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Abstract: In order to comply with criteria of green energy concepts and sustainability, a multi-objective 
analysis was performed for the transesterification of waste cooking oil (WCO) using immobilized lipase. 
Response surface methodology and artificial neural networks, followed by multiple response optimiza-
tion through a desirability function approach were applied to individually and simultaneously evaluate 
the fatty acid methyl esters (FAME) content and the exergy effi ciency. Reaction time and concentra-
tions of methanol, immobilized lipase and water were considered as the design variables in maximiz-
ing FAME content and exergy effi ciency. The maximum individual desirability of FAME content was 
predicted to be 95.7% corresponding to a methanol to WCO molar ratio of 6.7, catalyst concentration 
of 45%, water content of 9% and reaction time of 25 h. However, based on the simultaneously optimi-
zation of both the FAME content and the exergy effi ciency, the maximum overall desirability was found 
at a methanol to WCO molar ratio of 6.7, catalyst concentration of 35%, water content of 12% and 
reaction time of 20 h to achieve FAME content of 88.6% and exergy effi ciency of 80.1%, respectively. 
© 2016 Society of Chemical Industry and John Wiley & Sons, Ltd

Keywords: thermodynamic analysis; enzymatic transesterifi cation; lipase immobilization; optimization; 
biodiesel; exergy

Introduction

L
imited energy reserves and increasing environmental 
pressure on greenhouse gases (GHGs) from fossil 
fuels has caused biodiesel (fatty acid alkyl esters) to 

become a topic of interest in and target of energy policy in 
many countries.1,2 Biodiesel has drawn attention in the last 
decade as a low toxicity, biodegradable, renewable source 

of fuel with generally lower exhaust emissions and reduced 
lifecycle GHG implications for CO, CO2 and SOx in com-
parison with petroleum fuels. Th erefore biodiesel is mostly 
considered an environmentally friendly alternative liquid 
fuel and energy product.1,3

Biodiesel is produced by esterification of fatty acids or 
transesterification of triglycerides with short chain alco-
hols like methanol and ethanol. Methanol is mostly used 
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in this fi eld also is net energy yield through biodiesel. 
Th erefore the system needs to be improved through both 
the reduction of exergy destruction and the enhance-
ment of biodiesel yield, simultaneously. Th ere are diff er-
ent methods to optimize operating conditions such as the 
conventional graph method,15 improved graph method,16 
desirability functions,17 the extended surface procedure, 18 
response surface methodology (RSM),19 and artifi cial neu-
ral networks (ANN).20

RSM has important applications in research and indus-
try for the design and development of new products and 
the improvement of existing products. RSM defi nes the 
eff ect of the controlling independent variables, alone or in 
combination, on the process response. Th e methodology 
employs mathematical models describing the industrial 
process.19 However RSM may not be applicable to optimize 
for all processes although it has many advantages. RSM 
can only develop fi rst-degree and second-degree models 
that is considered as a disadvantage of this technique for 
data that could be fi tted better on other models.

ANN have been used in many fi elds of science, engineer-
ing, and medicine due to their utility in solving non-linear 
problems.20 Neural networks are useful when exact math-
ematical information is not available. Another advantage 
of ANN models over rule-based models is the potential 
to add new data for retraining the network, if the process 
under analysis changes. Th is typically is much easier than 
determining new models or rules. ANN models are at a 
disadvantage compared to rule-based modeling, like RSM, 
for explaining the relationship between independent and 
dependent variables because of using ambiguously defi ned 
weights.

Due to the high surface area of mesoporous silica 
which can increase the immobilization density as well 
as the property of superparamagnetic iron oxide nano-
particles (SPION), which helps the recovery of lipase, the 
mesoporous silica–SPION core-shell (Fe3O4 at SiO2) 
was produced as a promising candidate for immobili-
zation of T. lanuginose on lipase in the present work. 
Th is research focused on modeling the following infl u-
ences on the FAME content and exergy effi  ciency of the 
transesterification of WCO: molar ratio of methanol to 
WCO (m), weight percent of immobilized lipase to WCO 
(l), water content (w), and reaction time (t). Th is study has 
been carried out with the aim of providing information 
on the operating conditions that provide the best FAME 
content while also having the least material and energy 
requirements through minimizing exergy losses by using 
two techniques of the response surface methodology and 
the artifi cial neural network.

because of its lower cost compared with other alcohols, 
so biodiesel most commonly refers to fatty acid methyl 
esters (FAME). However, one of the major obstacles to 
wide application of biodiesel is its high cost in comparison 
of fossil diesel.4 It has been reported that the cost of raw 
materials amounts to around 75% of the total biodiesel 
production cost.5 Th erefore, sustainability of biodiesel 
production depends on low cost feedstock such as waste 
cooking oil (WCO) to reduce the overall cost of biodiesel 
production.6

Biodiesel can be synthesized chemically or enzymati-
cally according to the catalysts employed in the process. 
Short time and high yields are considered to be advantages 
of chemical transesterification versus drawbacks such as 
high energy requirements, difficulties in the recovery of 
the catalyst and coproduct glycerol and potential pollution 
of the environment associated with alkali or acid catalyzed 
processes.2,7 Lipase has attracted the attention of research-
ers as a biocatalyst with fewer disadvantages compared to 
chemical transesterification.8 Th e high cost of lipase has 
been recognized as the main obstacle for industrial appli-
cation of biocatalyst in transesterification. Immobilization 
methods have been introduced to produce immobilized 
lipase and improve lipase stability and allow for repeated 
utilization.2,9,10

Another point to be considered is the effi  ciency of bio-
diesel production measured in terms of both the fi rst and 
the second laws of thermodynamics. Producing a renew-
able energy source usually involves the consumption of 
non-renewable resources. When the exergy content of a 
non-renewable resource is altered through an irrevers-
ible process, the environment is also considered altered. 
Hence, much research11–13 has been undertaken on the 
exergy accounting of non-renewable resource consump-
tion in order to measure the environmental impact of 
many manufacturing processes. Th e intensive exploitation 
of a renewable energy source may also cause a destruc-
tion of exergy through excessive wastes due to insufficient 
materials recycling. Some work and non-renewable 
resources are needed to treat these wastes in order to 
reduce or prevent environmental damage.13,14

Most real processes need to be optimized with respect 
to several criteria simultaneously. Frequently, design or 
operating conditions are constrained for meeting product 
specifi cations. Sustainable enzymatic biodiesel produc-
tion, for example, needs to be optimized both in terms 
of yield effi  ciency and exergy destruction. Exergy-based 
criteria were found to give much better guidance for sys-
tem improvement, as they account better for use of energy 
resources. However, one of the most important reasons 
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dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammo-
nium chloride coupling agent for a linkage with the 
amino acid residue of lipase.22,23 Lipase can be covalently 
immobilized on the superparamagnetic nanoparticles by 
forming a Schiff  base linkage between the alkyl group of 
dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammo-
nium chloride and the terminal amino group of lipase. 
For this purpose, 10 g of dried magnetic NPs were re-dis-
persed in 100 mL of ethanol (95%) and 150 mL of glycerol 
and subsequently stirred at 600 rpm for 10 min. About 
10 mL of dimethyloctadecyl [3-(trimethoxysilyl) propyl] 
ammonium chloride (72%) was vigorously added to the 
mixture and the reaction was heated to 85°C in a silicon 
oil bath and stirred at 750 rpm for 12 h. Th e alkyl-graft ed 
SPION-silica NPs were decanted by a magnetic device and 
washed with ethanol several times to completely remove 
unadsorbed components. Th en, the particles were dried 
at 100°C for 24 h in a thermal oven and stored at ambient 
conditions until further use.

A typical immobilization was then started with re-dis-
persion of 10 g of the alkyl-graft ed NPs in ethanol (99.9%) 
and then decanted by the magnetic device. Th e T. lanug-
inose lipase was added at an enzyme weight to solution 
volume ratio of 2 (w/v) under vigorous mechanical stirring 
at 30°C for 6 h. Th e immobilized lipase was then decanted 
by an external magnetic field and washed with deion-
ized water for several times until complete removal of the 
unbound lipase. Th e immobilized lipase was fi nally dried 
by lyophilization at −50°C and 25 kPa for 48 h.

Enzymatic transesterification

In the fi rst step of enzymatic transesterifi cation, waste oil 
was vacuum-fi ltered with fi lter paper to remove impuri-
ties. Th e refi ned WCO was heated to 80°C and continu-
ously stirred for 10 min with 1% of H3PO4 (85%). Th e 
mixture was then centrifuged to completely remove the 
contents of colloid and water inside the refi ned WCO. 
Transesterification reactions were performed in 50 cm3 
capped flasks on a shaking incubator. A typical reac-
tion mixture included 5 g WCO, 500 mg n-hexane, pre-
determined methanol/oil molar ratio, immobilized lipase 
concentration and water content. Methanol was added 
to the reaction through three-step addition with equal 
amount and time interval in each step. Aft er fi nishing the 
pre-determined times of reaction, the reaction mixtures 
were carefully filtered by magnetic separation. Th e excess 
methanol of each sample was distilled with the help of a 
rotary evaporator under reduced pressure, and then the 
samples were taken under room temperature to measure 
the FAME content.

Materials and methods

Materials

Food grade cooking canola oil was purchased retail and 
then used in frying potatoes and fi nally collected and stored 
in a glass container at room temperature. Th e physicochem-
ical properties of the WCO including density, viscosity, free 
fatty acid (FFA) content, and acid value were 0.906 g/cm3, 
51.3 cP, 5.68%, and 11.16, respectively. Th e density and vis-
cosity of oil were measured by a pycnometer and a viscom-
eter, respectively, whereas the FFA content and acid values 
were determined by acid–base titration. Methanol, etha-
nol, pellets of sodium hydroxide (97%), hydrochloric acid 
(36.5–38%), ammonium hydroxide (28–30% NH3 basis), 
ferric chloride hexahydrate (98%), ferrous chloride tet-
rahydrate (99%), tetramethyl ammonium hydroxide (25%), 
hexadecyltrimethyl ammonium bromide (CTAB; 99%), 
tetraethylorthosilicate (TEOS; 98%), dimethyloctadecyl[3-
(trimethoxysilyl)propyl] ammonium chloride (72%), and 
Th ermomyces lanuginose lipase with activity >105 units/g 
were all purchased from Sigma-Aldrich, St. Louis, MO, 
USA. All reagents were used as received without further 
purifi cation. Deionized water was used in all experiments.

Preparation of magnetic nanoparticles

Superparamagnetic mesoporous silica-SPION core-shell 
nanoparticles (NPs) were prepared based on the method 
described in the previous work.2 Th e SPIONs were pro-
duced by coprecipitation of degasifi ed and acidic ferric 
chloride hexahydrate (10.81 g) and ferrous chloride tet-
rahydrate (3.97 g) in ammonium hydroxide (0.7 M) in a 
round-bottom fl ask reactor under bubble nitrogen gas and 
magnetic stirring. Th e prepared ferrofl uid solution was 
kept at 4°C under N2 atmosphere until further use for core 
generation in magnetic NPs.

Th e mesoporous silica/iron oxide superparamagnetic 
core-shell NPs were prepared based on a sol–gel method 
by using tetraethylorthosilicate (TEOS) as the precursor 
and hexadecyltrimethyl ammonium bromide (CTAB) as 
the dispersant, pore formation, and capping agent. Th e 
particles were then separated using a magnet and washed 
several times. Th e magnetic NPs were fi nally oven dried 
at 70–80°C for 12 h, then calcined at 550°C for 8 h. Th e 
magnetic properties and surface area have been reported 
in our previous report.21

Immobilization of lipase

In order to immobilize lipase onto magnetic NPs, the 
functional groups of microspheres were activated using 
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pound is calculated by Eqn (8) which is a function of the 
chemical exergy of each elemental compound, the number 
of atoms of each element contained in the stream and the 
Gibbs free energy of formation for the compound.25 Based 
on exergy balance, the exergy transfer by heat flow at a 
temperature T and exergy by work flow were calculated by 
Eqns (9) and (10), respectively, 26,27

 
emass = ephy + ech + epot + ekin (6)

 
ephy = (h – h0) – T0 × (s – s0)

 (7)

 
ech = ΔGf + ∑i nelem × ech,i

0 0 0
 (8)

 
eheat  =  1 –        × QT0

T  (9)

 
ework = W

 (10)

A global mass balance across the reaction was per-
formed, and the thermodynamic properties needed 
to develop the exergy balance were then obtained.28 
Chemical and physical exergies of input and output 
involved in the enzymatic transesterification of WCO were 
calculated. Exergy was determined for each compound, 
mixture and utility. Dead state conditions were taken as 
298 K and 101.325 kPa with the exergy efficiency of each 
experiment related to the transesterification calculated 
using the following equation:

 
η = 1 –

eloss
einput  (11)

Design of experiment based on RSM

RSM was used to investigate the influence of the experi-
ment variables consisting of the molar ratio of methanol 
to WCO (m), immobilized lipase concentration (l), water 
content (w) and reaction time (t) on the FAME content and 
exergy effi  ciency of the enzymatic transesterification of 
WCO. A four-factor-fi ve-level rotatable central composite 
design (RCCD) was used in these modeling and optimiza-
tion studies, which generated 27 experimental runs that 
were subsequently carried out. Table 1 summarizes the 
range and levels of the experiment variables investigated 
in the present study in the coded and uncoded forms.

Empirical second-order polynomial models, developed 
by RSM, correlate the FAME content and exergy effi  ciency 
of the in-situ transesterification as functions of the experi-
ment variables and their interactions as shown in the fol-
lowing equation:

 
Yk = β0 + ∑i=1 βixi + ∑i=1 βiixi + ∑i=1 ∑j=i+1 βijxixj

43244
 (12)

FAME assay

Th e FAME contents in the samples were analyzed by gas 
chromatography (Shimadzu GC-2010) equipped with a 
hydrogen fl ame ionization detector. Th e separation was 
carried out on a DB-1HT capillary column (30 m × 0.25 
mm). Th e GC was calibrated by methyl salicylate, methyl 
palmitate, methyl stearate, methyl oleate, methyl linoleate 
and methyl linoleate, under various concentrations. 
During the analysis, the temperature of the sampling inlet 
was 370 °C and detector temperature was 375 °C. Th e tem-
perature was initially maintained at 150 °C for 2 min, then 
raised to 360 °C at a rate of 10 °C min−1 and maintained 
for 10 min. Th e carrier gas was nitrogen at a pre-column 
pressure of 100 kPa. Th e FAME content in the samples was 
calculated by the following equation:

 
X(%) = × 100%

mFAME
mCB  (1)

where X is the FAME content, mFAME is the weight of 
FAME calculated with internal calibration method, and 
mCB is the weight of the crude biodiesel.24

Exergy analysis

Four balance equations must be applied for a general 
steady state (no accumulation) in order to find the work 
and heat interactions. Mass input and output is always bal-
anced according the principle of mass conservation given 
by Eqn (2). Energy input and output are also balanced at 
steady state according to the first law of thermodynam-
ics or the energy conservation principle given by Eqn (3). 
According the second law of thermodynamics, in real pro-
cesses entropy increases as given by Eqn (4) and a part of 
the exergy input is always destroyed as given by Eqn (5).

 
∑i(mi)in = ∑i(mi)out (2)

 
∑i(mi × hi)in = ∑i(mi × hi)out + Q – W = 0

 (3)

 
∑i(mi × si)in = ∑i(mi × si)out + ∑i      = Sgen

Qi

Ti  (4)

 
emass,in – emass,out + eheat – ework = eloss (5)

Th e mass exergy component is divided into four specific 
components including chemical, physical, potential and 
kinetic exergy expressed in Eqn (6). Th e potential and 
kinetic terms of exergy are negligible and their contribu-
tion to the total exergy balance is minimal. Th e physical 
exergy is dependent on temperature, enthalpy and entropy 
as shown by Eqn (7). Th e chemical exergy of each com-



808 © 2016 Society of Chemical Industry and John Wiley & Sons, Ltd  |  Biofuels, Bioprod. Bioref. 10:804–818 (2016); DOI: 10.1002/bbb

M Karimi, B Jenkins, P Stroeve Modeling and Analysis: Multi-objective optimization of biodiesel production 

ANN modeling

In the artificial neural network modeling, MATLAB 7.11 
soft ware was used for training and validation of neural net-
work models. Multiple input and multiple output (MIMO) 
network models were developed for the experiment vari-
ables including methanol to WCO molar ratio, immobilized 
lipase concentration, water content and reaction time as the 
input layer with the responses including the FAME content 
and exergy effi  ciency of the enzymatic transesterification as 
the output layer of the network. A standard Bayesian regu-
larization back propagation training algorithm, the trainer 
function, was employed for training the network. Th is train-
ing function updates the weight and bias values according 
to the Levenberg–Marquardt algorithm which is one of the 
best algorithms to improve generalization performance of 
neural network for function approximation problems. Th is 
is because the algorithm does not require that a valida-
tion data set be separated out of the training data set. Th is 
advantage is especially noticeable when the size of the data 
set is small such as is the case of the present study. Th e algo-
rithm minimizes a linear combination of squared errors and 
weights and then determines the correct combination to 
produce ANN that generalizes well.19

Figure 1 shows a schematic of the network architecture 
developed in this study that consists of an input layer with 

where Yk (k = 1 and 2) are the predicted responses (FAME 
content and exergy effi  ciency), xi is the ith experiment 
variable, β0 is the intercept, βi is the fi rst order model coef-
fi cient, βii is the quadratic coeffi  cient of variable i and βij 
is the interaction coeffi  cient of variables i and j. Th e coef-
fi cient parameters of the developed model by RSM were 
estimated by multiple linear regression analysis based on 
least-squares and statistically evaluated by analysis of vari-
ance (ANOVA). Th e developed model was qualitatively 
evaluated by the value of correlation coeffi  cient (R2) using 
SAS soft ware version 9.2.

Figure 1. Schematic representation of the multilayer artificial neural network used in the 
present study.

Input layer Hidden layer Output layer

Water content

Catalyst concentration

Methanol/WCO

Reaction time

1

Exergy efficiency

FAME content

1

Table 1. Constraints of process variables and the 
respective levels for RCCD.

Variables Symbol 
coded

Range and levels

−2 −1 0 1 2

Methanol to WCO 
molar ratio

m 4 5 6 7 8

Immobilized 
lipase concentra-
tion (wt.%)

l 5 15 25 35 45

Water content 
(wt.%)

w 4 8 12 16 20

Reaction time (h) t 5 10 15 20 25
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able, dk = 1.29 Considering the situation in the enzymatic 
transesterification of WCO, the target for all responses 
(FAME content and exergy effi  ciency) was found to be as 
high as possible. Th us, a one-sided transformation was 
applied as:

 

dk =
1 Yk

T
T
U

UYk

Yk
Uk –Yk r
Uk –Tk

0  (13)

where U is the minimum acceptable value, T is the maxi-
mum value that is considered desirable (target value), Yk is 
the response and r is the weight. Th e individual desirabili-
ties were then combined using the geometric mean, which 
gives the overall desirability (D):

 D = (d1 × d2)1/2 (14)

Note that if any response k is completely undesirable, dk 
= 0 and the overall desirability will be zero.

Results and discussion

Characteristics of SPION-silica NPs

Figure 2 shows the typical TEM micrographs for SPION-
silica NPs produced in this work. As can be seen, the 
magnetic NPs of Fe3O4 have an average size of around 20 
nm and the average size of the core-shell NPs is around 
100 nm. Th e mesoporous structure of the silica can also 
be observed in Fig. 2. Th e SPION-silica NPs could be 
dispersed easily in water and their superparamagnetic 
properties prevent them from having magnetic hysteresis, 
which can result in agglomeration. Both the small size and 
the mesoporous structure of silica enhanced their active 
surface for immobilization and adsorption.

four neurons, an output layer with two neurons, and a hid-
den layer. A total of 27 experiments were used to develop 
the neural network mode with 23 points used for training, 
2 points for validation, and 2 points for testing. To deter-
mine the optimal network configuration, the number of 
neurons in the hidden layer was determined by developing 
several networks that vary only with the size of the hid-
den layer and simultaneously observing the change in the 
mean squared errors (MSE). Th e fi nal number of neurons 
for this layer was 14. Th e optimum configuration was 
decided based on minimizing the diff erence between the 
neural network prediction and the desired output.

Optimization

The desirability function approach (DFA) is one of the 
most widely used methods in industry for dealing with 
the optimization of multiple response processes. RSM is 
a sequential strategy which enables us to approach the 
optimal region and depict the response efficiently, while 
the desirability function approach is a useful technique 
for analyzing experiments in which the response needs 
to be optimized. RSM and DFA have been demonstrated 
to be efficient to optimize experiment parameters for 
surface roughness.19 Single response optimization 
determines how input parameters affect the desirability 
of an individual response, whereas the numerical opti-
mization finds a point that maximizes the desirability 
function.

Adjusting the weight or importance can alter the char-
acteristics of a goal. Th e desirability function approach is 
fi rst to convert each response, Yk, into an individual desir-
ability, dk. Th e desirability scale ranges from 0 to 1, where 
if the response variable is outside an acceptable range, dk = 
0, and if the response is at its goal or target and fully desir-

Figure 2. TEM images of SPION-silica NPs. The dark areas are the SPIONs which are 
embedded inside the porous silica. The nanoporous structure of the silica shell can be 
observed at the edges.
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278.1 MJ. Th e internal exergy destruction was calculated 
to be about 16.7 MJ per kg biodiesel production. Th e exter-
nal waste exergy, which was assumed to be 20% of the out-
put streams including glycerides, methanol, n-hexane and 
immobilized lipase, was equal to 38.2 MJ per kg biodiesel 
production.

Th e huge exergy destroyed in the enzymatic transes-
terifi cation of WCO using the immobilized lipase on 
SPION-silica NPs in comparison with heating value of 42 
MJ/kg for biodiesel indicates that biodiesel production 
through this method is unsustainable from the view point 
of energy. It is worth mentioning that this exergy bal-
ance is related to the coded zero condition (methanol to 
WCO molar ratio of 6, immobilized lipase concentration 
of 25%, water content of 12% and reaction time of 15 h as 
noted above), not at optimized conditions of the enzymatic 
transesterifi cation of WCO. Optimization of the process 
can reduce heat and work demands as well as wastes 
resulting in reduction of internal and external exergy 
destroyed. Most of the unreacted substances (glycerides 
and FFA) are normally stored in tanks and then reused in 
the transesterifi cation to increase the conversion to FAME, 
resulting in reduction of the mass input requirement and 
the waste fraction.32 Technological choices through their 
performance diff erences also alter the results. For exam-
ple, in the present work, the exergy consumed to produce 1 
kJ of electricity was taken as 4.17 kJ, which is the value for 
fossil fuel based electricity generation.33 If hydropower is 
used for electricity generation, the exergy cost reduces up 
to 0.006 kJ/kJ of electricity.34 Th is would aff ect the exergy 
effi  ciency and the renewability indicator of the enzymatic 
transesterifi cation process.

Product analysis

Th e main components in the WCO-derived biodiesel 
through the enzymatic transesterification were methyl 
palmitate, methyl stearate, methyl oleate, methyl linoleate, 
methyl linoleate and methyl oleate. Th e methyl esters in 
each sample were then quantified based on the ratio of the 
areas under the peaks of each methyl ester to the internal 
standard and the known concentration of internal stand-
ard. Th e FAME content was calculated as the weight% of 
methyl ester produced over the amount of glycerides used 
for reaction.

Identifying material wastes and exergy 
loss

Th e internal exergy destruction (which is unavoidable but 
can be minimized) for the process of enzymatic biodiesel 
production, including production of SPIONs, core-shell 
NPs, alkyl graft ed core-shell NPs, immobilized lipase on 
the NPs, and fi nally the enzymatic transesterifi cation of 
samples was calculated by deducting the total exergy out-
put (eout) from the total exergy input (ein) in each step.30,31 
Th e external exergy destruction (which is avoidable) is 
equal to the sum of the exergy of all waste streams in the 
process of enzymatic biodiesel production. Th e overall 
mass and exergy balance of the enzymatic transesterifi ca-
tion process in the coded zero condition with methanol 
to WCO molar ratio of 6, immobilized lipase concentra-
tion of 25%, water content of 12% and reaction time of 15 
h is shown in Fig. 3. For these conditions, total input and 
output exergy of the enzymatic transesterifi cation of WCO 
to produce 1 kg biodiesel were found to be 294.8 MJ and 

Figure 3. Simplifi ed mass and exergy Sankey diagram for the enzymatic transesterifi cation 
using immobilized lipase on SPION-silica NPs.

Catalyst:
331.4 g, 212.9 MJ
WCO:
1.32 kg, 43.2 MJ
n-hexane:
132.5 g, 6.3 MJ
Methanol:
261.2 g, 5.9 MJ
Water:
159.1 g, 7.9 kJ

Heat and Work:
18.6 MJ

Biodiesel: 1.00 kg, 38.6 MJ
Glycerol: 94.7 g, 1.7 MJ
Glycerides: 404.2 g, 13.2 MJ
Methanol: 129.9 g, 2.9 MJ
n-hexane: 106.0 g, 5.1 MJ
Catalyst: 278.6 g, 178.4 MJ

Glycerides: 101.0 g, 3.3 MJ
Methanol: 32.5 g, 0.7 MJ
n-hexane: 26.5 g, 1.3 MJ
Catalyst: 52.7 g, 32.9 MJ

The internal exergy destruction
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where Y1 is FAME content in the enzymatic transesteri-
fi cation (%), m, l, w, and t are molar ratio of methanol 
to WCO, weight percent of immobilized lipase to WCO, 
water content and reaction time, respectively. Th e statisti-
cal signifi cance of the model developed by RSM was evalu-
ated using ANOVA and summarized in Table 3. Th e model 
F-value of 124.58 and p-value of <.0001 indicated that 
the model of FAME content was statistically signifi cant 
at a 95% confi dence level (p<0.05). Th e model terms with 
p<0.05 were also signifi cant in the model. Th e “lack of fi t” 
of the model with low F-value of 1.07 and high p-value of 
0.55 indicated that the model is not signifi cant relative to 
the pure error, which was favorable for the model to fi t. 
Th e determination coeffi  cient (R2) was also used to evalu-

Fitting the model by RSM

Th e complete design matrix and the results obtained for 
the FAME content and exergy effi  ciency of the enzymatic 
transesterifi cation of WCO along with the corresponding 
points on the fi tted models developed by RSM using the 
RCCD experimental design are summarized in Table 2. 
Th e model equation that correlates the FAME content of 
the enzymatic transesterifi cation as the response to the 
experiment variables in terms of coded values is given as:

Y1 = 74.35 + 0.99 m + 5.90 l + 0.69 w 

 + 8.64 t − 1.36 m2 −  2.26 l2 − 0.95 l × w 

 + 1.27 l × t − 1.35 w2 − 0.87 t2 (15)

Table 2. Experimental design matrix with FAME content and exergy efficiency from experiments and as 
predicted by RSM and ANN.
Run Coded process variables Experimental data Predicted data by 

RSM
Predicted data by 

ANN

Methanol 
to WCO 

(mol/mol)

Immobilized 
lipase concen-
tration (wt.%)

Water 
content 
(wt.%)

Reaction 
time (h)

FAME 
content 

(%)

Exergy 
effi ciency 

(%)

FAME 
content 

(%)

Exergy 
effi ciency 

(%)

FAME 
content 

(%)

Exergy 
effi ciency 

(%)

1 −1 −1 −1 −1 51.61 80.88 52.57 80.99 51.61 80.91

2 −1 −1 −1 1 68.00 77.37 67.40 77.39 67.96 77.49

3 −1 −1 1 −1 57.24 82.78 55.86 82.59 57.23 82.65

4 −1 −1 1 1 72.06 79.03 70.69 79.00 72.05 79.01

5 −1 1 −1 −1 63.43 81.11 63.77 81.03 63.43 81.13

6 −1 1 −1 1 82.84 79.31 83.68 79.33 82.84 79.25

7 −1 1 1 −1 63.80 81.88 63.27 81.70 63.80 81.90

8 −1 1 1 1 82.43 80.02 83.18 80.00 82.42 79.99

9 1 −1 −1 −1 54.56 81.12 54.56 81.18 54.54 81.19

10 1 −1 −1 1 70.74 77.61 69.39 77.59 70.73 77.75

11 1 −1 1 −1 59.53 82.94 57.85 82.79 59.50 82.82

12 1 −1 1 1 71.05 78.95 72.68 79.19 71.02 79.15

13 1 1 −1 −1 63.95 81.12 65.76 81.22 63.96 81.21

14 1 1 −1 1 86.58 79.47 85.67 79.53 86.55 79.55

15 1 1 1 −1 65.89 81.96 65.26 81.89 65.87 81.98

16 1 1 1 1 84.46 80.11 85.16 80.20 84.46 80.12

17 −2 0 0 0 66.52 80.09 66.95 80.18 66.56 80.28

18 2 0 0 0 70.76 80.82 70.93 80.57 70.82 80.70

19 0 −2 0 0 51.77 79.57 53.51 79.52 51.86 79.51

20 0 2 0 0 78.30 80.68 77.19 80.57 78.33 80.62

21 0 0 −2 0 68.24 79.42 67.60 79.20 68.27 79.22

22 0 0 2 0 69.14 81.40 70.39 81.47 69.20 81.56

23 0 0 0 −2 53.05 83.08 53.54 83.29 53.07 83.14

24 0 0 0 2 88.16 78.17 88.28 78.00 88.20 78.01

25 0 0 0 0 73.00 80.66 74.39 80.65 74.30 80.70

26 0 0 0 0 74.61 80.75 74.39 80.65 74.30 80.70

27 0 0 0 0 75.44 80.80 74.39 80.65 74.30 80.70
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for the exergy effi  ciency of the process. Th e large value of 
F implies that most of the variation in the response can 
be predicted by the regression equation. Th e p-value also 
estimates whether F is large enough to indicate statistical 
signifi cance. In the developed model of exergy effi  ciency, 
R2 and CV were found to be 98.77 and 0.21 respectively. 
Apart from that, the ‘Lack of Fit F-value’ of 6.24 implies 
that lack of fi t is not signifi cant relative to pure error for 
the developed model.

Interactions between process variables

Th e surface plots as the graphical representations of the 
regression equations related to the FAME content and 
exergy effi  ciency of the enzymatic transesterifi cation of 
WCO using immobilized lipase on SPION-silica NPs 
are presented in Fig. 4. Th e eff ect of varying methanol to 
WCO molar ratio and catalyst concentration on the FAME 
content and exergy effi  ciency at constant water content of 
12% and reaction time of 15 h is shown in Figs 4(a) and 
4(b). Figure 4(a) indicates that both variables of methanol 
to WCO and catalyst concentration had signifi cant eff ects 
on the FAME content. An increment in catalyst concentra-

ate the fi tness of the model. R2 indicated that the model 
could explain 98.38% of the variability. Besides, a relatively 
low coeffi  cient of variation value (CV=1.84%) implied 
a better precision and reliability of the experiments.19 
Hence, based on the high value of correlation and the low 
value of CV in the developed model by RSM, there is good 
agreement and precision between predicted and experi-
mental values of the FAME content following enzymatic 
transesterifi cation.

Multiple regression analysis of the experimental data 
also developed a second-order polynomial model based on 
coded units for exergy effi  ciency of the enzymatic transes-
terifi cation of WCO using immobilized lipase on SPION-
silica NPs as given in equation16:

Y2 = 80.67 + 0.10 m + 0.27 l + 0.56 w − 1.32 t − 0.07 m2 

 − 0.15l2 − 0.24 l × w + 0.47 l × t − 0.08 w2 (16)

where Y2 is the exergy effi  ciency of the enzymatic trans-
esterifi cation (%). Table 3 indicates the statistical signifi -
cance of the model for the exergy effi  ciency evaluated by 
ANOVA. Th e regression model was highly signifi cant, as 
is evident from the F-value of 150.32 and p-value of <.0001 

Table 3. ANOVA of quadratic response surface models for FAME content and exergy efficiency.

Term FAME content Exergy effi ciency

Coeffi cient value SE SS DF p-value Coeffi cient value SE SS DF p-value

Model 2844.02 10 <.0001 56.81 9 <.0001

Constant −55.23 79.43

m 17.34 0.2734 23.66 1 0.0022 0.898 0.0323 0.23 1 0.0073

l 1.63 0.2734 836.03 1 <.0001 0.029 0.0323 1.77 1 <.0001

w 2.78 0.2734 11.41 1 0.0227 0.406 0.0323 7.75 1 <.0001

t 2.14 0.2734 180.91 1 <.0001 −0.502 0.0323 41.97 1 <.0001

m2 −1.36 0.2901 39.57 1 0.0002 −0.067 0.0323 0.11 1 0.0547

m × l

m × w

m × t

l2 −0.02 0.2901 109.27 1 <.0001 −0.002 0.0323 0.53 1 0.0002

l × w −0.02 0.3349 14.42 1 0.0120 −0.006 0.0395 0.88 1 <.0001

l × t 0.03 0.3349 25.83 1 0.0016 0.010 0.0395 3.61 1 <.0001

w2 −0.08 0.2901 38.85 1 0.0003 −0.005 0.0323 0.14 1 0.0275

w × t

t2 0.04 0.2901 16.17 1 0.0084

Residual 28.72 16 0.42 17

Lack of fit 25.64 14 0.5478 0.41 15 0.1642

Pure error 3.07 2 0.01 2

Cor. total 2872.74 26 57.23 26
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Fig. 4(a), the FAME content increased with increasing 
molar ratio of methanol to WCO to about 6, and then 
started to decrease when this ratio was further increased 
from 6 to 9. At molar ratios under 6 for the methanol to 
WCO, there was a positive interaction between methanol 
to WCO ratio and catalyst concentration on the WCO 
conversion to biodiesel. At the constant molar ratio of 6 
for the methanol to WCO, the FAME content increased 
more strongly with an increase in catalyst concentration 
in comparison with the same increase in catalyst concen-
tration and a methanol to WCO ratio of 4. In contrast, at 
molar ratios more than 6 for methanol to WCO ratio, a 
negative interaction was found between these factors. Th is 
means that in increasing the methanol ratio from 6 to 8, 
the positive eff ect of catalyst concentration on the WCO 
conversion to biodiesel was diminished.

From an exergy point of view, as shown in Fig. 4(b), the 
exergy effi  ciency increased with increasing both methanol 
to WCO molar ratio and catalyst concentration, followed 

tion caused an increase in the FAME content, so that the 
highest FAME content was obtained at the highest catalyst 
concentration. Th is phenomenon could be attributed to 
the increase in absorption of substrate molecules onto the 
active center of the lipase, with the more lipase available.35 
However the increase rate of FAME content declined as 
immobilized lipase content rose from 25% to 45%. Th e 
WCO content was excessive when catalyst concentration 
was under 25%, and that as the catalyst concentration rose 
to become sufficient from 25% to 45%, the FAME content 
increased only 4%.

Yaakob et al. 36 have recommended that due to the 
reversibility of the transesterifi cation reaction, methanol 
to oil molar ratio should be used in an excess amount of 
the stoichiometric ratio (i.e., a molar ratio of methanol to 
oil of 3:1). Methanol is known as a lipase inhibitor and so 
high methanol content in the reaction can signifi cantly 
inhibit lipase activity. Th erefore, a step-wise methanol 
addition strategy is commonly applied. 36 As shown in 

Figure 4. Surface plots of (a) FAME content (%) in terms of methanol to WCO molar 
ratio and catalyst concentration (%), (b) exergy effi ciency (%) in terms of methanol 
to WCO molar ratio and catalyst concentration (%), (c) FAME content (%) in terms 
of water content (%) and reaction time (h), (d) exergy effi ciency (%) in terms of water 
content (%) and reaction time (h).



814 © 2016 Society of Chemical Industry and John Wiley & Sons, Ltd  |  Biofuels, Bioprod. Bioref. 10:804–818 (2016); DOI: 10.1002/bbb

M Karimi, B Jenkins, P Stroeve Modeling and Analysis: Multi-objective optimization of biodiesel production 

by a decline in effi  ciency when further increasing these 
factors. In calculating the exergy fl ow in the enzymatic 
production of biodiesel, a waste of 20% was assumed for 
recovery of outputs such as methanol and immobilized 
lipase. Th erefore, waste of the least content of methanol 
and immobilized lipase was considerable to the extent that 
exergy waste of the least levels of these factors was more 
than the addition exergy of biodiesel produced through 
increasing FAME content caused by the factors. Th erefore, 
adding more methanol and immobilized lipase than the 
optimum caused more exergy destruction and lower 
exergy effi  ciency. In the experiment condition with con-
stant water content of 12% and reaction time of 15 h, the 
highest exergy effi  ciency occurred at a methanol to WCO 
molar ratio of 6 and immobilized lipase concentration of 
28%.

Th e individual and cumulative effects of water content 
and reaction time on the FAME content are graphically 
represented in a 3D surface in Fig. 4(c). Th e FAME con-
tent increased gradually with an increase in the water 
content from 0% to 10% of WCO, and then declined as 
water content increased from nearly 10% to 20%. For the 
enzymatic transesterification of WCO in predominantly 
non-aqueous media, water plays multiple roles and has a 
strong influence on the catalytic activity and stability of 
the lipase.37 Some water is essential to keep the enzyme 
active in organic solvents. However, water might take part 
in the enzymatic transesterification, thus influencing the 
equilibrium.38 Water facilitates an increase in the avail-
able interfacial area, thus helping to maintain lipase activ-
ity. However, excess water might make the lipase more 
flexible and lead to some unintended side-reactions such 
as hydrolysis, especially in the transesterification process. 
As shown in Fig. 4(c), the FAME content increased along 
with the increase in the reaction time. However, with the 
increase in the reaction time, the rate of increase in the 
FAME content slightly decreased. Th e reaction rate was 
aff ected by mass transfer limitations.39 Th e lower rates at 
the end of the reaction time might be due to insuffi  cient 
mass transfer because of low mutual solubility of methanol 
and WCO, which is mainly due to the fact that glycerol is 
formed as reaction takes place, making solubility and mass 
transfer progressively limited.40

As can be seen in Fig. 4(d), the exergy effi  ciency steadily 
decreased with increasing reaction time. Although 
FAME content increased with time, exergy effi  ciency was 
observed only to decline with increasing reaction time. 
Heating and stirring of the reaction consumed electricity 
to accelerate WCO conversion to biodiesel, and electric-
ity demand was nearly constant. Th erefore, electricity 

exergy input steadily increased with increasing reaction 
time. With constant input, a reaction with high yield 
destroys a lower exergy through a lower waste of outputs. 
Th erefore, an increase in FAME content could reduce 
exergy waste and enhance exergy effi  ciency provided that 
exergy input is constant or any increase in exergy input 
is lower than the corresponding increase in exery output. 
But an increase in reaction time enhanced exergy demand 
more than exergy output by FAME content (or exergy 
saved through preventing destroyed exergy by material 
waste). However, the results show that the long reaction 
time in the enzymatic transesterifi cation with correspond-
ingly high exergy destruction can be considered as one 
of the main obstacles in development of biocatalysts in 
transesterifi cation.

Analysis by artificial neural networks

A variety of the architectures and topologies of neural 
networks were selected and tested for estimation and 
prediction of the FAME content and the exergy effi  ciency 
of enzymatic transesterifi cation. Along with the learning 
algorithms, a variety of transfer functions were also tested 
for both output and hidden layers. Th e transfer function 
types employed in the neural network aff ect the ANN 
learning rate and aid its performance.20 Several itera-
tions were conducted with diff erent numbers of neurons 
placed in the hidden layer to determine the optimal ANN 
structure to predict the output layer. It was started with 
two neurons and increased the number up to thirty. A 
self-organizing feature map network based on Bayesian 
regularization was fi nally selected as the best training 
algorithm to predict the process . Th e Multilayer Full 
Feed Forward with sigmoid connection type for the hid-
den layer and linear for the output layer, were employed 
in the ANN. Th e least MSE value and a good prediction 
of the outputs of both training and test sets were obtained 
with fourteen neurons in the hidden layer. Th e predi-
cated values of the responses using the employed ANN 
are provided in Table 2. Th e predicted and actual values 
were employed to calculate R2 for both responses. Figure 5 
shows the correlation between actual and predicted values 
based on the ANN model for both responses. As shown, 
the employed ANN improved R2 values in both cases as 
compared to RSM, which confi rmed capability of ANN for 
fitting a reliable model with only 27 experimental points. 
Th e results showed that both RSM and ANN optimiza-
tion tools gave good predictions due to the values of R2and 
small values of MSE. However, ANN showed a clear supe-
riority over RSM because of the higher values of R2 and 
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smaller values of MSE obtained. In addition, data fitting 
of the models were tested and the ANN models demon-
strated a better fitting than RSM (Fig. 5). Th erefore, it can 
be claimed that ANN was better than RSM in the mod-
eling studies of the enzymatic transesterification.

Optimization

By comparing the predicted and experimental values in 
both training and testing sets, it is not only shown that 
ANN has capability in predicting known data responses 
(the data that have been used for training) but also has 
the ability for generalization of unknown data along with 
responses into the range of experimental design (the data 
that have not been used for training). Th is implies that 
models developed by ANN can be used to adequately 
describe the output variables of FAME content and 
exergy effi  ciency of the enzymatic transesterifi cation. Th e 
ANN trained in this study was used for predicting both 
responses (FAME content and exergy effi  ciency) in 160 
000 (20×20×20×20) diff erent simulated combinations of 
the four experiment variables (molar ratio of methanol to 
WCO, immobilized lipase concentration, water content 
and reaction time) that completely covered the experi-
mental space. In the present work involving multiple 
responses, the acceptability of the process was depend-

ent on more than one response. In such situations the 
desirability of the process depends on the simultaneous 
optimization of two responses, FAME content and exergy 
effi  ciency of the enzymatic transesterifi cation of WCO. 
Optimization was implemented by using the desirability 
profile and its function. Th erefore, the values predicted by 
the ANN were used to calculate their dk (desirability of 
response of k) and D (overall desirability) values. 41

For individual desirability of FAME content, the maxi-
mum value of this response based on optimization of the 
input space by DFA with data generated by ANN was 
obtained with FAME content as high as 95.7%. Th e design 
variables corresponding to the maximum objective func-
tion value, including methanol to WCO molar ratio, catalyst 
concentration, water content and reaction time, were set at 
6.7, 45%, 9%, and 25 h, respectively. For individual desir-
ability of exergy effi  ciency, the maximum value based on 
the developed DFA was found to be 84.6% at a methanol to 
WCO molar ratio of 8, catalyst concentration of 9%, water 
content of 12% and reaction time of 5 h. For simultaneous 
optimization of two responses, the maximum value for the 
overall desirability was found at a methanol to WCO molar 
ratio of 6.7, catalyst concentration of 35%, water content 
of 12% and reaction time of 20 h. Th e response values for 
FAME content and exergy effi  ciency that correspond to this 
combination were 88.6% and 80.1%, respectively.

Figure 5. Correlation between experimental and predicted values by ANN for (a) FAME content and (b) exergy effi ciency.
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Th e eff ects of design variables in the enzymatic transes-
terifi cation of WCO on FAME content, exergy effi  ciency 
and overall desirability as the objective functions at optimal 
points are shown in Fig. 6. In each plot displayed in the 
figure, the influence of one of the experiment variables on 
FAME content, exergy effi  ciency and overall desirability was 
depicted while holding the other factors constant at the opti-
mal point. Among the experiment variables with the ranges 
studied in the present work, the catalyst concentration and 
reaction time were recognized as the most eff ective fac-
tors infl uencing biodiesel production and exergy effi  ciency. 
However, the reaction time of the experiments, even at the 
longest time of 25 h, was a limiting factor for biodiesel pro-
duction but was also the main factor in exergy destruction 
during enzymatic transesterifi cation. It is recommended 
that in order to develop biocatalysts for transesterifi cation, 
the energy (electricity) demand of the reaction should be 
decreased by reducing the reaction time or by enhancing the 
energy effi  ciency with higher performance technologies such 
as microwave and ultrasound irradiation in the reaction.

Conclusions

Th is study investigated the influence of FAME content 
and energy factors on the progress of waste cooking 

oil (WCO) conversion to biodiesel catalyzed by immo-
bilized lipase on SPION-silica NPs. Th e T. lanuginose 
lipase was successfully immobilized onto magnetic 
mesoporous silica-SPION NPs and then used for enzy-
matic transesterification of WCO to synthesize biodiesel. 
Methanol to WCO molar ratio, catalyst concentration, 
water content and reaction time were considered as the 
main design variables and multi-objective functions 
including FAME content and exergy effi  ciency were pro-
posed to achieve maximum desirability. Two quadratic 
response surface equations were successfully established 
by RSM to study the modeling and interaction of the 
variables for FAME content and exergy effi  ciency of the 
enzymatic transesterification using the experimental 
data based on RCCD methodology. A multiple input and 
output ANN was also developed for predicting and simul-
taneously optimizing the response based on a DFA. Based 
on individual desirability, a maximum FAME content of 
95.7% was predicted at the methanol to WCO molar ratio 
of 6.7, catalyst concentration of 45%, water content of 9% 
and reaction time of 25 h while a maximum exergy effi  -
ciency of 84.6% occurred at a methanol to WCO molar 
ratio of 8, catalyst concentration of 9%, water content of 
12% and reaction time of 5 h. FAME content by the enzy-
matic transesterification of WCO was shown to improve 

Figure 6. Effects of experimental variables on FAME content, exergy effi ciency and overall desirability at the optimal 
points.
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significantly with process catalyst concentration and reac-
tion time, which were both found to be the main factors 
of exergy destruction. Th e energetic waste associated with 
the recovery of excess methanol, as well as an increase in 
downstream FAME purification requirements, might hin-
der the use of excess methanol in trying to increase FAME 
content. Th e design variables set at the methanol to WCO 
molar ratio of 6.7, a catalyst concentration of 35%, a water 
content of 12% and a reaction time of 20 h were identi-
fi ed as the optimal condition to achieve maximum desir-
ability with FAME content and exergy effi  ciency values 
of 88.6% and 80.1%, respectively. Th e methods described 
here are useful in order to optimize design variables under 
the multiple objectives of high yield and high process 
effi  ciency.
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