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Spatial Interaction, Spatial Multipliers, and Hospital Competition  
 

Abstract 

  The hospital competition literature demonstrates that estimates of the effect of 

local market structure on competition are sensitive to geographic market definition.  Our 

spatial lag approach effects smoothing of the explanatory variables across the discrete 

market boundaries.  This approach results in robust estimates of the impact of market 

structure on hospital pricing, which can be used to estimate the full effect of changes in 

prices inclusive of spillovers that cascade through the neighboring hospital markets.  In 

markets where concentration is relatively high before a proposed merger, we demonstrate 

that OLS estimates can lead to the wrong antitrust policy conclusion while the more 

conservative lag estimates do not. 
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I.  Introduction 

Hospital competition is a function of market extent—the geographic space in 

which all relevant competitors reside—and that space is, in the long run, endogenous.  

Hospitals choose location and product dimensions, and contractual arrangements with 

payers and other hospitals that directly impact the competition they face and extent of the 

relevant market.  The elasticity of demand facing a hospital is a function of their product 

mix as well as their constituents’ willingness to travel to hospital.  Because distance to 

hospital is such a strong determinant of demand, and because consumers are 

geographically dispersed, two or more hospitals may compete for constituents who live in 

particular markets.  This market contestability over geographic space has been called the 

‘relational aspect’ of hospital markets, which makes them difficult to define with discrete 

market boundaries (Dranove and Shanley, 1989).   

It is well known that drawing market boundaries that do not perfectly contain all 

relevant competitors can impart bias on the estimated effects of structural competition 

measures (i.e. number of firms, concentration of firms market shares) on market 

outcomes (Scherer and Ross, 1990, pp 422-424; Pindyck and Rubinfeld, 1998).  

Economists have spent a great deal of time considering better ways to measure market 

extent for antitrust purposes (Elzinga and Hogarty, 1974; Dranove, Shanley, and Simon, 

1992;  Frech, Langenfeld, and McCluer, 2004).  Recent efforts have focused on using 

demand substitution parameters defined from hospital choice models (Kessler and 

McClellan, 2000; Gaynor and Vogt, 2000; Capps, Dranove, Greenstein, and 

Satterthwaite, 2001).   
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Capps et al make explicit the impact of travel elasticity of demand on overall 

demand elasticity of substitution, which is a key parameter in the dynamics of hospital 

competition.  Capps et al (2001) posit that price elasticity of demand (ηjd )is directly 

proportional to the elasticity of time (ηjt ) spent by patients traveling to hospital:   

ηjd  =  Kj ηjt , where Kj >0.        (1) 

A decrease in either elasticity is associated with higher market power, thus if a merger 

between two hospital succeeds in reducing the time elasticity of demand, it will increase 

market power for the merged hospitals.   Reducing the time elasticity would mean 

making consumers less sensitive to distance.  This might happen if the merged facilities 

segmented the market, specializing in particular high-tech services, and reduced the 

cost/improved the quality of these services.  Market power against payers would increase 

because of specialization – hospitals would become more heterogeneous, and the quality 

of care would increase making consumer demand less elastic (more loyal). 

Our focus here is not on defining the relevant hospital market.  We are concerned 

with obtaining a consistent estimate of the impact from hospital market structure 

(concentration) on hospital pricing.  We use a Nash model of hospital rivalry to motivate 

the use of a spatial interaction model in estimating the effect of market structure on 

hospital pricing.  We estimate a spatial lag model to attempt a separate identification of 

the effect of structural characteristics at the local level and spatial interaction among 

competing hospitals.  Because the spatial market unit is smaller than the actual range of 

spatial interaction, spatial autocorrelation is present in the data, which complicates the 

separate identification of true spatial interaction from spatial mismatch effects.  However, 

by incorporating the spatial lag in the model, the effect of the local market characteristics 
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on equilibrium prices is estimated consistently.  We contrast this specification with 

ordinary least squares (OLS), where the effect of spatial interaction is ignored and the 

estimated effects of local characteristics are biased, with misleading standard errors.  Our 

spatial econometric methods also help to avoid problems associated with using fixed 

market boundaries, but contrasts with recent approaches in the literature that do not 

consider spatial autocorrelation. 

The rest of this paper is organized as follows.  Following Mobley (2003) we 

briefly describe the Nash bargaining theory of hospital pricing and associated price 

reaction functions with slopes that reflect degree of hospital interaction.  We then show 

how competing hospital characteristics - reflecting the degree of specialization or 

substitutability - can impact the slope of price reaction functions, making explicit the role 

of time-travel elasticity of demand.  Mobley (2003) did not consider the time-travel 

elasticity as a dimension reflecting the competitive environment facing hospitals. We 

then develop an empirical model that incorporates hospital interaction and estimate it 

using spatial regression methods.  We then interpret the findings in the context of 

analysis of competition in hospital markets.  We conclude with some limitations and 

directions for future research. 

 

II.  The Theoretical Model 

The theoretical model was fully developed by Mobley (2003) so only an 

abbreviated version is given here.   The theoretical model of hospital interaction is a Nash 

bargaining model that derives from standard oligopoly theory of price reactions among 

rivals.  Oligopoly is the correct industry construct for this study, because (with the 
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exception of large teaching hospitals and specialty hospitals) California hospital markets 

are quite local (Mobley and Frech, 2000).  Thus we define the most relevant competitors 

for each short-term general, acute-care hospital in our sample as those hospitals in closest 

geographic proximity.   

The oligopoly model employs price-reaction functions, showing each firm’s price 

response to what they anticipate their rivals will do (Krouse, 1990).  When all firms in a 

market simultaneously optimize profits, their price reaction functions characterize the 

equilibrium that obtains.  We assume that firms choose price structures to maximize 

profits, and the first-order condition at the profit maximum is used to derive the price-

reaction function.  The price-reaction function depends upon industry conditions (cost C, 

demand P) and conjectures held by firms regarding what they expect their rivals will do 

(Φ).  The stationarity condition at the profit maximum is solved to find each firm j’s 

price-reaction function, Pj*, in response to prices set by other firms (k): 

 Pj* = rj (Pk; Φkj; Cj) (2) 

The intersection of the firms’ reaction functions is a feasible price pair 

characterizing the equilibrium.  Implicit differentiation of the stationarity condition can 

be used to derive the slope of the reaction function, which is positive when products are 

substitutes and demand is linear or not too convex (Krouse, 1990).  The more specialized 

a hospital is relative to its competitors, the less substitutable are their services, and its 

reaction function has a flatter slope.  For perfect substitutes, the slope is unity, and the 

reaction functions coincide with an equilibrium price at the most competitive level 

(Carlton and Perloff, 1994, p. 247).  If time-travel elasticity is proportional to product 

demand elasticity (Capps, Dranove, Greenstein, and Satterthwaite, 2001), then a decrease 
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in the willingness to travel would decrease the elasticity of substitution, flattening the 

reaction functions and making hospitals poorer substitutes as they become more distant 

from one another.   

Figure 1 demonstrates that the flattening slopes result in higher equilibrium 

prices, as competition is reduced by the spatial differentiation.  With perfect collusion, 

the reaction curves cross at the highest possible price set that could be sustained by the 

market (Figure 2).  Thus our estimate of the slope of the price reaction function reflects 

the elasticity of substitution among hospitals, which is sensitive to the time travel 

elasticity of consumers.  The slope of the reaction function is a direct measure of the 

degree of competition among hospitals in the market. 

 

III. Background and Data  

 

This study uses financial data from California hospitals, which are known to face 

strong price competition from rivals and are important from a market or antitrust 

perspective because of their considerable merger activity in the past decade (Jones 1999; 

Mobley, 2003; 1997; 1995).  Recent hospital antitrust decisions reflect the opinion that 

mergers are viable strategies for reducing competition (Simon, 2005), and California 

hospital markets are very competitive (Frech and Mobley; 2000; Mobley, 2003; 1998; 

1995).   

Most California hospital markets are very urban, and land use patterns are dense, 

with small distances between competing hospitals. The vast majority of hospital 

inpatients traveled less than 20 miles to hospital (Mobley and Frech, 2000).   Managed 



 6

care plans solicit competitive price bids from competing hospitals, who offer volume 

discounts to get all of the business from the managed care plans.  As Medicare fee-for-

service payment rates have become less profitable, and Medicare has promoted use of 

‘Medicare’ managed care plans (offered by private insurers), private insurance plans have 

become important players with considerable market power.  Thus price competition is an 

important aspect of the market environment in California. 

To study interaction among hospitals in their pricing decisions, we obtained data 

from several sources: hospital financial and discharge data are from California’s Office of 

Statewide Health Planning and Development (OSHPD); information about multi-hospital 

chain ownership is from the AHA Guide and Hospital Statistics; and for codes describing 

the integration between hospital and physicians are from the AHA Annual Survey of 

Hospitals.  The urban-continuum codes used for defining highly urbanized versus other 

places are from the February 1998 ARF ( Area Resource File). The outcomes-based 

quality variable we use is based on the study of acute myocardial infarction (AMI) by 

OSHPD (OSHPD, 1997). 

We use hospital financial and discharge data from the year 1998 for 336 short-

term general hospitals.  Actual contract prices are not available, so we use for our 

dependent variable net (of contractual discounts with payers) inpatient revenue received 

from private payers per private inpatient day, adjusted to reflect outpatient care.  This 

price variable reflects the average negotiated prices for privately insured hospital patients, 

and is a good proxy for prices in this selective contracting environment, reflecting income 

actually received by hospitals for the broad range of services provided to privately 

insured patients.   
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The variables central to this study reflect competitive market conditions that 

affect the balance of power in the hospital’s market.  These variables are thought to shift 

the reaction functions rather than impact their slopes directly, affecting equilibrium prices 

(Mobley 2003).  Competitive market conditions include hospital organizational structure 

(whether they are affiliated with a multihospital chain, their ownership type), hospital 

market concentration (the concentration of hospital business into a few versus many 

firms, a measure of competition), the extent of vertical integration between hospitals and 

physicians (which could impact market power in bargaining with insurers), and managed 

care penetration in the local hospital market. Higher managed care penetration in the 

market indicates that a greater proportion of business is contractually negotiated, thus 

price competition is greater in these highly-penetrated markets. For defining the market-

level factors, we employ a very local measure of market extent, the Health Facilities 

Planning Area (HFPA).  The HFPA areal unit was defined by the state of California to 

reflect self-contained hospital markets based on flows of resources and commerce.  The 

HFPAs are smaller and more numerous than counties. 

We define a Herfindahl index of market-level concentration (and a measure of 

managed care penetration) using the traditional fixed-boundary approach.  That is, we 

measure market concentration using the Herfindahl index (HHI), defined over market 

shares in net patient revenue at the hospital’s HFPA level.  In constructing the index, 

hospitals in an HFPA affiliated with the same multihospital chain are treated as a single 

unit in measuring market share, so chain penetration affects our Herfindahl statistic.   We 

also include in our regression a centered measure of market share (CENTSHARE) 

following Keeler, Melnick, and Zwanziger (1999, p. 76).  The coefficient of 
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CENTSHARE captures the impact of size relative to the average size in the hospital’s 

HFPA, while the coefficient of HHI shows the effect of competition independent of the 

hospital’s size.  Managed care penetration is measured at the HFPA level using two 

variables derived from patient discharge data: the proportion of patient discharges in 

managed care plans exclusive of the Kaiser plans (MANGCARE), and the Kaiser plans’ 

market share (KAISER SHARE).   

For the organizational structure measures, we distinguish secular from non-

secular chains by defining multihospital chain ownership in three categories: for profit, 

non-profit secular, and non-profit religious (FPCHAIN, NPCHAIN, RCHAIN).  We 

define hospitals’ vertical integration with physician groups (LOOSE, TIGHT) following 

Burns, Bazzoli, Dynan and Wholey (1998).  Burns et al. define “tight” versus “loose” 

integration arrangements between hospitals and physicians, using the AHA physician 

integration codes. “Tight” integration includes management service organization, 

foundation, group practice without walls, equity model, and integrated salary model 

forms of integration.  “Loose” integration includes independent practice associations 

(IPAs) and physician hospital organizations (PHOs).  These two groupings are defended 

in related empirical research which documents the existence of distinct groupings based 

on the intensity of process-level interactions among hospitals and physicians (Dynan, 

Bazzoli, and Burns, 1998).  

To isolate the main competitive effects, we also control for several factors that do 

not affect the balance of power per se but might impact the hospital’s offered price, such 

as indigent care burden (LOSSES/EXPEND), casemix complexity (CASEMIX), 

Medicare prospective payments system (PPS) pressure in the hospital (PPS PRESSURE), 
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and hospital size/the number of available beds in the hospital (BEDS), and measures of 

urban intensity (POPDEN, URBAN).  In order to hold constant variation in price due to 

demand for process quality and complexity of care, we include payroll expenses per 

adjusted inpatient day (DLEVEL) and an index of the breadth of services offered 

(SCOPE) as additional control variables.  Our outcomes-based quality measure, 

(WORSE) indicates hospitals that performed significantly worse than expected in acute 

myocardial infarction care, based on a careful quality study with findings announced to 

the public in 1993 (OSHPD, 1997). Because some of these hospital-specific explanatory 

variables may themselves be affected by hospital prices, thus raising concerns about 

endogeneity, these are lagged two years. 

 

IV.  The Econometric Spatial Lag Model of Hospital Pricing Interdependence 

The econometric model recognizes the interdependence of hospitals’ pricing 

decisions in an equilibrium context.  When we define a spatial lag process to characterize 

the degree of product substitution (competition) in the market, we assume that hospitals 

in closer proximity are closer substitutes than those more distant.  The closest neighbors 

are defined using a spatial weights matrix (W).  These neighbors’ pricing decisions 

directly impact a hospital’s pricing decision.  But because space is multidirectional (not 

linear), hospitals share neighbors with other hospitals, and the pricing spillovers are a 

simultaneous, non-linear phenomenon.  Ultimately, each hospital is impacted by many 

others in the system, with influence diminishing with distance.  The simultaneity and 

non-linearity of these spillovers is captured in the spatial lag model specification and 

estimation.  
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The price reaction function specified above by our Nash bargaining model 

(equation 2) depends upon behavior (Φ) and on demand and cost conditions (P,C).  This 

strategic-interaction model of hospital behavior is appropriate whenever hospitals in close 

proximity make interdependent choices.  Interdependence means that one hospital’s 

choice directly impacts the choices made by neighbors (as distinct from situations 

wherein apparently similar behaviors arise from concerted response to some common 

neighborhood effect). Empirical support for the theory of pricing interaction can be 

provided from specification tests, which we discuss below Table 4.  Mapping equation 2 

into a linear estimable form, the spatial lag model can be written:  

 P* = ρWP + Xβ + u       (3) 

The vector P is hospital price and the ρWP term on the right side of the equation 

is the spatial lag term.  The model specification reflects spatial spillovers in pricing:  each 

hospital’s price P is in part determined by average prices among the neighboring 

hospitals (ρWP), and (with influence declining with distance) all other hospitals in the 

system.  The estimate of the spatial lag parameter (ρ) reflects the slope of the reaction 

function, which parameterizes the degree of interdependence in pricing, i.e. how much 

hospital i’s price is influenced by the average prices of immediate (and more distant) 

neighbors. Examples from the literature of positing the lag parameter as the slope of the 

reaction function include models of adoption of innovation among farmers (Case, 1992), 

expenditures by states on public goods (Case, Rosen, and Hines, 1993), models of tax 

competition and welfare competition among local governments (Brueckner and Saavedra, 

2001; Saavedra, 2000), strategic interaction among cities (Brueckner, 1998; 2003), and 

the endogeneity of land use patterns  (Irwin and Bockstael, 2002; 2004).    
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In equation 3, the behavior, demand, and cost conditions are subsumed in the 

vector X, which includes contextual factors that can shift the reaction functions.  These 

contextual factors include structural measures characterizing the insurance, hospital, and 

physician markets.  These groups provide the market climate for the rivalry that 

ultimately determines the equilibrium negotiated prices between private payers and 

hospitals.   Mobley (1995) showed that the behavioral parameter (Φ) may be impacted by 

multihospital chains, which provides a profit-maximizing rationale for merger or 

acquisition under multihospital ownership.  Multihospital chain ownership, insurance 

market structure, and vertical integration of physician groups within hospitals are factors 

included in the model to reflect these contextual factors.  Table 1 describes the variables 

included in the empirical estimation with a brief rationale for inclusion for each.   

 

Simultaneous System and Spatial Smoothing of Explanatory Variables 

Because all hospitals’ prices are determined simultaneously in equilibrium, the 

term WP on the right-hand side of (3) will be correlated with the error term.  In 

estimating equation 3, the simultaneity embedded in the WP term must be explicitly 

accounted for, either in a maximum likelihood framework, or by using a proper set of 

instrumental variables.  To demonstrate this simultaneity, we solve (3) for the equilibrium 

price vector P*, given by the reduced form: 

   P* = ( I - ρW)-1 Xβ + ( I - ρW)-1 u   (4) 

The matrix inverse ( I - ρW)-1  is a full inverse, which yields an infinite series that 

involves error terms at all locations: ( I + ρW + ρ2W2 + ρ3W3 +…)u .  Each location is 

correlated with every other location, but this decays with the order of contiguity (the 
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powers of W in the series expansion). Powers to the weights matrix (W2, W3, etc.) reflect 

neighbor sets in more and more remote contiguity (i.e., second order contiguity is one’s 

neighbors’ neighbors, and third order is one’s neighbor’s neighbor’s neighbors, and so 

forth).  The spatial lag term ρW for observation j is correlated with its own error uj, and 

with all other errors in the system.   

Equation 4 shows that the spatial lag model allows global spatial autocorrelation 

in both the explanatory variables and the error term. This means that the dependent 

variable is explained by local variables (in the hospital’s own market, the HFPA) as well 

as all others in the system, following a general distance decay pattern, as expanded in 

equation 5:  

  E [P | X] =  Xβ + ρWXβ + ρ2W2Xβ + … u    (5) 

In equation 5, Because ⏐ρ⏐<1, each successive term in the expansion has smaller and 

smaller impact, characterizing less and less influence from observations more and more 

distant.   This expression is useful because it shows that explanatory factors defined at the 

discrete HFPA market level (i.e., managed care penetration or hospital concentration) are 

spatially smoothed across local markets.  Thus the expected equilibrium price is 

determined by each hospitals’ own market factors as well as those of immediate 

neighbors (ρWX ) and second order neighbors (ρ2W2X ) and so forth.   

 To see how constructing the spatial lag of the Herfindahl index (HERF97) 

smoothes it, relative to the raw index, we use a Moran’s I plot in Figure 3.  A Moran’s I 

scatter plot is a plot with the variable of interest (HERF97) on the x-axis and the spatial 

lag (W_HERF97) on the y-axis. Anselin (1996) describes the use of this type of plot to 

assess local instability in spatial association.  In our data, each hospital in the sample is 
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represented by a point, with the Herfindahl index for its HFPA plotted against its 

spatially lagged value, which is an average of neighboring hospitals’ Herfindahl values. 

In Figure 3, the slope of the regression line (0.389, top panel) is the Moran’s I statistic for 

HERF97, using a six-closest neighbors weights definition. If the hospital’s HERF97 were 

identical to its neighboring hospitals’ HERF97 values, then the Moran’s I statistic would 

be near 1.  When neighbors have greater dissimilarity in the HERF97 values, the value of 

Moran’s I is lower, and conversely.  In Figure 3, we plot the relationships between 

hospitals’ HERF97 values and the average HERF97 value for their spatial neighbors, 

using the seven closest neighbors to form the spatial lag.  Figure 3 shows that the 

Moran’s I value is close to 0.40, which indicates considerable similarity with neighbors 

but not perfect agreement.  Thus having the closest-neighbors HERF97 (lagged HERF97) 

in the econometric system adds information which effectively smoothes over the discrete 

market boundaries imposed by the HFPAs.   

The spatial lag Herfindahl index is weighted by the spatial lag parameter, which 

cannot exceed unity.  For neighbors of neighbors, a second-order spatial lag is calculated 

from the Herfindahl indices of neighbors’ neighbors, which is given less weight (the 

squared spatial lag parameter).  For neighbors’ neighbors’ neighbors, a third-order effect 

is calculated, and so forth.  Thus the spatial lag model effects smoothing of contextual 

factors over discrete market boundaries, using information from the hospital’s HFPA, 

augmented by information about neighboring hospitals’ HFPAs, with greater weight 

given to closer neighbors. 
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Empirical Results: Marginal versus Full Effects 

The spatial lag econometric model is appropriate when there is a theoretical 

model of the structural interaction among hospitals determining equilibrium prices, and 

one is interested in measuring the strength of that interactive relationship.   The spatial 

lag econometric model is equally relevant when one is interested in obtaining consistent 

estimates of the marginal impacts of explanatory variables on equilibrium price, in the 

presence of spatial spillovers in pricing (Kim, Phipps, and Anselin, 2006).  In the 

equilibrium framework, the marginal impact is the partial derivative, or change in own 

price holding all others’ prices constant.  The total derivative would be the combined 

effect of all hospital price changes in the simultaneous equilibrium.  

From the reduced form (equation 4), we see that the marginal impact of a unit 

change in X on P is not simply β, as it would be in the OLS model.    The spatial lag 

model specification modifies the impact of X on P through the matrix inverse term (1-ρ 

W) -1.  This modification accounts for spatial correlation among the Xs and spillover 

effects ρ (the fact that every hospital’s response to a shock is recognized and anticipated 

by neighbors, who then respond in turn).  Thus, the spatial lag model estimate of β 

obtained after spatially filtering the dependent variable is a consistent estimate of the 

direct, or marginal, impact of X on P in the equilibrium for the system.    

If there is spatial autocorrelation in the data, estimation of equation 3 by OLS 

(thus excluding the endogenous WP term) would fail to separate the marginal effects of 

the variables X on price. In that case, and when ρ is positive: 

    E [P | X] =  Xβols , and |β ols | > | β |  (6) 
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β ols will be biased upwards in magnitude whenever the variable X for hospital i is 

spatially correlated with the X variables for their neighboring hospitals (Anselin, 2003).  

In the empirical results given in Table 2, the magnitude of this bias (on average, 1/(1-ρ) ) 

is illustrated by comparing the OLS and spatial lag models’ estimates.     

 

V. Discussion: Application of the Spatial Lag Model to Hospital Pricing 

In the empirical modeling, we characterize contextual market conditions with 

market-specific variables, defined over circumscribed HFPA regions, while true 

“competition” (spatial interaction) is captured with the spatial lag econometric 

specification.  Thus we assume explicitly by our modeling strategy that competition is 

something simultaneous that occurs among hospitals, and that these other measures are 

more indicative of factors that can tilt the balance of power in favor of either suppliers 

(physicians) or payers (insurers).  We use very local market (HFPA) measures of these 

conditioning factors, recognizing that when the fixed market definition under-bounds the 

true range of spatial interaction, the market variables will be spatially correlated.  

However, the spatial correlation of market conditioning variables is accounted for 

explicitly in our estimation.  It is worth noting that the opposite case—over-bounding the 

market—can hide valuable information through aggregation.  Because of this, we see the 

strategy of very local market definition coupled with spatial econometric modeling as an 

ideal partnership in preserving and using information in the data. 

Table 2 contains results from estimation of three different specifications of the 

hospital pricing model:  an ordinary least squares regression model with no accounting 

for spatial spillovers, a spatial lag model using the seven-closest neighbor specification of 
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spatial weights, and a spatial lag model using an inverse distance function to specify the 

spatial weights.  Table 3 contains sample statistics, and Table 4 provides diagnostic tests 

demonstrating the validity of the lag model under different specifications of neighbor 

sets.  Table 2 shows that there is statistically significant evidence of a spatial lag process 

in prices (p-val 0.006), and the estimate of the spatial lag parameter (ρ) is 0.231 for the 

seven-closest neighbor model.  For the inverse-distance model, the spatial lag estimate is 

0.278 with a p-value of 0.046.   

 

The Spatial Multiplier Effect in Hospital Pricing 

In the context of our work, the spatial lag model captures through the spatial 

multiplier process both the direct (marginal) and indirect (spillover) effects of a 

neighborhood’s hospital characteristics, including market conditions, on equilibrium 

prices.   A shock in the contextual variable X is felt simultaneously by all hospitals in the 

neighborhood, rather than being felt primarily by a single hospital with a ripple effect 

through the neighborhood.  The ripple effect is due to model structure (lag), the 

specification of the neighbor weights (how many neighbors) and the magnitude of the 

spatial autoregressive coefficient.  Anselin (2003) describes the global spatial multiplier, 

(1/1-ρ), as the average extent to which the direct effect of a factor on the dependent 

variable is magnified by the spillovers in the system.  The parameter which defines the 

magnitude of the ripple effect is the spatial lag, which compounds spillovers through the 

spatial multiplier.  Thus the estimated coefficients in the spatial lag model are consistent 

estimates of the marginal effect of a change in X on equilibrium prices, while the full 

effect is a multiple of the marginal effect.   
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For example, in hospital pricing (Table 2), the global spatial multiplier is 1.30 for 

the seven-closest neighbor model.  Thus almost 1/3 of the impact of competition on 

prices is already reflected in neighborhood prices, through indirect reaction effects from 

neighbors.  In other words, every dollar impact of an X variable on equilibrium price 

derives about a third of its effect from interaction among hospitals within the system.  

Failure to account for the redundancy or commonality in shocks through muting the 

indirect effects (OLS model) would lead to inflation of about 18% in the estimated 

marginal impact of concentration on equilibrium prices.  Thus the OLS estimates of the 

direct (marginal) impacts of competition variables are biased upwards in magnitude, 

because the model is misspecified by omission of spatial spillover effects.  In sum, the 

spatial lag model accounts for the redundancy induced by spatial autocorrelation in 

explanatory variables as well as spillover effects (interactions) among hospitals that lead 

to interdependence in hospital pricing behavior.  OLS estimation ignores these things, 

and can produce biased estimates of the marginal, or direct, effects of market competition 

variables on equilibrium prices, and produces misleading standard errors. 

The theory of spatial spillovers can be supported by empirical tests that 

distinguish between a spatial lag and a spatial error process (Anselin and Bera, 1998, p. 

279).  The test results in Table 4 support the theory of spatial spillovers in pricing, as the 

spatial lag model is a better fit to the data than the alternative (a spatial error model).  

Further, we believe this finding is robust, because the spatial lag process is consistently 

more significant than the spatial error process for several different sets of spatial weights 

(i.e., k=5, k=6, k=7, and k=8 closest neighbors, inverse distance, and binary distance 

weights).    
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VI.  Implications of Findings for Hospital Competition and Market Definition 

 

For hospital competition analysis, market concentration is a key construct.  This 

construct reflects the dispersion of market share among one, few, or many firms, and is a 

larger number when the shares are distributed into fewer firms.  Greater concentration is 

associated with greater power of firms to influence market prices.  The most widely used 

measure is the Herfindahl Index (HHI), which is actually the sum of squared market 

shares (giving greater weight to larger firms).  In our analysis, the local market is the 

HFPA, so the HHI is the sum of squared market shares for all hospitals inside each 

HFPA, resulting in a single measure of concentration for each HFPA.   

For competition analysis, the full effect of market concentration (HHI) on price is 

the appropriate estimate. The full effect includes both the direct, first-round impact as 

well as additional feedback from changing prices in neighboring markets (spillovers).  To 

calculate this full effect, we multiply the spatial lag estimate of the marginal impact from 

concentration on price (the beta coefficient) by the spatial multiplier (1/1-ρ).  For the 

seven-nearest neighbor model, the full effect estimate is 369.47; for the inverse distance 

model, it is 391.26.  These empirical results have strong implications for the definition of 

hospital markets for antitrust purposes.   

In recent years, antitrust market definition in the United States has been 

influenced by the Guidelines issued by the U.S. Department of Justice and the Federal 

Trade Commission, who have jointly issued merger guidelines, revised several times over 

the years (Langenfeld, 1996; Werden, 2003).  The Guidelines view geographic markets 

from the perspective of a hypothetical monopolist, calling for a ‘thought experiment’ 
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where all of the producers of a given product within a geographic area collude on price 

and become, hypothetically, a local monopolist.  Then, the relevant geographic market 

for antitrust purposes is defined to be the smallest geographic area such that this 

hypothetical monopolist would be able to implement about a 5 percent price increase.   

The ultimate policy goal is to prevent mergers from increasing market power.  

From this viewpoint, the harm of market power is an increase in price, regardless of 

whether it comes from spatial interactions extending beyond the putative market.  Indeed, 

the competitive harm is greater if the ultimate increase in price above the competitive 

level extends outside of the geographic market.  This analysis implies that the correct 

model for this purpose must capture the full feedback from other areas.   

Our results can be easily interpreted in terms of the hypothetical-monopolist 

thought experiment.  Suppose we consider a market with a Herfindahl index (HHI) 

measure of 0.468, which is the mean for our sample (Table 3).  The hypothetical 

monopolist would be perfect collusion of all firms in the local market, acting as a single 

monopolist, leading to an HHI measure of 1.0.  Therefore, the predicted price increase 

caused by raising the HHI from 0.468 to 1.0 is a direct empirical estimate of the price 

increase resulting from the hypothetical monopolist thought experiment.    If this 

predicted price increase exceeds the 5 percent of the Guidelines, then the area (HFPA) 

over which we defined the Herfindahl index is larger than the appropriate antitrust 

market. 

The coefficient on concentration in the seven-nearest neighbors spatial lag 

equation is 284.21.  This is the partial effect.  To find the estimate of the full effect, one 

must multiply by the global multiplier, 1.30, giving 369.47.  If the hypothetical 
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monopolist organized all the hospitals in this typical market into a monopoly the 

predicted price increase from the hypothetical monopolist example is: 

 

∆Price = ∆HHI*βHHI  =  (1.0-0.468) * 369.47 = $196.56.  (7) 

 

Since the mean price is $1543.94, the percentage price increase would be about 

13 percent, which still vastly exceeds the 5 percent of the Guidelines, indicating that 

HFPAs are larger (on average) than actual antitrust markets.  Using the lower OLS 

coefficient estimate ($335.116), the estimated impact on price would be about 11.5 

percent, yielding the correct conclusion in this case.  However, in a less competitive 

market at the onset, i.e. moving from a HHI of 0.75 to 1.0, the OLS estimate is 5% while 

the lag estimate is 6%, thus the OLS analysis would conclude ‘no harm’ when in fact the 

guidelines had not been met.  Thus in market situations where competition is lower to 

start with, the bias in the OLS estimates can yield wrong decisions.  These are the 

situations that usually wind up in antitrust court, so the importance of these findings 

should not be ignored. 

VII. Conclusion 

There has been continued interest in the health economics literature in modeling 

hospital market competition and in understanding and explaining competitive effects.  

The model of spatial interaction presented in this paper is concerned with characterizing 

the essence of competition itself.  With our direct modeling of the range of competitive 

interaction, we then obtain consistent estimates of the impact of local market structural 

characteristics on the equilibrium prices that arise from the competitive interaction 
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among hospitals.  Using this, we demonstrate the potential problems that might arise 

when using OLS estimates instead of more robust lag estimates in the assessment of 

potential harms from merger.  In cases where the market if highly concentrated before 

merger, we show that OLS estimates can lead to the wrong policy conclusions. 
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Table 1:  Variable Definitions  
Variable  Description Rationale for Inclusion 
PPS PRESSURE Proportion of net patient revenue from 

Medicare (a proxy for Prospective 
Payments System pressure) 

Reduces a hospital’s ability to price 
competitively in the private market 

LOSSES/EXPEN
D 

Bad debt and charitable services (net of 
gifts) as a share of total operating 
expense 

Reduces a hospital’s ability to price 
competitively in the private market 

SCOPE Index of the breadth of hospital services 
offered 

Increases a hospital’s ability to attract 
demand in the private market 

CASEMIX index of disease complexity in the 
inpatient population 

Increases hospital costs 

DLEVEL Proxy for demand intensity: total 
payroll per inpatient day, lagged two 
years 

Increases a hospital’s ability to attract 
demand in the private market 

HOSWAGE Wage index for hospital workers in the 
hospital’s county 

Increases hospital costs 

BEDS Number of set-up beds available for use 
in the hospital 

Increases a hospital’s ability to price 
competitively in the private market 

WORSE Binary variable indicating that hospital 
scored significantly worse than 
expected in acute myocardial infarction 
treatment, suggesting low quality 

Decreases a hospital’s ability to attract 
demand in the private market 

FPCHAIN Indicator variable =1 if hospital is 
affiliated with a for-profit hospital chain 

Increases hospital market power and 
strategic position 

NPCHAIN Indicator variable =1 if hospital is 
affiliated with a secular nonprofit 
hospital chain 

Increases hospital market power and 
strategic position 

RCHAIN Indicator variable =1 if hospital is 
affiliated with a religious nonprofit 
hospital chain 

Increases hospital market power and 
strategic position 

LOOSE Number of loosely structured vertical 
agreements with physician groups 

Increases hospital market power and 
strategic position but increases costs 

TIGHT Number of tightly structured vertical 
agreements with physician groups 

Increases hospital market power and 
strategic position but decreases costs 

CENTSHARE Hospital’s share of net patient revenue 
in its HFPA 

Increases hospital market power and 
strategic position 

HHI (HERF97) Herfindahl index of net patient revenue 
for the HFPA 

Increases hospital market power and 
strategic position 

MANGCARE Share of the HFPA’s discharges in non-
Kaiser prepaid health plans  

Decreases hospital market power  

KAISER SHARE Share of the HFPA’s discharges in 
Kaiser HMO plans 

Control variable for missing market 
segment 

POPDEN Population density in the hospital’s 
HFPA 

Control variable for dense market, with 
agglomeration economies 

URBAN  Variable indicating whether the hospital 
is located in an urban area  

Control variable for urban market, with 
agglomeration economies 
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Table 2.  Estimation Results for Hospital Pricing Interaction Model 
 
 OLS Spatial Lag: k=7 

closest neighbors 
Spatial Lag: 
Inverse Distance 

 Coeff. P-val Coeff. P-val Coeff. P-val 
PPS PRESSURE -518.467 0.087 -406.384 0.160 -493.590 0.089
LOSSES/EXPEND 831.709 0.005 806.393 0.004 804.823 0.005
SCOPE 377.621 0.110 325.240 0.150 321.714 0.156
CASEMIX 636.238 0.002 612.092 0.002 620.056 0.002
DLEVEL 0.020 0.000 0.021 0.000 0.020 0.000
CENTSHARE 243.354 0.229 235.132 0.225 241.141 0.215
HHI (HERF97) 335.116 0.014 284.210 0.030 302.134 0.022
MANGCARE -604.385 0.081 -507.779 0.126 -503.842 0.132
KAISER SHARE -54.084 0.880 -89.748 0.794 -70.707 0.838
FPCHAIN -9.906 0.915 -9.790 0.912 -12.597 0.887
NPCHAIN 63.098 0.532 43.682 0.652 46.398 0.633
RCHAIN -65.601 0.530 -74.415 0.457 -88.256 0.381
HOSWAGE -128.021 0.711 -237.631 0.478 -232.216 0.493
BEDS -0.698 0.038 -0.579 0.073 -0.608 0.061
LOOSE 136.795 0.022 141.514 0.013 138.066 0.016
TIGHT -38.040 0.378 -44.806 0.279 -41.868 0.314
WORSE -222.138 0.017 -223.531 0.012 -218.250 0.015
POPDEN 0.009 0.407 0.008 0.436 0.009 0.364
URBAN -194.069 0.045 -181.737 0.053 -152.290 0.118
SPATIAL LAG (ρ)   0.231 0.006 0.278 0.046
N         336 336 336 
R-SQ        0.320 0.327 0.325 
Likelihood      -2599.87 -2596.83 -2598.02 
LR Test Stat p-val *restricted model  0.01 < p < 0.025 0.05 < p < 0.10 
Global Multiplier NA 1.300 1.295 
Full Effect, HHI  369.47 391.26 
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Table 3: Sample Statistics 
 

Variable Name mean standard   
deviation 

PRICE    1534.97 673.73
PPS PRESSURE       0.28 0.13
LOSSES/EXPEND       0.03 0.12
SCOPE      0.74 0.19
CASEMIX      1.39 0.24
DLEVEL     32902.00 12591.00
HOSWAGE     1.22 0.14
BEDS       192.52 143.25
WORSE      0.15 0.36
FPCHAIN     0.17 0.38
NPCHAIN      0.15 0.36
RCHAIN      0.13 0.34
LOOSE 0.53 0.70
TIGHT 0.60 0.98
CENTSHARE     -0.12 0.18
HHI       0.47 0.28
MANGCARE        0.25 0.12
KAISER SHARE       0.07 0.11
POPDEN 3022.30 3845.40
URBAN 0.67 0.47
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Table 4:  Diagnostic Tests to Distinguish Empirically Between Spatial Lag and 
Spatial Error Processes, Using Different Specifications of Spatial Weights 
 

RSλ LM (error) 0.046 
RSλ* Robust LM (error) 0.630 
RSρ LM (lag) 0.013 

k=5  
neighbors 

RSρ* Robust LM (lag) 0.120 
RSλ LM (error) 0.052 
RSλ* Robust LM (error) 0.514 
RSρ  LM (lag) 0.012 

k=6 
neighbors 

RSρ* Robust LM (lag) 0.088 
RSλ  LM (error) 0.060 
RSλ*  Robust LM (error) 0.363 
RSρ  LM (lag) 0.009 

k=7  
neighbors 

RSρ* Robust LM (lag) 0.044 
RSλ  LM (error) 0.133 
RSλ*  Robust LM (error) 0.328 
RSρ  LM (lag) 0.025 

k=8  
neighbors 

RSρ*  Robust LM (lag) 0.055 
RSλ  LM (error) 0.733 
RSλ*  Robust LM (error) 0.161 
RSρ  LM (lag) 0.024 

Binary 
distance 

RSρ*  Robust LM (lag) 0.009 
RSλ  LM (error) 0.247 
RSλ*  Robust LM (error) 0.102 
RSρ  LM (lag) 0.011 

Inverse 
distance 

RSρ*  Robust LM (lag) 0.005 
 
Methodology for Proper Diagnosis of Error Process (Anselin and Bera, 1998, p. 279) 

If neither RSρ nor RSλ are significant, but robust tests (RSρ* RSλ*) are, then 
ignore the robust tests.   

When RSρ is more significant (lower p-value) than RSλ , and RSρ* is significant 
while RSλ* is not, then lag autocorrelation is most likely the correct error structure.   

When RSλ is more significant (lower p-value) than RSρ , and RSλ* is significant 
while RSρ* is not, then error autocorrelation is most likely the correct error structure. 
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Figure 1 (Two-firm case): change in slope of reaction functions as products become 
worse substitutes, resulting in higher equilibrium prices for both firms.  In the limit (i.e. 
perfectly heterogeneous products) the reaction functions are perpendicular, intersecting at 
a higher price than the case when there was some substitution possible, even in the 
absence of concerted action.  This might happen if there was a substantial time-travel 
component to the firm’s perceived elasticity of demand, and the price of oil climbed so 
high that people were unwilling to use any but the most local hospital.  Dashed lines are 
iso-profit contours, which reach a maximum at the black dot in the upper right, 
representing the highest possible prices that could be sustained by perfectly colluding 
firms. 
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Figure 2 (Two-firm case): outward shift in reaction functions (at each price set by rival, 
firm now sets higher own-price) with increased 'awareness of interdependence', i.e. more 
concerted action (parameterized as an increase in Φ). This results in a higher price in 
equilibrium (Φ'> Φ).  Dashed lines are iso-profit contours, which reach a maximum at the 
black dot in the upper right portion of the picture.  This represents the highest possible 
prices that could be sustained by perfectly colluding firms.  With perfect coordination, 
the curves shift out far enough that the resulting equilibrium prices are the cartel level 
prices, associated with the highest industry profit possible (black dot). 
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Figure 3:  Moran’s I plot for the spatial relationship between the raw Herfindahl 
(HERF97) and its spatially lagged value (W_HERF97), using K=7 closest neighbors in 
calculating the average HERF97 for neighbors. Small values of the Moran’s I statistic 
(near zero) are consistent with having no spatial autocorrelation in the data.  A Moran’s I 
value near 1 indicates near perfect spatial autocorrelation. 




