the dynamics of the acoustic control path G0(q), the estima-

tion of the feedforward filter F (q) can be considered as a closed loop identification

problem, where the error ε(t, θ)

ε(t, θ) = v(t) + L(q, θ)xf (t)

is minimized according to

θ̂ = min
θ

‖ε(t, θ)‖2 (8.4)

Minimization of ‖ε(t, θ)‖2 in (8.4) is an output error based identification problem

[59]. In this chapter, the presence of acoustic coupling Gc0 during the estimation

of F (q) is taken into account by using a model Gc of the acoustic coupling Gc0.

Using a model Gc, the estimation and computation of F can be done based on

a so-called dual-Youla parametrization described in Section 3.4, which opens a

possibility to guarantee the internal stability of T (F̂ , Gc) by constructing a feed-

forward filter F̂ via estimation of a stable dual-Youla transfer function. Dual-Youla

parametrization presented in Section 3.4 is built in the case that the closed loop

system is a negative feedback closed loop system. However, the feedback connec-

tion of feedforward control F and acoustic coupling Gc in ANC system is positive

feedback system. Therefore, we have to make a modification about the dual-Youla

parametrization algorithm in order to use this algorithm in feedforward ANC ap-

plication.

Based on the definitions described in Section 3.4, a characterization of the

set of feedforward filters F (q) = N(q)D(q)−1 = D̃(q)−1Ñ(q) that yields an in-

ternally stable feedback connection T (F (q), Gc(q)) of the feedforward filter F (q)

and the model for the acoustic coupling Gc(q) can be expressed via a dual-Youla

parametrization Section 3.4 and is given in the following.
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Lemma 8.1. Let (Nx, Dx) be a rcf of an auxiliary feedforward filter Fx = NxD
−1
x

over RH∞, and (Nc, Dc) be a rcf of the model Gc of the acoustic coupling Gc0

with Gc = NcD
−1
c such that T (Fx, Gc) ∈ RH∞, then a feedforward filter F with a

rcf(N,D) satisfies T (F,Gc) ∈ RH∞ if and only if there exists R0 ∈ RH∞ such

that

N = Nx + DcR0

D = Dx + NcR0

(8.5)

Proof: For a proof, one is referred to Section 3.4.

From (8.5) it is obtained that R0 can vary over all possible transfer functions

in RH∞ such that {Dx + DcR0} is well defined, which characterizes a set of fil-

ters F that are internally stabilized by Gc. For the interpretation of the result

in Lemma 8.1, consider the following prior information to estimate the optimal

feedforward filter F .

Firstly, assume the availability of an initial (not optimal) feedforward controller

Fx that is used only to create a stable feedback connection T (Fx, Gc) in the pres-

ence of the acoustic coupling Gc. Secondly, if a model Gc = NcD
−1
c for the acoustic

coupling Gc0 is available, then a set of feedforward filters can be parameterized that

is known to be stabilized by the model Gc of the acoustic coupling. With this prior

information, the optimal feedforward filter F to minimize ‖ε(t, θ)‖2 in (8.4) can

be constructed by means of the nominal filter Fx plus a possible perturbation R0

given by (8.5). Because R0 is the only unknown parameter, the estimation of a

stable model R̂ of R0 will yield an estimate (N̂ , D̂) of a rcf of feedforward filter

F̂ described by

N̂ : = Nx + DcR̂

D̂ : = Dx + NcR̂
(8.6)

If the estimate R̂ is stable, then the model F̂ = N̂D̂−1 estimated in (8.6) is

guaranteed to create a stable acoustic feedback with the model Gc of the acoustic

coupling and instabilities of the feedforward ANC can be avoided in the presence

of acoustic coupling.
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From equation (8.5), we know that the set of feedforward filters in Fig. 8.1 can

be replaced by the combination of (Nx, Dx), (Nc, Dc) and stable transfer function

R0, The representation of T (F,Gc0) in Fig. 8.1 can be found in Fig. 8.2 with the

knowledge of Gc0 represented by the model Gc.
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Figure 8.2. Block diagram of rcf representation of the feedback connection

T (Gc, F )

In order to estimate the dual-Youla transfer function R0 using a standard open

loop identification algorithm, the following signals are required. The reference sig-

nal xf (t) in Fig. 8.1 is a filtered version of the input microphone noise measurement

xf (t) := G(q)x(t) (8.7)

where G(q) is the model of the secondary path G0. Such a filtering is commonly

used in filtered LMS algorithms to avoid bias of the estimate of the feedforward

filter [33]. Subsequently, the output signal y1(t) is defined as

y1(t) := −v(t) = −ε(t) for F (q) ≡ 0 (8.8)

where v(t) = ε(t) is simply the measurement of the error microphone signal in the

absence of a feedforward controller for noise cancellation. Finally, the input signal

u1(t) is defined as

u1(t) := xf (t) + Gc(q)y1(t) (8.9)
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where Gc is the model of the acoustic feedback path Gc0. The use of this fil-

tered (closed-loop) input signal is needed to address stability of the feedforward

compensation in the presence of acoustic coupling. The use of the filtered input

signal u1(t) is in addition to the filtering in (8.8) used in filtered LMS estimation

of feedforward filters. With the definition of these signals, the open-loop estimate

problem of the dual-Youla transfer function R0 can be formalized as follows.

Lemma 8.2. Let (Nx, Dx) be a rcf of an auxiliary feedforward filter Fx = NxD
−1
x

and (Nc, Dc) be a rcf of the model Gc = NcD
−1
c of the acoustic coupling Gc0 such

that T (Fx, Gc) ∈ RH∞. Then the intermediate signals x(t) and z(t) are related by

z(t) = R0(q)r(t) (8.10)

where the intermediate input signal x is defined by the filter operation

r := (Dx − GcNx)
−1

[

−Gc I
]





y1

u1



 (8.11)

and dual-Youla signal z is defined by the filter operation

z := (Dc − FxNc)
−1

[

I −Fx

]





y1

u1



 (8.12)

where the signals r, y1 and u1 are defined respectively in (8.7), (8.8) and (8.9).

Proof: For a proof, one is referred to Section 3.4.

From (8.10) it can be seen that the estimation of a stable model R̂ = R(q, θ̂)

can be obtained via a standard output-error (OE) minimization by

θ̂ = min
θ

‖z(t) − R(q, θ)r(t)‖2 (8.13)

Although the (8.10) and the proof of Lemma 8.2 indicate a noise free open-loop

identification problem, the OE minimization in (8.13) is robust in the presence of

possible measurement noise en(t) on the error microphone signal e(t). Under the
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viable assumption that additional measurement noise en(t) on e(t) is uncorrelated

with the signal x(t) from the input microphone, it is easy to verify that the reference

xf (t) in (8.7) in uncorrelated with en(t). With

u1(t) − Gc(q)y1(t) = xf (t) = G(q)x(t)

it can be seen that the intermediate input signal x(t) in (8.11) is uncorrelated

with em(t), making (8.13) a standard open-loop identification problem even in the

presence of additional measurement noise en(t) on the error microphone signal e(t).

Once a stable model R̂ is found, the optimal feedforward filter F̂ = F (q, θ̂) can be

obtained from (8.6) with F̂ = N̂D̂−1 which is guaranteed to be stabilized by the

model Gc of the acoustic coupling Gc0.

8.1.1 Robustness against modeling errors

From Lemma 8.1, it is shown that if the estimate R̂ is stable, then the model

F̂ = N̂D̂−1 estimated in (8.6) is guaranteed to stabilize the model Gc of the

acoustic coupling Gc0. If the model Gc is an accurate approximate of the acoustic

coupling Gc, i.e, the modeling error Gc − Gc0 is very small and can be neglected,

then the model F̂ = N̂D̂−1 is guaranteed to create a stable positive feedback

with acoustic coupling Gc0 and the instabilities can be avoided with the acoustic

coupling. However, if sometimes a perfect model Gc of acoustic coupling Gc0 can

not be easily obtained, the robust stability against the modeling error needs to be

analyzed in order to design a good feedforward filter which can robust stabilize the

acoustic coupling Gc0.

For simplicity, we only use coprime factor uncertainty to describe the modeling

uncertainty of acoustic coupling Gc0. The robust stability analysis with other

model uncertainty such as additive uncertainty and multiplicative uncertainty is

similar to the analysis in this section. Suppose (N̄c, D̄c) be a rcf of acoustic coupling

Gc0, (Nc, Dc) be a rcf of model Gc and (Nx, Dx) be a rcf of initial feedforward filter

Fx, then similar to Lemma 8.1, the uncertain acoustic coupling Gc0 = N̄cD̄
−1
c can
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be expressed with

N̄c : = Nc + Dx∆0

D̄c : = Dc + Nx∆0

(8.14)

where the uncertainty ∆0 ∈ RH∞. The perturbed closed loop system is illustrated

in Fig. 8.3. Using small gain theorem, the following lemma concerning the robust
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Figure 8.3. Block diagram of coprime factor perturbed closed loop system

stability against model uncertainty ∆0 is obtained.

Lemma 8.3. Suppose the uncertain acoustic coupling Gc0 is given by

Gc0 = (Nc + Dx∆0)(Dc + Nx∆0)
−1

and feedforward filter is given as

F̂ = (Nx + DcR0)(Dx + NcR0)
−1

with ∆0, R0 ∈ RH∞. Then the closed loop system T (F̂ , Gc0) is well posed and

internally stable for all ‖∆0R0‖∞ < 1.
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Proof: Define r̄ = [r1, r2]
T and z̄ = [z1, z2]

T . From Fig. 8.3, it is easy to write r̄

as a function of z̄ and z̄ as a function of r̄. Then one can get

r̄ =





0 1

1 0



 z̄ (8.15)

and

z̄ =





R0 0

0 ∆0



 r̄ (8.16)

From (8.15) and (8.16), closed loop connection between r2 and z2 can be written

as

z2 = ∆0r2

r2 = z1 = R0r1 = R0z2

(8.17)

By the small gain theory, the closed loop system is well posed and internal stable

for all ∆0 ∈ RH∞ if and only if

‖∆0R0‖∞ < 1 (8.18)

Similarly, the closed loop connection between r1 and z1 can also be obtained with

the same procedure, and the same result (8.18) can also obtained.

From Lemma 8.3 it is obtained that if ∆0 6= 0, then R0 has constraint with

‖∆0R0‖∞ < 1. If the model Gc is perfect, i.e, the uncertainty ∆0 = 0, then R0

can be any stable rational transfer function which is actually estimated based on

the choice of the initial feedforward controller Fx.

8.1.2 Summary of Feedforward Estimation

Since the intermediate signal r(t) and the dual-Youla signal z(t) can be created

by (8.11) and (8.12), the estimation of the dual-Youla transfer function R0 from

(8.10) is an open loop identification problem that can be computed by standard

system identification techniques [59]. For more information about the dual-Youla

parametrization, one is referred to [29, 56, 11] for more details. As a result, the
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estimation of the feedforward filter F (q) using the dual-Youla parametrization can

be summarized by the following steps.

1. A model G of the acoustic control path G0 is needed for filtering purpose

to create the reference signal xf (t). The model G can be estimated via

a standard open-loop identification by performing an experiment using the

controller speaker signal y(t) as excitation signal and the error microphone

signal signal ε(t) as output signal. Such a filtering is commonly used in

filtered LMS algorithms to avoid bias of the estimate of the feedforward

filter [33].

2. A model Gc of the acoustic coupling Gc0 is needed to design an initial nominal

filter Fx = NxD
−1
x to stabilize the acoustic feedback loop. The model Gc

along with the initially stabilizing Fx is used to parametrize the feedforward

filter F according to Lemma 8.1. The model Gc can be estimated via a

standard open-loop identification by performing an experiment using the

controller speaker signal y(t) as excitation signal and the input microphone

signal d(t) as output signal.

3. With the models G, Gc and the initial feedforward filter Fx, the reference

signal xf (t), input signal u1 and output signal y1 can be created. With these

signals, the optimal feedforward filter F̂ can be estimated by minimizing

‖ε(t, θ)‖2 in (8.4) using the dual-Youla parametrization of the filter F (q, θ).

Although both the acoustic coupling Gc0 and the acoustic control path G0

require an additional modeling effort for the implementation of the ANC, the

use of the models G and Gc is beneficial for the ANC system. Since in most

ANC systems both the acoustic coupling Gc and the acoustic control path G are

fixed, adaptation of the feedforward filter F is not required to adjust for varying

acoustics. As a result, the estimation of the feedforward filter can be seen as a

self-tuning problem and this greatly simplifies the feedforward control algorithm.
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Furthermore, using both models G and Gc for filtering purposes can be seen as a

generalization of the filtering used in filtered LMS estimation of feedforward filters.

By adopting the theory of dual-Youla parametrization, the design of optimal

feedforward controller F is transformed to the estimation of the perturbation R0

from (8.10) using a standard open-loop output error (OE) identification technique

[59]. It should be stated that the estimation of the perturbation R0 is dependent on

the initial feedforward filter Fx. In the unlikely event where the initial feedforward

filter Fx equals the optimal filter F̂ , R0 is equal to 0 and does not need to be

updated. Since the initial feedforward filter Fx is chosen only to stabilize the

acoustic system in the presence of acoustic coupling, further estimation of the

perturbation R0 will improve the feedforward filter to minimize the signal of the

error microphone.

8.2 Perturbation estimation via generalized FIR

filter

To facilitate the use of the generalized FIR filter described in Chapter 7, the

basis functions Vk(q) have to be selected. A low order model for the basis functions

will suffice, as the generalized FIR model will be expanded on the basis of Vk(q)

to improve the accuracy of the feedforward compensator. For the initialization

of the parametrization of the generalized FIR model, an initial low order IIR

model R̄(q) = R(q, θ̄) of the perturbation R0(q) can be estimated using an OE-

minimization

θ̄ = min
θ

‖z(t) − R(q, θ)r(t)‖2 (8.19)

with the intermediate signal r and the dual-Youla signal z available from (8.11)

and (8.12). The initial low order IIR model R̄(q) can be used to generate the

basis functions Vk(q) of the generalized FIR filter. An input balanced state space

realization of the low order model R̄(q) is used to construct the basis function
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Vk(q) in (7.1). With the basis function Vk(q) in place, the linear parametrization

of R(q, θ) is obtained.

R(q, θ) = f0 +
L−1
∑

k=1

fkVk(q), θ = [f0 f1 · · · fL−1] (8.20)

Since the parametrization of R(q, θ) is based on the generalized FIR model, the

intermediate signal r(t) is filtered by the tapped delay line of basis functions

x̄k(t) = Vk(q)r(t), k = 0, . . . , L − 1 (8.21)

creating filtered intermediate signals x̄k(t). With the generalized FIR filter ex-

pansion given in (8.20), the relation between the signal z(t) in (8.12) and x̄k(t) in

(8.21) can be rewritten in a linear regression form

z(t) = φT (t)θ, θ = [f0 f1 · · · fL−1]
T (8.22)

where φT (t) = [x̄T
0 (t) · · · x̄T

L−1(t)] is the available input data vector and θ is the

parameter vector of R(q, θ) in (8.20) to be estimated. The parameter vector θ can

be estimated by RLS algorithm described in Section 7.2.2.

8.3 Application of feedforward ANC

8.3.1 Modeling of ANC system dynamics

For the experimental verification of the proposed feedforward noise cancellation,

the ACTA silencer depicted in Fig. 7.3 was used. The system is an open-ended

airduct located at the System Identification and Control Laboratory at UCSD.

Experimental data and real time digital control is implemented at a sampling

frequency of 2.56kHz and experimental data of the error and input microphone

were gathered for the initialization of the feedforward filter.

Once the mechanical and geometrical properties of the ANC system in Fig. 7.3

are fixed, then the acoustic control path G0 and the acoustic coupling Gc0 both
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are fixed. For initialization and calibration of ANC algorithm, the models of the

acoustic control path G0 and the acoustic coupling Gc0 can be identified off-line.

Estimation of a model G can be done by performing an experiment using the

controller speaker signal y(t) as excitation signal and the error microphone signal

ε(t) as output signal. The same experiment can also be used to measure the

input microphone signal x(t) as an additional output to estimate the model of

the acoustic coupling Gc0. Because these models G and Gc will be used to design

nominal feedforward filter Fx and feedforward filter F̂ , the order of these models

should be controlled. In order to estimate a low order feedforward filter F̂ , a 20th

order ARX model G was estimated for filtering purpose and a 17th order ARX

model of Gc was estimated for feedforward filter design purposes. The identification

results of G and Gc can be found in Fig. 8.4 and Fig. 8.5, respectively.
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Figure 8.4. Amplitude Bode plot of spectral estimate of acoustic control path G0

(solid) and 20th order parametric model G (dashed)
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Figure 8.5. Amplitude Bode plot of spectral estimate of acoustic coupling Gc0

(solid) and 17th order parametric model Gc (dashed)

8.3.2 Estimation of basis function for dual-Youla transfer

function

A low order model R̂ is estimated to compute the basis functions Vk(q) for

the parametrization and estimation of the dual-Youla transfer function R0. On

the basis of the model Gc a simple 2nd order nominal feedforward filter Fx is pre-

computed that internally stabilize the positive feedback loop connection T (Fx, Gc).

The initial feedforward controller is given by the discrete time transfer function

Fx(q) =
−1.577q + 1.611

q2 − 1.99q + 0.9913
(8.23)

and is lightly damped 2nd order system with one step time delay and a resonance

mode at approximately 100 rad/s.

Given the experimental data and the prior information, consisting of the model

G of the acoustic control path G0 and the model Gc of acoustic coupling Gc0, the

filtered signals r(t), y1(t) and u1(t) can be created respectively via (8.7), (8.8)

and (8.9). With the computation of a normalized right comprime factorization

(Nx, Dx) and (Nc, Dc) of the initial filter Fx and the model Gc, the signals r and
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z can be created obtained using (8.11) and (8.12). With the intermediate input

signal r and the dual-Youla signal z a spectral estimate of the dual-Youla transfer

function R0 can be computed. The spectral estimate is plotted in Fig. 8.6 and

compared with a simple 6th order OE model estimate R̄. The 6th order OE model

estimate R̄ is found by (8.19) using standard open loop identification technique [59]

and will be used to generate the basis functions Vk(q) in (7.1) for the generalized

FIR parametrization of R(q, θ) in (8.20).
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Figure 8.6. Amplitude Bode plot of spectral estimate of dual-Youla transfer func-

tion R0 (solid) and 6th order parametric model R̄ (dashed) used for basis function

generation

From Fig. 8.6, it can be observed that the simple 6th order model R̄ does not

capture the spectral estimate of the dual-Youla transfer function R0 very well.

However, the model R̄ will be used only to create the basis functions Vk(q) in

(7.1) for the orthonormal FIR expansion of the dual-Youla transfer function. The

generalized FIR parametrization of R(q, θ) in (8.20) will then allow for a recursive

estimation and self-tuning of the feedforward filter.
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8.3.3 Application of feedforward ANC

The prior information reflected in the models G of the acoustic control path G0,

Gc of the acoustic coupling Gc0, the initial filter Fx(q) and the basis functions Vk(q)

generated by the low order model R̄(q) all serve as an initialization for the recursive

estimation of the feedforward controller in the presence of acoustic coupling.

For the recursive least squares estimation of generalized FIR filter in (8.20)

only N = 3 parameters θi, i = 0, . . . , 3 were estimated. Since no feedthrough

term was expected in the feedforward filter, the feedthrough term f0 in (8.22) was

set to f0 = 0. With a 6th order basis functions Vk(q), k = 0, . . . , 3 generated by

the low order model R̄, each parameter θi ∈ R1×6. As a result a generalized FIR

filter R(q, θ) of order 24 is estimated by minimizing the error signal e(t) using a

recursive least squares estimation. The recursive estimation is implemented on a

Pentium II based personal computer system using a 12 AD/DA Quanser card a

sampling time of 2.56KHz.

From Fig. 8.4 and Fig. 8.5 it can be observed that the acoustic coupling Gc0

in the ANC system is relatively large compared to the acoustic control path G0.

As a result, a straightforward implementation of a filtered LMS algorithm for the

computation of a 24th order FIR filter leads to an unstable feedforward ANC

system, where harmonic oscillation are observed due to destabilizing effects of the

acoustic feedback path.

The performance of the feedforward compensator F̂ that is estimated recur-

sively using a dual-Youla parametrization with generalized FIR filters is confirmed

by the estimate of the spectral content of the microphone error signal ε(t) plotted

in Fig. 8.7. The spectral content of the error microphone signal has been reduced

significantly by the feedforward compensator F̂ which is estimated by the recursive

least square dual-Youla parametrization in the frequency range from 40 till 400Hz.

A final confirmation of the performance of the ANC has been depicted in

Fig. 8.8. The significant reduction of the error microphone signal observed in

the time domain traces and the norm of the signal displayed on the right part of
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Figure 8.7. Spectral estimate of error microphone signal ε(t) without ANC (solid)

and with ANC (dashed) using feedforward filter F̂ estimated via recursive least

square dual-Youla parametrization

Fig. 8.8 indicates the effectiveness of the feedforward filter F̂ estimated via recur-

sive least square dual-Youla parametrization for feedforward sound compensation.

8.4 Conclusions

In this chapter a new methodology has been proposed for the active feedfor-

ward noise control using a dual-Youla parametrization with recursive least square

(RLS) estimation in the presence of acoustic coupling. In this new approach the

dual-Youla parametrization is used to incorporate the acoustic coupling to avoid

instabilities of the feedforward ANC. Moreover, generalized FIR filters based on

orthonormal basis function expansions can be used to efficiently parametrize and

estimate the dual-Youla transfer function. The linear parametrization obtained

by generalized FIR filters also facilitates the online RLS implementation using a

variable forgetting factor.

The algorithm presented in this chapter combines the dual-Youla parametriza-

tion to guarantee stability in the presence of acoustic coupling with the generalized
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Figure 8.8. Time trace of reduction of error microphone signal ε(t) without ANC

(top) and with ANC turned on at t = 0 (bottom) using feedforward filter F̂

estimated via recursive least square dual-Youla parametrization

FIR filter for online recursive least square (RLS) implementation. The algorithm

does require prior information that include models of acoustic control path and the

acoustic coupling, but this information is a generalization of the filtering used in

filtered LMS estimation of feedforward filters. The prior information is also used

to initialize the recursive estimation and separate adaptation from self-tuning.

The practical results of the algorithm are illustrated by an implementation

on a commercial silencer for an air ventilation system. Using relative simple 6th

order model for initialization of the recursive estimation along with relatively ac-

curate models for the acoustic control and acoustic coupling path, excellent noise

cancellation properties were obtained at a broad low frequency spectrum.
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Chapter 9

Conclusions

9.1 Main conclusions of this dissertation

In model based control algorithms, the modeling of a dynamical system be-

comes very essential in order to obtain a good performance of its control system.

In the literature, there are many methods can be chosen to approximately estimate

the system dynamics such as direct method, indirect method, two stage method,

coprime factorization and so on. However, all these methods only focused on the

estimation of the deterministic system dynamics. The estimation of approximate

model for disturbance dynamics is neglected which is important to design opti-

mal controllers for disturbance rejection such as active noise control (ANC). Even

though some methods can be used for disturbance model estimation, the estimated

disturbance model is complicated and not good for lower order controller design.

The extended two stage method described in this dissertation can be used to es-

timate the system dynamics and disturbance dynamics simultaneously. With the

use of extended two stage method, the orders of both system model and distur-

bance model can be controlled based on the requirement of the frequency range the

customer desired. This addresses the problem 1 which is formulated in Section 2.3.

Using the approximated models of system dynamics and noise/disturbance dy-
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namics, an initial application to a H2 / H∞ model matching problem based on the

orthonormal basis functions is developed in this dissertation. The advantage of

using orthonormal basis in a orthonormal finite impulse filter lies in the possibility

of including the prior knowledge of system dynamics into the tapped delay line

of the filter. Therefore, it will largely improve the accuracy of the approximated

modeling and converge rate during the adaptation process. Analytic solutions for

H2 / H∞ model matching problem have been given in this dissertation and can be

used for filter design in active noise control application.

In the application of active noise control, a feedforward filter parametrized with

generalized (orthonormal) FIR filter with the use of orthonormal basis is designed

for adaptive noise cancellation. The generalized FIR filter combines the linear

parameter structure of FIR filter and the properties of orthonormal basis function.

Therefore, the generalized FIR filter are not only suitable for adaptive control and

approximation process, but also provide much better performance comparing with

FIR filter, and which solves the problem 2 in Section 2.3.

During the feedforward filter design for acoustic active noise control applica-

tion, acoustic coupling is an intricate problem which may cause the instability

of system. In this dissertation, a dual-Youla parametrization is implemented to

overcome acoustic coupling problem. The framework is based on fractional model

representations in which a feedforward filter is parameterized by coprime factor-

ization. With this method, the estimate of feedforward filter is recasted to the es-

timation of the stable perturbation, and the stable perturbation can be estimated

by adaptive generalized FIR filter developed in this dissertation. The advantage of

using this method is that the feedforward controller designed is guaranteed to be

stabilized by the acoustic coupling. This accounts for the problem 3 in Section 2.3.
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9.2 Summary on applications

The techniques developed in this dissertation have been illustrated for various

applications. The low order model estimation of deterministic system dynamics

and noise/disturbance dynamics using an extended two stage method has been

illustrated on the experimental closed loop data obtained from a hard disk drive.

The low order models of deterministic system dynamics and noise/disturbance

dynamics estimated by the extended two stage method can capture the most es-

sential dynamics in hard disk drive which is necessary to be used to design opti-

mal controller for disturbance rejection. The generalized FIR filter parametrized

with the orthonormal basis expansion has been successfully applied on the appli-

cation of active noise control in air duct, the experiment results shows that the

feedforward filter designed with generalized FIR filter can provide much better

performance than FIR filter during the adaptation process in ANC application.

Dual-youla parametrization method provides an alterative way to overcome the

intricate acoustic coupling problem which mostly can not be neglected during the

adaptation process of ANC. Applying dual-youla parametrization to ANC appli-

cation in air duct in the presence of acoustic coupling, the robust stability of ANC

system can be enforced, and the performance of ANC can also be maintained.
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