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Electromagnetic induction in a conductive strip
in a medium of contrasting conductivity:

Application to VLF and MT above molten dikes.

Paul M. Davis

September 15, 2014

Abstract: Very low frequency (VLF) electromagnetic waves that penetrate con-
ductive magma-filled dikes generate secondary fields on the surface that can be used
to invert for dike properties. The model used for the interpretation calculates cur-
rents induced in a conductive strip by an inducing field that decays exponentially with
depth due to the conductivity of the surrounding medium. The differential equations
are integrated to give an inhomogeneous Fredholm equation of the second kind with a
kernel consisting of a modified Bessel function of the second kind. Numerical meth-
ods are typically used to solve for the induced currents in the strip. In this paper we
apply a modified Galerkin-Chebyshev method, which involves separating the kernel
into source and field spectra and integrating the source terms to obtain a matrix equa-
tion for the unknown coefficients. The incident wave is expressed as a Chebyshev
series. The Modified Bessel function is separated into a logarithmic singularity and a
non-singular remainder, both of which are expanded in complex Chebyshev polyno-
mials. The Chebyshev coefficients for the remainder are evaluated using a fast Fourier
transform, while the logarithmic term and incident field have analytic series. The
deconvolution then involves a matrix inversion. The results depend on the ratio of
strip-size to skin-depth. For infinite skin-depth and a singular conductivity distribu-
tion given by τ0a/

√
a2 − z2 (where τ0 is the conductance, a is the half-length, and z

the distance from the center), Parker (2011) gives an analytic solution. We present a
similar analytic series solution for the finite skin-depth case, where the size to skin
depth ratio is small. Results are presented for different ratios of size to skin depth
that can be compared with numerical solutions. We compare full-space and half-space
solutions. A fit of the model to VLF data taken above a magma filled dikes in Hawaii
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and Mt Etna demonstrates that while properties such as depth to top, conductivity
ratio, tilt, and dip can be determined, the depth to bottom is indeterminate due to the
exponential decay of the inducing field.
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1 Introduction
When a magma intrudes the surrounding country rock it generates an electromagnetic
contrast that can have orders of magnitude higher conductivity than the surroundings
(Zablocki 1976, Kauahikaua et al., 1998). Secondary fields induced by very low fre-
quency (VLF) or high-frequency magnetotelluric waves (MT) generate fields at the
surface that can be used to provide information on the underground magmatic state.
In Hawaii, magma intrudes into dikes that are fed by magma chambers. The loca-
tion and geometry of newly formed dikes can be estimated using VLF (Zablocki 1976,
1978), and whether the dikes remain molten, since the conductivity decreases by sev-
eral orders of magnitude on solidification. Provided measurements are not taken near
the ends the problem is two-dimensional, and a single conductivity contrast between
the dike and country rock is an adequate approximation.

Numerical schemes for solving magnetotelluric problems are well-developed, e.g.,
integral equation (Hohmann 1971), finite differences and elements (Weaver et al., 1985,
1986; Wannamaker et al., 1987; Key and Weiss, 2006). The equations can become
quite complicated. Hohmann (1971) describes a numerical method for solving two-
dimensional problems and an associated FORTRAN program (SCATPW.F90 An-
derson et al., 1976) has been used for analysis of Hawaii data (Zablocki, 1976, 1978).
The program uses a collocation method to invert for currents in the conductive body
and takes into account the decay of the inducing field in the surrounding conductive
half-space as well as the free-surface boundary conditions. In that the method involves
Green’s functions that are fairly complex, involving singularities and infinite integrals,
it is useful to have analytic solutions for end-members against which the numerical
method can be compared. In addition, such simple solutions give insight on the de-
pendence of the electromagnetic response to skin depth and size.

Analytical solutions to VLF or MT problems are rare and have been applied to
end-member models bounded by strata of infinite or zero conductivity (Rankin, 1962,
Parker 2011). Rankin (1962) solved for a dike of finite width between layers of infinite
or zero conductivity. Parker (2011) presented an analytic solution for the conductive
strip in a uniform magnetic field for the case where the dike is modeled by a thin strip
that lies on an infinite conductivity substratum. The matrix either side of the strip has
zero conductivity, and so the incident field is determined by displacement currents.

The strip used by Parker (2011) has a singular conductivity distribution τ0a/
√
a2 − z2.

It corresponds to a thin vertical conductive ribbon extending above a perfectly con-
ducting half space subjected to a constant B field in the horizontal direction. It could
be used, for example, to model a dike intruding conducting sediments, if the lower
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end of the dike was rooted in high conductivity magma, and the sediments had a low
enough conductivity that the skin depth for the frequency of incident radiation was
large. The applied constant B field gives rise to an E field that varies linearly with
depth. The solution for the induced current in the dike is rather simple, taking the
form of a ramp function in depth. However, for the VLF method, induced currents
in the surrounding medium dominate over displacement currents. These cause the
incident B and E fields to have a spatial distribution that decays exponentially with
the skin-depth (e.g., 300 m), and so a more extended model than the constant B field
case is required, which we develop here following Parker’s procedure. In section 2 we
treat the full-space problem for which simple solutions can be derived. In section 3 we
we compare it with the half-space problem.

2 Full-Space Model
2.1 Governing Equations
For the range of frequencies used in magnetotellurics and VLF, and conductivities in
the Earth, we can ignore displacement currents, and assume the permeability and per-
mittivity contrasts are zero, with representative values of µ0, ϵo respectively (Telford et
al., 1990). The induced currents are due to the contrast in conductivity σ2−σ1 , where
σ2 is the conductivity of the strip and σ1 that of the surrounding medium. Maxwell’s
equations become

∇× E = −Ḃ (1)

∇×H = σE (2)

Let B = B0 exp(iωt) = µ0H0 exp(iωt)

∇× E = −iωµ0H0 (3)

∇2E = iωµ0σE = k2E (4)

∇2H = iωµ0σH = k2H (5)

where k =
√
iωσµ0. We choose the magnetic field at the surface to be in the x−

direction. The dike lies in the y − z plane as in Figure (1) and can have a dip at angle
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Figure 1: Geometry
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θ with the horizontal. All currents are in the y−direction. Let the incident field be
Ei

y = E0 exp(iωt) and the skin depth

δ1 = (
2

ωµ0σ1
)1/2 (6)

The solution for the incident field at depth is given by

Ei
y = E0 exp(−k1z) = E0 exp(−(i+ 1)z/δ1) (7)

(e.g., Telford et al., 1990) with a similar expression for H that can be derived using Eq.
(1). Equation (4) within and outside the strip becomes

∇2E2 = k22E2 (8)

∇2E1 = k21E1 (9)

We separate the total field Ey in the strip into the incident field Ei
y and the scattered

field Es generated by the induced currents Js in the strip, i.e.,

Ey = Ei
y + Es (10)

Substituting in Eqs. (8,9) the differential equations for Ey and Ei
y become, respec-

tively:

∇2(Ei
y + Es) = k22(E

i
y + Es) (11)

∇2Ei
y = k21E

i
y (12)

Eqs.(11,12) represent two coupled partial differential equations for a given Ei
y. If we

subtract k21Ey from Eq.(11)

∇2Ey − k21Ey = k22Ey − k21Ey (13)

∇2Ey − k21Ey = iωµ0(σ2 − σ1)Ey (14)

∇2Ey − k21Ey = iωµ0JS (15)
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Subtracting Eq (12) gives

∇2Es − k21Es = iωµ0JS (16)

Eq.(16) is a second order differential equation for the scattered field generated by a
distribution of current embedded in a medium of conductivity σ1. The scattering
current is confined to the inhomogeneity. To obtain a solution to Eq.(16) we multiply
by the Green’s function G0(x, z;x’z’), which gives the electric field at (x, z) for unit
current located at (x′, z′) , and integrate over the cross-section (Hohmann, 1971) to
obtain

Es(x, z) =

∫∫
S′

{[σ2(x′z′)− σ1]Ey(x
′z′)G0(x, z; x

′z′)dx′dz′ (17)

and from Eq.(10)

Ey(x, z) = Ei
y(x, z) +

∫∫
S′

{[σ2(x′z′)− σ1]Ey(x
′z′)G0(x, z; x

′z′)dx′dz′ (18)

with

G0(x, z;x
′, z′) =

−i
πδ21σ1

K0(
(1 + i)

δ1
[(x− x′)2 + (z − z′)2]1/2) (19)

(Wait, 1962) whereK0 is the modified Bessel function of the second kind of order zero.
Eq. (18) is a singular, inhomogeneous, Fredholm, integral equation of the second kind
for Ey.

We approximate a thin dike by a strip of uniform conductivity of half height a, and
width w ; Eq. (18) becomes

Ey(x, z) = Ei
y(z) + w[σ2 − σ1]

a∫
−a

Ey(x
′, z′)G0(x, z;x

′, z′)dz′ (20)

Following Hohmann (1971) effects of frequency, conductivity and permeability can be
taken into account by expressing dimensions in skin depths Eq.(6). Letting Z = z/δ1
and W = w/δ1, A = a/δ1. Substituting these in Eq. (20) it becomes

Ey(X,Z) = Ei
y(Z) +W [σ2 − σ1]δ

2
1

A∫
−A

Ey(X
′, Z ′)G0(X,Z;X

′, Z ′)dZ ′ (21)
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Letting

G(X,Z;X ′, Z ′) = K0{(1 + i)[(X −X ′)2 + (Z − Z ′)2]1/2} (22)

and substituting for G0 from Eq.(19), Eq.(21) becomes

Ey(X,Z) = Ei
y(X,Z)−

iΩ

A

A∫
−A

Ey(Z
′)G(X,Z;X ′, Z ′)dZ ′ (23)

with

Ω =
WA

π
[
σ2
σ1

− 1] (24)

(Wait, 1962, Erdelyi, 1954, see Eqs.(17, 23) Hohmann). This type of equation has been
solved numerically by evaluating the convolution at digitized field and source points
(Hohmann 1971; Anderson et al., 1976, with FORTRAN program SCATPW.F) where
the Green’s function also includes an extra term that models effects of surface reflec-
tions.

2.2 General Solution
We use the Galerkin-Chebyshev matrix method (Cole, 1998, Boyd, 2001, slightly mod-
ified in that we expand the integral equation in Chebyshev polynomials rather than
polynomials divided by the sin of the angle) to solve Eq.(22) by expanding it in Cheby-
shev polynomials and solving for coefficients. We separate the integrand into field and
source points using a similar approach to that used by Parker (2011). For a conductive
strip dipping at angle θ with respect to the X-axis, let Z = A cos(φ), X = Zcot(θ) and
Z ′ = A cos(ψ), X ′ = Z ′cot(θ). We expand Ey and Ei

y in Chebyshev series, i.e.,

Ey =
∞∑
l=0

El cos(lψ) = ElTl(ψ) (25)

Ei
y =

∞∑
n=0

Ei
n cos(nφ) = Ei

nTn(φ) (26)
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where Tn are Chebyshev polynomials of the first kind, and the summation convention
for repeated indices applies. The Green’s function can be expanded as

G(X,Z;X ′, Z ′) =
∞∑
n=0

∞∑
m=0

Gnm cos(nφ) cos(mψ) = GnmTn(φ)Tm(ψ) (27)

where

Gnm =

π∫
0

π∫
0

G(cosφ; cosψ) cos(nφ) cos(mψ)dφdψ (28)

Equation 22 becomes
∞∑
n=0

En cos(nφ) =
∞∑
n=0

Ei
n cos(nφ)+

iΩ

0∫
π

∞∑
l=0

El cos(lψ)
∞∑
n=0

∞∑
m=0

Gnm cos(nφ) cos(mψ) sinψdψ
(29)

which, on reversing the integral and using the Einstein summation convention, be-
comes,

EnTn(φ) = Ei
nTn(φ)− iΩGnmTn(φ)

π∫
0

Tm(ψ)Tl(ψ) sinψdψEl (30)

The integrals in ψ can be evaluated as

Aml =

π∫
0

cos(mψ) cos(lψ) sinψdψ (31)

Aml =
1−m2 − l2

(l +m+ 1)(l +m− 1)(l −m+ 1)(l −m− 1)
(m+ l + 1 odd)

= 0 (m+ l + 1 even)

(32)

The integral equation then becomes

EnTn = Ei
nTn − iΩGnmTnAmlEl (33)
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Collecting terms

En = Ei
n − iΩGnmAmlEl (34)

The solution is given by the matrix inversion

El = [I + iΩGnmAml]
−1Ei

n (35)

Provided the Gnm can be calculated, the solution is obtained with an accuracy de-
pending on the number of coefficients. However the Gnm contain a logarithmic sin-
gularity and so the integrals in Eq. (28) are not straightforward. Therefore we decom-
pose the kernel into the logarithmic component, that has a Chebyshev series, and the
smooth remainder, for which the series may be obtained analytically, or numerically
using the fast Fourier transform.

The modified Bessel function of the Green’s function, (Eq.24),
G(|Acosφ− A cosψ|) = K0(|A cosφ− A cosψ| (1+i)) can be expanded (Abramowitz
and Stegun, 1977, 9.6.13, Cope 1998) as

G(|A cosφ− A cosψ|) =
∞∑
k=0

(1 + i)2k

4k(k!)2
(− log |A cosφ− A cosψ|+

log
√
2− γ − π

4
i+ ak)× |A cosφ− A cosψ|2k

a0 = 0 ak = 1 + 1/2 + ...+ 1/k (k > 0)

(36)

where γ is Euler’s constant = 0.577215664. The logarithmic singularity contained in Eq.
(36) has a Chebyshev expansion given by

− log((1 + i) |A cosψ − A cosφ|) = L00 +
N∑
1

2

n
cos(nφ) cos(nψ)

= LnmTn(φ)Tn(ψ)

(37)

with

Lnm = log
{
2

√
2

A
exp(−γ)

}
− iπ/4 n = 0

=
2

n
n > 0

(38)

The remaining terms in |cosφ− cosψ| are also separable. Thus each of the terms
in Eq.(22) is separable and can be integrated over ψ to obtain the Gnm as a series (See
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Cope 1998, who uses recurrence relations to minimize computations). To separate
out the singularity we decompose the Green’s function into the logarithmic term and
remainder given by,

R(|A cosφ− A cosψ|) = K0(A |cosφ− A cosψ| (1 + i))+

log((1 + i) |A cosψ − A cosφ|)
(39)

Then the

Gnm = (Rnm + Lnmδnm) (40)

where Rnm is the double Chebyshev transform of R. For our purposes we use an FFT
to compute the Rnm (We used Von Winckel’s, 2004 MATLAB program for the 2D
Chebyshev transform). For a given half- lengthA,Rnm is evaluated atN+1Chebyshev-
Gauss-Lobatto points ψn = nπ/N , ϕn = nπ/N, n = 0...N , and fast Fourier trans-
formed to obtain the Rmn. A value of N=40 was used for the case discussed below.
Eq. (35) becomes,

El = [I + iΩ(δnmLnm +Rnm)Aml]
−1Ei

n (41)

For an incident field Ei
y we need to calculate its Chebyshev coefficients Ei

n . Con-
sider an E field at the surface which exponentially decays to a strength strength E0 at
the center of the dike. Equation (7) can be written

Ei
y = E0 exp(−(i+ 1)A cosφ) = E0

∞∑
n=0

(−1)ninγnJn((1− i)A) cos(nφ)

γn = 1 n = 0

γn = 2 n > 0

(42)

Therefore the Chebyshev coefficients for the exponentially decaying wave are

Ei
n = E0(−1)ninγnJn((1− i)A) (43)

Figure 1 shows the test strip. It has a width of 1 m and a length of 100 m. An incident
E field given by Eq. (7) is applied at the surface which has a value E0 = 1 at the center
of the strip. The frequency used was 20,000Hz. The conductivity of the strip σ2 = 1
S/m. The conductivity of the matrix σ1 was varied to correspond to skin depths of 36
km, 356, 113, 36, 11 and 1 meters. Corresponding real and imaginary components of
the induced field are plotted in Figs. (2a-2f) respectively. The stars are points calcu-
lated from the Numerical solution (Hohmann, 1971, but setting the surface terms in
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Figure 2: Real and imaginary Ey for different skin depths (Lines) calculated using Eq.
(41). Stars are numerical solutions using a MATLAB version of the FORTRAN pro-
gram SCATPW.F90 described by Anderson et al., (1976).
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the program SCATPW.F90 to zero). At large skin depth the incident field is almost
uniform and the induced fields are curved and symmetrical. As skin depth decreases,
the effect of the decay in the inducing field with depth becomes apparent. When the
skin depth is a small fraction of the dike length, the results become independent of
the lower boundary. In such cases, the secondary field cannot be used to detect the
overall dimensions of the dike, but are useful for depth of the top, lateral position, dip,
and the product of conductivity contrast and width - which determines amplitude.

2.3 The infinite skin depth case
When the surrounding medium has zero conductivity,

G0(z; z
′) =

−iωµ0

2π
log(|z − z′|) (44)

A constant B field, as solved by Parker (2011) applies, as in this case displacement
currents become relevant. The incident E field is given by Ei

y = iωB0z. Using the
same conductance distribution as Parker (2011), i.e., τ0a/

√
a2 − z2, and taking into

account finite-width, the conductivity becomes, σ2 = τ0a/w
√
a2 − z2. Equation (20)

is then

Ey(z) = Ei
y(z)−

iωµ0τ0
2π

a∫
−a

Ey(z
′) log(|z − z′|)a/

√
a2 − z′2dz′ (45)

Transforming to coordinates (φ, ψ) and taking the Chebyshev transform

cosφ = z/a, cosψ = z′/a (46)

EnTn(φ) = Ei
nTn(φ)− i

ωµ0τ0a

2π
Tn(φ)Ln

π∫
0

Tn(ψ)Tl(ψ)dψEl

Ln = log 2

A
n = 0

=
2

n
n > 0

(47)

For the Chebyshev spectral expansion, the chosen conductivity distribution is the
weight function for the orthogonality condition for Chebyshev polynomials a/

√
(a2−

13



z2) = 1/sinψ. After evaluating the integrals, only the n = l terms remain, and Eq.
(47) becomes

EnTn(φ) = Ei
nTn(φ)− i

ωµ0τ0a

2π
Tn(φ)LnNnEn

Nn = π n = 0

Nn = π/2 n ̸= 0

(48)

We equate the coefficients of Chebyshev polynomials to obtain

En = Ei
n −

iωµ0τ0a

2π
NnEnLn (49)

rearranging gives,

En =
Ei

n

1 + 1
2π
iωµ0τ0aLnNn

(50)

For the uniform B field where E = iωB0z, n = 1 and Ln = L1 = 2, N1 = π/2.

E1 =
iωB0

1 + 1
2
iωµ0τ0a

(51)

which is Parker’s (2011) equation (14).
Noting from Eq.(51) that τ0 is conductivity times width at z = 0, we let this

conductivity be σ = τ0/w. The skin-depth in a strip of this conductivity is then
δ2 = (2/ωµ0σ)

1/2. Eq. (51) becomes

E1 =
iωB0

1 + 1/2iωµ0wσa
=

iωB0

1 + iωa/δ22
=

πB0

π + iWA
(52)

and the more general Eq. ( 50) becomes

En =
Ei

n

1 + iNnLnwa
πδ21

=
πEi

n

π + iNnLnWA
(53)

that is, the dimensionless term in the denominator is the cross-sectional area of the
strip expressed in units of skin-depth squared.
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2.4 The finite skin depth case
We examine next the intermediate case for which the skin depth is larger (e.g., several
times) than the dimensions of the strip, but not necessarily infinitely larger, and in-
duced currents dominate over displacement currents. Then the kernel takes the form
of the complex logarithm that can be expanded to include a complex offset term and
the Chebyshev series in Eq. (37). That is, the Rnm terms in Eqs(40,41) become second
order and the Gnm are analytic. The Green’s function can be approximated as

K0(|Z ′ − Z| (1 + i)) = − log |Z ′ − Z|+ log
√
2− γ − π

4
i+ ...

= log
{
2

√
2

A
exp(−γ)

}
− i

π

4
+ 2

N∑
1

1

n
cos(nφ) cos(nψ)

(54)

Then the solution becomes

El = [I + iΩLnnAnl]
−1Ei

n (55)

where the Lnn are given in Eq.(38). Figure 3 shows that for δ1/A large this approxima-
tion gives a good fit, but when the ratio approaches unity Eq. 35 is required.

2.5 Strip with infinite conductivity
Another case with an analytic solution (e.g., Brant, 1992), against which our method
may be tested is that of the infinitely conductive dike in a uniform magnetic field
applied normal to its axis.

Ey =
2zH0

σ(a2 − z2)1/2
(56)

Our program reproduces this case, but near the singularities at the ends the solu-
tions exhibit the Gibb’s phenomenon.

As a final check equations (11,12) were solved by iterative finite differences based
on the successive over/under relaxation method. We can thus arrive at the solutions
using three methods (1) numerical (2) Galerkin-Chebyshev and (3) finite differences, all
of which serve as mutual checks and in some cases simple analytical formulae can be
extracted. The range of solutions presented in this paper and the regimes over which
they apply are listed in Table 1.
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Figure 3: As in Figure (2) but using the approximate Green’s Function Eq.(55). The
stars are numerical values. The analytic series are plotted as lines. The approximate
solution applies for the case where skin depth is larger than the body (here 100 m in
length) as the misfit in the lower figures shows.
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Matrix
Cond. σ1

Strip
Cond. σ2

skin
depth
δ1

El , 1E(z) Eq
No.

all all all [I + iΩGnmAml]
−1Ei

n Eq.(35)
all all >A [1 + iΩLnnAnl]

−1Ei
n Eq.(55)

0 τ0a
w
√
a2−x2 ∞ [π + iWA]−1πB0 Eq.(52)

0 τ0a
w
√
a2−x2 ∞ [π + iNnLnWA]−1πEi

n Eq.(53)
0 ∞ ∞ 1E(z) = 2zH0/(a

2 − z2)1/2/σ Eq.(57)

Table 1. Analytic spectral solutions for the conductive strip. The second case Eq.(55)
applies to strip buried in a weakly conductive earth. The σ1 = 0 cases correspond to
a strip in a vacuum. The singular conductivity function corresponds to that used by
Parker (2011).

3 Half-Space Model
3.1 Governing Equations

In this section we use the Galerkin-Chebyshev method to solve the problem for a
buried, dipping dike in a conductive half space. The full solution to the underground
dike problem requires an extra term in the Green’s function to satisfy surface boundary
conditions. The full-space Green’s function Eq. (19, 24) is expanded as an integral of
plane waves, for which plane wave reflection coefficients give the reflected fields from
the surface that are superposed on the direct field (Wait, 1962). For example, for the
Ey field the Green’s function is,

GEY
s (X,Z;X ′, Z ′) =

∞∫
0

u− g

u+ g

e−u(Z+Z′)

u
cos[g(X −X ′)]dg (57)

where u = (g2 + 2i)1/2. The resulting integrals require time-consuming numerical in-
tegration. In order to calculate the surface field contributions just once, we divide the
X −Z space of interest into Chebyshev-Gauss-Lobatto nodes, and calculate the two-
dimensional Chebyshev spectrum GEY

s (cos(nφ), cos(mψ)), which is used to evaluate
the surface fields at arbitrary [X − X ′,Z + Z ′]. The GEY

s is nonsingular and can be
added to the remainder valuesRnm in Eq.(39) and thus Eq. (41) is the required solution
for the induced fields in the strip.
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In order to calculate the field on the surface, the induced field is then convolved
with the appropriate Green’s functions to obtain the surface magnetic and electric
fields, from which tilt and ellipticity can be calculated, as well as surface impedance.
The convolution may be written

F (X) =

A∫
−A

Ey(X
′, Z ′)GF (X,X ′;Z,Z ′)dZ ′ (58)

where F is the [HX,HZ,EY ]-field at the surface when the corresponding Green’s
function GF is used. In general the GF have terms that include surface reflections as
well as source effects (Hohmann, 1971). We take the two-dimensional Chebyshev spec-
trum at the Chebyshev-Gauss-Lobatto points, where φ corresponds to points along
the surface and ψ to those along the strip, and perform the convolution as in Eqs.(19)
and (33),

Fi = GF
ijAjlEl (59)

where Fn is the n’th term in the Chebyshev expansion of the field on the surface.
Shifting the origin such that Z = 0 is on the surface, the GF are as follows,

GHX(X, 0;X ′, Z ′) = (1 + i)H0Ωσ1

{
Z ′

2R
K1{(1 + i)R}+

∞∫
0

g − u

g + u
e−uZ′

cos[g(X −X ′)]dg

}

GHZ(X, 0;X ′, Z ′) = (1 + i)H0Ωσ1

{
X −X ′

2R
K1{(1 + i)R}

∞∫
0

u− g

u+ g

g e−uZ′

u
sin[g(X −X ′)]dg

}

GEY (X, 0;X ′, Z ′) = iH0Ωδ1

{
K0{(1 + i)R}

∞∫
0

u− g

u+ g

e−uZ′

u
cos[g(X −X ′)]dg

}

(60)

where R = [(X − X ′)2 + Z ′2]1/2 and second terms are surface reflections. The full
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solution, combining Eq.(41) and (58) becomes

Fi = GF
ijAjl

Ei
n

[I + iΩ(δnmLnm +Rnm)Aml]
(61)

where GF
ij is given by Eq.(60), Ei

n by Eq.(43), Lnm by Eq.(38), Rnm by the Chebyshev
transform of Eq.(39) plus Eq.(58), Anm, and Ajl by Eq.(32).

3.2 Numerical Comparison
The solution for the full-space problem including all surface reflections in the Green’s
functionsGmn andGFmn for surface fieldsF = [Ey, Hx, Hz] tilt, ellipticity and impedance
using Eqs. (41 and 58) are shown in Figures (4-8). The model chosen is similar to one
published by Zablocki, (1976), i.e., σ1 = 0.0001, σ2 = 1 S/m, Depth=30 m, Width=1 m,
Length=25 m, but with a dip of 60o. For a dip of 90o our solutions are identical to those
published. Stars are numerical solutions using a MATLAB version of SCATPW.F90.
Solid lines are half-space solutions including surface terms. Dashed lines use the ap-
proximate Eq(41), that do not include the effects of the surface reflections. For this
case the dimensions are sufficiently small compared with the skin depth that Eq.(55)
gives near identical results. We found that for impedance, tilt and ellipticity, the full-
space model gives an excellent approximation to the half-space results (e.g., Fig 4 and
8 are typical even at very shallow depth).

The computer time for the full-space approximate solutions is orders of magni-
tude faster than the complete solution, mainly achieved by not calculating the surface
reflections that involve the infinite sums. Thus the approximate solution is useful in
an iterative inversion. A MATLAB code, keyed to the equations in this paper, that
reproduces the dashed lines in Figures (4-8), is included in the supplementary material.

As examples of application of the above theories, in the following section we fit
the model to VLF tilt data measured above a magma-filled dike that intruded into the
flank of Kilauea volcano in 1973 and were published by Zablocki (1976,1978) and above
a dike on the south flank of Mt. Etna, Sicily, that intruded in 2001 (Bonaccorso et al.,
2002).

4 Field Examples
4.1 Kilauea East Rift Zone, Hawaii
On May 5 1973 an eruption occurred in Hi’iaka and Pauahi craters located in Kilauea’s
east rift zone on the island of Hawaii (Klein et al., 1987; Tilling et al., 1987). Con-
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temporaneously a 100m-long eruptive fissure developed about 1 km west of Hi’iaka
Crater and electromagnetic surveys were used to infer that the associated magma in-
trusion extended a further 2 km as an underground dike (Zablocki 1976). VLF surveys
were made along 6 profiles that crossed the dike, and showed characteristic positive
followed by negative peaks in the tilt field separated by about 100 m.

Dikes in Hawaii are thought to reach to depths of km. The skin depth in Hawaii is
about 300m. Because they have dimensions greater than several skin depths, remain-
der terms as in Eq(41) were included. We fixed a=1000 m, since for dimensions above
several skin depths the model is insensitive to the deeper termination. We also fixed
width=1m and conductivity of the magma σ2 = 1S/m, since conductivity-contrast
times width trade off against each other. We carried out a non-linear inversion for
the parameters: conductivity of the surrounding medium, location, depth, and dip.
Also, because the measured field showed skewness, we included, as an unknown, the
background tilt of the incident magnetic field Φ0.

The resulting fit {σ1 = 1.62± 0.04× 10−4 S/m, Depth=17.2 ± 0.57 m, θ = 82± 3o,
Φ0=5.7 ± 0.5 % is shown in Figure (9). As expected we found the fit was independent
of the lower depth extent of the dike. A more extensive model may be required to
address the non-uniqueness of this type of inversion, but we conclude that the data
are fit by a near-vertical dike of depth 17 m containing molten basalt. Both full-space
and half-space models were used in the inversions. As expected from the tilt curves
in Figure (4), the results were sufficiently similar to justify using the simpler full-space
equations (Eq. 41) in the inversion.

4.2 Mt. Etna, Sicily
Beginning on 12 July 2001 seismic activity, GPS and tiltmeter measurements indicated
that a dike was intruding into the south flank of Mt Etna, which culminated in an
eruption on July 17. Surface non-magmatic fissures indicated the path of the intrusion.
Inversion of the geodetic data described a dike running approximately north-south,
with a vertical extent of about 2.5 km and opening of 3.5 m (Bonaccorso et al., 2002).

In May 2003 we conducted a VLF survey west to east across the fissure zone (Figure
10) at an elevation of 2186 m. The data were noisy, and as a check, two surveys were
carried out. The VLF tilt field from both, shown in Figure (10), is highly unevenly
distributed about zero. We thus assumed, like in the Hawaii case , that a background
regional tilt was present, but significantly larger.

The data were inverted (Figure 10) based on Eqs.(41, 49); σ2, w, and a were fixed
as σ2 = 1 S/m; w=3.5m, and a=1000 m. The inversion for the remaining parameters
gave σ1 = 5.1 ± 0.72 × 10−4 S/m, Depth=20.1 ± 3.1 m, θ = 36 ± 5o, Φ0=36 ±1% .
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The skin depth on Etna is 171 meters. The dip of the dike does not correspond to
the vertical dike found geodetically. However the VLF is most sensitive to the upper
several hundred meters. The combination of near-surface dip and a deeper vertical
dike may account for the regional dip Φ0. Such a composite model is beyond the scope
of this paper. Again, both full and half-space models gave similar results.

5 Discussion and Conclusions
We have applied the Galerkin-Chebyshev matrix method to solve for the induced field
in a conductive strip embedded in a conductive medium subjected to electromagnetic
radiation. A simple full-space model given by Eq.(35) is both fast and sufficiently accu-
rate for inverting tilt and ellipticity measured over buried dipping dikes. A MATLAB
program is suppled in the supplementary material that can be modified for general
inversion.

For the infinite medium, and infinite skin depth, and a particular conductivity dis-
tribution, the solution converges to Parker’s analytic solution. Parker’s (2011) solution
used the Schmidt-Hilbert method (Porter and Stirling, 1993) to separate the kernel of
the integral equation. Based on his approach, we find here that an equivalent method
of expanding the kernel in a Chebyshev spectrum gives the same result. Its simplicity
arises because of his choice of the singular conductivity function that corresponds to
the weight function for orthogonality of Chebyshev polynomials. Thus, in that case,
the 2D Chebyshev spectrum is a diagonal matrix that has a simple inverse.

For more general conductivity, the spectrum has off-diagonal terms that may ei-
ther be calculated as analytical series, or by using a modified fast Fourier transform.
Then a matrix inversion needs to be carried out to obtain the final series solution. By
separating out the logarithmic singularity from the modified Bessel function kernel,
the combined 2D Chebyshev spectrum can be calculated as the sum of the closed-
form logarithmic spectrum and numerical evaluation of the non-singular remainder.
For skin depths greater than the dimensions of the body the remainder is of second
order, and the closed-form logarithmic spectrum suffices.

The half-space model, including surface reflections, and convolution of Green’s
functions to obtain surface fields, was also solved using Chebyshev spectra. Any two-
dimensional cross-section can be analyzed in this way. The most time-consuming cal-
culations are the infinite sums for the surface reflections. However, for a given range of
surface locations and depth, this required one evaluation at Chebyshev-Gauss-Lobatto
locations to obtain spectral components that then can be evaluated anywhere within
that volume during an inversion.
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The approximate (full-space) solution has some advantages over numerically solv-
ing the integral equation, since it avoids problems associated with digitizing the log-
arithmic singularity, is computationally faster, and provides simple equations against
which numerical schemes can be checked. The use of Chebyshev-Gauss-Lobatto nodes
concentrates the digitization near the ends of the strip where the induced field varia-
tion is greatest (e.g., Fig. 2). Chebyshev polynomials are near-minimax approximations
to a given function, i.e. they minimize the maximum error. In addition the expansion
can be truncated at frequencies above which the problem is not resolved. The surface
fields then obtained are continuous across the surface rather than at discrete points as
given by numerical methods. The full solution requires including surface reflections,
but for all the cases we have tested for tilt, impedance and ellipticity, these effects are
small.

As examples we show the inverted fits of the model to tilt data measured above a
magma-filled dike that intruded in Hawaii, in 1973 and Mt. Etna in 2001. Either full or
half-space inversions gave similar results. The inversions gave the location, depth, dip,
that correspond to values seen in exposed dikes and conductivities that are consistent
with measured properties of solid and molten basalt.
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Figure 4: Tilt and ellipticity for a model that is similar to one published by Zablocki,
(1976), i.e., σ1 = 0.0001, σ2 = 1 S/m, Depth=30 m, Width=1 m, Length=25 m, but with a
dip of 60o. Stars are numerical solutions using a MATLAB version of the FORTRAN
program SCATPW.F90 described by Anderson et al., (1976). For compatibility with
that program the incident field at the surface was taken to be Hx = −5.3076 T which
corresponds to an incident E field of 2000 v/m. Solid lines are half-space solutions
(Eq. 61) including surface terms. Dashed lines use the approximate Eq.(61) excluding
surface terms.
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Figure 5: Real and imaginary Hx for the model described in Figure 4.
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Figure 6: Real and imaginary Hz for the model described in Figure 4.
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Figure 7: Real and imaginary Ey for the model described in Figure 4.
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Figure 8: Impedance for the model described in Figure 4.
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Figure 9: A fit to the measured VLF tilt above the Hi’iaka dike in Hawaii that in-
truded over a distance of several km in Kilauea’s East Rift Zone in 1973 (as reported
by Zablocki, 1976). The fitting function was based on Eq.(61). Both full and half-space
models gave a similar fit 28
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Figure 10: A fit to the measured VLF tilt above a dike that intruded into Etna vol-
cano in 2001. Squares and circles give results of two independent surveys. The fitting
function was based on Eq.(61). Both full and half-space models gave a similar fit
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